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1 Introduction

Boundary value problems (for short BVPs) for differential-operator equations (for short
DOEs) have been studied extensively by many researchers (see [1–3, 8, 10–11, 14–23, 25–32]
and the references therein). A comprehensive introduction to the DOEs and historical references
may be found in [16, 28]. The maximal regularity properties for differential-operator equations
have been investigated, e.g., in [1, 8, 10–11, 17–22, 26, 28, 30–32].

In recent years, integral boundary conditions (for short IBC) for evolution problems have
found many applications in various disciplines such as chemical engineering, thermoplasticity,
underground water flow and population dynamics (see [4, 7, 9, 13, 24] and the references
therein).

The main purpose aim of the present paper, is to show the separability properties of the
integral boundary value problem (for short IBVP) for the following DOE:

−u(2)(x) + Au(x) + λu = f(x) (1.1)

and maximal regularity of Cauchy problem for the following abstract parabolic equation:

∂u

∂t
− ∂2u

∂x2
+ Au(x, t) = f(x, t), (1.2)

with integral boundary conditions, where A is a linear operator in the Banach space E and λ

is a complex parameter.
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Unlike the previous results, the boundary conditions here contain nonlocal integral terms.
The maximal Lp-regularity and the Fredholmness are obtained. Moreover, it is proven that the
corresponding elliptic operator is R-positive and is a generator of an analytic semigroup. These
results are applied to nonlocal BVPs for partial differential equations and it’s finite or infinite
systems on cylindrical domains.

We shall prove the separability of the problem (1.1), i.e., we show that for each f ∈
Lp(0, 1; E), there exists a unique strong solution u of the problem (1.1) and the following
uniform coercive estimate holds:

2∑
i=0

|λ|1− i
2 ‖u(i)‖Lp(0,1;E) + ‖Au‖Lp(0,1;E) ≤ C‖f‖Lp(0,1;E).

Let E be a Banach space and Lp(Ω; E) denotes the space of strongly measurable E-valued
functions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖f‖Lp = ‖f‖Lp(Ω;E) =
( ∫

Ω

‖f(x)‖p
Edx

) 1
p

, 1 ≤ p < ∞.

The Banach space E is called a UMD-space if the Hilbert operator

(Hf)(x) = lim
ε→0

∫
|x−y|>ε

f(y)
x − y

dy

is bounded in Lp(R, E), p ∈ (1,∞) (see [6]), where R = (−∞,∞). UMD spaces include, e.g.,
Lp, lp spaces and Lorentz spaces Lpq, p, q ∈ (1,∞).

Let C be the set of the complex numbers and

Sϕ = {λ; λ ∈ C, | arg λ| ≤ ϕ} ∪ {0}, 0 ≤ ϕ < π.

A linear operator A is said to be ϕ-positive in a Banach space E with bound M > 0 if D(A)
is dense on E and

‖(A + λI)−1‖B(E) ≤ M(1 + |λ|)−1

for any λ ∈ Sϕ, 0 ≤ ϕ < π, where I is the identity operator in E, and B(E) is the space of
bounded linear operators in E. Sometimes A+ λI will be written as A + λ and denoted by Aλ.

It is known in [27, §1.15.1] that there exist the fractional powers Aθ of a positive operator A.

Let E(Aθ) denote the space D(Aθ) with norm

‖u‖E(Aθ) = (‖u‖p + ‖Aθu‖p)
1
p , 1 ≤ p < ∞, 0 < θ < ∞.

Let E1 and E2 be two Banach spaces. By (E1, E2)θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞, we denote
the interpolation spaces obtained from {E1, E2} by the K-method (see [27, §1.3.2]).

Let S(Rn; E) denote the Schwartz class, i.e., the space of all E-valued rapidly decreas-
ing smooth functions on Rn. Let F denote the Fourier transformation. A function Ψ ∈
C(Rn; B(E1, E2)) is called a Fourier multiplier from Lp(Rn; E1) to Lp(Rn; E2) if the map
u → Λu = F−1Ψ(ξ)Fu, u ∈ S(Rn; E1) is well defined and extends to a bounded linear op-
erator

Λ : Lp(Rn; E1) → Lp(Rn; E2).
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The set of all multipliers from Lp(Rn; E1) to Lp(Rn; E2) will be denoted by Mp
p (E1, E2). For

E1 = E2 = E, it will be denoted by Mp
p (E). The most important facts about Fourier multipliers

and some related references, can be found in [11–12, 27, 30].
Let Φh = {Ψh ∈ Mp

p (E1, E2), h ∈ Q} be a collection of multipliers. We say that Wh is a
uniform collection of multipliers if there exists a positive constant M independent of h ∈ Q

such that

‖F−1ΨhFu‖Lp(Rn;E2) ≤ M‖u‖Lp(Rn;E1)

for all h ∈ Q and u ∈ S(Rn; E1).
Let N denote the set of natural numbers. A set G ⊂ B(E1, E2) is called R-bounded (see [10])

if there is a positive constant C such that for all T1, T2, · · · , Tm ∈ G and u1,u2, · · · , um ∈ E1,

m ∈ N,

∫
Ω

∥∥∥ m∑
j=1

rj(y)Tjuj

∥∥∥
E2

dy ≤ C

∫
Ω

∥∥∥ m∑
j=1

rj(y)uj

∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {−1, 1}-valued random variables on Ω (see
[11]). The smallest C for which the above estimate holds is called an R-bound of the collection
G and denoted by R(G).

