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Abstract Klapper (1994) showed that there exists a class of geometric sequences with the
maximal possible linear complexity when considered as sequences over GF (2), but these
sequences have very low linear complexities when considered as sequences over GF (p) (p is
an odd prime). This linear complexity of a binary sequence when considered as a sequence
over GF (p) is called GF (p) complexity. This indicates that the binary sequences with high
GF (2) linear complexities are inadequate for security in the practical application, while,
their GF (p) linear complexities are also equally important, even when the only concern is
with attacks using the Berlekamp-Massey algorithm [Massey, J. L., Shift-register synthesis
and bch decoding, IEEE Transactions on Information Theory, 15(1), 1969, 122–127]. From
this perspective, in this paper the authors study the GF (p) linear complexity of Hall’s sextic
residue sequences and some known cyclotomic-set-based sequences.
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1 Introduction

The linear complexity of a periodic sequence is an important standard to scale the ran-
domicity of key streams, and plays an important role in the application of the sequence in cryp-
tography and communication. The linear complexity of a periodic binary sequence is defined as
the length of the shortest linear feedback shift register to generate the sequence. The periodic
binary sequences with a low linear complexity (L) are not secure, since the Berlekamp-Massey
algorithm (see [1]) can be used to construct the whole sequences with only 2L consecutive
elements of the sequence.

Klapper [2] demonstrated that there exists a class of binary geometric sequences of the
period qn − 1 (q is a prime power pm and p is an odd prime) with the maximal possible linear
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complexity qn −1 when considered as sequences over GF (2), but these sequences have very low
linear complexities when applied as sequences over GF (p). This pioneering work suggests that
the binary sequences with high GF (2) linear complexities are not necessarily cryptographically
secure, since they can not prevent the attacker to get the whole sequence over GF (p) whose
GF (p) linear complexity is low. Thus, much effort has been paid to find out ways of determining
the GF (p) linear complexities. Chen and Xu [3–4] proposed some constructions of the binary
sequences with high GF (2) linear complexities but low GF (p) linear complexities, and gave
some lower bounds of the GF (p) linear complexities of Blum-Blum-Shub, self-shrinking, and
de Bruijn sequences, etc. He has done a study of the GF (p) linear complexity of Legendre
sequences (see [5]).

For the cryptographic purpose, we should study the linear complexity of the binary sequence
considered as a sequence over GF (p), whose elements happen to be 0 or 1. Motivated by this
perspective, we study the problem of the GF (p) linear complexity of Hall’s sextic sequences
and some cyclotomic-difference-set-based sequences.

At the beginning of this paper, we present several fundamental concepts and notations that
will be used in the subsequent section. Let s(t) = s0, s1, · · · , sN−1 be a sequence over a field
GF (p), and p is an odd prime. The linear complexity or linear span of s(t) is defined to be the
shortest positive integer l such that there are constants c0 = 1, c1, · · · , cl ∈ GF (p) satisfying

−ai = c1sN−1 + c2sN−2 + · · · + clsi−l

for all l ≤ i ≤ n

Such a polynomial c(x) = c0 + c1x + c2x
2 + · · · + clx

l is called the feedback polynomial of
the shortest linear feedback shift register (LFSR for short) that generates s(t).

It is known that the feedback polynomial of s(t) is given by

xN − 1
gcd(xN − 1, S(x))

,

where
S(x) = s0 + s1x + s2x

2 + · · · + sN−1x
N−1.

The linear complexity is calculated by

N − deg(gcd(xN − 1, S(x))).

The rest of the paper is organized as follows. Section 2 will formally give the result of GF (p)
linear complexities of the Hall’s sextic residues sequences, and the result of some cyclotomic-
set-based sequences will be given in Section 3. Section 4 summarizes our results and our future
work.

2 Hall’s Sextic Residues Sequences

Let N = 4u2 +27 = 6f +1 be a prime and g be a primitive root modulo N . All the nonzero
elements of the integers mod N can be partitioned into six residue classes Cl, l = 0, 1, · · · , 5, as

Cl = {g6i+l | i = 0, 1, · · · , f − 1}.
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Hall’s sextic residue sequences with respect to the period N are defined as

s(t) =
{

1, if t ∈ C0 ∪ C1 ∪ C3,
0, otherwise,

where t = 0, 1, · · · , N − 1.
Hall’s sextic residue sequences have a number of interesting properties, and we refer to [6–9]

for details. Kim and Song [6] determined their GF (2) linear complexity and the characteristic
polynomial. The trace representation of Hall’s sextic residue sequences of period N = 7 mod 8
was given in [7]. Dai etc. [8–9] explicitly described the trace representations of the binary
sequences of the e-th (e ≤ 12) power residue cyclic difference sets, including the Hall’s sextic
residue sequences.

