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Abstract Isospectral and non-isospectral hierarchies related to a variable coefficient
Painlevé integrable Korteweg-de Vries (KdV for short) equation are derived. The hier-
archies share a formal recursion operator which is not a rigorous recursion operator and
contains t explicitly. By the hereditary strong symmetry property of the formal recur-
sion operator, the authors construct two sets of symmetries and their Lie algebra for the
isospectral variable coefficient Korteweg-de Vries (vcKdV for short) hierarchy.
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1 Introduction

Nonlinear evolution equations with variable coefficients play important roles in applications,
as in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates. Usu-
ally, these equations are not integrable, or are only nearly integrable. Although there is no exact
definition for what the integrability is, there are many approaches to getting clues, such as inte-
grable characteristics, which link a nonlinear system to being integrable. These integrable char-
acteristics, including passing the Painlevé test, having a Lax pair, having multi-Hamiltonian
structures, infinitely many symmetries, infinitely many conserved quantities, having bilinear
forms, multi-soliton solutions, and so on, are deeply linked to each other. Let us take the
following vcKdV equation:

ut + f(t)uux + g(t)uxxx = 0 (1.1)

as an example. This equation was first proposed by Grimshaw [1] in 1979 and has been widely
studied. As far as the integrability is concerned, the vcKdV (1.1) can pass the Painlevé test
under the condition, given by Joshi [2] in 1987,

g(t) = af(t)S(t), S(t) = b +
∫ t

f(t)dt, (1.2)

where a and b are real constants and a �= 0. This is also the condition when the vcKdV equation
(1.1) has a Lax pair, a bilinear form, N -soliton like solutions and infinitely many conservation
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laws (see [3–5]). There are also many results (see [6–7]) on the integrability of (1.1) with special
forms of f(t) and g(t) which agree with (1.2).

In this paper, we would like to construct the infinitely many symmetries of the vcKdV (1.1)
under the condition (1.2). We will first start from the Lax pair of (1.1) to derive isospectral
and non-isospectral hierarchies and the related formal recursion operator (which is not a rig-
orous recursion operator and contains t explicitly). Then we discuss the hereditary and strong
symmetry properties of the formal recursion operator. By these properties we can construct a
Lie algebraic structure of adjoint flows, and finally we get, for the isospectral vcKdV hierarchy,
two sets of symmetries, which also form a Lie algebra.

The paper is organized as follows. In Section 2, we introduce some basic notions. In Section
3, we derive isospectral and non-isospectral vcKdV hierarchies. Finally, we investigate the
symmetries and their Lie algebra for the isospectral vcKdV hierarchy.

2 Basic Notions

Let us first recall some basic notions and properties related to symmetries.
Suppose that V is a function space consisting of scalar functions f(t, x) which are C∞ differ-

entiable with respect to t and x, the functions u =: u(t, x), K(u) =: K(t, x, u, ux, uxx, · · · ) ∈ V ,
and Φ =: Φ(t, x, u) is an operator living on V . For the functions f(u), g(u) ∈ V and the operator
Φ, the Gâteaux derivatives of f and Φ in the direction h w.r.t. u are defined as

f ′[h] =
d
dε

f(u + εh)
∣∣∣
ε=0

, Φ′[h] =
d
dε

Φ(u + εh)
∣∣∣
ε=0

.

For f(u), g(u) ∈ V , we define the product (a commutator)

[[f, g]] = f ′[g] − g′[f ]. (2.1)

By the commutator we define the symmetry, τ =: τ(t, x, u), of the nonlinear evolution equation

ut = K(u), (2.2)

if

∂̃τ

∂̃t
= [[K, τ ]], (2.3)

where by ∂̃τ

∂̃t
we specially denote the derivative of τ with respect to t explicitly included in τ .

If τ1 and τ2 are symmetries of (2.2), then [[τ1, τ2]] is also a symmetry for (2.2).
The operator Φ is called a strong symmetry (see [8]) of the evolution equation (2.2), if

dΦ
dt

= [K ′, Φ] = K ′Φ − ΦK ′. (2.4)

That Φ is a strong symmetry of (2.2) means that if τ is a symmetry of (2.2), so is Φτ . If Φ
satisfies

Φ′[Φf ]g − Φ′[Φg]f = Φ(Φ′[f ]g − Φ′[g]f), ∀f, g ∈ V, (2.5)

then Φ is called a hereditary operator (see [8–9]). For a operator Φ which satisfies Φ0 = 0 and
does not explicitly contain t

(
that is, ∂̃Φ

∂̃t
= 0, and then in (2.4) dΦ

dt goes to Φ′[K(u)]
)
, if Φ is
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hereditary and is a strong symmetry of (2.2), then it is a strong symmetry for all the equations
(see [8])

ut = ΦnK(u), n = 0, 1, · · · . (2.6)

Such Φ is referred to as a strong hereditary symmetry (see [8]) for the hierarchy (2.6). For
convenience of later use, we redescribe the property by the following proposition.

