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Abstract Denote by Qm the generalized quaternion group of order 4m. Let R(Qm) be
its complex representation ring, and Δ(Qm) its augmentation ideal. In this paper, the
author gives an explicit Z-basis for the Δn(Qm) and determines the isomorphism class of
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1 Introduction

Let G be a finite group. A complex matrix representation (for convenience, we use “repre-
sentation” in the sequel) of G is a group homomorphism

ρ : G → GLd(C), (1.1)

where GLd(C) is the complex general linear group of rank d (d ∈ N). We also say that d is the
degree of ρ (here we set GL0(C) to be the trivial group consisting of the empty matrix). Two
representations ρ and η are said to be similar (denoted by ρ ∼ η), if there exists an invertible
square matrix P such that

η(g) = P−1ρ(g)P, ∀g ∈ G. (1.2)

It is easy to see that similarity of representations is an equivalence relation. The equivalence
classes are called similarity classes. The similarity class of ρ is denoted by ρ. The direct sum
ρ ⊕ η of two similarity classes ρ and η is defined by ρ ⊕ η = ρ ⊕ η, where

ρ ⊕ η : G → GLd(C) × GLd′(C) � GLd+d′(C). (1.3)

The complex representation ring R(G) is the group completion of the monoid (under direct
sum ⊕) of similarity classes of representations of G. Its addition and multiplication are induced
by the direct sum and the tensor product of matrices, respectively. By [1], R(G) is a commu-
tative ring with an identity element. Its underlying group is a finitely generated free abelian

Manuscript received August 10, 2014. Revised September 2, 2015.
1School of Mathematics, Hefei University of Technology, Hefei 230009, China.
E-mail: changshan@hfut.edu.cn

∗This work was supported by the National Natural Science Foundation of China (Nos. 11226066,
11401155) and Anhui Provincial Natural Science Foundation (No. 1308085QA01).



572 S. Chang

group with a basis consists of the similarity classes of irreducible representations. Hence, by
[2], its free rank is equal to the number of conjugacy classes of G.

The notion of degree of a representation induces a ring homomorphism

φ : R(G) → Z. (1.4)

This homomorphism is called the augmentation map. Its kernel Δ(G) is called the augmentation
ideal of R(G). Let Δn(G) and Qn(G) denote the n-th power of Δ(G) and the n-th consecutive
quotient group Δn(G)

Δn+1(G) , respectively.
It is an interesting problem to determine the structures of Δn(G) and Qn(G) since they

have many connections with other algebraic branches. The problem has been tackled in some
papers [3–5]. In particular, the author and the collaborators proved in [3] that, for any finite
abelian group G,

Qn(G) ∼= In

In+1
, (1.5)

where I is the augmentation ideal of the integral group ring ZG. Karpilovsky raised the problem
of determining the isomorphism type of the groups In

In+1 in [6]. The author and Tang Guoping
solved it in [7] and thereby solved the problem for the groups Qn(G).

The goal of this article is to give an explicit Z-basis for each Δn(Qm) and determine the
isomorphism class of each Qn(Qm) for each positive integer n, where Qm is the generalized
quaternion group of order 4m, m � 2.

The result also computes TorR(Qm)
1

( R(Qm)
Δn(Qm) ,

R(Qm)
Δ(Qm)

)
because for any finite group G, Qn(G)

∼= TorR(G)
1

( R(G)
Δn(G) ,

R(G)
Δ(G)

)
.

2 Preliminaries

In this section, we provide some useful results about Qn(G) and the finite generated free
abelian groups.

The following theorem and corollary (proved in [3]) are simple but useful.

Theorem 2.1 (cf. [3]) For any natural number n, Qn(G) is a finite abelian |G|-torsion
group.

Corollary 2.1 (cf. [3]) For each positive integer n, Δn(G) has free rank c(G) − 1, where
c(G) is the number of conjugacy classes of G.

It is well known that any two representations with the same character are similar. Moreover,
there is an injective ring homomorphism

χ : R(G) → C
G, (2.1)

which sends ρ to its character χρ for each representation ρ of G.
At last, we recall a classical result about the finite generated free abelian groups.

