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Abstract In this paper, the authors study the Cohen-Fischman-Westreich’s double cen-
tralizer theorem for triangular Hopf algebras in the setting of almost-triangular Hopf al-
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1 Introduction

Let V be a finite-dimensional vector space over a field k of characteristic 0. Then for
any positive integer m, the symmetric group S,, acts on V®™ via the twist map and the
Lie algebra gl(V') acts on V®™ via its comultiplication. Schur’s double centralizer theorem
originally established a correspondence between the above representations, which stated that
Sm and U(gl(V)) are mutual centralizers in EndgV®™. Berele and Regev [1] generalized this
result to the Lie superalgebra pl(V'), where V is a Zg-graded vector space, Jimbo [2] stated a
similar result for U,(sl(2)), and Kirillov and Reshetikhin [3] for U, (su(2)). Fischman [4] used
purely Hopf algebraic methods to give a short proof of both these situations. In 1994, Cohen,
Fischman and Westreich [5] considered the situation of triangular Hopf algebras.

In [6], the authors introduced and studied almost-triangular Hopf algebras as a generaliza-
tion of triangular Hopf algebras. Naturally, this paper is devoted to establishing the Cohen-
Fischman-Westreich’s double centralizer theorem for triangular Hopf algebras (see [5]) in the
setting of almost-triangular Hopf algebras.

This paper is organized as follows. In Section 2, we recall some definitions and results about
quasi-triangular Hopf algebras and R-Lie algebras. In Section 3, we introduce the definition of
the R-universal enveloping algebra of an R-Lie algebra in the setting of almost-triangular Hopf

algebras, which generalizes the corresponding results in the setting of triangular Hopf algebras.
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In the final section, we establish the Cohen-Fischman-Westreich’s double centralizer theorem

for almost-triangular Hopf algebras (sec Theorem 4.2).

2 Preliminaries

Throughout this paper, k is a fixed field. Unless otherwise stated, all vector spaces, algebras,
coalgebras, maps and unadorned tensor products are over k. For a coalgebra C, we denote its
comultiplication by A(c) = c(1) ® ¢(2), Ve € C and for a left C-comodule (M, ¢), we denote its
coaction by p(m) = m_y ® myg, ¥m € M, where the summation symbols are omitted. We
refer to [7] for the Hopf algebras theory.

Let H be a bialgebra and A be a left H-module algebra. The smash product AfH of A and
H is defined as follows: For all a,b € A and h,g € H,

(i) as k-spaces, AtH = A® H,

(i) multiplication is given by

(afth)(bg) = a(h(1) - b)ih(2)g.

Note that AfH is an algebra with the unit 1441p.

Recall from [8] that a quasi-triangular Hopf algebra is a pair (H, R), where H is a Hopf
algebra and R = R' ® R? € H® H (where the summation symbols are also omitted) satisfying
the following conditions (with r = R):

(1) R is invertible,

(2) RA(h) = A°P(h)R for all h € H,

(3) (A®id)(R) = R'@r' @ R*r?,

(4) (d® A)(R) = R'r' ® r? @ R2.

It is easy to get that
R'=S(RY®R? &¢R"HYR*=1.

Remark 2.1 (1) If the antipode of H is bijective, then (S ® S)(R) = R.

(2) (H, R) is triangular if R'7? @ R*r' = 1® 1.

(3) (H, R) is almost-triangular if R'r? ® R*r' € O(H ® H) = C(H) ® C(H), the center of
H® H (see [6]).

Let g M denote the category of the left H module category. For each V' € g M, EndyV €
M, where for each f € EndgV and h € H,

(h- £)) = hay - (f(S(h) - v)).
Moreover, if V, W € g M, then V@ W € M, where for each v®@w € V@ W and h € H,
h~(v®w):h(1)'v®h(2)'w.

The tensor algebra of V, T(V') is an H module algebra. Then M is a monoidal category.
When (H, R) is quasi-triangular, the category gy M is a braided category with the braiding
Yyw VW — W ®V given by

Y(v@w)=R* w®R' v
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for any V.W € gM,and v e V, w € W.