Theorem 2.1 If Φ is a hereditary operator satisfying Φ0 = 0 and also

Φ′[K(u)] = [K(u)′, Φ], (2.7)

then

Φ′[ΦnK(u)] = [{ΦnK(u)}′, Φ], n = 0, 1, 2, · · · . (2.8)

3 Isospectral and Non-isospectral vcKdV Hierarchies

In this section, we derive the isospectral and non-isospectral vcKdV hierarchies. We start
from the spectral problem (see [5])

φxx =
1

S2(t)

(
λ +

x

6a
− S(t)

6a
u
)
φ (3.1a)

with the time evolution

φt = Aφ + Bφx. (3.1b)

The compatibility condition φxxt = φtxx yields

2Ax + Bxx = 0,( A

S2(t)
− 2

f(t)
S3(t)

)(
λ +

x

6a
− S(t)

6a
u
)

+
1

S2(t)

(
λt − f(t)

6a
u − S(t)

6a
ut

)

= Axx +
A + 2Bx

S2(t)

(
λ +

x

6a
− S(t)

6a
u
)

+
B

S2(t)
(

1
6a

− S(t)
6a

ux).

Further, we have

ut =
3a

S(t)
ΨB − 2f(t)

S2(t)
(x − S(t)u) − uf(t)

S(t)
− 12a(S(t)Bx + f(t))

S2(t)
λ +

6a

S(t)
λt, (3.2)

where Ψ is an operator defined by

Ψ = S2(t)∂3 +
2(S(t)u − x)∂

3a
+

S(t)ux − 1
3a

. (3.3)

Substituting the expansion

B =
n∑

j=0

bjλ
n−j , n = 1, 2, · · · (3.4)
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into (3.2) and comparing the coefficients of the same powers of λ yield

ut =
3a

S(t)
Ψbn +

2f(t)
S2(t)

(S(t)u − x) − uf(t)
S(t)

, (3.5a)

bn,x =
1
4
Ψbn−1 − f(t)

S(t)
, (3.5b)

bj+1,x =
1
4
Ψbj, j = 0, 1, 2, · · · , n − 2, (3.5c)

b0,x = 0. (3.5d)

Taking λt = 0 and

b0 =
−4na f(t)

S(t)
,

we have

bj+1,x =
(−af(t)

S(t)

)4n−j

12a
Φj(S(t)ux − 1), j = 0, 1, · · · , n − 2, (3.6a)

bn,x =
(−af(t)

S(t)

) 1
3a

Φn−1(S(t)ux − 1) − f(t)
S(t)

, (3.6b)

where

Φ = S2(t)∂2 +
2(S(t)u − x)

3a
+

S(t)ux − 1
3a

∂−1. (3.7)

Then we get the isospectral vcKdV hierarchy

ut = Gn = Z(t)ΦnK0 + Δ, (3.8)

where

K0 = S(t)ux − 1, Z(t) =
−af(t)
S2(t)

, Δ = −uf(t)
S(t)

− xf(t)(S(t)ux − 1)
S2(t)

. (3.9)

This hierarchy can be formally extended to starting from n = 0. When n = 1, it just gives the
vcKdV equation (1.1). Besides, the Lax pair of vcKdV (1.1) is provided by (3.1) with

A =
f(t)
6S(t)

(S(t)ux − 1), B =
−f(t)
S(t)

(2x

3
+

S(t)u
3

+ 4aλ
)
. (3.10)

In the non-isospectral case, we suppose that

λt =
1
2

(−af(t)
S2(t)

)
(4λ)n+1. (3.11)

In this case, still using the expansion (3.4) but taking b0 = −af(t)
S2(t) (4λ)nx, similar to the isospec-

tral case, we can have the following non-isospectral vcKdV hierarchy:

ut = Wn = Z(t)Φnσ0 + Δ, n = 0, 1, · · · , (3.12)

where

σ0 =
2(S(t)u − x) + x(S(t)ux − 1)

S(t)
. (3.13)
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Now we have obtained the isospectral vcKdV hierarchy (3.8) and the non-isospectral hier-
archy (3.12). Besides, as by-products, we get two sets of flows,

Kn = ΦnK0, σn = Φnσ0, n = 0, 1, · · · , (3.14)

which we call adjoint flows in this paper. The recursion operator Φ for the adjoint flows is not
a rigorous recursion operator, but a formal one for the vcKdV hierarchies.