Lemma 2.1 Let H be a finite generated free abelian group of rank N . If the N elements
g1, · · · , gN generate H, then they form a basis of H.
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3 Necessary Tools

In this section, we construct some tools which are needed to prove the main results of this
paper. They include some basic properties of Δn(Qm) and Qn(Qm). Recall that the generalized
quaternion group of order 4m is defined as

Qm = 〈 g, h | g2m = h4 = 1, gm = h2, h−1gh = g−1〉. (3.1)

Hence, each representation ρ of Qm depends only on its values at g and h. Therefore, we use
(

ρ(g) 0
0 ρ(h)

)
(3.2)

to denote ρ.
The following theorem found in [1] classifies the similarity classes of all irreducible repre-

sentations of Qm

Theorem 3.1 Let

ρ1 =
(

1 0
0 1

)
, ρ2 =

(
1 0
0 −1

)
, (3.3)

⎧⎪⎪⎨
⎪⎪⎩

ρ3 =
(−1 0

0 i

)
, ρ4 =

(−1 0
0 −1

)
, if m is odd,

ρ3 =
(−1 0

0 1

)
, ρ4 =

(−1 0
0 −i

)
, if m is even,

(3.4)

ηk =

⎛
⎜⎜⎝

ξk 0 0 0
0 ξ−k 0 0
0 0 0 (−1)k

0 0 1 0

⎞
⎟⎟⎠ , k ∈ Z, (3.5)

where ξ = eπ i
m . Then all distinct similarity classes of irreducible representations of Qm are ρ1,

ρ2, ρ3, ρ4, ηk, 1 � k � m − 1.

For later use, we remind the readers that by Corollary 2.1 and Theorem 3.1, Δn(Qm) has
free rank m + 2 for each natural number n.

In the rest of this section, we construct a basis of Δ(Qm) and show some of its basic
properties. For convenience, we fix the following notation. Throughout, n and N are natural
numbers.

(1) E = ρ1 − ρ2, F = ρ1 − ρ3, Yk = ηk − ηk−1, k ∈ Z.
(2) Sn,j(N) = {F jYkY n−j−1

1 | 1 � k � N}, n � 2, 0 � j � n − 1.
(3) For any subset S ⊂ R(Qm), denote by ZS the set of all Z-linear combinations of elements

of S.
(4) Denote by Cd the cyclic group of order d.
It is easy to see that E, F, Yk ∈ Δ(Qm). Hence Sn,j(N) ⊂ Δn(Qm).

Lemma 3.1 Δ(Qm) is the free abelian group based on

Bm = {E, F, Y1, · · · , Ym}. (3.6)
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Proof Note that the cardinality of Bm is m + 2. So by Lemma 2.1, we only need to show
that it generates Δ(Qm). Let

ω = a1ρ1 + a2ρ2 + a3ρ3 + a4ρ4 +
m−1∑
k=1

ckηk ∈ Δ(Qm). (3.7)

Then a1 +a2 +a3 +a4 +2
m−1∑
k=1

ck = 0. Short calculations show that η0 = ρ1 +ρ2, ηm = ρ3 +ρ4.

So

ω = a1ρ1 + a2ρ2 − (a4 − a3)ρ3 +
m−1∑
k=1

ckηk + a4ηm

= a1ρ1 + a2ρ2 − (a4 − a3)ρ3 +
(
a4 +

m−1∑
j=1

cj

)
η0 + X

=
(
a1 + a3 +

m
2 −1∑
j=1

cj

)
ρ1 +

(
a2 + a4 +

m−1∑
j=1

cj

)
ρ2 + (a4 − a3)F + X

=
(
a1 + a3 +

m
2 −1∑
j=1

cj

)
E + (a4 − a3)F + X

∈ ZBm, (3.8)

where X =
m−1∑
k=1

(
a4 +

m−1∑
j=k

cj

)
Yk + a4Ym.