A set Gh ⊂ B(E1, E2) depending on parameter h ∈ Q is called uniformly R-bounded
with respect to h if there exists a constant C, independent of h ∈ Q, such that for all
T1(h), T2(h), · · · , Tm(h) ∈ Gh and u1,u2, · · · , um ∈ E1, m ∈ N,

∫
Ω

∥∥∥ m∑
j=1

rj(y)Tj(h)uj

∥∥∥
E2

dy ≤ C

∫
Ω

∥∥∥ m∑
j=1

rj(y)uj

∥∥∥
E1

dy.

It implies that sup
h∈Q

R(Gh) ≤ C. Let

β = (β1, β2, · · · , βn), ξ = (ξ1, ξ2, · · · , ξn), ξβ = ξβ1
1 ξβ2

2 · · · ξβn
n , |β| =

n∑
k=1

βk,

Dj =
∂

∂ξj
, Dβ = Dβ1

1 Dβ2
2 · · ·Dβn

n , U = {β; βj ∈ {0, 1}, j = 1, 2, · · · , n}.

Definition 1.1 A Banach space E is said to be a space satisfying a multiplier condition if,
for any Ψ ∈ C(n)(Rn; B(E)), the R-boundedness of the set {|ξ||β|Dβ

ξ Ψh(ξ) : ξ ∈ Rn\{0}, β ∈ U}
implies that Ψ is a Fourier multiplier, i.e., Ψ ∈ Mp

p (E) for any p ∈ (1,∞).

The uniform R-boundedness of the set |ξ||β|Dβ
ξ Ψh(ξ) : ξ ∈ Rn\{0}, β ∈ U}, i.e.,

sup
h∈Q

R(|ξ||β|Dβ
ξ Ψh(ξ): ξ ∈ R

n\{0}, β ∈ U}) ≤ K

implies that Ψh is a uniform collection of Fourier multipliers.

Remark 1.1 Definition 1.1 is a restriction on the Banach spaces E. If E is a UMD
space, then this space satisfies the multiplier condition. All UMD spaces satisfy the multiplier
condition (see [12]).
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The ϕ-positive operator A is said to be R-positive in a Banach space E if the set

LA = {ξ(A + ξ)−1: ξ ∈ Sϕ}, 0 ≤ ϕ < π

is R-bounded.
Note that in Hilbert spaces, all norm-bounded sets are R-bounded. Therefore, in Hilbert

spaces, all positive operators are R-positive. If A is the generator of a contraction semigroup
on Lq, 1 ≤ q ≤ ∞ or A has the bounded imaginary powers with ‖Ait‖B(E) ≤ Ceν|t|, ν < π

2 (see
[11]) in E ∈ UMD, then those operators are R-positive.

Let D(Ω; E) denote the class of all E-valued infinite differentiable functions on domain Ω
with compact supports. For E = C, denotes it by D(Ω).

Let σ∞(E) denote the space of all compact operators in E. Let E0 and E be two Banach
spaces and E0 be continuously and densely embedded into E. Let m be a positive integer. Let
us consider the space Wm

p (Ω; E0, E), consisting of all functions u ∈ Lp(Ω; E0) that have the
generalized derivatives Dm

k u = ∂mu
∂xm

k
∈ Lp(Ω; E) with the norm

‖u‖W m
p (Ω;E0,E) = ‖u‖Lp(Ω;E0) +

n∑
k=1

‖Dm
k u‖Lp(Ω;E) < ∞.

For Ω = (a, b), a, b ∈ (−∞,∞), the space Wm
p (Ω; E0, E) will be denoted by Wm

p (a, b; E0, E)
and for E0 = E, denotes it by Wm

p (Ω; E).
By using the techniques of [12, Theorem 3.7] we obtain the following proposition.

Proposition 1.1 Let E1 and E2 be two UMD spaces and

Ψh ∈ Cn(Rn\{0}; B(E1, E2)).

Suppose that there exists a positive constant K such that

sup
h∈Q

R({|ξ||β|DβΨh(ξ):ξ ∈ R
n\{0}, β ∈ U}) ≤ K.

Then Ψh is a uniform collection of multipliers from Lp(Rn; E1) to Lp(Rn; E2) for p ∈ (1,∞).

From [21, Theorem 4] we obtain the following theorem.

Theorem 1.1 Let the following conditions be satisfied:
(1) E is a Banach space satisfying the uniform multiplier condition p ∈ (1,∞) and 0 < h ≤

h0 < ∞ are certain parameters;
(2) m is a positive integer and α = (α1, α2, · · · , αn) are n-tuples of nonnegative integer

numbers such that

κ =
|α|
m

≤ 1, 0 ≤ μ ≤ 1 − κ;

(3) A is an R-positive operator in E with 0 ≤ ϕ < π;
(4) Ω ∈ R

n is a region such that there exists a bounded linear extension operator between
from Wm

p (Ω; E(A), E) to Wm
p (Rn; E(A), E) and from Lp(Ω; E) to Lp(Rn; E).

Then the embedding DαWm
p (Ω; E(A), E) ⊂ Lp(Ω; E(A1−κ−μ)) is continuous and there ex-

ists a positive constant Cμ such that
n∏

k=1

‖Dαu‖Lp(Ω;E(A1−κ−μ)) ≤ Cμ[hμ‖u‖W m
p (Ω;E(A),E) + h−(1−μ)‖u‖Lp(Ω;E)] (1.3)
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for all u ∈ Wm
p (Ω; E(A), E) and 0 < h ≤ h0.