4 Symmetries and Their Lie Algebraic Structures

In this section, we will derive two sets of symmetries for the isospectral vcKdV hierarchy
(3.8), and we will also prove that these two sets of symmetries form a Lie algebra.

Our tactic goes as follows. First, we prove that the formal recursion operator (3.7) is
a hereditary operator and is further a strong symmetry for the isospectral vcKdV hierarchy
(3.8). Next we show that the adjoint flows {Kn} and {σn} form a Lie algebra with respect
to the commutator (2.1). Then we prove that the arbitrary member ut = Gl in the hierarchy
(3.8) has two ground symmetries K0 and τ l

0, and also we can get two sets of symmetries by
acting Φ. Finally we show that the obtained symmetries form a Lie algebra. In fact, there are
many ways for deriving two sets of symmetries (usually called K-symmetries and τ -symmetries)
starting from a Lax pair (see [10–17]). Our tactic copies these ideas more or less, while the
procedure contains some generalization and specialization since Φ contains t explicitly and is
not a rigorous recursion operator.

4.1 The strong hereditary symmetry Φ

Let us start from the following lemmas related to the operator Φ given by (3.7).

Lemma 4.1 Φ is a strong symmetry of the first equation in (3.8), that is,

ut = G0 = −af(t)
S2(t)

(S(t)ux − 1) − uf(t)
S(t)

− xf(t)(S(t)ux − 1)
S2(t)

. (4.1)

In fact, by a direct calculation we can find that Φ and G0 satisfy

dΦ
dt

= [G0
′, Φ], (4.2)

where we should make use of the fact dS(t)
dt = f(t) and the expression of ut given by (4.1).

By the similar direct verification (but here we skip the tedious process), we find the following
results.

Lemma 4.2 Φ is a hereditary operator satisfying (2.5).

Lemma 4.3 Φ satisfies

∂̃Φ

∂̃t
− Φ

∂̃Φ

∂̃t
= [(Δ − ΦΔ)′, Φ] − Φ′[Δ − ΦΔ], (4.3)

where Δ is given in (3.9).

With these lemmas in hand, we can reach the final results of this subsection.
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Theorem 4.1 The operator Φ given by (3.7) is a strong hereditary symmetry for the isospec-
tral vcKdV hierarchy (3.8).

Proof We prove the theorem by the reductive method. By virtue of Lemma 4.1, we suppose
that Φ is a strong symmetry of the equation ut = Gn satisfying

∂̃Φ

∂̃t
+ Φ′[Gn] = [G′

n, Φ], (4.4)

and we next go to prove

∂̃Φ

∂̃t
+ Φ′[Gn+1] = [G′

n+1, Φ]. (4.5)

Since

Gn+1 = ΦGn + Δ − ΦΔ, (4.6)

(4.5) becomes

∂̃Φ

∂̃t
+ Φ′[ΦGn + Δ − ΦΔ] = [(ΦGn + Δ − ΦΔ)′, Φ].

Further,

∂̃Φ

∂̃t
+ Φ′[ΦGn] − [(ΦGn)′, Φ] = [(Δ − ΦΔ)′, Φ] − Φ′[Δ − ΦΔ].

So by virtue of (4.3), we only need to prove

(
Φ

∂̃Φ

∂̃t
+ Φ′[ΦGn] − [(ΦGn)′, Φ]

)
g = 0, (4.7)

where g is an arbitrary function. Using (4.4) to replace ∂̃Φ

∂̃t
and then making use of the formula

(Φa)′[b] = Φ′[b] a + Φ ◦ a′[b], (4.8)

(4.7) becomes

Φ(Φ′[Gn]g − Φ′[g]Gn) − Φ′[ΦGn]g + Φ′[Φg]Gn = 0,

which is true due to the hereditariness of Φ. We note that in (4.8), Φ ◦ a′[b] specially means
that Φ applies to the function a′[b]. The proof is completed.

4.2 Lie algebra of the adjoint flows

In this subsection, we discuss the algebra relationship of the adjoint flows {Kn} and {σm}
which were given in (3.14).

Let us start from the relations of Φ and the flows {Kn} and {σm}.
Lemma 4.4 For the adjoint flows {Kn} and {σm}, we have

Φ′[Kn] = [K ′
n, Φ] (4.9)

and

Φ′[σn] = [σ′
n, Φ] + 2Φn+1. (4.10)



Symmetries and Their Lie Algebra of a vcKdV Hierarchy 549

Proof We only prove (4.10). From

σ0 =
2(S(t)u − x) + x(S(t)ux − 1)

S(t)
,

it is easy to see that

Φ′[σ0] = [σ′
0, Φ] + 2Φ. (4.11)

Then (4.10) holds for n = 0. Now we suppose that (4.10) holds for n = k, as in the following
form

Φ′[σk] = [σ′
k, Φ] + 2Φk+1. (4.12)

Then, by the formula (4.8), for arbitrary ν ∈ V , we have

(Φ′[σk+1] − [σ′
k+1, Φ])ν

= Φ′[Φσk]ν − Φ′[Φν]σk − Φ ◦ σ′
k[Φν] + Φ ◦ Φ′[ν]σk + Φ ◦ Φσ′

k[ν]

= Φ(Φ′[σk]ν − Φ′[ν]σk) − Φ ◦ σ′
k[Φν] + Φ ◦ Φ′[ν]σk + Φ ◦ Φσ′

k[ν]

= Φ(Φ′[σk] − [σ′
k, Φ])ν

= 2Φk+2ν.

