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Abstract It is a well-known fact that characters of a finite group can give important
information about the structure of the group. It was also proved by the third author
that a finite simple group can be uniquely determined by its character table. Here the
authors attempt to investigate how to characterize a finite almost-simple group by using
less information of its character table, and successfully characterize the automorphism
groups of Mathieu groups by their orders and at most two irreducible character degrees of
their character tables.
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1 Introduction

All groups considered are finite groups and all characters are complex characters. Let G be
a group and Irr(G) the set of all irreducible complex characters of G. Also, we denote the set of
character degrees of G by cd(G) = {χ(1) | χ ∈ Irr(G)}. In this paper, we will refer to character
degrees as degrees. We use cd∗(G) to denote the multi-set of degrees of irreducible characters,
i.e., each element of this set cd∗(G) can occur many times upon the number of characters of
the same degree. In particular, |cd∗(G)| = |Irr(G)|. H · M denotes the non-split extension of
H by M and H : M the split extension of H by M . For any group G, L1(G) and L2(G) denote
the largest and the second-largest irreducible character degrees of G, respectively. All the other
notations and terminologies are standard (cf. [1]).

It is a well-known fact that characters of a group can give some important information about
the group’s structure. For example, Chen [2] proved that a non-abelian simple group can be
uniquely determined by its character table. In [3], Huppert posed the following conjecture.
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Huppert’s Conjecture Let H be any non-abelian simple group, and G a group such that
cd(G) = cd(H). Then G ∼= H × A, where A is an abelian group.

Huppert conjectured that each non-abelian simple group G is characterized by cd(G), the
set of degrees of its complex irreducible characters. In [3–5], he confirmed that the conjecture
holds for the simple groups, such as L2(q) and Sz(q). Moreover, he also proved that the
conjecture follows for 19 out of 26 sporadic simple groups, and a few others (cf. [3–5]). In
[6–7], Daneshkhah, et al. showed that the conjecture holds for another three sporadic simple
groups Co1, Co2 and Co3. Xu, et al. attempted to characterize the finite simple groups by
less information of its characters, and for the first time successfully characterized the simple
K3-groups and sporadic simple groups by their orders and one or both of its largest and second-
largest irreducible character degrees (cf. [8–10]). For convenience, we summarize some results
of these articles which will be used later in the following Proposition 1.1.

Proposition 1.1 (cf. [9]) Let G be a finite group and M a Mathieu group. Then the
following assertions hold:

(i) If M is one of M11, M12 and M23, then G ∼= M if and only if |G| = |M | and L1(G) =
L1(M).

(ii) If M = M24, then G ∼= M24 if and only if |G| = |M24| and L2(G) = L2(M24).
(iii) If M = M22, then G ∼= M22 or H × M11, where H is a Frobenius group with an

elementary kernel of order 8 and a cyclic complement of order 7, if and only if |G| = |M22| and
L1(G) = L1(M22).

In this article, we continue this investigation, and show that the automorphism groups of
Mathieu groups can also be characterized by their orders and at most two irreducible character
degrees of their character tables.

We obtain the following main Theorem 1.1.

Theorem 1.1 Let G be a finite group and |G| = |Aut(M)|, where M is a Mathieu group.
Then the following assertions hold:

(1) If M = M11 or M23, then G ∼= Aut(M) if and only if L1(G) = L1(Aut(M)).
(2) If M = M24, then G ∼= Aut(M) if and only if L2(G) = L2(Aut(M)).
(3) If M = M12, then G is isomorphic to one of the groups Aut(M12), 2 ·M12 and 2×M12

if and only if L1(G) = L1(Aut(M)) and L2(G) = L2(Aut(M)).
(4) If M = M22, then G ∼= Aut(M) or 2 · M if and only if L1(G) = L1(Aut(M)) and

L2(G) = L2(Aut(M)).

2 Preliminaries

In this section, we consider some results which will be applied for our further investigations.

Lemma 2.1 Let G be a finite solvable group of order qα1
1 qα2

2 · · · qαs
s , where q1, q2, · · · , qs

are distinct primes. If (kqs + 1) � qαi

i for each i ≤ s − 1 and k > 0, then the Sylow qs-subgroup
is normal in G.