Remark 1.2 If Ω ⊂ Rn is a region satisfying m-horn condition (see [5, §7]), E = R,

A = I, then for p ∈ (1,∞) there exists a bounded linear extension operator from Wm
p (Ω) =

Wm
p (Ω; R, R) to Wm

p (Rn) = Wm
p (Rn; R, R).

From [21, Theorem 6] we obtain the following theorem.

Theorem 1.2 Suppose that all conditions of Theorem 1.1 are satisfied. Let 0 < μ ≤ 1−κ.

Then the embedding

DαWm
p (Ω; E(A), E) ⊂ Lp(Ω; (E(A), E)κ,p)

is continuous and there exists a positive constant Cμ such that for all u ∈ Wm
p (Ω; E(A), E), the

uniform estimate holds, i.e.,

‖Dαu‖Lp(Ω;(E(A),E)κ+μ,p) ≤ Cμ[hμ‖u‖W m
p (Ω;E(A),E) + h−(1−μ)‖u‖Lp(Ω;E)].

Remark 1.3 Note that the constant Cμ in the above estimate depends only on h0, μ and
T. Since these numbers are bounded and fixed, this dependence does not influence the further
results.

Theorem 1.3 (see [22]) Let E be a Banach space and A be a ϕ-positive operator in E

with bound M, 0 ≤ ϕ < π. Let m be a positive integer, 1 < p < ∞ and α ∈ (
1+γ
2p , 1+γ

2p + m
)
,

0 ≤ γ < pl − 1. Then for λ ∈ Sϕ, an operator −A
1
2
λ generates a semigroup e−xA

1
2
λ which

is holomorphic for x > 0. Moreover, there exists a positive constant C (depending only on
M, ϕ, m, α and p) such that for every u ∈ (E, E(Am)) α

m− 1+γ
2mp ,p and λ ∈ Sϕ,

∫ ∞

0

‖Aα
λe−xA

1
2
λ u‖pxγdx ≤ C

[‖u‖p
(E,E(Am)) α

m
− 1+γ

2mp
,p

+ |λ|αp− 1+γ
2 ‖u‖p

E

]
.

From [28, §1.7.7, Theorem 2] we obtain the following theorem.

Theorem 1.4 Let m and j be integer numbers, 0 ≤ j ≤ m − 1, θj = pj+1
pm , x0 ∈ [0, b].

Then, for u ∈ Wm
p (0, b; E0, E), the transformations u → u(j)(x0) are bounded linearly from

Wm
p (0, b; E0, E) onto (E0, E)θj ,p and the following inequality holds:

‖u(j)(x0)‖(E0,E)θj,p
≤ C(‖u(m)‖Lp(0,b;E) + ‖u‖Lp (0,b;E0)).

By using the integral representation formula, in a similar way as in [5, §10.1] we have the
following theorem.

Theorem 1.5 Let m and j be integer numbers, 0 ≤ j ≤ m − 1, θj = pj+1
pm , 0 < h ≤ h0,

x0 ∈ [0, b]. Then, for u ∈ Wm
p (0, b; E), 0 ≤ j ≤ m − 1, the transformation u → u(j)(x0) is

bounded linearly from Wm
p (0, b; E) onto E and the following inequality holds:

‖u(j)(x0)‖E ≤ C(h1−θj‖u(m)‖Lp(0,b;E) + h−θj‖u‖Lp (0,b;E)).

Let A be a positive operator in a Banach space E. Consider the differential-operator equation

Lu = u(m)(x) +
m∑

k=1

akA
k
m u(m−k)(x) = 0, x ∈ (a, b). (1.4)
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Let ω1, ω2, · · · , ωm be the roots of the equation

ωm + a1ω
m−1 + · · · + am = 0

and

ωmin = min{argωj, j = 1, · · · , q; arg ωj + π, j = q + 1, · · · , m},
ωmax = max{arg ωj, j = 1, · · · , q; arg ωj + π, j = q + 1, · · · , m},

where q is some integer number from (1, m).
A system of complex numbers ω1, ω2, · · · , ωm is called q-separated if there exists a straight

line P passing through 0 such that no value of the numbers ωj lies on it, and ω1, ω2, · · · , ωq are
on one side of P while ωq+1, · · · , ωm are on the other side.

Lemma 1.1 (see [20]) Let the following conditions be satisfied:
(1) am 	= 0 and ωj , j = 1, · · · , m, are q-separated;
(2) E is a Banach space satisfying the multiplier condition for p ∈ (1,∞);
(3) A is an R-positive operator in E.

Then for a function u(x) to be a solution of Equation (1.4), which belongs to the space Wm
p (a, b;

E(A), E), it is necessary that u =
q∑

k=1

e−(x−a)ωkA
1
m gk +

m∑
k=q+1

e−(b−x)ωkA
1
m gk, where

gk ∈ (E(A), E) 1
mp ,p, k = 1, 2, · · · , m.

2 Statement of the Problem

In a Banach space E, consider the integral boundary value problem

Lu = −u(2)(x) + Au(x) + λu = f(x), x ∈ (0, 1),

Lku =
∫ 1

0

Bk(x)u(x)dx = fk,
(2.1)

where f ∈ Lp(0, 1; E), fk ∈ Ek = (E(A), E)αk ,p, p ∈ (1,∞); A and Bk are linear operators in
E and λ is a complex parameter.

