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Abstract This paper deals with the relationship between the positivity of the Fock
Toeplitz operators and their Berezin transforms. The author considers the special case of

the bounded radial function ϕ(z) = a + be−α|z|2 + ce−β|z|2 , where a, b, c are real numbers
and α, β are positive numbers. For this type of ϕ, one can choose these parameters such
that the Berezin transform of ϕ is a nonnegative function on the complex plane, but the
corresponding Toeplitz operator Tϕ is not positive on the Fock space.
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1 Introduction

Let dμ be the Gaussian measure on the complex plane C. It is well-known that, in terms of
the standard area measure dA(z) = 1

π dxdy = r
π drdθ on C, we have

dμ(z) =
1
2
e−

|z|2
2 dA(z).

Recall that the Fock space F2 is defined to be the subspace

{
f is analytic on C : ‖f‖2 :=

∫
C

|f(z)|2dμ(z) < +∞
}
.

It is easy to check that the functions zn (n � 0) are orthogonal in F2 and their linear span is
dense in F2. Using polar coordinates we get that ‖zn‖2 = n!2n. Thus

{en(z)}∞n=0 =
{ zn

√
n!2n

}∞

n=0

forms an orthonormal basis of the Fock space F2.
Given ϕ in L∞(C), the Fock Toeplitz operator with symbol ϕ is defined by

Tϕf = P (ϕf),
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where P : L2(C, dμ) → F2 is the orthogonal projection. Using the reproducing kernel Kz(w) =
e

wz
2 , we express the Toeplitz operator as an integral operator:

Tϕf(z) =
∫

C

ϕ(w)f(w)Kz(w)dμ(w)

=
∫

C

ϕ(w)f(w)e
wz
2 dμ(w).

For more information on the topics of the Fock space and Fock Toeplitz operators, we refer to
[2–3, 9].

As usual, let kz denote the normalized reproducing kernel for F2. That is,

kz(w) =
Kz(w)
‖Kz‖ = e

zw
2 − |z|2

4 .

For a bounded operator A on the Fock space F2, the Berezin transform of A is the function Ã

on the complex plane defined by

Ã(z) = 〈Akz , kz〉 (z ∈ C).

For ϕ ∈ L∞(C), ϕ̃ is called the Berezin transform of ϕ given by

ϕ̃(z) = T̃ϕ(z) = 〈Tϕkz, kz〉 = 〈ϕkz , kz〉 (z ∈ C).

The Berezin transform is a very useful tool in studying Toeplitz operators on the Bergman
space and the Fock space. For instance, the compactness, boundedness, positivity, invertibility
and Fredholmness of the Toeplitz operators are partially or completely characterized by their
Berezin transforms (please see [1, 4–5, 7–8]).

Recently, the author and Zheng [6] studied the positive Toeplitz operators on the Bergman
space via their Berezin transforms. They showed that the positivity of a Toeplitz operator on
the Bergman space is not completely determined by the positivity of the Berezin transform
of its symbol. Indeed, they constructed a quadratic polynomial of |z| on the unit disk and
showed that even if the minimal value of the Berezin transform of the polynomial is positive,
the Toeplitz operator with the function as the symbol may not be positive.

Motivated by this result, we try to study the positivity of the Toeplitz operators on the
Fock space in the present paper. Observe that from the definition of the Berezin transform we
see that the function ϕ̃ is nonnegative on C provided that Tϕ � 0, and Tϕ � 0 if the function
ϕ(z) � 0 for all z ∈ C. Thus, it is natural to ask the following question.

Question 1.1 Is the positivity of a Fock Toeplitz operator completely determined by the
positivity of the Berezin transform of its symbol? If not, then how to construct the “simplest”
function ϕ which satisfies that ϕ̃ is positive on the complex plane but the Toeplitz operator Tϕ

is not positive?