Proposition 3.1 Regarding elements of R(Qm), we have the following assertions:
(1) Yk depends only on the residue class of k modulo 2m, and Yk = −Y2m+1−k. Thus the

set {Yk | k ∈ Z} is equal to {Y1, · · · , Ym}.
(2) E2 = 2E, EF = 2F +

m∑
k=1

Yk and F 2 =
{

2F − E, if m is odd,
2F, if m is even.

(3) EYk = 0 and FYk = Yk − Ym+k = Yk + Ym+1−k.

(4) YkYl = (Yk+l − Yk+l−1) − (Yk−l+1 − Yk−l) =
l−1∑

j=−l+1

Yk+jY1.

(5) ZSn,j(N) = Z{F j(Yk − (2k − 1)Y1)Y
n−j−2
1 | 2 � k � N + 1}, when 0 � j � n − 2.

Proof One can easily verify (1)–(3) by calculating the characters of relative representations.
For (4), a short calculation shows that χηk

χηl
= χηk+l

+ χηk−l
. So

ηkηl = ηk+l + ηk−l. (3.9)

Hence

YkYl = (ηk − ηk−1)(ηl − ηl−1)

= ηk+l + 2ηk−l − 2ηk+l−1 − ηk−l+1 − ηk−l−1 + ηk+l−2

= (Yk+l − Yk+l−1) − (Yk−l+1 − Yk−l)

=
l−1∑

j=−l+1

[(Yk+j+1 − Yk+j) − (Yk+j − Yk+j−1)]



Augmentation Quotients for Representation Ring of Quaternion 575

=
l−1∑

j=−l+1

Yk+jY1. (3.10)

We now consider (5). Due to (4), we get

YkY1 = (Yk+1 − Yk) − (Yk − Yk−1). (3.11)

Recall that Y0 = −Y1. So for each natural number N ,

O2
N

⎛
⎜⎜⎜⎝

Y1Y1

Y2Y1

...
YNY1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Y2 − 3Y1

Y3 − 5Y1

...
YN+1 − (2N + 1)Y1

⎞
⎟⎟⎟⎠ , (3.12)

where

ON =

⎛
⎜⎜⎜⎝

1 0 · · · 0
1 1 · · · 0
...

...
...

1 1 · · · 1

⎞
⎟⎟⎟⎠

N×N

∈ GLN (Z). (3.13)

Therefore

ZS2,0(N) = Z{Yk − (2k − 1)Y1 | 2 � k � N + 1}. (3.14)

From this, (5) follows.

4 Structure of Qn(Qm)

This section is divided into two subsections, according to when m is even or odd.

4.1 m is an even number

We first give a basis of Δn(Qm) as a free abelian group. The following lemma is simple but
useful.

Lemma 4.1 For any 1 � j � n − 2, Sn,j+1(m) ⊂ ZSn,j(m).

Proof It is easy to see that we only need to show S3,2(m) ⊂ ZS3,1(m). By Proposition 3.1,
we get

F (Yk − (2k − 1)Y1) ∈ ZS3,1(m), 2 � k � m + 1. (4.1)

Note that FYm
2

= FYm
2 +1, so

2FY1 = F (Ym
2
− (m − 1)Y1) − F (Ym

2 +1 − (m + 1)Y1) (4.2)

lies in ZS3,1(m). So does 2FYk (2 � k � m), since it equals

2F (Yk − (2k − 1)Y1) + 2(2k − 1)FY1. (4.3)

From this, the lemma follows since F 2 = 2F .
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Theorem 4.1 For any n � 2, Δn(Qm) is the free abelian group based on

{2n−1E, 2n−1F} ∪ Sn,0

(m

2

)
∪ Sn,1

(m

2

)
. (4.4)

Proof Note that (4.4) has cardinality m +2. So by Lemma 2.1, we only need to show that
it generates Δn(Qm). Due to Lemma 3.1 and the fact that EYk = 0, we get, for any n � 2,
Δn(Qm) is generated by