3 Homogeneous Equations

Let us first consider the following problem:

(L + λ)u = −u(2)(x) + (A + λ)u(x) = 0, (3.1)

Lku =
∫ 1

0

Bk(x)u(x)dx = fk, fk ∈ Ek, k = 1, 2, (3.2)

where λ is a complex parameter, A and Bk are linear operators in E, Ek = (E(A), E)αk ,p.

Remark 3.1 Let A be a positive operator in E. By definition, the operator Aλ = A + λ

is ϕ1-positive in E for | argλ| ≤ ϕ and ϕ + ϕ1 < π. From the beginning of the proof of
[28, Lemma 5.4.2/4], for | argλ| ≤ ϕ and | argμ| ≤ ϕ1, ϕ, ϕ1 ∈ (0, π), we have the estimate

‖(Aλ + μ)−1‖ ≤ M0

|μ|
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with M0 depending on ϕ only. Then in view of [8, Lemma 2.6], there exist semigroups U1λ(x) =

e−xA
1
2
λ , U2λ(x) = e−(1−x)A

1
2
λ which are holomorphic for x > 0 and strongly continuous for x ≥ 0.

Let

ηij =
∫ 1

0

Bi(x)Ujλdx, i, j = 1, 2, η = η11η22 − η12η21.

Condition 3.1 Assume that
(1) E is a Banach space satisfying the multiplier condition and η 	= 0;
(2) A is an R-positive operator in E;
(3) D(Bk) ⊂ (E(A), E)κ+ε,p for κ = α0 − 1

2p , 1
2p < α0 < 1, α0 = max

k
{αk}, ε ∈ (0, 1 − κ)

and

‖Bk(x)u‖E ≤ C‖u‖(E(A),E)κ+ε,p
, u ∈ (E(A), E)κ+ε,p;

(4) the operators u → Lku are bounded from W 2
p (0, 1; E(A), E) into Ek.

Theorem 3.1 Suppose that Condition 3.1 is satisfied. Then, the problem (3.1)–(3.2) for
fk ∈ Ek, p ∈ (1,∞) and λ ∈ Sϕ with sufficiently large |λ| has a unique solution u ∈
W 2

p (0, 1; E(A), E) and the following coercive uniform estimate holds:

2∑
i=0

|λ|1− i
2 ‖u(i)‖Lp(0,1;E) + ‖Au‖Lp(0,1;E)

≤ M
2∑

k=1

(‖fk‖Ek
+ |λ|1−αk− 1

2p ‖fk‖E). (3.3)

Proof By virtue of Lemma 1.1 and Remark 1.3, an arbitrary solution of Equation (3.2)
belonging to the space W 2

p (0, 1; E(A), E), has the form

u(x) = U1λ(x)g1 + U2λ(x)g2, (3.4)

where

gk ∈ (E(A), E) 1
2p ,p, k = 1, 2.

Now taking into account boundary conditions (3.3) we obtain the algebraic linear equations
with respect to g1, g2 :∫ 1

0

B1(x)U1λ(x)dxg1 +
∫ 1

0

B1(x)U2λ(x)dxg2 = f1,∫ 1

0

B2(x)U1λ(x)dxg1 +
∫ 1

0

B2(x)U2λ(x)dxg2 = f2.

(3.5)

Since the operator determinant η 	= 0, the system (3.5) has the solution g1 = γ1
η , g2 = γ2

η ,
where

γ1 = η22f1 − η12f2, γ2 = η11f2 − η21f1.

Hence, the problem (3.1)–(3.2) has a solution given bellow

u(x) =
1
η
[U1λ(x)(η22f1 − η12f2) + U2λ(x)(η11f2 − η21f1)]
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=
1
η
{[U1λ(x)η22 − U2λ(x)η21]f1 + [U2λ(x)η11 − U1λ(x)η12]f2}. (3.6)

By virtue of [8, Lemma 2.6], we have

‖e−xA
1
2
λ ‖ ≤ Ce−ν|λ|| 12 x, ν > 0, x ∈ (0, 1), λ ∈ S(ϕ). (3.7)

In view of (3.6), by estimate (3.7), the condition 3.1(2) and in view of the positivity of A, we
obtain

2∑
i=0

|λ|1− i
2 ‖u(i)‖Lp(0,1;E) + ‖Au‖Lp(0,1;E)

≤ 1
‖η‖

{ 2∑
i=0

|λ|1− i
2 ‖A−(1− i

2 )

λ Aλ[U1λ(x)η22 − U2λ(x)η21]f1‖Lp(0,1;E)

+ ‖A−(1− i
2 )

λ Aλ[U1λ(x)η11 − U2λ(x)η12]f2‖Lp(0,1;E)

}

≤ 1
‖η‖

2∑
k=1

[‖A1−αk+ 1
2p

λ U1λfk‖Lp(0,1;E) + ‖A1−αk+ 1
2p

λ U2λfk‖Lp(0,1;E)].

Hence, from Theorem 1.3 we obtain the assertion

Dk+1[Vk+1, Vk+1] =
k+1∑
i=0

Ci
k+1[D

i(Vk+1), Dk+1−i(Vk+1)]

= [Dk+1(Vk+1), Vk+1] + [Vk+1, Dk+1(Vk+1)].