As we mentioned above, one can find an example from the set

{ϕ(z) = a|z|2 + b|z| + c : a, b, c ∈ R}

such that Tϕ is not positive on the Bergman space but ϕ̃ is strictly positive on the unit disk.
So, it is natural to try to use the radial functions (i.e., ϕ(z) = ϕ(|z|) for all z ∈ C) of the
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form |z|n√
n!2n

(n � 0) to construct a suitable example and give a negative answer to the above
question. However, these simple radial functions are not bounded on the complex plane C. Our
main idea in this paper is to simplify our calculations and estimations by the bounded radial
functions e−λ|z|2 (λ > 0). More precisely, we will consider the bounded radial functions of the
following form:

{ϕ(z) = a + be−α|z|2 + ce−β|z|2 : a, b, c ∈ R; α, β > 0, α 	= β}. (1.1)

Using the above functions we will give a negative answer to Question 1.1 by selecting the
parameters carefully. In fact, if we choose 2α = β = 1, then we can find the real numbers a, b

and c such that the Berezin transform ϕ̃ is positive on C, but the Toeplitz operator Tϕ is not
positive. The examples and details will be contained in Section 3. Noting that 2α = β = 1 is
an isolated case, we still want to use this result to construct a family of examples to answer
Question 1.1, so we consider the following question:

Question 1.2 Is there a function ϕ in (1.1) such that ϕ̃(z) � 0 (∀z ∈ C) but Tϕ is not
positive on F2 for all 2α = β > 0?

Based on the answer to Question 1.1, we will give a negative answer to Question 1.2 by
taking 2α = β = 1

2 and showing that Tϕ is positive if and only if its Berezin transform is a
nonnegative function in this case. That is, for this type of α and β, there do not exist a, b, c

such that ϕ̃ is positive but Tϕ is not. The proofs will be given in the last section.

2 Preliminaries

It is difficult to study the positivity of the Toeplitz operators on function spaces in the
general case even if the symbols are continuous functions. However, if ϕ is a radial function on
C, we can find the relationship between the positivity of Tϕ and the Berezin transform ϕ̃ by its
matrix, since the matrix representation of this type of Toeplitz operator is a diagonal matrix
under the orthonormal basis.

Lemma 2.1 Suppose that ϕ is a bounded radial function on C. Then the matrix represen-
tation of the Toeplitz operator Tϕ under the basis

{
zn√
n!2n

}∞
n=0

is

diag
({ 1

n!2n

∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr

}∞

n=0

)
.

In particular, if

ϕ(z) = e−λ|z|2

with λ > 0, then the matrix representation of Tϕ is given by

diag
({ 1

(2λ + 1)n+1

}∞

n=0

)
.
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Proof For each n � 0, we have

Tϕen(z) = 〈Tϕen, Kz〉 = 〈ϕen, Kz〉
=

∫
C

ϕ(w)en(w)Kz(w)dμ(w)

=
1
2
· 1√

n!2n

∫
C

ϕ(w)wne
wz
2 e−

|w|2
2 dA(w)

=
1
2π

· 1√
n!2n

∫ 2π

0

∫ +∞

0

ϕ(r)rneinθ
∞∑

n=0

zmrm

m!2m
e−imθe−

r2
2 rdrdθ

=
1√
n!2n

∫ +∞

0

ϕ(r)
zn

n!2n
e−

r2
2 r2n+1dr

=
( 1

n!2n

∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr

)
en(z).

If ϕ(z) = e−λ|z|2 (λ > 0) and n � 0, then we have∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr =

∫ +∞

0

e−(λ+ 1
2 )r2

r2n+1dr

=
1
2

∫ +∞

0

e−(λ+ 1
2 )xxndx

=
1

2(λ + 1
2 )n+1

∫ +∞

0

e−xxndx

=
n!

2(λ + 1
2 )n+1

.

Thus,

Tϕen(z) =
( 1

n!2n
× n!

2(λ + 1
2 )n+1

)
en(z)

=
1

(2λ + 1)n+1
en(z) (n � 0).

This completes the proof of Lemma 2.1.

Note that for the Bergman space case, the Berezin transforms of the functions |z|l (l � 0)
are so complicated even if these functions are very simple (see [6, Lemma 3.3]). However, the
Berezin transform of the function e−λ|z|2 (λ > 0) on C has a good expression, that is the
following lemma, which is very useful for proving our main results.

Lemma 2.2 Suppose that ϕ is a bounded radial function on C. Then the Berezin transform
of ϕ is given by

ϕ̃(z) = e−
|z|2
2

∞∑
n=0

|z|2n

(n!2n)2

∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr.