{EjFn−j | 0 � j � n} (4.5)

and all products

F j Y∗ · · ·Y∗︸ ︷︷ ︸
n−j

, 0 � j � n − 1. (4.6)

A short calculation shows that (4.5) equals {2n−1E, 2n−1F, 2n−2EF}. In addition, the generator
2n−2EF can be omitted since

2n−2EF = 2n−2
(
2F +

m∑
k=1

Yk

)

= 2n−1F + 2n−2

m
2∑

k=1

FYk

= 2n−1F +

m
2∑

k=1

Fn−1Yk. (4.7)

By Proposition 3.1, YkYl ∈ ZS2,0(m). Hence, Δn(Qm) is generated by

{2n−1E, 2n−1F} ∪
( n−1⋃

j=0

Sn,j(m)
)
. (4.8)

Moreover, Lemma 4.1 implies that Δn(Qm) is generated by

{2n−1E, 2n−1F} ∪ Sn,0(m) ∪ Sn,1(m). (4.9)

Recall that

FYk = Yk + Ym
2 +1−k. (4.10)

So

Sn,0(m) ⊂ ZSn,0

(m

2

)
+ ZSn+1,1

(m

2

)
. (4.11)

In addition, one can easily verify that

Sn+1,1

(m

2

)
⊂ ZSn,1(m), Sn,1(m) = Sn,1

(m

2

)
. (4.12)

It follows that Δn(Qm) is generated by (4.4).
Now we come to the main result of this subsection.
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Theorem 4.2 When m is an even number, we have

Qn(Qm) ∼=
{

C2
2 ⊕ C2m, if n = 1,

C3
2 ⊕ C2m, if n � 2.

(4.13)

Proof By Proposition 3.1 and Theorem 4.1, we get

Δn+1(Qm) = 2n
ZE + 2n

ZF + ZSn+1,0

(m

2

)
+ ZSn+1,1

(m

2

)
= 2n

ZE + 2n
ZF + ZSn+1,1

(m

2

)
+ Z

{
(Yk − (2k − 1)Y1)Y n−1

1 | 2 � k � m

2
+ 1

}
. (4.14)

Note that

(Ym
2
− (m − 1)Y1) + (Ym

2 +1 − (m + 1)Y1) = FYm
2
− 2mY1. (4.15)

So

Δn+1(Qm) = 2n
ZE + 2n

ZF + ZSn+1,1

(m

2

)
+ 2mZY n

1

+ Z

{
(Yk − (2k − 1)Y1)Y n−1

1 | 2 � k � m

2

}
. (4.16)

We consider the case Q1(Qm) first. It is easy to see that Δ(Qm) has the basis

{E, F, Y1} ∪
{
Yk − (2k − 1)Y1 | 2 � k � m

2

}
∪ S2,1

(m

2

)
. (4.17)

Thus

Q1(Qm) ∼= ZE

2ZE
⊕ ZF

2ZF
⊕ ZY1

2mZY1

∼= C2
2 ⊕ C2m. (4.18)

Secondly, by Proposition 3.1, for any n � 2,

ZSn+1,1

(m

2

)
= Z

{
F (Yk − (2k − 1)Y1)Y n−2

1 | 2 � k � m

2
+ 1

}
. (4.19)

Applying (4.2), we get that (4.19) equals

2ZFY n−1
1 + Z

{
F (Yk − (2k − 1)Y1)Y n−2

1 | 2 � k � m

2

}
. (4.20)

Therefore

Δn+1(Qm) = 2n
ZE + 2n

ZF + 2mZY n
1 + 2ZFY n−1

1

+ Z

{
(Yk − (2k − 1)Y1)Y n−1

1 | 2 � k � m

2

}
+ Z

{
F (Yk − (2k − 1)Y1)Y n−2

1 | 2 � k � m

2

}
. (4.21)

Like in (4.17), Δn(Qm) has the basis

{2n−1E, 2n−1F, Y n
1 , FY n−1

1 } ∪
{
(Yk − (2k − 1)Y1)Y n−1

1 | 2 � k � m

2

}
∪

{
F (Yk − (2k − 1)Y1)Y n−2

1 | 2 � k � m

2

}
. (4.22)

Thus

Qn(Qm) ∼= 2n−1ZE

2nZE
⊕ 2n−1ZF

2nZF
⊕ ZY n

1

2mZY n
1

⊕ ZFY n−1
1

2ZFY n−1
1

∼= C3
2 ⊕ C2m. (4.23)

(4.18) and (4.23) together finish the proof.
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4.2 m is an odd number

We study this case by using the same method as in the above subsection.

