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Abstract For first-order quasilinear hyperbolic systems with zero eigenvalues, the author
establishes the local exact controllability in a shorter time-period by means of internal
controls acting on suitable domains. In particular, under certain special but reasonable
hypotheses, the local exact controllability can be realized only by internal controls, and
the control time can be arbitrarily small.
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1 Introduction

Consider the following first-order quasilinear hyperbolic system:

∂u

∂t
+A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) is a given n× n matrix
with suitably smooth components aij(u) (i, j = 1, · · · , n), F (u) = (f1(u), · · · , fn(u))T is a
smooth vector function of u and

F (0) = 0. (1.2)

By hyperbolicity, on the domain under consideration, the matrix A(u) has n real eigenvalues
λi(u) (i = 1, · · · , n) and a complete set of left eigenvectors li(u) = (li1(u), · · · , lin(u)) (i =
1, · · · , n):

li(u)A(u) = λi(u)li(u) (1.3)

with

det |lij(u)| �= 0. (1.4)

Suppose that there are no zero eigenvalues, namely, on the domain under consideration we
have

λr(u) < 0 < λs(u), r = 1, · · · ,m; s = m+ 1, · · · , n. (1.5)
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For general first-order quasilinear hyperbolic systems with general nonlinear boundary con-
ditions, Li Tatsien et al. [1–4] proposed a constructive method to establish the local exact
boundary controllability by means of boundary controls. Since the speed of wave propagation
is finite, the control time T > 0 can not be too short. However, in many practical problems,
we always hope to reduce the control time. For this purpose, Zhuang Kaili, Li Tatsien and Rao
Bopeng [7] added some suitable internal controls, and established the local exact controllability
in a shorter time by using the combined effect of boundary controls and internal controls.

In this paper, we will discuss the quasilinear hyperbolic system (1.1) with zero eigenvalues.
Assume that on the domain under consideration, the eigenvalues of A(u) satisfy the following
condition:

λp(u) < λq(u) ≡ 0 < λr(u), p = 1, · · · , l; q = l + 1, · · · ,m; r = m+ 1, · · · , n. (1.6)

Consider the simplest equation with zero eigenvalue

∂u

∂t
= 0. (1.7)

It is easy to see that the exact controllability cannot be achieved only by boundary controls.
Therefore, different from the situation that the eigenvalues satisfy (1.5), in order to realize the
exact controllability for quasilinear hyperbolic systems with zero eigenvalues, we should use
not only suitable boundary controls but also suitable internal controls. For general first-order
quasilinear hyperbolic systems with zero eigenvalues together with the general nonlinear bound-
ary conditions, by using boundary controls and adding internal controls to a part of equations
corresponding to zero eigenvalues, Li Tatsien and Yu Lixin [5], Zhang Qi [6] established the cor-
responding local exact controllability. At this time, the control time T > 0 should be suitably
large, too.

In the present paper, we try to input some suitable internal controls to reduce the control
time. To this end, it is necessary to rewrite the system (1.1) into the corresponding characteristic
form

li(u)
(∂u
∂t

+ λi(u)
∂u

∂x

)
= F̃i(u)

�
= li(u)F (u), i = 1, · · · , n, (1.8)

in which the i-th equation consists of only the directional derivative of the unknown function
u with respect to t along the i-th characteristic direction dx

dt = λi(u), and

F̃i(0) = 0, i = 1, · · · , n. (1.9)

Adding suitable internal controls ci(t, x) (i = 1, · · · , n) to (1.8), we have

li(u)
(∂u
∂t

+ λi(u)
∂u

∂x

)
= F̃i(u) + ci(t, x), i = 1, · · · , n, (1.10)

where

ci(t, x) = li(ϑ)
(∂ϑ
∂t

+ λi(ϑ)
∂ϑ

∂x

)
+ ki(t, x), i = 1, · · · , n, (1.11)
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in which ϑ = ϑ(t, x) is a C1 vector function of (t, x) and ki(t, x) (i = 1, · · · , n) are C1 functions
of (t, x).