Thus we have completed the proof.

Now we can check some relations between simple adjoint flows. By calculations we find

[[K0, K1]] = 0, [[K0, σ0]] = K0, [[K0, σ1]] = K1,

[[K1, σ0]] = 3K1, [[K1, σ1]] = 3K2, [[σ1, σ0]] = 2σ1.

Starting with these relations and using Lemma 4.4, by the reductive method, we can prove the
following general relations.

Theorem 4.2 The adjoint flows {Kn} and {σn} form a Lie algebra with respect to the
commutator (2.1) of the following structure:

[[Km, Kn]] = 0, (4.13a)

[[Km, σn]] = (2m + 1)Km+n, (4.13b)

[[σm, σn]] = 2(m − n)σm+n (4.13c)

for m, n = 0, 1, 2, · · · .

4.3 Symmetries and Lie algebra

Now we consider symmetries for the arbitrary isospectral equation

ut = Gl = Z(t)Kl + Δ. (4.14)

First, it is easy to check that

∂̃K0

∂̃t
= f(t)ux = [[Δ, K0]] = [[G0, K0]], (4.15)
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which means that K0 is a symmetry of the equation ut = G0. Further, by virtue of (4.13a), we
have

[[Gl, K0]] = [[Δ, K0]]. (4.16)

This means that K0 is a symmetry for the equation (4.14). Since we have shown that Φ is a
strong symmetry of (4.14) in Theorem 4.1, all the flows

Kn = ΦnK0, n = 0, 1, · · · (4.17)

are symmetries of (4.14). This further leads to

∂̃Kn

∂̃t
= [[Gl, Kn]], (4.18)

and from (4.13a),

∂̃Kn

∂̃t
= [[Δ, Kn]]. (4.19)

Next we derive another set of symmetries of (4.14).

Lemma 4.5

τ l
n = (2l + 1)

a

S(t)
Kn+l + Φnσ0, n = 0, 1, 2, · · · (4.20)

are symmetries of (4.14) for l = 0, 1, 2, · · · .

Proof Since Φ is a strong symmetry of (4.14), we only need to prove

τ l
0 = (2l + 1)

a

S(t)
Kl + σ0 (4.21)

is a symmetry of (4.14). Noting that

∂̃σ0

∂̃t
= [[Δ, σ0]] = 3x

f(t)
S2(t)

,

together with (4.19) and (4.13b), it is easy to get

∂̃τ l
0

∂̃t
= [[Gl, τ l

0]],

which means that τ l
0 is a symmetry of ut = Gl.

As a by-product, we have

∂̃σn

∂̃t
= [[Δ, σn]]. (4.22)

Thus we already have two sets of symmetries for the equation (4.14), i.e., {Kn} and {τ l
n},

which are usually referred to as K-symmetries and τ -symmetries, respectively. These symme-
tries can form a Lie algebra by the algebra relation (4.13). We conclude these by the following
theorem.
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Theorem 4.3 The equation (4.14) ut = Gl has K-symmetries {Kn} and τ-symmetries
{τ l

n}, which form a Lie algebra with the structure

[[Km, Kn]] = 0, (4.23a)

[[Km, τ l
n]] = (2m + 1)Km+n, (4.23b)

[[τ l
m, τ l

n]] = 2(m − n)τ l
m+n (4.23c)

for m, n = 0, 1, 2, · · · .

5 Conclusion

Under the Painlevé-integrable condition (1.2), we have derived isospectral and non-isospec-
tral vcKdV hierarchies. We proved that the formal recursion operator Φ is a strong hereditary
symmetry of the isospectral hierarchy, although it contains t explicitly and is not a rigorous
recursion operator. By the relation between Φ and the adjoint flows {Kn} and {σm}, we proved
that {Kn} and {σm} form a Lie algebra. Then, by constructing ground symmetries, we got two
sets of symmetries for the isospectral vcKdV hierarchy. Finally, the two sets of symmetries are
shown to form a Lie algebra. During the above procedure, the adjoint flows {σm} play the role
of master symmetries (see [18]).
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