Let (H, R) be a quasi-triangular Hopf algebra. Recall from [5] that an R-Lie algebra is an
object L € yM together with an H-morphism [, |g : L ® L — L satisfying

(i) R-anticommutativity: [I1,ls]r = —[R? - l2, R' - l1]g;

(ii) R-Jacobi identity:

0={L®L®Ils}r+ {53120l ®la ®13)}r + {S231(l1 ® 2 ® I3)}

for all 11,15,13 € L, where {l; ® lo ® I3} r = [l1, [l2, 3] r] R, S312 = 112 © P23, S231 = P23 0 P12,
PYo3(l1 @la @13) =11 @ (R? - I3) ® (R - 13) and ¢12(lh ® lo @ 13) = R? - ls @ R* - 11 ® 3.
Note that [, |z being an H-module homomorphism means that for all h € H and l4,ls € L,

h-[l1,lo]r = [(h1y - ), (he2) - 12)]R-

3 R-universal Enveloping Hopf Algebras

In this section, we introduce the definition of the R-universal enveloping algebra of an R-
Lie algebra (see [5]) in the setting of almost-triangular Hopf algebras, which generalizes the
corresponding results in the setting of triangular Hopf algebras.

Let (H, R) be a triangular Hopf algebra and A be any left H-module algebra. In [5], the
authors derived an R-Lie algebra denoted by A~ from A by defining an inner R-Lie product

[7]R:A®A_>Aa [avb]R:ab_(R2'b)(R1'a)

for any a,b € A.
However, if (H, R) is an almost-triangular Hopf algebra, A~ is not necessarily an R-Lie
algebra. In the following, we will discuss the condition under which A~ is an R-Lie algebra.

Unless otherwise stated, we always let (H, R) denote an almost-triangular Hopf algebra.

Proposition 3.1 Let (A,-) be a left H-module algebra satisfying R'r? -a® R*rl -b=a®b
for all a,b € A. Then (A,[, |r) is an R-Lie algebra.

Proof It is easy to get that [, | g satisfies the R-anticommutativity. Indeed, for any a,b € A,

—[R*-b,R' -a]lgr = (r*R* - a)(r'R* - b) — (R? - b)(R" - a)
=ab— (R*-b)(R'-a)
= [a,b]R.

In order to check the R-Jacobi identity, we have the following computations: For any a, b, ¢ €

A

)

{a®@b®ctr
= [a, [b;clrlr
= [a,be— (B2 ¢)(R! - )]
=a(bc — (R*-¢)(R' - b)) — (r* - (be — (R* - ¢)(R" - b)) (r! - a)



486 G. H. Liu and X. F. Zhao
=abc—a(R?-¢)(R* - b) — (r* - be)(r' - a) + (r* - (R* - ¢)(R" - b))(r! - a)
=abc —a(R? - ¢)(R" - b) — (7“(21) b)(r(QQ) c)(rt-a) + (T(QI)RQ . c)(r(QQ)Rl 2b)(r! - a)
=abc —a(R?*-¢)(R" - b) — (r* - b)(R?* - ¢)(R'r* - a) + (r*R* - ¢)(P*R" - b)(P'r! - a),
{S312(a®@b®@c)}r
= {Y100Yn3(a®@b®c)}p = {t12(a®@R*-c® R -b)}r
={r’R*-cort-a®R' b} = [r*R?-¢,[(r" - a), (R" - D)|r|r
=[r*R%-¢,(r' -a)(R" - b) — (P?R" - b)(P1 Loa)r

= (r*R? - ¢)(r' - a)(R" -b) = (" R?- ¢)(P*R' - b)(P'r! - a)
—(Q%yr! - a)(Qfy R -b)(Q'r* R - ¢) + (Q(1 P?R-b)(Qf) P'r! - a)(Q'?R? - ¢)
= (r*R?-c)(r' - a)(R" - b) — (r*R* - ¢)(P*R" - b)(P'r" - a)

— (@' -a)(P?R" - b)(P'Q'r?*R® - ¢) + (Q*P*R' - b)(U*P'r! - a)(U' Q"1 R? - ¢)
= (r*R?-c)(r" - )( -b) = (r*R* - ¢)(P*R" - b)(P'r - a)

—abe+ (Q*P2R' - b)(U?PY - a)(U'Q'?R? - ¢)
= (r*R?-)(r' - a)(R" -b) — (r*R*- ¢)(P’R" - b)(P'r - a)

—abe + (P?U?R' - b)(P*Q%*r' - a)(U'Q'r?R? - ¢)