Lemma 4.2 For any n � 2,

n−1⋃
j=0

Sn,j(m) ⊂ ZFn−1Ym+1
2

+ ZSn,0

(m − 1
2

)
+ ZSn,1

(m + 1
2

)
. (4.24)

Proof Recall that EF = 2F + Ym+1
2

+
m−1

2∑
k=1

FYk, F 2 = 2F − E. So

FYk = FYm+1
2

+ FYk − FYm+1
2

= FYm+1
2

+ Yk + Ym+1−k − 2Ym+1
2

= FYm+1
2

+ (η m+1
2 −k − η0)Ym+1

2

= (F + η m+1
2 −k − η0)

(
EF − F 2 − E −

m−1
2∑

k=1

FYk

)

∈ F (EF − F 2 − E) + Z(S3,1(m) ∪ S3,2(m)). (4.25)

Short calculations show that

n−1⋃
j=1

Sn,j(m) ⊂ ZFn−1(EF − F 2 − E) + Z

( n⋃
j=1

Sn+1,j(m)
)

= ZFn−1Ym+1
2

+ Z

( n⋃
j=1

Sn+1,j(m)
)
. (4.26)

Hence, by the fact that FYm+1
2

= 2Ym+1
2

, we get

n−1⋃
j=1

Sn,j(m) ⊂ ZFn−1Ym+1
2

+ Z

( 2n−3⋃
j=1

S2n−2,j(m)
)
. (4.27)

Note that F 2Yk = (2F − E)Yk = 2FYk. From this, it follows that

S2n−2,j(m) ⊂ ZSn,1(m), 1 � j � n − 1. (4.28)

For n � j � 2n − 3, we have

S2n−2,j(m) = 2n−2Sn,j−n+2(m) ⊂ ZSn,1(m), (4.29)

since 2Sn,∗+1(m) ⊂ Sn,∗(m) in this case (as Lemma 4.1). So

n−1⋃
j=1

Sn,j(m) ⊂ ZFn−1Ym+1
2

+ ZSn,1(m). (4.30)

Now consider Sn,0(m). Since Yk = FYk − Ym
2 +1−k and

Ym+1
2

Y1 = FYm−1
2

− FYm+1
2

∈ ZS2,1(m), (4.31)
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we have

Sn,0(m) ⊂ ZSn,0

(m − 1
2

)
+ ZSn,1(m). (4.32)

Then the lemma follows from the fact that Sn,1(m) = Sn,1

(
m+1

2

)
.

Lemma 4.3 For any n � 2,

{EjFn−j | 0 � j � n} ⊂ Z{E2Fn−2, EFn−1, Fn}. (4.33)

Proof The lemma is trivial for n = 2. Assume n � 3 in the sequel. Then for any
2 � j � n − 1, we have

EjFn−j − Ej−1Fn−j+1 = Ej−1Fn−j−1(EF − F 2)

= Ej−1Fn−j−1
(
2F +

m∑
k=1

Yk − 2F + E
)

= EjFn−j−1. (4.34)

Hence the lemma follows from Ej+1Fn−j−1 = 2EjFn−j−1 since E2 = 2E.

Lemma 4.4 For any n � 2, Δn(Qm) is generated by

{EFn−1, Fn, Fn−1Ym+1
2

} ∪ Sn,0

(m − 1
2

)
∪ Sn,1

(m + 1
2

)
(4.35)

as an abelian group.