4 Non-homogenous Equations

Now consider IBVPs for non-homogenous equation

(L + λ)u = −u(2)(x) + (A + λ)u(x) = f(x), x ∈ (0, 1), (4.1)

Lku =
∫ 1

0

Bk(x)u(x)dx = fk, fk ∈ (E(A), E)αk ,p. (4.2)

Theorem 4.1 Suppose that Condition 3.1 is satisfied. Then the operator u → {(L +
λ)u, L1u, L2u} for | argλ| ≤ ϕ, 0 ≤ ϕ < π and sufficiently large |λ|, is an isomorphism from
W 2

p (0, 1; E(A), E) onto Lp(0, 1; E) × E1 × E2. Moreover, for these λ, the following uniform
coercive estimate holds:

2∑
j=0

|λ|1− j
2 ‖u(j)‖Lp(0,1;E) + ‖Au‖Lp(0,1;E)

≤ C
[
‖f‖Lp(0,1;E) +

2∑
k=1

(‖fk‖Ek
+ |λ|1−αk− 1

2p ‖fk‖E)
]
. (4.3)

Proof We have proved the uniqueness of solution of the problem (4.1)–(4.2) in Theorem 3.1.
By definition of W 2

p (0, 1; E(A), E) and by (4) of Condition 3.1, it is easy to see that the operator
u → {(L+λ)u, L1u, L2u} is bounded from W 2

p (0, 1; E(A), E) into Lp(0, 1; E)×E1×E2. Hence,
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by the Banach theorem, it is sufficient to show that the operator u → {(L + λ)u, L1u, L2u} is
surjective from W 2

p (0, 1; E(A), E) into Lp(0, 1; E) × E1 × E2. Let us define

f(x) =
{

f(x), if x ∈ [0, 1],
0, if x /∈ [0, 1].

We now show that the problem (4.1)–(4.2) has a solution u ∈ W 2
p (0, 1; E(A), E) for all

f ∈ Lp(0, 1; E), fk ∈ Ek and u = u1 + u2, where u1 is the restriction on [0, 1] of the solution of
the equation

[L + λ]u = f(x), x ∈ (−∞,∞) (4.4)

and u2 is a solution of the problem

[L + λ]u = 0, Lku = fk − Lku1. (4.5)

By virtue of Theorem 3.1, the problem (4.4) has a unique solution

u1 ∈ W 2
p (0, 1; E(A), E).

A solution of Equation (4.4) is given by the formula

u(x) = F−1L−1
0 (λ, ξ)Ff =

1
2π

∫ ∞

−∞
eiξxL−1(λ, ξ)(Ff )(ξ)dξ,

where L(λ, ξ) = A + ξ2 + λ. It follows from the above expression that

2∑
j=0

|λ|1− j
2 ‖u(j)‖Lp(R;E) + ‖Au‖Lp(R;E)

=
2∑

j=0

|λ|1− j
2 ‖F−1ξjL−1(λ, ξ)Ff‖Lp(R;E) + ‖F−1AL−1(λ, ξ)Ff‖Lp(R;E). (4.6)

Let us show that operator-functions

Ψλ(ξ) = AL−1(λ, ξ), σλ(ξ) =
2∑

j=0

|λ|1− j
2 ξjL−1(λ, ξ)

are Fourier multipliers in Lp(R; E) uniformly with respect to λ. In fact, due to positivity of A

and by virtue of [8, Lemma 2.3 ] we have the following uniform estimates:

‖L−1(λ, ξ)‖ ≤ M(1 + ξ2 + |λ|)|)−1,

‖Ψλ(ξ)‖ = ‖A[A + λ + ξ2]−1‖ ≤ C1.
(4.7)

It is clear to see that

ξ
d
dξ

Ψλ(ξ) = −2ξ2AL−2(λ, ξ) = [−2ξ2L−1(λ, ξ)]AL−1(λ, ξ).

Due to R-positivity of the operator A, the sets

{−2ξ2[A + ξ2 + λ]−1 : ξ ∈ R\{0}}, {A[A + ξ2 + λ]−1 : ξ ∈ R\{0}}
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are R-bounded. Then in view of the Kahane’s contraction principle and from the product
properties of the collection of R-bounded operators (see [11, Lemma 3.5, Proposition 3.4]) we
obtain

R

{
ξ

d
dξ

Ψλ(ξ): ξ ∈ R\{0}
}
≤ C.

That is to say, the R-bound of the set

{
ξ

d
dξ

Ψλ(ξ): ξ ∈ R\{0}
}

is independent of λ. Next, let us consider σλ(ξ). It is clear to see that

‖σλ(ξ)‖B(E) ≤ C|λ|
2∑

j=0

[|ξ||λ|− 1
2 ]j‖L−1(λ, ξ)‖B(E).

Then by using the well-known inequality yj ≤ C(1 + ym), y ≥ 0, j ≤ m for y = (|λ|− 1
l |ξ|)j and

m = 2, we get the uniform estimate

∣∣∣ 2∑
j=0

|λ|1− j
2 ξj

∣∣∣ ≤ C(|λ| + ξ2). (4.8)

From (4.7)–(4.8) we have

‖σλ(ξ)‖B(E) ≤ C(|λ| + ξ2)(1 + ξ2 + |λ|)−1 ≤ C.