Proof Let N be a minimal normal subgroup of G. Since G is solvable, then we have
|N | = qm. If q = qs, by induction on G/N , it is easy to see the normality of the Sylow
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qs-subgroup in G. Now, assume that q = qi for some i < s. Considering the factor group
G/N , by induction, one has that the Sylow qs-subgroup Q/N of G/N is normal in G/N . Thus
Q � G. Let P be a Sylow qs-subgroup of Q. Then Q = NP . By Sylow’s theorem, we have
|Q : NQ(P )| = ql

i (l ≤ m ≤ αi) and qs | (ql
i − 1). But this implies that (kqs + 1) | qαi , and then

k = 0 by assumption. Hence P � Q. Since Q � G, we have P � G.

Lemma 2.2 (cf. [8]) Let G be a non-solvable group. Then G has a normal series 1 �
H � K � G, such that K/H is a direct product of isomorphic non-abelian simple groups and
|G/K| | |Out(K/H)|.

Lemma 2.3 Let G be a non-solvable group. Suppose that G has a normal series 1 � H �
K � G such that K/H ∼= M is a non-abelian simple group with Mult(M) = 1 and H has a
normal series: H = H1 � H2 � · · · � Ht = 1 such that

(1) Hi � K;
(2) Hi−1/Hi is abelian and Aut(Hi−1/Hi) does not contain any simple section isomorphic

to M , where i = 2, 3, · · · , t.
Then K has a normal series 1 � H1 � K such that H1

∼= M . Moreover, if |Out(M)| = 1, then
G ∼= M × T for some subgroup T ≤ G.

Proof By hypotheses, we have H1/H2 � K/H2. Considering the conjugate action of
K/H2 on H1/H2, we can obtain that K/H2/CK/H2(H1/H2) � Aut(H1/H2). Since Hi−1/Hi is
abelian, we have H1/H2 ≤ CK/H2 (H1/H2). Hence the factor group K/H2�CK/H2(H1/H2) ∼=
M or 1. By assumption, we have that K/H2 = CK/H2 (H1/H2), i.e., H1/H2 = Z(K/H2). Since
Mult(M) = 1, one has that K/H2 = M×H1/H2. Therefore, K has a normal series H2�K1�K

such that K1/H2
∼= M and K/K1

∼= H1/H2.
Repeating the process of the above reasoning for the normal series H3 � H2 � K1, we can

get that K1 has a normal series H3 � K2 � K1 such that K2/H3
∼= M , K1/K2

∼= H2/H3 and
K1/K3 = M × H2/H3. Repeating the process of the above argument, we can get that K has
a normal series 1 = Kt+1 � Kt � · · · � K1 � K, where Kt = M .

It is easy to see that H is solvable by (2), and therefore, K has M as its unique simple
normal factor, which implies that H1 is a characteristic subgroup of K, so H1 � G. Therefore,
G ∼= H1 × T since |Out(H1)| = 1, as desired.

Remark 2.1 Let S be a Mathieu group, and then S is isomorphic to one of M11, M12,
M22, M23 and M24. By [1], we can obtain |S|, |Out(S)|, Mult(S) (the Schur multiplier) and
|Aut(S)|. Applying the software Magma (V2.11-1) (cf. [11]), it is easy to compute the values
of L1(Aut(S)) and L2(Aut(S)). For convenience, we have tabulated the results in Table 1.

Table 1

S |S| Mult(S) |Out(S)| |Aut(S)| L1(Aut(S)) L2(Aut(S))
M11 24 · 32 · 5 · 11 1 1 24 · 32 · 5 · 11 5 · 11
M12 26 · 33 · 5 · 11 2 2 27 · 33 · 5 · 11 24 · 11 24 · 32

M22 27 · 32 · 5 · 7 · 11 2 2 28 · 32 · 5 · 7 · 11 24 · 5 · 7 5 · 7 · 11
M23 27 · 32 · 5 · 7 · 11 · 23 1 1 27 · 32 · 5 · 7 · 11 · 23 23 · 11 · 23
M24 210 · 33 · 5 · 7 · 11 · 23 1 1 210 · 33 · 5 · 7 · 11 · 23 33 · 5 · 7 · 11 22 · 32 · 7 · 11