In particular, if ϕ(z) = e−λ|z|2 with λ > 0, then

ϕ̃(z) =
1

2λ + 1
e( 1

4λ+2− 1
2 )|z|2

for all z ∈ C.
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Proof By the definition of the Berezin transform, we have

ϕ̃(z) = 〈ϕkz , kz〉 =
1

‖Kz‖2
〈ϕKz , Kz〉

= e−
|z|2
2

∫
C

ϕ(w)|Kz(w)|2dμ(w)

=
1
2
e−

|z|2
2

∫
C

ϕ(w)
( ∞∑

n=0

znwn

n!2n

)( ∞∑
m=0

wmzm

m!2m

)
e−

|w|2
2 dA(w)

=
1
2π

e−
|z|2
2

∫ 2π

0

∫ +∞

0

ϕ(r)
( ∞∑

n=0

znrneinθ

n!2n

)( ∞∑
m=0

rme−imθzm

m!2m

)
e−

r2
2 rdrdθ

= e−
|z|2
2

∞∑
n=0

|z|2n

(n!2n)2

∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr.

For the special case, we have the following simple calculations:∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr =

∫ +∞

0

e−(λ+ 1
2 )r2

r2n+1dr

=
n!

2(λ + 1
2 )n+1

,

where the last “=” comes from the proof of Lemma 2.1. Therefore,

ϕ̃(z) = e−
|z|2
2

∞∑
n=0

|z|2n

(n!2n)2

∫ +∞

0

ϕ(r)e−
r2
2 r2n+1dr

=
1

2λ + 1
e−

|z|2
2

∞∑
n=0

1
n!

( |z|2
4λ + 2

)n

=
1

2λ + 1
e−

|z|2
2 · e |z|2

4λ+2 ,

as desired.

Before studying the answer to Question 1.1, we first consider the function ϕ in (1.1) with
c = 0. Combining the above two lemmas, we get the following result.

Proposition 2.1 Let ϕ(z) = a − e−λ|z|2 , where a ∈ R and λ > 0. Then the following
conditions are equivalent:

(1) The Fock Toeplitz operator Tϕ is positive;
(2) a � 1

2λ+1 ;
(3) The Berezin transform ϕ̃(z) � 0 for all z ∈ C.

Proof By Lemma 2.1, we get that the matrix representation of Tϕ is

diag
({

a − 1
(2λ + 1)n+1

}∞

n=0

)
.

Thus, Tϕ is positive if and only if a � 1
(2λ+1)n+1 for all n � 0, which gives that a � 1

2λ+1 . This
proves (1) ⇔ (2). Now Lemma 2.2 implies

ϕ̃(z) = a − 1
2λ + 1

e−
λ

2λ+1 |z|2 .
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So we obtain that ϕ̃ is nonnegative on C if and only if

a − 1
2λ + 1

e−
λ

2λ+1 |z|2 � 0 (∀z ∈ C).

This gives that a � 1
2λ+1 , so (3) ⇔ (2). This completes the proof.

Remarks 2.1 The above proposition tells us that there exists a function ϕ ∈ L∞(C) such
that the Fock Toeplitz operator Tϕ � 0 but ϕ is not a nonnegative function on C. To see this,
we only need to take 1

2λ+1 � a < 1 with λ > 0 in Proposition 2.1. Furthermore, this result
also implies that to give a negative answer to Question 1.1, we only need to consider the case
of b 	= 0 and c 	= 0 in (1.1).

3 A Negative Answer to Question 1.1

In this section, we construct a function ϕ such that the Berezin transform of ϕ is positive
on the complex plane but the corresponding Fock Toeplitz operator is not positive. To do so,
we first consider the case 2α = β = 1. Without loss of generality, we may assume c = 1. Then
we have the following theorem.

Theorem 3.1 Suppose that ϕ(z) = a + be−
|z|2
2 + e−|z|2 , where a, b ∈ R. Then

(1) if b � − 8
9 or b � 0, then Tϕ is positive if and only if ϕ̃(z) is a nonnegative function on

the complex plane;
(2) for each b ∈ (− 8

9 ,− 1
2 ], there exists a real number a such that ϕ̃(z) � 0 for all z ∈ C, but

Tϕ is not a positive Toeplitz operator.