Let

υi = li(u)u, i = 1, · · · , n. (1.12)

We consider the mixed initial-boundary value problem for the quasilinear hyperbolic system
(1.10) with the initial condition

t = 0 : u = ϕ(x), 0 ≤ x ≤ L (1.13)

and the following boundary conditions:

x = 0 : υr = Gr(t, υ1, · · · , υl, υl+1, · · · , υm) +Hr(t), r = m+ 1, · · · , n, (1.14)

x = L : υp = Gp(t, υl+1, · · · , υm, υm+1, · · · , υn) +Hp(t), p = 1, · · · , l. (1.15)

Without loss of generality, we assume that

Gp(t, 0, · · · , 0) ≡ 0, Gr(t, 0, · · · , 0) ≡ 0, p = 1, · · · , l; r = m+ 1, · · · , n. (1.16)

For any given initial data ϕ and final data ψ with small C1[0, L] norm, if there exists a T > 0
such that, taking Hp, Hr (p = 1, · · · , l; r = m+1, · · · , n) or a part of Hp, Hr (p = 1, · · · , l; r =
m + 1, · · · , n) as boundary controls and ci(t, x) (i = 1, · · · , n) as internal controls, the corre-
sponding mixed initial-boundary value problem (1.10) and (1.13)–(1.15) admits a unique C1

solution u = u(t, x) with small C1 norm on the domain R(T ) = {(t, x) | 0 ≤ t ≤ T, 0 ≤ x ≤ L},
which satisfies exactly the final condition

t = T : u = ψ(x), 0 ≤ x ≤ L (1.17)

or

t = T : u = 0, 0 ≤ x ≤ L, (1.18)

then we say that the mixed initial-boundary value problem (1.10) and (1.13)–(1.15) possesses
the local exact controllability or the local exact null controllability, respectively.

2 Local Exact Controllability with Boundary Controls and
Internal Controls

Theorem 2.1 (Local Two-Sided Exact Controllability) Assume that λi(u), li(u), F̃i(u),
Gp(t, ·), and Gr(t, ·) (i = 1, · · · , n; p = 1, · · · , l; r = m + 1, · · · , n) are all C1 functions with
respect to their arguments. Assume furthermore that (1.6), (1.9) and (1.16) hold. For any
given δ (0 < δ < L

2 ), if

T >
(L

2
− δ

)
max

p=1,··· ,l
r=m+1,··· ,n

( 1
|λp(0)| ,

1
λr(0)

)
, (2.1)
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then for any given initial data ϕ and final data ψ with small C1[0, L] norm, there exist boundary
controls Hp, Hr (p = 1, · · · , l; r = m+1, · · · , n) with small C1[0, T ] norm and internal controls
ci(t, x) (i = 1, · · · , n) given by (1.11), in which the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n)
is suitably small, such that the mixed initial-boundary value problem (1.10) and (1.13)–(1.15)
admits a unique C1 solution u = u(t, x) with small C1 norm on the domain R(T ), which
satisfies exactly the final condition (1.17).

To prove Theorem 2.1, we construct the following system of the characteristic form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lp(u)
(∂u
∂t

+ λp(u)
∂u

∂x

)
= F̃p(u) + cp(t, x), p = 1, · · · , l,

lq(u)
(∂u
∂t

+ λq(u)
∂u

∂x

)
= F̃q(u) + c̃q(t, x), q = l + 1, · · · ,m,

lr(u)
(∂u
∂t

+ λr(u)
∂u

∂x

)
= F̃r(u) + cr(t, x), r = m+ 1, · · · , n,

(2.2)

where c̃i(t, x) (i = 1, · · · , n) are the corresponding internal controls and

λq(u) = λ1(u), q = l + 1, · · · ,m. (2.3)

Obviously, (2.2) is a system without zero eigenvalues. Corresponding to (2.3), we give the
following artificial boundary conditions:

x = L : vq = Hq(t), q = l + 1, · · · ,m, (2.4)

in which Hq(t) (q = l + 1, · · · ,m) are C1 functions of t.
For the mixed initial-boundary value problem (2.2), (1.13)–(1.15) and (2.4), according to

the result on local two-sided exact controllability in [7], we have the lemma.