Remark 2.2 Let S be a K3-simple group, and then S is one of A5, A6, L2(7), L2(8), L2(17),
L3(3), U3(3) and U4(2). By [1], we can get |S|, |Out(S)|, Mult(S) (the Schur multiplier) and



498 Y. X. Yan, L. C. Zhang, H. J. Xu and G. Y. Chen

|Aut(S)|. Using the software Magma (V2.11-1), we can compute the values of L1(Aut(S)) and
L2(Aut(S)), and we have tabulated them in Table 2.

Table 2

S |S| Mult(S) |Out(S)| |Aut(S)| L1(Aut(S)) L2(Aut(S))

A5 22 · 3 · 5 2 2 23 · 3 · 5 6 5

L2(7) 23 · 3 · 7 2 2 24 · 3 · 7 8 7

A6 23 · 32 · 5 6 4 25 · 32 · 5 20 16

L2(8) 23 · 32 · 7 1 3 23 · 33 · 7 27 21

L2(17) 24 · 32 · 17 2 2 25 · 32 · 17 18 17

L3(3) 24 · 33 · 13 1 2 25 · 33 · 13 52 39

U4(2) 26 · 34 · 5 2 2 27 · 34 · 5 90 81

U3(3) 25 · 33 · 7 1 2 26 · 33 · 7 64 56

3 Proof of Main Theorem

Remark 3.1 A group G is called an almost-simple group related to S if S ≤ G ≤ Aut(S),
where S is a non-abelian simple group.

Proof of Theorem 1.1 By Table 1, if M is isomorphic to one of M11, M23 and M24, then
|Out(M)| = 1, and hence Aut(M) = M . By Proposition 1.1, we see that conclusions (1) and
(2) hold in this case. In the following, we only need to discuss that the remaining conclusions
hold while M = M12 or M22. Obviously, it is enough to prove the sufficiency. We write the
proof by what M is.

Case 1 We are to prove that the theorem follows if M = M12.
In this case, one has that |G| = 27 · 33 · 5 · 11 , L1(G) = 24 · 11 and L2(G) = 24 · 32 by

hypotheses and Table 1. Let χ, β ∈ Irr(G) such that χ(1) = 24 · 11 and β(1) = 24 · 32.
We first assert that G is non-solvable. If G is solvable, then by Lemma 2.1, G11 is normal

in G, where G11 ∈ Syl11(G). Hence, χ(1) | |G : G11| = 27 · 33 · 5, a contradiction. Therefore, G

is non-solvable, so the assertion is true.
By Lemma 2.2, G has a normal series 1�H�K�G such that K/H is a direct product of non-

abelian simple groups which are pairwise isomorphic to each other and |G/K| | |Out(K/H)|.
Since |G| = 27 ·33 ·5 ·11, we deduce that K/H can only be isomorphic to one of A5, A6, L2(11),
M11 and M12.

Subcase 1.1 K/H �∼= A5.
Otherwise, by Table 2, |G : K| = 1 or 2. In this case, we have |H | = 2u · 32 · 11, where

4 ≤ u ≤ 5. Since H is solvable, by Lemma 2.1, we have that H11 is normal in H . Hence, H11

Char H . Since H � G, one has that H11 � G. Therefore, χ(1) | |G : H11| = 27 · 33 · 5, a
contradiction.