= (r*R?-)(r' - a)(R" - b) — (r*R* - ¢)(P*R" - b)(P'r" - a)
— abc + (P? -b)(P! - a)c,
and
{Ss1(a@b®c)}r
= {3 o2(a®@b®c)}r
={R*-b@r* c@r'R' -a}r
=[R*-b,(r*-¢)(r*R* - a) — (P*r'R* - a)(P'r? - 0)]r
= (R?-b)(r* - ¢)(r'R' - a) — (R* - b)(P*r'R' - a)(P'1? - ¢)
—(Qhyr* - (@' R' - a)(Q'R* - b) + (QF P*r' R - a)(Qfy P'r? - ¢)(Q' R? - b)
= (R*-b)(r* - ¢)(r'R" - a) — (R* - b)(P?*r'R* - a)(P'r?* - ¢)
—(Q*? - ¢)(P*r'R' - a)(P*Q'R? - b) + (Q*P?*r'R' - a)(U?P'r? - ¢)(U'Q*R* - )
= (R?-b)(r* - c)(r'R' - a) — (R* - b)(R' - a)c — (r*P? - ¢)(r'Q*R" - a)(P*Q'R* - b)
+a(U?-¢)(U* -b)
= (R*-b)(r? - ¢)(r*R' - a) — (R% - b)(R' - a)c — (r2P? - ¢)(r' - a)(P' - b)
+a(U?-¢)(U* -b).
Hence

{a@b@ctrp+{S312(a@b®c)}r+ {S231(a@b®¢)}r = 0.

Example 3.1 Let (H, R) be a triangular Hopf algebra, and then any left H-module algebra
A satisfies R'7?-a ® R?r' -b=a®b for any a,b € A. So A~ is an R-Lie algebra with [, |g.
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Example 3.2 For any Hopf algebra H, H is a left H-module algebra via the adjoint action,
ie., h>g = hygS(he) for all h,g € H. If (H, R) is almost-triangular, then H~ is an R-Lie
algebra with [, | 5.

Proof By Proposition 3.1, we just need to show that
R'"¥?bh@ R rlbg=h®g
for all h,g € H. For this, we compute
R'">h@Rr'pyg
= RiyyriyhS(Rigyrlay) © REyriy9S (Riyyria)
= RIUhS(P'r 2> ®R(1>P(1>7”<1>U<1>95(R(2>P(2>7”(12>U<12>)

= R'Q'U*V2S(P'Wr2 X257 (h)) @ Q*W ' U'S(R?P2X'V1S™1(g))
= R'\QIUAVES(W'r?P X257 (h)) @ W ' QU S(R*P2 X' V'S~ (g))
= R'QIUAVES(Wr2S~Hh) P X?) @ W ' QU S(R?*V'S~!(g)P? X 1)
:R1V2Q1U2 ( ( )W17’2P X2)®Q2U1W2TIS(R2V1571( ) 2 1)

_ R1V2Q1U2 (WlT'QPlXQ)h ® Q2U1W27“15(R2V1P2X1)g
= R'W2S(r* P XA S(WHQ'WU?h @ W2Q*U'r' S(R*VIP2X1)g
= R'WVZS(P'X?*)S(rfy) )riyh @ 7' S(RPP X'V 1)g
= R S(V3)S(PYh @ S(R?P?V)g
= R{;)S(R{y)h @ S(R?)g
=h®yg.
Example 3.3 Let (H, R) be an almost-triangular Hopf algebra with a bijective antipode.

If V is a finite-dimensional left H-module satisfying R'r? - v @ R?r! - vo = v1 ® vo for any
v1,v9 € V, then EndiV is a left H-module algebra satisfying

Ry fieRr' - fo=f1i® fo

for any f1, fo € EndyV, where (h - f)(v) = hqy - f(S(h)) - v) for any h € H, f € EndgV and
v € V. Therefore, Endx V'~ is an R-Lie algebra with [, |g.