Lemma 2.1 Under the hypotheses of Theorem 2.1, suppose furthermore that (2.3) holds.
Let T > 0 be defined by (2.1). For any given initial data ϕ and final data ψ with small C1[0, L]
norm, there exist boundary controls Hi (i = 1, · · · , n) with small C1[0, T ] norm and internal
controls

c̃i(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
li(ϑ̃)

(∂ϑ̃
∂t

+ λi(ϑ̃)
∂ϑ̃

∂x

)
+ k̃i(t, x), i = 1, · · · , l; m+ 1, · · · , n,

li(ϑ̃)
(∂ϑ̃
∂t

+ λi(ϑ̃)
∂ϑ̃

∂x

)
+ k̃i(t, x), i = l + 1, · · · ,m,

(2.5)

in which the C1[R(T )] norm of ϑ̃ and k̃i (i = 1, · · · , n) is suitably small, such that the mixed
initial-boundary value problem (2.2), (1.13)–(1.15) and (2.4) admits a unique C1 solution u =
u(t, x) with small C1 norm on the domain R(T ), which satisfies exactly the final condition
(1.17).

By Lemma 2.1, we can prove Theorem 2.1.
In fact, substituting the C1 solution u = u(t, x) given by Lemma 2.1 into boundary condi-

tions (1.14)–(1.15), we get the desired boundary controls:

Hp(t) = (υp −Gp(t, υl+1, · · · , υm, υm+1, · · · , υn))|x=L, p = 1, · · · , l, (2.6)

Hr(t) = (υr −Gr(t, υ1, · · · , υl, υl+1, · · · , υm))|x=0, r = m+ 1, · · · , n, (2.7)
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where υi (i = 1, · · · , n) are defined by (1.12): υi = li(u(t, x))u(t, x) (i = 1, · · · , n). Noting
(1.16), the C1 norm of Hp and Hr (p = 1, · · · , l; r = m + 1, · · · , n) is suitably small. On the
other hand, substituting u = u(t, x) into system (1.10), we get the desired internal controls

ci(t, x) = li(u(t, x))
(∂u(t, x)

∂t
+ λi(u(t, x))

∂u(t, x)
∂x

)
− F̃i(u(t, x)), i = 1, · · · , n, (2.8)

which correspond to (1.11) with

ϑ(t, x) = u(t, x), ki(t, x) = −F̃i(u(t, x)), i = 1, · · · , n. (2.9)

Noting (1.9), the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is also small. Thus, we obtain the
desired exact controllability.

Theorem 2.2 (Local One-Sided Exact Controllability) Under the hypotheses of Theorem
2.1, suppose furthermore that the number of the positive eigenvalues is not greater than that of
negative ones:

m
�
= n−m ≤ l, i.e., n ≤ l +m. (2.10)

Suppose finally that in a neighborhood of u = 0, the boundary conditions (1.14) on x = 0 can
be equivalently rewritten as

x = 0 : υp = Gp(t, υl+1, · · · , υm, υm+1, · · · , υn) +Hp(t), p = 1, · · · ,m (2.11)

with

Gp(t, 0, · · · , 0) ≡ 0, p = 1, · · · ,m. (2.12)

Then

‖Hp‖C1[0,T ] (p = 1, · · · ,m) small ⇔ ‖Hr‖C1[0,T ] (r = m+ 1, · · · , n) small. (2.13)

For any given δ (0 < δ < L
2 ), if

T >
(L

2
− δ

)(
max

p=1,··· ,l
1

|λp(0)| + max
r=m+1,··· ,n

1
λr(0)

)
, (2.14)

then for any given initial data ϕ and final data ψ with small C1[0, L] norm, and any given
Hr (r = m + 1, · · · , n) with small C1[0, T ] norm, such that the conditions of C1 compatibility
are satisfied at the points (t, x) = (0, 0) and (T, 0), respectively, there exist boundary controls
Hp (p = 1, · · · , l) with small C1[0, T ] norm and internal controls ci(t, x) (i = 1, · · · , n) given
by (1.11), in which the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is suitably small, such that
the conclusion of Theorem 2.1 holds.