By the similar arguments as before, we can prove that K/H �∼= A6.
Subcase 1.2 K/H �∼= L2(11).
If K/H ∼= L2(11), then we have |G : K| = 1 or 2.
If |G : K| = 1, then |H | = 25 · 32. Let ϕ ∈ Irr(H) such that [βH , ϕ] �= 0. Then β(1)/ϕ(1) |

|G : H | = 22 · 3 · 5 · 11, and thus 12 | ϕ(1). If ϕ(1) > 12, then we have ϕ(1)2 > |H |, a
contradiction. Hence ϕ(1) = 12. Using the software Magma (V2.11-1), it is easy to check that
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there are only 1045 such groups of order 25 · 32 in small groups (25 · 32) up to isomorphism
(cf. [11]). Moreover, we also know that the set of all irreducible character degrees of H , i.e.,
cd(H) can only be equal to one of the following sets:

{1, 2}, {1}, {1, 2, 4}, {1, 2, 3, 6}, {1, 2, 3, 4, 6}, {1, 2, 4, 8}, {1, 3, 4},
{1, 3, 4}, {1, 3}, {1, 8}, {1, 3, 6}, {1, 2, 3, 6}, {1, 4}, {1, 2, 3, 4}, {1, 3}, {1, 2, 3}.

Hence, 12 �∈ cd(H), a contradiction.
If |G : K| = 2, then |K| = 26 ·33 ·5·11 and |H | = 24 ·32. Let Λ ∈ Irr(H) such that [βH , Λ] �= 0.

Then β(1)/Λ(1) | |G : H | = 23 ·3 ·5 ·11. Thus, we have 6 | Λ(1). If Λ(1) > 12, then Λ(1)2 > |H |,
a contradiction. If Λ(1) = 12, then Λ(1)2 > |H |, a contradiction, too. Therefore, Λ(1) = 6. Let
λ ∈ Irr(H) such that [χH , λ] �= 0, and one has that χ(1)/λ(1) | |G : H | = 23 ·3 ·5 ·11, so 2 | λ(1).
Set e = [χH , λ], t = |G : IG(λ)|. Then we have etλ(1) = 24 · 11. Again, using the Magma, there
are only 197 such groups of order 24 · 32 in small groups (24 · 32) up to isomorphism. Moreover,
if λ ∈ cd∗(H), then cd∗(H) can only be equal to one of the following sets:

{1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 6},
{1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6, 6},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6, 6},
{1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 6}, {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 6}.

By the structure of cd∗(H), one has that λ(1) = 1 or 2 or 4. Moreover, the following
conclusions hold:

(i) If λ(1) = 1, then t ≤ 11 by the above cd∗(H). Thus e ≥ 24. But [χH , χH ] = e2t ≥
28 · 11 > |G : H | = 23 · 3 · 5 · 11, a contradiction to [12, Lemma 2.29].

(ii) If λ(1) = 2 or 4, then t ≤ 9 by the above cd∗(H). But t = |G : IG(λ)|, and we have
t = 1 as any maximal subgroup has an index in G ≥ 11 (cf. [1]). Hence e = 23 · 11. But
[χH , χH ] = e2t = 26 ·112 > |G : H | = 23 ·3 ·5 ·11, which by [12, Lemma 2.29], is a contradiction.

Subcase 1.3 K/H �∼= M11.
Assume that K/H ∼= M11. Since |Out(M11)| = 1, then |H | = 23 · 3 · 7. If H is non-

solvable, then H ∼= L2(7). In this case, we have G ∼= M11 × L2(7). On the other hand, since
L1(M11) = 55 and L1(L2(7)) = 8 by Table 2, then by the structure of G, we can get that the
largest irreducible degree L1(G) = 23 · 5 · 11, a contradiction to χ(1) = 24 · 11.

If H is solvable, since |Out(M11)| = Mult(M11) = 1, then by Lemma 2.3 we obtain that
G ∼= M11 × H , where |H | = 23 · 3 · 7. By Table 1, we see that the largest irreducible character
degree of M11 is 55, and 22 �∈ cd(M11) by [1]. According to the structure of G ∼= M11 ×H , one
has that there exists no irreducible character in G of degree 24 · 11 , a contradiction.

Subcase 1.4 If K/H ∼= M12, then (3) follows.
If K/H ∼= M12, by Table 1, we have |G : K| = 1 or 2.
If |G : K| = 1, then |H | = 2, so H ≤ Z(G). In this case, we can get that G/H ∼= M12.