Proof It is easy to check that EndyV is a left H-module algebra. We just prove the identity
R - iR - fo=Ffi® f

for any f1, fo € EndxV. Indeed, for any v, vy € V, we have the following computations:

(R'r? > f1)(v1) @ (R*r' b f2)(v2)
= R(11)7(21) ’ fl(S(R(lQ)T(QQ)) 1) ® R(Ql)r(ln ’ f2(S(R(22)7”(12)) +V2)
= R'Q'UV?- fi(S(P'W'rX?) - v1) @ Q*W?r'U' - fo(S(R*P2X'V?) - vg)
= R'Q'U*VZ. f1(S(P*X*W'r?) - v1) @ Q*U'W?2r! - fo(S(RZP2X'VY) - 0y)
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=R'VZ- fi(S(r)SWHX2PY - v1) @ W2t - fo(S(VH X P2S(R?) - vg)
=RV fi(SrH)W?v) @ Wb . fo(VES(R?) - v9)
= R"- fu(S(ry)rly - v1) @' - f2(RES(RE)) - va)
= f1(v1) ® fa(v2),

where the fourth identity holds because (S ® S)(R) = R and the fifth holds because S(R!) -
v1 ® R? vy = R?-v1 ® R -v3. So from Proposition 3.1, End,V ~ is an R-Lie algebra with [, |g.

Example 3.4 Let (H, R) be an almost-triangular Hopf algebra and V' be a finite-dimen-

sional left H-module such that the representation of H on V,
my : H— EndyV, wy(h)(x)=h-2x forallhe HxeV
is a surjection. Then EndyV is a left H-module algebra satisfying
R f@R*! f = f®f forall f, f € EndV,
where h - f = 7wy (hqy) frv(S(he))), 7v : H — EndyV, defined by
my(h)(x) =h-x forany h€ H,f € EndyV and z € V

is an algebra homomorphism. Hence End,V ~ is an R-Lie algebra with [, |g.

Proof For any f, f' € EndyV, since my is a surjection, there exist h,h’ € H such that
7y (h) = f and 7y (h') = f’. Then we have

RYr»?> f@ R*rin f
=TV R(11)7”(21))7TV(h)WV(S(R(lQ)T(Qz))) ®7TV(R(21)7"(11))7TV(h/) (S(R(z) @)
R'UhS(P'1?)) @ mv (R} Plyr iy Ul R S (R Py rinUlyy))
WQIUAV2S(PTWh2 X257 1(h))) @ my (Q*W?r U S(R* P2 X' VIS~ 1 (1))
=1y (R*QIUAVES(W 2P X257 () @ my (W2r'Q*U* S(R* P2 X' VIS~ (1)

(
v (
:WV(
( ) ( (
=1y (R'QIUV2S(Wr2S—H(h) P X?)) @ Ty (W2rtQ*U* S( “L(n)PAx?t
( ) ( (
(
(
(
(

s(p
S(
S( R?V'S X
v(RW2Q'U2S(STH W)W P X?)) @ my (Q*U' W2 S(R*VIS—1 (R ) P2 X!
v(R'V2QIU2S(Wr? PLX?)h) @ my (Q*U'W2r' S(R*VI P2 X H)1)

=1y (R'VZS(r?* P XA S(WHQ'W?h) @ my (W2Q*Ur' S(R*VI P2 X 1K)

= 1y (R'V2S(P'X?)S (1)) )riayh) @ my (r' S(RPP? X' VR

= v (R'WV{G)S(V5))S(PYh) @ mv (S(R*P2VI)

= WV(R(US(R(Q)) ) @ mv (S(R*)R)

=fef.

[l
3

\
S

Hence Endx V'~ is an R-Lie algebra with [, |g.

Remark 3.1 (i) If V is a simple H-module, then 7y is a surjection.
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(ii) Let V be a semi-simple H-module, i.e., V = Vlkl @---@VPFs where foranyi,j =1, ,s,
Vi 2 V; as H-modules when i # j, and V; are simple H-modules. If k; = --- = ks = 1, then 7y

is a surjection.

Definition 3.1 Let (L,[, |r) be an R-Lie algebra satisfying
R L @R> Iy =11y forallly,ly € L.

An R-universal enveloping algebra of L is a pair (U, u), where U is an associative left H-module
algebra such that

RY? - uy @ R - ug = ug @ us for all uy,us € U,

u: L — U~ is an R-Lie homomorphism, and the following holds: For any associative H -
module algebra A satisfying R*'r?-a® R*r' -b=a®0b VYa,b € A, and any R-Lie homomorphism

f L — A™, there exists a unique H-module algebra homomorphism g : U — A, such that
gou=f.