To prove Theorem 2.2, we construct the characteristic system (2.2), where c̃i(t, x) (i =
1, · · · , n) are the corresponding internal controls and λq(u) (q = l + 1, · · · ,m) are given by
(2.3). Obviously, (2.2) is a system without zero eigenvalues. Corresponding to (2.3), we give
the artificial boundary conditions (2.4) on x = L, in which Hq(t) (q = l + 1, · · · ,m) are C1

functions of t.
For the mixed initial-boundary value problem (2.2), (1.13)–(1.15) and (2.4), according to

the result on local one-sided exact controllability in [7], we have Lemma 2.2.
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Lemma 2.2 Under the hypotheses of Theorem 2.2, suppose furthermore that (2.3) holds.
Let T > 0 be defined by (2.14). For any given initial data ϕ and final data ψ with small C1[0, L]
norm, and any given Hr (r = m+ 1, · · · , n) with small C1[0, T ] norm, such that the conditions
of C1 compatibility are satisfied at the points (t, x) = (0, 0) and (T, 0), respectively, there exist
boundary controls Hp and Hq (p = 1, · · · , l; q = l + 1, · · · ,m) with small C1[0, T ] norm and
internal controls c̃i(t, x) (i = 1, · · · , n) given by (2.5), in which the C1[R(T )] norm of ϑ̃ and
k̃i (i = 1, · · · , n) is suitably small, such that the conclusion of Lemma 2.1 holds.

By Lemma 2.2, we can prove Theorem 2.2.
In fact, substituting the C1 solution u = u(t, x) given by Lemma 2.2 into boundary condi-

tions (1.15), we get the desired boundary controls Hp(t) (p = 1, · · · , l) given by (2.6), where
υi (i = 1, · · · , n) are defined by (1.12). Noting (1.16), the C1 norm of Hp (p = 1, · · · , l) is
suitably small. On the other hand, substituting u = u(t, x) into the system (1.10), we get the
desired internal controls ci(t, x) (i = 1, · · · , n) given by (2.8), which correspond to (1.11) with
(2.9). Noting (1.9), the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is also small. Thus, we obtain
the desired exact controllability.

Theorem 2.3 (Local Two-Sided Exact Controllability with Less Controls) Under the
hypotheses of Theorem 2.1, suppose furthermore that the number of positive eigenvalues is less
than that of negative ones:

m
�
= n−m < l, i.e., n < l +m. (2.15)

Suppose finally that in a neighborhood of u = 0, without loss of generality, the first m boundary
conditions in (1.15), namely,

x = L : υp = Gp(t, υl+1, · · · , υm, υm+1, · · · , υn) +Hp(t), p = 1, · · · ,m (2.16)

can be equivalently rewritten as

x = L : υr = Gr(t, υ1, · · · , υm, υl+1, · · · , υm) +Hr(t), r = m+ 1, · · · , n (2.17)

with

Gr(t, 0, · · · , 0) ≡ 0, r = m+ 1, · · · , n. (2.18)

Then

‖Hr‖C1[0,T ] (r = m+ 1, · · · , n) small ⇔ ‖Hp‖C1[0,T ] (p = 1, · · · ,m) small. (2.19)

For any given δ
(
0 < δ < L

2

)
, if T > 0 satisfies (2.14), then for any given initial data ϕ

and final data ψ with small C1[0, L] norm, and for any given Hp (p = 1, · · · ,m) with small
C1[0, T ] norm, such that the corresponding conditions of C1 compatibility are satisfied at the
points (t, x) = (0, L) and (T, L), respectively, there exist boundary controls Hp and Hr (p = m+
1, · · · , l; r = m+1, · · · , n) with small C1[0, T ] norm and internal controls ci(t, x) (i = 1, · · · , n)
given by (1.11), in which the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is suitably small, such
that the conclusion of Theorem 2.1 holds.
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To prove Theorem 2.3, we also construct the characteristic system (2.2) without zero eigen-
values, where c̃i(t, x) (i = 1, · · · , n) are the corresponding internal controls and λq(u) (q =
l+ 1, · · · ,m) are given by (2.3). Corresponding to (2.3), we give the artificial boundary condi-
tions (2.4) on x = L, in which Hq(t) (q = l+ 1, · · · ,m) are C1 functions of t.