Proof Due to Lemmas 4.2–4.3, Δn(Qm) is generated by

{E2Fn−2, EFn−1, Fn} ∪ {Fn−1Ym+1
2

} ∪ Sn,0

(m − 1
2

)
∪ Sn,1

(m + 1
2

)
. (4.36)

So we only need to show that (4.35) generates E2Fn−2. Short calculations show

EFn−1 − Fn = Fn−2(EF − F 2)

= Fn−2
(
E + Ym+1

2
+

m−1
2∑

k=1

FYk

)

= EFn−2 + Fn−2Ym+1
2

+

m−1
2∑

k=1

Fn−1Yk. (4.37)

Hence, by the identities E2 = 2E and FYm+1
2

= 2Ym+1
2

, we get

E2Fn−2 = 2(EFn−2 + Fn−2Ym+1
2

) − Fn−1Ym+1
2

= 2
(
EFn−1 − Fn −

m−1
2∑

k=1

Fn−1Yk

)
− Fn−1Ym+1

2
(4.38)

as required.
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Corollary 4.1 For any n � 3, Δn+1(Qm) is generated by

{EFn, Fn+1, FnYm+1
2

} ∪ Sn+1,0

(m − 1
2

)
∪ Sn,1

(m + 1
2

)
(4.39)

as an abelian group.

Proof It is easy to see that

Sn+1,1

(m + 1
2

)
⊂ ZSn,1

(m + 1
2

)
. (4.40)

So by Lemma 4.4, we just need to show

Sn,1

(m + 1
2

)
⊂ Δn+1(Qm). (4.41)

Due to (4.25), we get

EF + FYk ∈ Δ3(Qm). (4.42)

Hence

FYkY1 = (EF + FYk)Y1 ∈ Δ4(Qm). (4.43)

From this, the corollary follows.

Theorem 4.3 For any n � 2, there exist three integers an, bn, dn with 2n−2bn + andn = 1
such that Δn(Qm) is the free abelian group based on

{EFn−1, Fn} ∪ Sn,0

(m − 1
2

)
∪ Sn,1

(m − 1
2

)
∪ {Xn}, (4.44)

where Xn = anFn−1Ym+1
2

+ bnFYm+1
2

Y n−2
1 .

Proof Note that (4.44) has cardinality m+2. So we just need to show that (4.44) generates
Δn(Qm). Moreover, we only need to show that it generates Fn−1Ym+1

2
and FYm+1

2
Y n−2

1 by
comparing it with (4.35). The theorem is trivial for n = 2 by setting b2 = 0, a2 = d2 = 1.

Assume n � 3. By (3.12) and a short calculation, we get

2

⎛
⎜⎜⎜⎝

F 2Y1

F 2Y2

...
F 2Ym+1

2

⎞
⎟⎟⎟⎠ = AmO2

m+1
2

⎛
⎜⎜⎜⎝

FY1Y1

FY2Y1

...
FYm+1

2
Y1

⎞
⎟⎟⎟⎠ , (4.45)

where

Am =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
0 −1
4 −3

)
, if m = 3,

(
0 0

4Im−1
2

0

)
+

⎛
⎜⎜⎜⎝

0 · · · 0 1 0 −1
0 · · · 0 3 0 −3
...

...
...

...
...

0 · · · 0 m 0 −m

⎞
⎟⎟⎟⎠ , if m � 5.

(4.46)
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From this, it follows that

2n−2

⎛
⎜⎜⎜⎝

Fn−1Y1

Fn−1Y2

...
Fn−1Ym+1

2

⎞
⎟⎟⎟⎠ = (AmO2

m+1
2

)n−2

⎛
⎜⎜⎜⎝

FY1Y
n−2
1

FY2Y
n−2
1

...
FYm+1

2
Y n−2

1

⎞
⎟⎟⎟⎠ . (4.47)

Consider the matrix AmO2
m+1

2
. By direct calculation, we get

AmO2
m+1

2
≡

⎛
⎜⎜⎜⎝

0 · · · 0 1
0 · · · 0 1
...

...
...