Proof Use Lemmas 2.1–2.2 and let λ = 1
2 , 1, respectively. Then we obtain that the matrix

representation of Tϕ is given by

diag
({

a +
b

2n+1
+

1
3n+1

}∞

n=0

)
and the Berezin transform of ϕ is

ϕ̃(z) = a +
b

2
e−

|z|2
4 +

1
3
e−

|z|2
3 (z ∈ C).

These imply that Tϕ � 0 if and only if

a +
b

2n+1
+

1
3n+1

� 0

for all n � 0, and ϕ̃(z) � 0 (∀z ∈ C) if and only if

a +
b

2
e−

|z|2
4 +

1
3
e−

|z|2
3 � 0

for all z ∈ C. Therefore, Tϕ � 0 is equivalent to

a � − inf
n�1

{ b

2n
+

1
3n

}
.

Letting t = e−
|z|2
12 ∈ [0, 1], then ϕ̃(z) � 0 (∀z ∈ C) is equivalent to

a � − min
0�t�1

(bt3

2
+

t4

3

)
.
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First, we prove part (1) of the above theorem. Now we are going to determine the minimal value
of the function bt3

2 + t4

3 := f(t) (0 � t � 1) and the minimal term of the sequence { b
2n + 1

3n }n�1.
To do this, we consider the following two cases.

Case I Suppose that b � 0. It is easy to see that f(t) is increasing on [0, 1] and b
2n + 1

3n is
decreasing for n � 1. So we have

min
0�t�1

f(t) = f(0) = 0

and
inf
n�1

{ b

2n
+

1
3n

}
= 0.

Case II Suppose b � − 8
9 . A simple calculation gives that f(t) is decreasing if 0 � t < − 9b

8

and f(t) is increasing if t > − 9b
8 . Note that 1 � − 9b

8 , so

min
0�t�1

f(t) = f(1) =
b

2
+

1
3
.

To find the minimal term of the sequence, observe that b
2 + 1

3 < 0 and we claim that b
2 + 1

3 is
the minimal term. Indeed, if there exists some N > 1 such that

b

2
+

1
3

>
b

2N
+

1
3N

,

then we obtain

−8
9

� b > −
1
3 − 1

3N

1
2 − 1

2N

,

which shows that
23−N − 32−N > 1

for some N � 2. However, this is impossible. The contradiction shows that

inf
n�1

{ b

2n
+

1
3n

}
=

b

2
+

1
3
.

Combining the above two cases gives the conclusion in part (1).
For the second part, we turn to consider b ∈ (− 8

9 ,− 1
2 ]. First, observe that Tϕ is not positive

if and only if

a < − inf
n�1

{ b

2n
+

1
3n

}
.

To finish the proof, it suffices to show that for each b ∈ (− 8
9 ,− 1

2 ], there exists a real constant
a such that

a � − min
0�t�1

(bt3

2
+

t4

3

)
and Tϕ is not positive. As shown above, we need the following inequality:

− min
0�t�1

(bt3

2
+

t4

3

)
� a < − inf

n�1

{ b

2n
+

1
3n

}
.

Indeed, we will show that

min
0�t�1

(bt3

2
+

t4

3

)
> inf

n�1

{ b

2n
+

1
3n

}
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for each b ∈ (− 8
9 ,− 1

2 ]. To do this, we first find the minimal value of f(t). Note that 0 < − 9b
8 < 1

if − 8
9 < b � − 1

2 . Using the monotonicity of the function f (see the argument in Case II), we
get that

min
0�t�1

f(t) = f
(
− 9b

8

)
= −b4

8
·
(9

8

)3

.

On the other hand, we have the following inequality:

−b4

8
·
(9

8

)3

>
b

4
+

1
9

� inf
n�1

{ b

2n
+

1
3n

}

for each b ∈ ( − 8
9 ,− 1

2 ]. Indeed, if we consider the function

F (x) := 2x +
(9

8

)3

x4
(
− 8

9
< x � −1

2

)
,

then the first inequality follows immediately from the mean value theorem. This finishes the
proof of Theorem 3.1.