For the mixed initial-boundary value problem (2.2), (1.13)–(1.15) and (2.4), according to
the result on local two-sided exact controllability with less controls in [7], we have the following
lemma.

Lemma 2.3 Under the hypotheses of Theorem 2.3, suppose furthermore that (2.3) holds.
Let T > 0 be defined by (2.14). For any given initial data ϕ and final data ψ with small C1[0, L]
norm, and any given Hp (p = 1, · · · ,m) with small C1[0, T ] norm, such that the conditions of
C1 compatibility are satisfied at the points (t, x) = (0, L) and (T, L), respectively, there exist
boundary controls Hq, Hq and Hr (q = m+ 1, · · · , l; q = l + 1, · · · ,m; r = m+ 1, · · · , n) with
small C1[0, T ] norm and internal controls c̃i(t, x) (i = 1, · · · , n) given by (2.5), in which the
C1[R(T )] norm of ϑ̃ and k̃i (i = 1, · · · , n) is suitably small, such that the conclusion of Lemma
2.1 holds.

By Lemma 2.3, we can prove Theorem 2.3.
In fact, substituting the C1 solution u = u(t, x) given by Lemma 2.3 into boundary condi-

tions (1.14) and the last l −m = l + m− n boundary conditions in (1.15), we get the desired
boundary controls:

Hp(t) = (υp −Gp(t, υl+1, · · · , υm, υm+1, · · · , υn))|x=L, p = m+ 1, · · · , l, (2.20)

and Hr (r = m+1, · · · , n) given by (2.7), where υi (i = 1, · · · , n) are defined by (1.12). Noting
(1.16), the C1 norm of Hp and Hr (p = m+ 1, · · · , l; r = m+ 1, · · · , n) is suitably small. On
the other hand, substituting u = u(t, x) into system (1.10), we get the desired internal controls
ci(t, x) (i = 1, · · · , n) given by (2.8), which corresponds to (1.11) with (2.9). Noting (1.9), the
C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is also small. Thus, we obtain the desired exact
controllability.

3 Local Exact Null Controllability with Boundary Controls and
Internal Controls

For the local exact null controllability, we can get the same conclusion (especially Theorem
2.2) as in the previous section under much less hypotheses.

Theorem 3.1 (Local One-Sided Exact Null Controllability) For any given δ (0 < δ < L
2 ),

let T > 0 satisfy (2.14).
(A) Suppose that in boundary conditions (1.15) on x = L, we have

Hp(t) ≡ 0, p = 1, · · · , l. (3.1)

Then, for any given initial data ϕ with small C1[0, L] norm, such that the conditions of C1

compatibility are satisfied at the point (t, x) = (0, L), there exist boundary controls Hr (r =
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m + 1, · · · , n) with small C1[0, T ] norm and internal controls ci(t, x) (i = 1, · · · , n) given by
(1.11), in which the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is suitably small, such that
the mixed initial-boundary value problem (1.10) and (1.13)–(1.15) admits a unique C1 solution
u = u(t, x) with small C1 norm on the domain R(T ), which satisfies exactly the zero final
condition (1.18).

(B) Suppose that in boundary conditions (1.14) on x = 0, we have

Hr(t) ≡ 0, r = m+ 1, · · · , n. (3.2)

Then, for any given initial data ϕ with small C1[0, L] norm, such that the conditions of C1

compatibility are satisfied at the point (t, x) = (0, 0), there exist boundary controls Hp (p =
1, · · · , l) with small C1[0, T ] norm and internal controls ci(t, x) (i = 1, · · · , n) given by (1.11),
in which the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is suitably small, such that the conclusion
(A) of Theorem 3.1 holds.