Therefore G is a central extension of Z2 by M12. Since Mult(M12) = 2, G is isomorphic to one
of 2 · M12

∼= Z2 · M12 (a non-split extension of Z2 by M12) and 2 : M12
∼= Z2 × M12 (a split

extension of Z2 by M12).
By [1], it is easy to check that both 2·M12 and 2: M12 satisfy the conditions |G| = |Aut(M12)|,

L1(G) = L1(Aut(M12)) and L2(G) = L2(Aut(M12)).
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If |G : K| = 2, then K ∼= M12. Therefore G ∼= M12 · 2 = Aut(M12). Hence, (3) follows. This
concludes Case 1.

Case 2 We are to prove that the theorem follows if M = M22.
By Table 1, we have |G| = 28 ·32 ·5·7·11. Let χ, β ∈ Irr(G) such that χ(1) = L1(G) = 24 ·5·7

and β(1) = L2(G) = 5 · 7 · 11.
We first prove that G is not a solvable group. Assume the contrary, and by Lemma 2.1,

we have that the Sylow 11-subgroup G11 of G is normal in G. Thus χ(1) | |G : G11| =
28 · 32 · 5 · 7, a contradiction. Therefore, G is non-solvable. By Lemma 2.2, G has a normal
series 1 � H � K � G such that K/H is a direct product of non-abelian simple groups
which are pairwise isomorphic to each other and |G/K| | |Out(K/H)|. As |G| = 28 ·32 ·5 ·7 ·11.
We deduce that K/H can only be isomorphic to one of A5, A6, L2(7), L2(8), A7, L2(11), M11,
L3(4), A8 and M22.

Subcase 2.1 K/H �∼= A5.
If K/H ∼= A5, by Table 2, we have |G : K| = 1 or 2. Thus |H | = 2v ·3·7·11, where 5 ≤ v ≤ 6.

If H is solvable, then by Lemma 2.1, the Sylow-11 subgroup H11 of H is normal in H , and hence
H11 Char H . Since H � G, one has that H11 � G. Therefore, χ(1) | |G : H11| = 28 · 32 · 5 · 7, a
contradiction.

If H is non-solvable, by Lemma 2.2, we can get a normal series of H : 1 � N � M � H

such that M/N ∼= L2(7) and |H/M | | |Out(A5)| = 2. Thus |H : M | = 1 or 2. In this case,
we have |N | = 2m · 11, where 1 ≤ m ≤ 3. Let Δ ∈ Irr(N) such that [βN , Δ] �= 0, and then
β(1)/Δ(1) | |G : N | = 28−m · 32 · 5 · 7. Hence Δ(1) = 11. But we have that Δ(1)2 > |N |, a
contradiction.

The above argument is effective for the subcases that 11 � |G/K|. Hence, we can prove that
K/H is not isomorphic to one of A6, L2(7), L2(8), A7, L3(4) and A8.

Subcase 2.2 K/H �∼= L2(11).
If not, we have |G : K| = 1 or 2. In the following, we only discuss the condition of

|G : K| = 1, and we omit the details for |G : K| = 2 because the arguments are similar to those
proofs for |G : K| = 1. Hence, we may assume that |G : K| = 1, so |H | = 26 · 3 · 7 in this case.

If H is solvable, then there exists a subgroup T of H such that |H : T | = 3. Considering
the permutation representation of H on the right cosets of T with the kernel TH , the core of T

in H , we get that H/TH � S3. Then |TH | = 26 · 7 or 25 · 7.
If |TH | = 26 · 7, let θ ∈ Irr(TH) such that [χTH , θ] �= 0, and then χ(1)/θ(1) | |G : TH | =

22 · 32 · 5 · 11. Hence, 22 · 7 | θ(1). But θ(1)2 > |TH |, a contradiction.
If |TH | = 25 · 7, let ϑ ∈ Irr(TH) such that [χTH , ϑ] �= 0, and then χ(1)/ϑ(1) | |G : TH | =

23 · 32 · 5 · 11. Thus 14 | ϑ(1). If ϑ(1) > 14, then ϑ(1)2 > |TH |, a contradiction. Assume that
ϑ(1) = 14. Now, applying the software Magma (V2.11-1), it is easy to check that there are only
197 such groups of order 25 · 7 in small groups (25 · 7) up to isomorphism (cf. [11]). Moreover,
we can calculate that the sets of all irreducible character degrees of the groups of order 25 · 7,
i.e., cd(TH), can only be equal to one of {1, 2}, {1}, {1, 2, 4}, {1, 7} and {1, 4}.