For Hall’s sextic residue sequences with a period N , the corresponding S(x) is given by

S(x) = C0(x) + C1(x) + C3(x).

Then the linear complexity of a Hall’s sextic residue sequence s(t) (denoted by Lp(s)) of the
period N over GF (pm) is given by

Lp(s) = N − |{j : S(βj) = 0, 0 ≤ j ≤ N − 1}|, (2.1)

where β is a primitive N -th root of unity that is the splitting field of xN − 1, and m can be
determined by m = min{d | pd = 1 mod N}.

In order to determine the linear complexity of Hall’s sextic residue sequences, we need the
following two lemmas.

Lemma 2.1 With respect to the above notation, we assume further that N = −1 mod p.
Let α, θ, γ be representing elements of C0, C1, C2, respectively. Then

S(βα) · S(β−α) = 0, S(βθ) · S(β−θ) = 0, S(βγ) · S(β−γ) = 0.

Proof We first note that a Hall’s sextic residue sequence with a period N induces a cyclic
Hadamard difference set D(v, k, λ) with parameters v = N, k = N−1

2 and λ = N−3
4 (see [10]).

Consider that (−1)
N−1

3 = (−1)2f = 1 and N = −1 mod 4, so, −1 ∈ C3. Combining with the
fact that D is a (v, k, λ) difference set, we have the following equation:

S(βα) · S(β−α) =
∑

i∈C0∪C1∪C3

βi ·
∑

j∈C0∪C1∪C3

β−j

=
∑

i=j,i,j∈C0∪C1∪C3

βi−j +
∑

i�=j,i,j∈C0∪C1∪C3

βi−j

=
N − 1

2
+ λ ·

∑
i∈Z∗

N

βi =
N + 1

4
.

Evidently, if N = −1 mod p, we have

S(βα) · S(β−α) = 0.

Similarly, S(βθ) · S(β−θ) = 0, S(βγ) · S(β−γ) = 0, so the lemma holds.
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Lemma 2.2 With respect to the above notation, we assume again that N = −1 mod p, and
then the equation

(C3(β) − C0(β))2 · (C4(β) − C1(β))2 · (C5(β) − C2(β))2 = 16 mod p

holds.

Lemma 2.2 can be conducted directly from the Theorem 1 in [11]. That is, (C3(β) −
C0(β))2 · (C4(β) − C1(β))2 · (C5(β) −C2(β))2 = (−1)f+2 ·N · M4. We know that the prime N

can be uniquely expressed as 4N = L2 + 27M2 if N = 1 mod 3. For the Hall’s sextic residue
sequences, M2 = 4. Noting that N = 4u2 + 27, 3f = 2u2 + 13, f must be odd, and therefore,
(C3(β) − C0(β))2 · (C4(β) − C1(β))2 · (C5(β) − C3(β))2 = (−1)f+3 · 16 mod p = 16 mod p.

The results of the GF (p) linear complexity are stated in the following theorem.

Theorem 2.1 Let s(t) be the Hall’s sextic residue sequences of the period N as before.
Then the GF (p) linear complexity Lp(s) is given as follows:

(1) If N = −1 mod p, then Lp(s) = N+1
2 .

(2) Otherwise,

Lp(s) =
{

N, S(1) �= 0,
N − 1, S(1) = 0.

(2.2)

Proof The proof of Theorem 2.1 is then completed by considering two cases depending on
whether N = −1 mod p or not.

We first consider the case N = −1 mod p, which, according to Lemma 2.1, happens. It
follows from Lemma 2.1 that S(βα) · S(β−α) = 0. By Lemma 2.2, it follows that either
S(βα) = 0 for all α ∈ C0, or S(β−α) = 0 for all α ∈ C3. Clearly, the values of S(βα) and
S(β−α) can not be 0 simultaneously. In this way, we can deduce that the values of S(βθ) and
S(β−θ) can not be 0 at the same time and that is of S(βγ) and S(β−γ). Since S(1) = N−1

2 , it
follows that S(1) = −1 mod p if N = −1 mod p. Hence, if N = −1 mod p, then by Lemma 2.1,

Lp(s) = N − |{j : S(βj) = 0, 0 ≤ j ≤ N − 1}| = N − N − 1
2

=
N + 1

2
.

Secondly, we consider the case N �= −1 mod p. By Lemma 2.1, it follows that S(βα) ·
S(β−α) = N+1

4 �= 0 mod p, which indicates that for all α ∈ C0 ∪ C3, S(βα) �= 0. Similarly, we
have that for all j ∈ C1 ∪ C4 ∪ C2 ∪ C5, S(βj) �= 0. Thus, the linear complexity Lp(s) is N or
N − 1, which entirely depends on whether S(1) mod p is 0 or not. Here, we have completed the
proof of the theorem.