We only prove the first part of Theorem 3.1. The proof of the second part is similar. To
this end, we also construct the characteristic system (2.2), where c̃i(t, x) (i = 1, · · · , n) are the
corresponding internal controls and

λq(u) = λn(u), q = l + 1, · · · ,m. (3.3)

Corresponding to (3.3), we give the following artificial boundary conditions:

x = 0 : vq = Hq(t), q = l + 1, · · · ,m, (3.4)

in which Hq(t) (q = l + 1, · · · ,m) are C1 functions of t.
For the mixed initial-boundary value problem (2.2), (1.13)–(1.15) and (3.4), according to

the result on local one-sided exact null controllability in [7], we have the following lemma.

Lemma 3.1 Under the hypotheses of Theorem 3.1(A), suppose furthermore that (3.3) holds.
Let T > 0 be defined by (2.14). For any given initial data ϕ with small C1[0, L] norm, such
that the conditions of C1 compatibility are satisfied at the point (t, x) = (0, L), there exist
boundary controls Hq and Hr (q = l + 1, · · · ,m; r = m + 1, · · · , n) with small C1[0, T ] norm
and internal controls c̃i(t, x) (i = 1, · · · , n) given by (2.5), in which the C1[R(T )] norm of ϑ̃
and k̃i (i = 1, · · · , n) is suitably small, such that the mixed initial-boundary value problem (2.2)
and (1.13)–(1.15) and (3.4) admits a unique C1 solution u = u(t, x) with small C1 norm on the
domain R(T ), which satisfies exactly the zero final condition (1.18).

By Lemma 3.1, we can prove Theorem 3.1.
In fact, substituting the C1 solution u = u(t, x) given by Lemma 3.1 into boundary condi-

tions (1.14), we get the desired boundary controls Hr (r = m+ 1, · · · , n) given by (2.7), where
υi (i = 1, · · · , n) are defined by (1.12). Noting (1.16), the C1 norm of Hr (r = m + 1, · · · , n)
is suitably small. On the other hand, substituting u = u(t, x) into the system (1.10), we get
the desired internal controls ci(t, x) (i = 1, · · · , n) given by (2.8), which correspond to (1.11)
with (2.9). Noting (1.9), the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is also small. Thus, we
obtain the desired exact controllability.
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4 Local Exact Internal Controllability

Under some special but meaningful assumptions, we may realize the local exact controlla-
bility only by internal controls. Suppose that the number of positive eigenvalues is equal to
that of negative ones, i.e.,

n = l +m. (4.1)

Suppose furthermore that in a neighborhood of u = 0, the boundary conditions (1.14)–(1.15)
can be equivalently rewritten as

x = 0 : υp = Gp(t, υl+1, · · · , υm, υm+1, · · · , υn) +Hp(t), p = 1, · · · , l, (4.2)

x = L : υr = Gr(t, υ1, · · · , υl, υl+1, · · · , υm) +Hr(t), r = m+ 1, · · · , n, (4.3)

respectively. Without loss of generality, we may assume that

Gp(t, 0, · · · , 0) ≡ 0, Gr(t, 0, · · · , 0) ≡ 0, p = 1, · · · , l; r = m+ 1, · · · , n. (4.4)

Then

‖Hp‖C1[0,T ] (p = 1, · · · , l) small ⇔ ‖Hr‖C1[0,T ] (r = m+ 1, · · · , n) small, (4.5)

‖Hr‖C1[0,T ] (r = m+ 1, · · · , n) small ⇔ ‖Hp‖C1[0,T ] (p = 1, · · · , l) small. (4.6)

Theorem 4.1 (Local Exact Internal Controllability) Under the hypotheses of Theorem
2.1, suppose furthermore that (4.1)–(4.4) hold. For any given δ (0 < δ < L

2 ), if T > 0 satisfies
(2.14), then for any given initial data ϕ and final data ψ with small C1[0, L] norm, and for
any given Hp and Hr (p = 1, · · · , l; r = m + 1, · · · , n) with small C1[0, T ] norm, such that
the conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0), (0, L), (T, 0) and
(T, L), respectively, there exist internal controls ci(t, x) (i = 1, · · · , n) given by (1.11), in which
the C1[R(T )] norm of ϑ and ki (i = 1, · · · , n) is suitably small, such that the conclusion of
Theorem 2.1 holds.