Due to the R-positivity of the operator A, the set

{(|λ| + ξ2)L−1(λ, ξ) : ξ ∈ R\{0}}

is R-bounded. Then from the equality

σλ(ξ) =
[ 2∑

j=0

|λ||1− j
2 ξj

]
(|λ| + ξ|λ| + ξ2)L−1(λ, ξ)

and by Kahane’s contraction principle we obtain the R-boundedness of set

{σλ(ξ) : ξ ∈ R\{0}}.

Now by differentiating σλ(ξ) we have

ξ
d
dξ

σλ(ξ) = −|λ|2ξ2L−2 +
2∑

j=1

|λ|1− j
2 [ξjL−1 − 2ξj+2L−2]

= (−2ξ2L−1)(|λ|L−1) +
2∑

j=1

[|λ|1− j
2 ξj ](|λ| + ξ2)−1(|λ| + ξ2)L−1

+
[(

− 2
2∑

j=1

|λ|1− j
2 ξj

)
(|λ| + ξ2)−1

]
[(|λ| + ξ2)L−1]ξ2L−1.
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Consider the set

{ σ0(λ, ξ) : ξ ∈ R\{0}}, σ0(λ, ξ) = ξ
d
dξ

σλ(ξ).

Due to the R-positivity of the operator A, the sets

{σ1(λ, ξ) : ξ ∈ R\{0}}, σ1(λ, ξ) = λL−1,

{ σ2(λ, ξ) : ξ ∈ R\{0}}, σ2(λ, ξ) = (|λ| + ξ2)L−1,

{σ3(λ, ξ) : ξ ∈ R\{0}, σ3(λ, ξ) = ξ2L−1}

are R-bounded. Then from the above formula in view of estimate (4.7), by virtue of the Kahane’s
contraction principle and from the product and additional properties of the collection of R-
bounded operators, for all ξ1, ξ2, · · · , ξm ∈ R, σk(ξ1, λ), σ(ξ2, λ), · · · , σ(ξm, λ), u1,u2, · · · , um

∈ E and independent symmetric {−1, 1}-valued random variables rj(y), j = 1, 2, · · · , m, m ∈ N,
we obtain the uniform estimate∫

Ω

∥∥∥ m∑
j=1

rj(y)σ0(λ, ξj)uj

∥∥∥
E

dy ≤ C

3∑
k=1

∫
Ω

∥∥∥ m∑
j=1

σk(λ, ξj)rj(y)uj

∥∥∥
E

dy,

≤ C

∫
Ω

∥∥∥ m∑
j=1

rj(y)uj

∥∥∥
E

dy,

i.e.,

sup
λ

R

({
ξ

d
dξ

σλ(ξ) : ξ ∈ R\{0}
})

≤ C.

Then in view of Definition 1.1, it follows that Ψλ(ξ) and σλ(ξ) are the uniform collection of
multipliers in Lp(R; E). Then, by using the equality (4.6) we obtain that the problem (4.4) has
a solution u ∈ W 2

p (R; E(A), E) and the uniform estimate holds, i.e.,

2∑
j=0

|λ|1− j
2 ‖u(j)‖Lp(R;E) + ‖Au‖Lp(R;E) ≤ C‖f‖Lp(R;E). (4.9)

Let u1 be the restriction of u on (0, 1). Then the estimate (4.9) implies that

u1 ∈ W 2
p (0, 1; E(A), E).

By virtue of Theorem 1.5, we get

u
(mk)
1 (·) ∈ (E(A); E)θk ,p, k = 1, 2.

Hence, Lku1 ∈ Ek. Thus by virtue of Theorem 4.1, the problem (4.9) has a unique solution
u2(x) that belongs to the space W 2

p (0, 1; E(A), E) and for sufficiently large |λ| we have

2∑
j=0

|λ|1− j
2 ‖u(j)

2 ‖Lp(0,1;E) + ‖Au2‖Lp(0,1;E)

≤ C

2∑
k=1

[‖fk‖Ek
+ |λ||1−θk‖fk‖E + ‖u(mk)

1 ‖C([0,1];Ek) + |λ|1−θk‖u1‖C([0,1];E)]. (4.10)
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Moreover, from (4.10), for | argλ| ≤ ϕ we obtain

2∑
j=0

|λ|1− j
2 ‖u(j)

1 ‖Lp(0,1;E) + ‖Au1‖Lp(0,1;E) ≤ C‖f‖Lp(0,1;E). (4.11)

By Theorem 4.1, we have

2∑
j=0

|λ|1− j
2 ‖u(j)

2 ‖Lp(0,1;E) + ‖Au2‖Lp(0,1;E)

≤ C
(
‖f‖Lp(0,1;E) +

2∑
k=1

(‖fk‖Ek
+ |λ|1−θk‖fk‖E)

)
. (4.12)

Finally, from (4.11)–(4.12) we obtain the estimate (4.3).
Consider the problem

[L + λ]u = −u(2)(x) + (A + λ)u(x) = f(x), x ∈ (0, 1), (4.13)

Lku =
∫ 1

0

Bk(x)u(x)dx = 0, k = 1, 2. (4.14)

Let B denote the operator in F = Lp(0, 1; E) generated by the problem (4.13)–(4.14), i.e.,

D(B) = W 2
p (0, b; E(A), E, L2k), Bu = −u(2)(x) + Au(x).

Theorem 4.1 implies the following corollary.