3 Extension to Some Known Cyclotomic Difference Sets

In this section, we discuss how we can apply Lemma 2.1 to other binary sequences based on
cyclotomic difference sets. In particular, we focus on some known cyclotomic difference sets,
which were described in Table 1 (see [12]). Note that the GF (p) linear complexity of Legendre
sequecnes has been carefully studied in [5]. Hence we focus on the following two cases: The
quartic residue sequences and the 8-th power residue sequences. We omit the trivial cases for
the 10-th power residue sequences, which only hold for the period N = 31 (see [8]).
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Table 1 Some known cyclotomic difference sets

Cyclotomic ADS Conditions Sequences
C

(2,N)
0 N = 1 mod 4 Legendre Sequences

C
(4,N)
0 N = 4t2 + 1, t odd the Quartic

C
(4,N)
0 ∪ {0} N = 4t2 + 9, t odd Residue Sequences
C

(8,N)
0 N = 8t2 + 1 = 64u2 + 9, t, u odd the 8-th Power

C
(8,N)
0 ∪ {0} N = 8t2 + 49 = 64u2 + 441, Residue Sequences

t odd, u even
C

(6,N)
0 ∪ C

(6,N)
1 ∪ C

(6,N)
3 N = 4t2 + 27, N = 1 mod 6 Hall’s Sequences

Allow us to give some notations firstly. Let N = ef +1 be a prime and g be a primitive root
modulo N , and all the nonzero elements of the integers can be divided into e residue classes
C

(e,N)
l , l = 0, 1, · · · , f − 1, as

C
(e,N)
l = {ge·i+l | i = 0, 1, · · · , f − 1},

where e = 4, 8.
We define the quartic residue sequences and the 8-th power residue sequences as

s(t) =
{

1, t ∈ C
(e,N)
0 ,

0, otherwise.
(3.1)

With the goal of computing the GF (p) linear complexity, the issue is to decide the cardinality
|{j | C

(e,N)
0 (βj) = 0, j ∈ C0 ∪ C1 · · · ∪ Ce−1 ∪ {0}}|.

3.1 The quartic residue sequences

In this subsection, Theorem 3.1 manifests our effort on the GF (p) linear complexity of the
quartic residue sequences, while their GF (2) linear complexity was given in [8]. In the following,
we denote C

(4,N)
l as Cl for short, i.e., Cl(x) =

∑
i∈Cl

xi and S(x) = C0(x).

Theorem 3.1 Let s(t) be the quartic residue sequences of the period N , and N = 4t2 +1 (t
being odd) be prime. Then the GF (p) linear complexity Lp(s) is given as follows:

(1) If 3N = −1 mod p, then Lp(s) = N+1
2 .

(2) Otherwise,

Lp(s) =
{

N, S(1) �= 0,
N − 1, S(1) = 0.

(3.2)

Proof The quartic residue sequence with a period N induces a cyclic Hadamard difference
set D(v, k, λ) with parameters v = N, k = N−1

4 and λ = N−5
16 . Consider that (−1)

N−1
2 =

1 mod N = 1 and (−1)
N−1

4 = −1 mod N , so, −1 ∈ C2. Combining with the fact −1 ∈ C2, it
follows from Lemma 2.1 that C0(β)·C2(β) = N−1

4 −N−5
16 = 3N+1

16 = 0 mod p and C1(β)·C3(β) =
3N+1

16 = 0.
To finish the proof, notice the fact: (C0(β)−C2(β))2=(C0(β)+C2(β))2−4 ·C0(β) ·C2(β) =

(C0(β)+ C2(β))2, and (C1(β)−C3(β))2 = (C1(β)+ C3(β))2. It follows that (C0(β)−C2(β))2 ·
(C1(β) − C3(β))2 = (C0(β) + C2(β))2 · (C1(β) + C3(β))2.
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We observe that C0 ∪ C2, C1 ∪ C3 constitutes the quadratic and non-quadratic residue
sets modulo N , respectively. Based on the two classical facts (see [13]): C0(β) + C2(β) +
C1(β) + C3(β) = −1 and (C0(β) + C2(β) − C1(β) − C3(β))2 = (−1)

N−1
2 · N , it follows that

(C0(β) − C2(β))2 · (C1(β) − C3(β))2 =
(

N−1
4

)2 mod p. We seek a contradiction to show that
N−1

4 �= 0 mod p under the condition 3N = −1 mod p. This condition implies p �= 3, indicating
that p = 3 only happens in the second case of the theorem. If N = 1 mod p holds, then
3N = 3 mod p and −1 = 3 mod p, which gives a contradiction. It is clear that the values of
C0(β) and C2(β−1) can not be 0 at the same time. So are the values of C1(β) and C3(β).
Moreover, C0(1) = N−1

4 �= 0 mod p, that is, we prove the result. The second part of this
theorem is easy to see.