0 · · · 0 1

⎞
⎟⎟⎟⎠ (mod M m+1

2
(2Z)). (4.48)

Hence

(AmO2
m+1

2
)n−2 ≡

⎛
⎜⎜⎜⎝

0 · · · 0 1
0 · · · 0 1
...

...
...

0 · · · 0 1

⎞
⎟⎟⎟⎠ (mod M m+1

2
(2Z)). (4.49)

Denote by dn the integer in the lower right-hand corner of
(
AmO2

m+1
2

)n−2
. Set

Zn= 2n−2Fn−1Ym+1
2

− dnFYm+1
2

Y n−2
1 .

Then
(1) dn is odd, so there exist two integers an, bn such that 2n−2bn + andn = 1,
(2) Zn ∈ ZSn,1

(
m−1

2

)
.

Therefore, either

Fn−1Ym+1
2

= dnXn + bnZn (4.50)

or

FYm+1
2

Y n−2
1 = 2n−2Xn − anZn (4.51)

is generated by (4.44), as required.

Theorem 4.4 When m is an odd number, we have, for any natural number n,

Qn(Qm) ∼= C4 ⊕ Cm. (4.52)

Proof We compute Q1(Qm) first. By Lemma 4.4,

Δ2(Qm) = Z{EF, F 2, FYm+1
2

} + ZS2,0

(m − 1
2

)
+ ZS2,1

(m + 1
2

)

= Z

{
2F + Ym+1

2
+

m−1
2∑

k=1

FYk, 2F − E, 2Ym+1
2

}

+ ZS2,1

(m − 1
2

)
+ Z

{
Yk − (2k − 1)Y1 | 2 � k � m + 1

2

}
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= Z{2F + Ym+1
2

, 2F − E, 2Ym+1
2

, Ym+1
2

− mY1}

+ ZS2,1

(m − 1
2

)
+ Z

{
Yk − (2k − 1)Y1 | 2 � k � m − 1

2

}
. (4.53)

The first part of the right-hand side of (4.53) equals

Z{2F − E, 2F + Ym+1
2

, 4F, m(2F + Y1)} (4.54)

since
⎛
⎜⎜⎝

2F − E
2F + Ym+1

2

4F
m(2F + Y1)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
2 0 −1 0
m 0 1−m

2 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

2F + Ym+1
2

2F − E
2Ym+1

2

Ym+1
2

− mY1

⎞
⎟⎟⎟⎠ (4.55)

and the square matrix lies in GL4(Z). It is easy to verify that Δ(Qm) has the basis

{2F − E, 2F + Ym+1
2

, F, 2F + Y1} ∪ S2,1

(m − 1
2

)

∪
{
Yk − (2k − 1)Y1 | 2 � k � m − 1

2

}
. (4.56)

So

Q1(Qm) ∼= ZF

4ZF
⊕ Z(2F + Y1)

mZ(2F + Y1)
∼= C4 ⊕ Cm. (4.57)

Secondly, by (4.31), we get

Δ3(Qm) = Z{EF 2, F 3, F 2Ym+1
2

} + ZS3,0

(m − 1
2

)
+ ZS3,1

(m + 1
2

)
= Z{2F 2 + FYm+1

2
, 2F 2 − EF, 2FYm+1

2
, Ym+1

2
Y1 − mY 2

1 , 4FY1}

+ Z

{
(Yk − (2k − 1)Y1)Y1 | 2 � k � m − 1

2

}

+ Z

{
F (Yk − (2k − 1)Y1) | 2 � k � m + 1

2

}
= Z{2F 2 − EF, 2F 2 + FYm+1

2
, 2FYm+1

2
, 2FY1 + mY 2

1 , 4FY1,

FYm+1
2

− mFY1} + Z

{
(Yk − (2k − 1)Y1)Y1 | 2 � k � m − 1

2

}

+ Z

{
F (Yk − (2k − 1)Y1) | 2 � k � m − 1

2

}
. (4.58)