Corollary 4.1 Suppose that Condition 3.1 is satisfied. Then for sufficiently large k > 0,
there exist positive constants C1 and C2 so that

C1‖u‖W 2
p (0,1,E(A),E) ≤ ‖(B + k)u‖Lp(0,1;E) ≤ C2‖u‖W 2

p (0,1,E(A),E)

for u ∈ W (0, 1, E(A), E).

Theorem 4.2 Suppose that Condition 3.1 is satisfied. Then the operator B is uniformly
R-positive in Lp(0, 1; E).

Proof The estimate (4.3) implies that, for λ ∈ Sϕ and enough large |λ|, B + λ is in-
vertible and the operator B is positive in Lp(0, 1; E). By using a similar technique as in
[28, Lemma 5.3.2/1], we obtain that, for f ∈ D(0, 1; E(A)), the solution of the Equation (4.13)
is represented as

u(x) = U1λ(x)g1 + U2λ(x)g2 +
∫ 1

0

U0λ(x − y)f(y)dy, gk ∈ E, (4.15)

where

U0λ(x − y) =

⎧⎨
⎩−A

− 1
2

λ e−(x−y)A
1
2
λ , x ≥ y,

A
− 1

2
λ e−(y−x)A

1
2
λ , x ≤ y

and Ujλ(x), j = 1, 2 are analytic semigroups generated by operator A
1
2
λ . By taking into account

the boundary conditions (4.14), we obtain the following equation with respect to g1 and g2:

Lk(U1λ)g1 + Lk(U2λ)g2 = Lk(Φλ), k = 1, 2, Φλ =
∫ 1

0

U0λ(x − y)f(y)dy.
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By solving the above system and substituting it into (4.15), in a similar way as in Theorem
3.1, we obtain the representation of the solution for the problem (4.13)–(4.14):

u(x) = {e−xA
1
2
λ [C11 + d̃11(λ)] + e−(1−x)A

1
2
λ [C12 + d̃12(λ)]}A− m1

2
λ L1(Φλt)

+ {e−xA
1
2
λ [C21 + d̃21(λ)] + e−(1−x)A

1
2
λ [C22 + d̃22(λ)]}A− m2

2
λ L2(Φλ),

where Ckj and d̃kj are the same as in (3.6). By calculating Lk(Φλ) we obtain from the above

u(x) = [B + λ]−1f =
∫ 1

0

G(λ, x, y)f(y)dy,

G(λ, x, y) =
2∑

k=1

2∑
j=1

A
− 1

2
λ Bkj(λ)Ujλ(x)Ũkjλ(x − y) + U0λ(x − y),

where Bkj(λ) are like d̃jk. So are the uniformly bounded operators in E and

Ũkjλ(x − y) =

⎧⎨
⎩bkje−(x−y)A

1
2
λ , x ≥ y,

δkje−(y−x)A
1
2
λ , x ≤ y,

bkj , δkj ∈ C.

Let us first show that the set {G(λ, x, y); λ ∈ S(ϕ)} is uniformly R-bounded. Really, by using
the generalized Minkowcki’s Young inequalities, by semigroup estimates (3.7), have the uniform
estimate

‖G(λ, x, y)f‖F ≤ C
{ 2∑

k=1

2∑
j=1

‖A− 1
2

λ ‖‖Bkj(λ)‖‖Ũkjλ(x)f‖F + ‖U0λ(x)f‖F

}
≤ C‖f‖F .

Due to R-positivity of A, in view of properties of holomorphic semigroups Ujλ(x) and the
uniform boundedness of operators Bkj(λ) and by using the Kahane’s contraction principle, we
get that the sets

{bkj(λ, x, y) : λ ∈ Sϕ},
bkj(λ, x, y) = Bkj(λ)A− 1

2
λ Ujλ(x)[U1λ(1 − y) + U2λ(y)],

{b0(λ, x, y) : λ ∈ Sϕ}, b0(λ, x, y) = U0λ(x − y)

are uniformly R-bounded. Then by using the Kahane’s contraction principle, product and
additional properties of the collection of R-bounded operators and the R-boundedness of the
sets bkj , d0 for all u1,u2, · · · , uμ ∈ F, λ1, λ2, · · · , λμ ∈ S(ϕ), for independent symmetric {−1, 1}-
valued random variables ri(y), i = 1, 2, · · · , μ, μ ∈ N , we have the estimate

∫
Ω

∥∥∥ μ∑
i=1

ri(y)G(λi, x, y)ui

∥∥∥
F

dτ

≤ C
{ 2∑

k,j=1

∫
Ω

∥∥∥ μ∑
i=1

ri(y)bkj(λi, x, y)ui

∥∥∥
F
dτ

+
∫

Ω

∥∥∥ μ∑
i=1

ri(y)b0(λi, x, y)ui

∥∥∥
F
dτ

}
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≤ Ceβ|λ| 12 |x−y|
∫

Ω

∥∥∥ μ∑
i=1

ri(y)ui

∥∥∥
F
dτ, β < 0

uniformly in x and y. This implies that

R{G(λ, x, y) : λ ∈ Sϕ} ≤ Ceβ|λ| 12 |x−y|, β < 0, x, y ∈ (0, 1).

In view of R-bondedness property of kernel operators (see [11, Proposition 4.12]) and due
to the density of D(0, 1; E(A)) in Lp(0, 1; E) (see [23]), we obtain the assertion.