To prove Theorem 4.1, we introduce the following unknown vector function of (t, x):

ũ = (u1, · · · , un, un+1, · · · , un+m−l)T = (uT, un+1, · · · , un+m−l)T (4.7)

and a set of (n+m− l)-D row vectors

l̃i(ũ) = (li1(u), · · · , lin(u), 0, · · · , 0), i = 1, · · · , n, (4.8)

l̃n+j(ũ) = (0, · · · , 0, (n+j)

1 , 0 · · · , 0), j = 1, · · · ,m− l. (4.9)

Obviously, l̃1(ũ), · · · , l̃n+m−l(ũ) is a set of linearly independent vectors.
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We construct the following system of characteristic form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l̃p(ũ)
(∂ũ
∂t

+ λp(u)
∂ũ

∂x

)
= F̃p(u) + c̃p(t, x), p = 1, · · · , l,

l̃q(ũ)
(∂ũ
∂t

+ λq(u)
∂ũ

∂x

)
= F̃q(u) + c̃q(t, x), q = l + 1, · · · ,m,

l̃r(ũ)
(∂ũ
∂t

+ λr(u)
∂ũ

∂x

)
= F̃r(u) + c̃r(t, x), r = m+ 1, · · · , n,

l̃s(ũ)
(∂ũ
∂t

+ λs(u)
∂ũ

∂x

)
= c̃s(t, x), s = n+ 1, · · · , n+m− l,

(4.10)

where c̃i(t, x) (i = 1, · · · , n+m− l) are the corresponding internal controls and

λq(u) = λ1(u), λs(u) = λn(u), q = l + 1, · · · ,m; s = n+ 1, · · · , n+m− l. (4.11)

Noting (4.8)–(4.9), the system (4.10) can be simplified into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lp(u)
(∂u
∂t

+ λp(u)
∂u

∂x

)
= F̃p(u) + c̃p(t, x), p = 1, · · · , l,

lq(u)
(∂u
∂t

+ λq(u)
∂u

∂x

)
= F̃q(u) + c̃q(t, x), q = l + 1, · · · ,m,

lr(u)
(∂u
∂t

+ λr(u)
∂u

∂x

)
= F̃r(u) + c̃r(t, x), r = m+ 1, · · · , n,

∂us

∂t
+ λs(u)

∂us

∂x
= c̃s(t, x), s = n+ 1, · · · , n+m− l.

(4.12)

Obviously, (4.10) is a system without zero eigenvalues.

Let

ṽi = l̃i(ũ)ũ, i = 1, · · · , n+m− l

=
{
li(u)u = vi, i = 1, · · · , n,
ui, i = n+ 1, · · · , n+m− l.

(4.13)

We give the initial condition

t = 0 : ũ = (ϕ(x)T, 0, · · · , 0)T, 0 ≤ x ≤ L (4.14)

and the final condition

t = 0 : ũ = (ψ(x)T, 0, · · · , 0)T, 0 ≤ x ≤ L. (4.15)

Corresponding to (4.11), we give the following artificial boundary conditions:

x = 0 : us = vs−(n−l), s = n+ 1, · · · , n+m− l, (4.16)

x = L : vq = uq+(n−l), q = l + 1, · · · ,m. (4.17)

For the mixed initial-boundary value problem (4.10), (4.14), (1.14)–(1.15) and (4.16)–(4.17),
according to the result on local exact internal controllability in [7], we have the following lemma.
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Lemma 4.1 Under the hypotheses of Theorem 4.1, suppose furthermore that (4.11) holds.
Let T > 0 be defined by (2.14). For any given ϕ and ψ with small C1[0, L] norm, and for any
given Hp and Hr (p = 1, · · · , l; r = m + 1, · · · , n) with small C1[0, T ] norm, such that the
conditions of C1 compatibility are satisfied at the points (t, x) = (0, 0), (0, L), (T, 0) and (T, L),
respectively, there exist internal controls

c̃i(t, x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
l̃i(

˜̃
ϑ)