One may ask that if we remove the condition 2α = β, can we easily construct an example
from (1.1) to give a negative answer to Question 1.1? Actually, we will show that the answer
is yes by the following corollary, which can be proved by the same method as the one in the
above theorem, so we omit its proof here.

Corollary 3.1 Let ϕ(z) = a+be−
|z|2
2 +e−3 |z|2

2 , where a, b ∈ R. Then for each b ∈ (− 3
4 ,− 1

2

]
,

there exists a real number a such that ϕ̃(z) � 0 for all z ∈ C, but Tϕ is not a positive Toeplitz
operator on F2.

4 A Negative Answer to Question 1.2

In Section 3, we study the radial function ϕ(z) = a+be−α|z|2+ce−β|z|2 (a, b, c ∈ R, α, β > 0)
and choose real numbers a, b and c such that ϕ̃ is nonnegative on C and Tϕ is not positive
under the assumption 2α = β = 1. In the final section, we will show that this is not true for
all 2α = β > 0. More precisely, we have the following theorem, which gives a negative answer
to Question 1.2 with the condition 2α = β = 1

2 .

Theorem 4.1 Suppose that ϕ(z) = a+be−
|z|2
2 +e−

|z|2
4 , where a, b ∈ R. Then Tϕ is positive

if and only if ϕ̃(z) is a nonnegative function on C.

Proof By Lemma 2.1, we see that the matrix representation of Tϕ is

diag
({

a +
b

2n+1
+

(2
3

)n+1}∞

n=0

)
.

So, Tϕ � 0 if and only if

a � − inf
n�1

{ b

2n
+

(2
3

)n}
.

On the other hand, using Lemma 2.2 we obtain that ϕ̃(z) � 0 for all z ∈ C if and only if

a � − b

2
e−

|z|2
4 − 2

3
e−

|z|2
6
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for all z ∈ C.
Letting t = e−

|z|2
12 ∈ [0, 1] and g(t) := bt3

2 + 2t2

3 , we see that the above condition on the
positivity of ϕ̃ is equivalent to

a � − min
0�t�1

g(t).

Using the same idea as the one in the proof of Theorem 3.1, we divide the proof into the
following four cases.

Case I We first consider the case b � 0. It is easy to see that

min
0�t�1

g(t) = g(0) = 0 = inf
n�1

{ b

2n
+

(2
3

)n}
,

which shows that Tϕ is positive if and only if ϕ̃ is a nonnegative function on C.
Case II Suppose that − 8

9 � b < 0. It is easy to check that g(t) is increasing if 0 � t � − 8
9b

and decreasing if t > − 8
9b . Observe that − 8

9b � 1, so we have

min
0�t�1

g(t) = g(0) = 0.

On the other hand, we have

[ b

2n
+

(2
3

)n]
−

[ b

2n+1
+

(2
3

)n+1]
=

b

2n+1
+

1
3
·
(2

3

)n

� 1
3
·
(2

3

)n

− 8
9
· 1
2n+1

=
1
3
·
(2

3

)n[
1 −

(3
4

)n−1]
� 0

for all n � 1 provided that b � − 8
9 . This implies that the sequence { b

2n +(2
3 )n}n�1 is decreasing,

so the minimal term is lim
n→∞( b

2n + (2
3 )n) = 0, as desired.

Case III In this case, we consider − 4
3 � b < − 8

9 . Note that 0 < − 8
9b < 1 and

0 � b

2
+

2
3

= g(1).

It follows from the argument in Case II that

min
0�t�1

g(t) = g(0) = 0.

Also, it is easy to see that b
2n +

(
2
3

)n

� 0 for all n � 1 if b � − 4
3 . This gives that

inf
n�1

{ b

2n
+

(2
3

)n}
= 0 = min

0�t�1
g(t).

Case IV Finally, we deal with the case b < − 4
3 . Then 0 < − 8

9b < 1 and b
2 + 2

3 < 0 = g(0).
It follows that

min
0�t�1

g(t) = g(1) =
b

2
+

2
3
.
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Now using the same techniques as the one in Case II of Theorem 3.1, we see that the minimal
term of the above sequence is the first term b

2 + 2
3 . We conclude that

min
0�t�1

g(t) = inf
n�1

{ b

2n
+

(2
3

)n}

for all b ∈ R. This completes the whole proof.
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