Proposition 3.2 Let A be a left H-module algebra such that for all a,b € A, R'r? - a ®
R*r' - b=a®b. Then the map u: A~ — U(A™) is an injection.

Proof Clearly the identity map from A~ to A~ is an R-Lie map. By the universality of
U(A™), there exists a unique H-module algebra homomorphism g : U(A~) — A~ such that

g owu = id. Hence u is an injection.

Proposition 3.3 Let (L,[, |r) be an R-Lie algebra satisfying R'r? -1y @ R*r! -l =13 ® 1o
for all l1,ly € L. Then L has an R-universal enveloping algebra (U(L) = T(L)/I,u), where I
is the ideal of T(L) generated by

{ll R ly — R? -l ®R1 o — [ll,lQ]R fOT’ all 11,15 € L},

and w: L — T(L)/I is the canonical map: | — |+ 1 =1.
Proof The proof is similar to the one in the setting of triangular Hopf algebras in [5].
From now on, we write [, ] for [, |g.

Proposition 3.4 Let L be an R-Lie algebra satisfying R'r? -1, @ R?*r' -1y = 11 ® Iy for all

l1,lo € L. Then there exists an H-module algebra homomorphism
g:UL®L)—UL)®UL).
Proof Define f: L& L — U(L)® U(L) by
(li,le) —~ L1 ®@1+1®Iy forallly,ls € L.

Next we show that f is an R-Lie homomorphism. Obviously, f is an H-module homomor-

phism. It suffices to show that

U 8), W) = [£(1, ), f(0, /) CBIEVED,
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Recall that the multiplication in U(L) ® U(L) is
(los)l'®s)=1(R*-1'")® (R'-s)s’ foralll,s ' s €L.
Then we have

[f(1,s), ( /)](U(L)®U(L))*

((®@14+123),I'®1+1®5)]
(21+13)[l"21+19s) - (R*-I'21+10s)(R'- (1®1+1®73))
(21+13)l'e1+10s) - (R* Te®1+1@R* ) (R I 1+1® R'-3)
Nol+lesd+ (R T)® (R 3)+1235s — (R*-T)(R' )1
+(R?-T1)@ (R -3+ (PR - )@ (r'R*-§) + 1@ (R*-§)(R' -5))
Wel-(RP-T) (R He1+103s8 -1 (R*-§)(R-3))
—[L7®1+10[5d =LIel+10][s,s]

= F([L1) [s,8) = F([(L,5), (U, 8] 95).

So f is an R-Lie map.

Now by the universal property of U(L®L), there exists an H-module algebra homomorphism
g:UL®L)—UL)®U(L).

Theorem 3.1 Let L be an R-Lie algebra satisfying R'r? -1 @ R?>r! -1y = 11 ® Iy for all
l1,lo € L. Then U(L) in Proposition 3.4 is a Hopf algebra in the category g M with

A =1l0l1+1®l,

S =-1, S(t) = (R* SOHR' - 5()),
@)

0, e1)=1
foralll € L and3,t € U(L).

™

Proof Analogous to the proof in the case of triangular Hopf algebras ([5, Theorem 2.6]).

Next we give an application of Theorem 3.1. Let V' be a finite-dimensional left H-module
such that for any v1,ve € V, R'? - v1 @ R?*r' - v = v1 @ v9. So from Example 3.4 and Theorem
3.1, U(EndxV ™) is a Hopf algebra in the category yM, which implies that U(EndyV ~)4H is
a Radford’s biproduct. In the following, we will discuss when U(EndyV ™ )tH is an almost-
triangular Hopf algebra.

Theorem 3.2 Let (H,R) be an almost-triangular Hopf algebra and V be a finite-dimen-
sional left H-module such that for any vi,va € V, R'r? - vy @ R?>r! - vy = v; @ vy. Then
(U(EndyV7)8H, (14RY) @ (18R?)) is an almost-triangular Hopf algebra if and only if R'r? @
Rr' - f=1® f, and R'? - f @ R*r' = f®1 for any f € EndyV.

Proof Denote U(End,V " )#H by B and (14R') ® (1§R?) by R. It is easy to get that
(Ap ®id)(R) = RPR” and (id ® Ag)(R) = RPR™. Next we show that (B, R) is almost
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cocommutative if and only if R'r? @ R?rl - f = 1 ® f for any f € EndV. For this, on the one
hand, for any f ® h € B, we have
AP(f @ h)((14R") @ (1£R?))