(∂˜̃
ϑ

∂t
+ λi(

˜̃
ϑ)
∂
˜̃
ϑ

∂x

)
+ ˜̃
ki(t, x), i = 1, · · · , l; m+ 1, · · · , n,

l̃i(
˜̃
ϑ)

(∂˜̃
ϑ

∂t
+ λi(

˜̃
ϑ)
∂
˜̃
ϑ

∂x

)
+ ˜̃
ki(t, x), i = l+ 1, · · · ,m; n+ 1, · · · , n+m− l,

(4.18)

in which λi(
˜̃
ϑ) and λi(

˜̃
ϑ) depend only on the first n components of ˜̃

ϑ, and the C1[R(T )] norm of˜̃
ϑ = ˜̃

ϑ(t, x) and ˜̃
ki (i = 1, · · · , n+m− l) is suitably small, such that the mixed initial-boundary

value problem (4.10), (4.14), (1.14)–(1.15) and (4.16)–(4.17) admits a unique C1 solution ũ =
ũ(t, x) with small C1 norm on the domain R(T ), which satisfies exactly the final condition
(4.15).

By Lemma 4.1, we can prove Theorem 4.1.

In fact, let u = u(t, x) = (u1, · · · , un)T be the column vector composed of the first n
components of the C1 solution ũ = ũ(t, x) given by Lemma 4.1. Obviously, u = u(t, x) verifies
boundary conditions (1.14)–(1.15), the initial condition (1.13) and the final condition (1.17).
Substituting u = u(t, x) into the system (1.10), we get the desired internal controls ci(t, x) (i =
1, · · · , n) given by (2.8), which correspond to (1.11) with (2.9). Noting (1.9), the C1[R(T )]
norm of ϑ and ki (i = 1, · · · , n) is also small. Thus, we obtain the desired exact controllability.

If we consider only the exact null controllability and assume that (3.1)–(3.2) hold, then we
can still get the local exact internal controllability without assumptions (4.1)–(4.4).

Theorem 4.2 (Local Exact Internal Null Controllability) Under the hypotheses of The-
orem 2.1, suppose furthermore that (3.1)–(3.2) hold. For any given δ (0 < δ < L

2 ), if T > 0
satisfies (2.14), then for any given initial data ϕ with small C1[0, L] norm, such that the condi-
tions of C1 compatibility are satisfied at the points (t, x) = (0, 0) and (0, L), respectively, there
exist internal controls ci(t, x) (i = 1, · · · , n) given by (1.11), in which the C1[R(T )] norm of ϑ
and ki (i = 1, · · · , n) is suitably small, such that the conclusion of Theorem 4.1 holds for the
zero final condition (1.18).

The proof of Theorem 4.2 is similar to that of Theorem 4.1.

5 Remarks

Remark 5.1 The estimate given by (2.1) and (2.14) on the control time in Theorems
2.1–4.2 is sharp. By (2.1) and (2.14), the larger the value δ, the smaller the control time T . In
particular, when δ → L

2 , the right-hand sides of (2.1) and (2.14) tend to zero. It shows that by
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means of internal controls one can realize the local exact controllability almost immediately in
principle.

Remark 5.2 By [7], for first-order quasilinear hyperbolic systems without zero eigenvalues,
the internal controls are acting only on the rectangle [ε0, T −ε0]× [L

2 −δ, L
2 +δ], where ε0 > 0 is

suitably small. Thus, by (2.2) and the first n equations in (4.12), in the domains [0, T ]×[0, L
2 −δ]

and [0, T ]×[L
2 +δ, L], the internal controls in Theorems 2.1–4.2 are added only to those equations

corresponding to zero eigenvalues.

Remark 5.3 The boundary controls and the internal controls given in Theorems 2.1–4.2
are not unique.
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