The first part of the right-hand side of (4.58) equals

Z{2F 2 − EF, 2F 2 + FYm+1
2

, 2F 2 + FY1, 4F 2, mY 2
1 } (4.59)

since ⎛
⎜⎜⎝

2F 2 + FYm+1
2

2F 2 + FY1

4F 2

mY 2
1

⎞
⎟⎟⎠
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=

⎛
⎜⎜⎝

1 0 0 0 0
1 −m−1

2 0 (m−1)2

4 m − 2
2 −1 0 0 0
0 −1 1 m−1

2 2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

2F 2 + FYm+1
2

2FYm+1
2

2FY1 + mY 2
1

4FY1

FYm+1
2

− mFY1

⎞
⎟⎟⎟⎟⎟⎠ , (4.60)

⎛
⎜⎜⎜⎜⎜⎝

2F 2 + FYm+1
2

2FYm+1
2

2FY1 + mY 2
1

4FY1

FYm+1
2

− mFY1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
2 0 −1 0
0 2 −1 1
0 4 −2 0
1 −m m−1

2 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

2F 2 + FYm+1
2

2F 2 + FY1

4F 2

mY 2
1

⎞
⎟⎟⎠ . (4.61)

Due to Theorem 4.3, one can easily verify that Δ2(Qm) has the basis

{2F 2 − EF, 2F 2 + FYm+1
2

, 2F 2 + FY1, F
2, Y 2

1 }

∪
{
(Yk − (2k − 1)Y1)Y1 | 2 � k � m − 1

2

}

∪
{
F (Yk − (2k − 1)Y1) | 2 � k � m − 1

2

}
. (4.62)

Thus

Q2(Qm) ∼= ZF 2

4ZF 2
⊕ ZY 2

1

mZY 2
1

∼= C4 ⊕ Cm. (4.63)

Finally, by Corollary 4.1 and (4.31), we get, for any n � 3,

Δn+1(Qm) = Z{EFn, Fn+1, FnYm+1
2

} + ZSn+1,0

(m − 1
2

)
+ ZSn,1

(m + 1
2

)
= Z{2Fn − Fn−1Ym+1

2
, 2Fn − EFn−1, 2Fn−1Ym+1

2
, mY n

1 , FYm+1
2

Y n−2
1 }

+ Z

{
(Yk − (2k − 1)Y1)Y n−1

1 | 2 � k � m − 1
2

}
+ ZSn,1

(m − 1
2

)
. (4.64)

Thanks to (4.50)–(4.51) and the fact that Zn lies in ZSn,1

(
m−1

2

)
, the first part of the right-hand

side of (4.64) can be replaced by

Z{2Fn − dnXn, 2Fn − EFn−1, 2dnXn, mY n
1 , 2n−2Xn}. (4.65)

Recall that dn is an odd number, which implies gcd(2dn, 2n−2) = 2. From this, it follows that
(4.65) equals

Z{2Fn − dnXn, 2Fn − EFn−1, 2Xn, mY n
1 }, (4.66)

and hence it equals

Z{2Fn − EFn−1, 2Fn − Xn, 4Fn, mY n
1 }, (4.67)

since ⎛
⎝2Fn − EFn−1

2Fn − Xn

4Fn

⎞
⎠ =

⎛
⎝0 1 0

1 0 dn−1
2

2 0 dn

⎞
⎠

⎛
⎝ 2Fn − dnXn

2Fn − EFn−1

2Xn

⎞
⎠ (4.68)
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and the square matrix lies in GL3(Z). Due to Theorem 4.3, Δn(Qm) has the basis

{2Fn − EFn−1, 2Fn − Xn, Fn, Y n
1 }

∪
{
(Yk − (2k − 1)Y1)Y n−1

1 | 2 � k � m − 1
2

}
∪ Sn,1

(m − 1
2

)
. (4.69)

Therefore, for any n � 3,

Qn(Qm) ∼= ZFn

4ZFn
⊕ ZY n

1

mZY n
1

∼= C4 ⊕ Cm. (4.70)

(4.57), (4.63) and (4.70) together finish the proof.
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