= (foothe) @ (foifeenho)) (R ® (14R%))
= (fo o theR) © (fo)tfenhaR?)
=(r'- foyth@R") ® (fa)ir*ha)R?)
= (r' - ftR'hay) © (faytr? R?hz))
= (r' - 18R hy)) @ (fir®R?h(g)) + (r' - fER hqy)) @ (14r* R?hz)
= (R h()) © (fiR?h()) + (r' - fER h(1)) @ (142 R?hyg)).
On the other hand,

(14RY) ® (1ER*)A(f ® h)

= (UR") (fo)tf2)-nha) @ R (fi2)0)th2)

= (B(y) - f bRy hay) ® (B! - iRy hz))

= (

=(

o~ o~ o~ o~ o~ o~

R'Q" - fyiP V' ha)) @ (Q*V3r! - fo)tR*P?hyy))
R'Q' - fiP'V'r?ha)) @ (Q*V?r! - 1§R*P?hyy))
+ (R'Q" - 18PV 'r?h(y)) @ (Q*Vr! - f1R*P?hy))
= (R'- ftPhq)) @ (1ER*P?h(g)) + (4P V2 hy)) @ (VP! - f1P%h(y))
= (R'- ftPhqy) @ (14R?P?h(9)) + (18P hry) @ (FEP%ha)).
Then from the above computations, we get that (B, R) is almost cocommutative if and only if
(1#R'h(1)) ® (fiR?h(z)) = (WP'V'r?hey) @ (Vir! - f1P%ha)),

which is equivalent to R'r? @ R%r! - f =1® f.
Finally, we check that 'R belongs to the center of BR B if and only if R'r2@R?*r! - f = 10,
and R'r? - f ® R*r! = f®1 for any f € End,V. Indeed, we have the following computations:

(1ERY)(14r?)(fth) @ (14R?)(1grt)(f'2R')
= (Ryry - [ERyrnh) © (R - FRE)()k)
= (R'Q'UPV? . fP'W'r?X?h) @ (Q*W?r'U" - fR* P X'V'h)
= (R'V?. fiP' W2 X?h) @ (W2r' - f4R?*P2XVE)
= (R'V?. fihP X*Wr?) @ (W2r' - f/$h/ R?VIP2X 1)
and

(feh)(LERY)(14r?) @ (f'80')(14R?)(14r') = (fthR'r®) @ (f'8h' R*r1).
Thus it is not hard to get the conclusion. So we complete the proof.

Remark 3.2 If V is a finite-dimensional left H-module such that the representation of H
on V is a surjection, then R'7?®@ R%*rl. f = 1® f, and R'r?- f@ R*r! = f®1 for any f € EndyV.



492 G. H. Liu and X. F. Zhao

4 Cohen-Fischman-Westreich’s Double Centralizer Theorem in the
Setting of Almost-Triangular Hopf Algebras

In this section, we always let (H, R) be an almost-triangular Hopf algebra and V be a finite-
dimensional left H-module such that for any vi,vs € V, R'7? - v ® R%r! - vy = v; @ vg. In
Section 3, we have already showed that U(EndiV ~)fH is a Radford’s biproduct.

In the following, we always denote U(EndyV ~)iH by B. Obviously, V is a left B-module
via (fgh)-v = f(h-v) for any f € EndyV, h € H and v € V. So we have a representation of B
onV p: B — EndyV given by

p(fEh)(v) = f(h-v).

Clearly, p is a surjection. The representation p induces a representation p™ on V" as follows:

P () (01 @ @ vm) = p(b))(v1) @ -+ p(b(m)) (Vi)

for any b € B.

Notation 4.1 (i) For any b € B, denote p(b) by b. So p™(b) = b1y ® - - - b(m)-

(ii) For any h € H, it is easy to get that p(idfh) = p(18h). So denote p(idgh) and p(1gh) by
h.

Now we consider the symmetric group S,,. Define a representation ¢ : kS, — EndV®™
by

(i,i+1)-(v1®---®vm) :U1®'-'®R2-Ui+1®R1 Vi Q Uy

The action of kS, on EndV®™ is given by

(i+1) - (1i® @ fm) (1 @ D U,)

it ) (i@ @ fn)((i+1) - (1@ @ um))

i+ 1) (fi(v) @@ fi(R? - 0i11) @ fiy1(R" - v3) -+ @ fn(vm))
Al) @ @7 fip (R - v) @' - fi(R? - vig1) -+ @ fn(vm)
=(/1® @ fiR AT iR @ @ frn) (01 ® - @ V).