However, by checking each set of cd(TH) above, we know that there exists no such irreducible
character of degree 14 of TH , i.e., 14 �∈ cd(TH), a contradiction.

Therefore, H is non-solvable. Since |H | = 26 · 3 · 7, by Lemma 2.2, H has a normal series:
1 � N � M � H such that M/N ∼= L2(7). Hence, there exist two composite factors of G, i. e.,
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M1/N1 and M2/N2, respectively, such that M1/N1
∼= L2(11) and M2/N2

∼= L2(7). Considering
the action of G/N on M/N , we have that the factor group G/N/CG/N (M/N) � Aut(M/N).
Let CG/N (M/N) = W/N . Obviously, W/N has a section isomorphic to the simple group
L2(11). Let N � T � S � W such that S/T ∼= L2(11). Since W has exactly one simple section,
we have S/T � G/T , so S � G. Moreover, it is easy to see that T = T G � G. Hence, G/T has a
maximal subgroup S/T × TM/T ∼= L2(11)×L2(7). Consequently, we can obtain the following
composite group series of G: 1 � Q � P � G such that G/P ∼= L2(7) and P/Q ∼= L2(11). In
this case, |Q| = 8. Let η ∈ Irr(P ) such that [βP , η] �= 0, and then β(1)/η(1) | |G : P | = 23 · 3 · 7.
Thus η(1) = 55. Let λ ∈ Irr(Q) such that [ηQ, λ] �= 0. Let e = [ηQ, λ] and t = |P : IP (λ)|, and
then we have λ(1) = 1 and et = 55. By checking the maximal subgroups of L2(11) (cf. [1]),
we can get that t = 1. Hence, e = 55. But [ηQ, ηQ] = e2t = 552 > |P : Q| = 22 · 3 · 5 · 11, a
contradiction to [12, Lemma 2.29].

Subcase 2.3 K/H �∼= M11.
Since |Out(M11)| = 1, one has that |H | = 24 · 7 if K/H ∼= M11. Since H is solvable and

|Out(M11)| = Mult(M11) = 1, then by Lemma 2.3, we have that G ∼= M11 × H . Again, using
the software magma (V2.11-1), it is easy to check that there are only 43 such groups of order
24 · 7 in small groups (24 · 7) up to isomorphism (cf. [11]). Moreover, we can get the sets of
all irreducible character degrees of the groups of order 24 · 7. In other words, cd(H) can only
be equal to one of {1}, {1, 2}, {1, 2, 4}, {1, 7}. By [1], we know that the largest irreducible
character degree of M11 is 55, i.e., L1(M11) = 55 and 22 �∈ cd(M11). On the other hand, by the
structure of G ∼= M11 × H and as the largest irreducible character degree in the above sets is
7, we have L1(G) = 5 · 7 · 11, a contradiction to L1(G) = 24 · 5 · 7.

Subcase 2.4 If K/H ∼= M22, then (4) follows.
In this case, we can get that |G : K| = 1 or 2.
If |G : K| = 1, then |H | = 2 and H ≤ Z(G). In this case, we have G/H ∼= M22. Therefore

G is a central extension of Z2 by M22 and G is isomorphic to one of 2 · M22
∼= Z2 · M22 (a

non-split extension of Z2 by M22 ) and 2 : M22
∼= Z2 × M22 (a split extension of Z2 by M22).

If G ∼= 2 · M22, by [1], it is easy to check that |G| = |Aut(M22)|, L1(G) = L1(Aut(M22))
and L2(G) = L2(Aut(M22)).

If G ∼= 2 : M22, by [1], we get that L1(G) = L1(2 : M22) = 5·7·11. But L1(G) = 24·5·7 = 560,
a contradiction.

If |G : K| = 2, then K ∼= M12, and thus G ∼= M12 · 2 = Aut(M22). Therefore, (4) follows.
This completes the proof of the main Theorem 1.1.
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