3.2 The 8-th power residue sequences

In this subsection, we will present our result of the 8-th power residue sequences. Suppose
that N = 8t2 + 1 = 64u2 + 9 = 8f + 1 (t, u are odd). To simplify the description, we use Cl to
denote C

(8,N)
l , and Cl(x) =

∑
i∈Cl

xi.

Now, we elaborate on the details of the Theorem 3.2.

Theorem 3.2 Let s(t) be the 8-th power residue sequences of the period N , and N be prime
as before. Then on the GF (p) linear complexity, Lp(s) is given as follows:

(1) If 7N = −1 mod p, then Lp(s) = N+1
2 .

(2) Otherwise,

Lp(s) =
{

N, S(1) �= 0,
N − 1, S(1) = 0.

(3.3)

Proof We first consider the case under the condition 7N = −1 mod p. The 8-th power
residue sequences guide an

(
N, N−1

8 , N−9
64

)
-cyclic hadamard difference set. Apparently, (−1)

N−1
4

= 1 mod N , while (−1)
N−1

8 = −1 mod N , so, −1 ∈ C4. Therefore, we have the following 4
equations, indicating that at least four of the total eight residue classes make C0(βj) = 0:
C0(β)·C0(β−1) = C0(β)·C4(β) = N−1

8 − N−9
64 = 7N+1

64 = 0, C1(β)·C5(β) = 0, C2(β)·C6(β) = 0,
C3(β) · C7(β) = 0.

For convenience, let D0, D1, D2, D3 represent C0∪C4, C1∪C5, C2∪C6, C3∪C7, respectively.
In order to prove the final result, we need to examine the value of (D0(β)·D2(β))·(D1(β)·D3(β)).
First, we compute the values of D0(β) · D2(β), D1(β) · D3(β) by the cyclotomic numbers of
order 4 (see [14]), respectively.

D0(β) · D2(β) = (2, 0)
∑

k∈D0

βk + (1, 3)
∑

k∈D1

βk + (0, 2)
∑

k∈D2

βk + (3, 1)
∑

k∈D3

βk

=
N − 3 + 2x

16
·

∑
k∈D0∪D2

βk +
N + 1 − 2x

16
·

∑
k∈D1∪D3

βk

=
N − 9

16
·

∑
k∈D0∪D2

βk +
N + 7

16
·

∑
k∈D1∪D3

βk,
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where x = −3 in the case of N = 64u2 + 9 = x2 + 4y2, x = 1 mod 4.

D1(β) · D3(β) = (3, 1)
∑

k∈D0

βk + (2, 0)
∑

k∈D1

βk + (1, 3)
∑

k∈D2

βk + (0, 2)
∑

k∈D3

βk

=
N + 7

16
·

∑
k∈D0∪D2

βk +
N − 9

16
·

∑
k∈D1∪D3

βk.

Observe that

D0(β) · D2(β) + D1(β) · D3(β) = −N − 1
8

and

(D0(β) · D2(β) − D1(β) · D3(β))2 = N,

so

(D0(β) · D2(β)) · (D1(β) · D3(β)) =
(N−1

8 )2 − N

4
=

N2 − 10N + 1
32

.

In the first case, 7N = −1 mod p, which indicates that p �= 7, so,

N2 − 10N + 1
32

=
(− 1

7 )2 − (10 · (− 1
7 )) + 1

32
=

15
392

�= 0 mod p.

From the calculation of the value (D0(β) · D2(β)) · (D1(β) · D3(β)), we know that there are
four and only four of the total eight residue classes that make C0(βj) = 0. In addition,
C0(β) = N−1

8 = 1 �= 0 mod p. Hence, the first part of the theorem holds. The second part of
this theorem can be verified easily.

4 Discussions

In this paper, we give some results on the GF (p) linear complexities of Hall’s sextic residue
sequences, and some known cyclotomic-difference-set-based sequences. These sequences share
a common feature: The GF (p) linear complexity is as much as half of the sequence period
N . From the view of practical use, any discussion of the GF (2) linear complexity requires a
discussion of the GF (p) linear complexity for these binary sequences. A challenge is that the
calculation of GF (p) linear complexity may be as difficult as or more difficult than developing
the sequences themselves.

Unfortunately, despite that the GF (p) linear complexities of these known sequences have
been determined, the feedback polynomial of these sequences has not been well addressed in
this paper. Clearly, we are only interested in the sequences which are constructed based on the
cyclic difference sets, but a plethora of sequences constructed by the cyclic almost difference sets
(see [14]) or the generalized cyclotomic sequences (see [15]) on the GF (p) linear complexities
are still open, which will be promising directions for future work.
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