(
(

In the following lemma, we have repeated occurrences of R denoted by Ri,---, R;, where

R = R, for all i. For convenience, we shall write R2 for an empty word and R} for 1.

Lemma 4.1 Let (H, R) be an almost-triangular Hopf algebra and V' be a finite-dimensional
left H-module such that for any vi,vs € V, R'r? - vy ® R?r' - vy = v; @ va. Then for any
f € (EndyV)~, we have

m

(i) A™(f81) = 3 (14RY) @ -~ (14R]) @ (R} -+ Ry - fil) @ 1977,

=0
(i) pm 1 (fi) = (1 + (2,1) +---(m+1,m)---(2,1)) - (f ®id®™).
Proof

(i+1) (i®@fiRdO - @fn)=fi®  Qfi1QRR - fi® & fm.
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Since
(i,i+1) (A® @R @ fn)=fi® @ fi1@r RROr'fiRRQ @ fm,

it suffices to check that r> R' @ r' fR? = R2 ® R' - f. Indeed, we have

(r> RE@r fR?)(vi ® vo) = r?R' w1 @7 - f(R? - vp)
=1?P?’Q*R" vy @ 7' - f(S(PY)Q'R? - v)
r?P? vy @rt - f(S(PY) - w9)

= (R2@R"- f)(v1 @ v2).

Hence with the same idea of Lemma 3.7 in [5], we can obtain our lemma.

Theorem 4.1 Let (H, R) be an almost Hopf algebra and V' a finite-dimensional vector space
over a field k of characteristic 0. If V is a left H-module such that for any vi,vs € V and
f €EndyV, R'r? - v1 @ R?rl vy =01 @up, RM?@R?*r! - f =1® f, and R'r?- f@ R*r! = f®1,
then we have

(i) Endg ks, VE™ = p™(B);

(ii) Endym gy VE™ = ¢(kSh).

Proof (i) First we show that p"(B) C (EndiV®™)k%  Indeed, for any b € B, we have

((Gi+1)-p" () (01 ® - @)
= (i,i—i—l)-pm(b)(v1®---®R2-vi+1®R1 VR @ Upy)
=b) 01 @ @ (18r)bgg 1) (HRY) - v; @ (1" )by (14R?) - vip1 @ -+ @ by - U
=bq) 1 ® - ® b(i)(ljjTQ)(llle) U ® b(i+1)(1|jr1)(1ij2) Vi1 @ @byt Um
=p"0)(1 ® - @ vm).

Next we claim that End¢(kSm)V®m = (Ende®m)kSm. On the one hand, for any fi® - - ®
fm € Endys, ) VE™ and vy, - -+ , vy, € V, we have

((li+ 1) (1® @ fm) (01 @+ R Upy)
=i+ (f1® @ f)(ii+1)- (1 ® - D))
(z,z-i—l) (i 4+ 1) (f1® @ fr) (01 © - D))
=(1® @ fn)(v1® - @vm),

which means f1 ® -+ ® f € (EndiVO™)*5m . So Endgks,,)VE™ C (EndgV®™)% 5= On the
other hand, for any f; ® - -+ ® f, € (EndiV®™)*Sm  we compute

(i@ @ fu)(({i+1) (1@ Qvp))
((i+1D)-(i® @ fm)(n1 ® - @R -1 @R -0, @ -+ @ vy)
filvr) @ @17 fi1 (P R - vip1) @ 7' - fi( PPRY - 0i) @ -+ fn(Um)
(i, i+1) (1® @ fr) (01 @ @ V),
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which means f1 @ -+ ® f,, € Endgis,,)VE™. So (End, VE™)55= C Endys,,) V™. Therefore
Endggs,,)VE™ = (End, V@m)kSm
Since there exists a trace 1 element in End, V®™, we have (End V®™)kSm = ¢. (End, VE™),

where t = Y 0. Thus, to show (i), it suffices to show that p™(B) C t - (EndxV®™) which
ocESm
follows as in [5].

(ii) Follows, as in [4].
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