5 Cauchy Problem for Abstract Parabolic Equation

Consider the problem

∂u

∂t
− ∂2u

∂x2
+ au(x, t) = f(x, t), x ∈ (0, 1), t ∈ (0,∞),

Lku =
∫ 1

0

Bk(x)u(x, y)dx = 0, k = 1, 2, u(x, 0) = 0.

(5.1)

In this section we obtain the well-posedeness of problem (4.14) in mixed Lp space.
If G+ = (0,∞) × (0, 1), p =(p, p1), Lp(G+; E) will denote the space of all p-summable

scalar-valued functions with mixed norm (see, [5, §1] for E = C), i.e., the space of all measurable
functions f defined on G, for which

‖f‖Lp(G+) =
(∫

R+

( ∫ 1

0

‖f(x, t)‖p
Edt

) p1
p

dx
) 1

p1
< ∞.

Analogously, W 2
p(G+; E) denotes the E-valued Sobolev space with corresponding mixed norm

(see, [5, §10] for E = C).

Theorem 5.1 Suppose that Condition 3.1 is satisfied for ϕ ∈ (π
2 , π). Then for f ∈ Lp(G+;

E) and sufficiently large a > 0, the problem (5.1) has a unique solution belonging to W 1,2
p (G+;

E(A), E) and the uniform estimate holds, i.e.,∥∥∥∂u

∂t

∥∥∥
Lp(G+;E)

+
∥∥∥∂2u

∂x2

∥∥∥
Lp(G+;E)

+ ‖Au‖Lp(G+;E) ≤ C‖f‖Lp(G+;E).

Proof The problem (4.14) can be express as the following Cauchy problem:

du

dt
+ (B + a)u(t) = f(t), u(0) = 0. (5.2)

Theorem 4.2 implies that the operator O is uniformly R-positive and is a generator of
analytic semigroups in F = Lp(0, 1; E). Then by virtue of [30, Theorem 4.2], we obtain that for
all f ∈ Lp1(R+; F ), the problem (4.15) has a unique solution belonging to W 1

p1
(R+; D(B), F )

and the following estimate holds:∥∥∥du

dt

∥∥∥
Lp1(R+;F )

+ ‖(B + a)u‖Lp1(R+;F ) ≤ C‖f‖Lp1(R+;F ).

Since Lp1(R+; F ) = Lp(G+; E), by Theorem 4.1 we have

‖(B + a)u‖Lp1(R+;F ) = ‖u‖W 2
p(G+;E(A),E).

These relations and the above estimate imply the assertion.
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6 Nonlocal Boundary Value Problems for Elliptic Equations

The Fredholm property of BVPs for elliptic equations with parameters in smooth domains
was studied in [1]. In this section, the coercive estimate on the solution of integral boundary
conditions for elliptic equations will be established in mixed Lp spaces.

Let G ⊂ Rm, m ≥ 2, be a bounded domain with an (m − 1)-dimensional boundary ∂G ∈
C∞ which locally admits rectification. Consider the following nonlocal BVP for the following
anisotropic elliptic equation:

(L + λ)u = −D2
xu(x, y) +

∑
|β|≤2m

aβ(y)Dβ
y u(x, y) + λu(x, y) = f(x, y), (6.1)

Lku =
∫ 1

0

Bk(x)u(x, y)dx = fk(y), k = 1, 2, y ∈ G, (6.2)

Bju =
∑

|β|≤mj

bjβ(y)Dβ
y u(x, y) |y∈∂Ω= 0, x ∈ (0, 1), j = 1, 2, · · · , m, (6.3)

where Bk(x) are bounded operator from B
2m(1−κ−ε)
p1,p (G) to Lp1(G) for κ = θ0− 1

2p , 1
2p < θ0 < 1,

θ0 = max
k

{θk}, ε ∈ (0, 1 − κ), 1
2p − 1 < θk < 1

2p , and Bs
p1,p(G) = Bs

p(G) denotes the Besov

space [6, §18].
Dx = ∂

∂x , Dj = −i ∂
∂yj

, Dy = (D1, · · · , Dm), mk ∈ {0, 1}, αk, βk are complex numbers,
r = 0 or r = 1, y = (y1, · · · , ym). Let Q denote the operator generated by problem (6.1)–(6.3)
for λ = 0.

If Ω = (0, 1) × G, p =(p1, p), Lp(Ω) will denote the space of all p-summable scalar-valued
functions with a mixed norm (see, [5, §1]), i.e., the space of all measurable functions f defined
on Ω, for which

‖f‖Lp(Ω) =
(∫ 1

0

(∫
G

|f(x, y)|p1dx
) p

p1 dy
) 1

p

< ∞.

Analogously, W l
p(Ω) denotes the Sobolev space with corresponding mixed norm (see [6, §10]).

We have the result as following theorem.

Theorem 6.1 Let the following conditions be satisfied:
(1) Bk are bounded operators from B

2m(1−κ−ε)
p1,p (G) to Lp1(G);

(2) aα ∈ C(Ω) for each |α| = 2m and aα ∈ [L∞ + Lrk
](Ω) for each |α| = k < 2m with

rk ≥ p1, p1 ∈ (1,∞) and 2m − k > l
rk

, να ∈ L∞;
(3) bjβ ∈ C2m−mj (∂Ω) for each j, β, mj < 2m, p ∈ (1,∞);
(4) for y ∈ Ω, ξ ∈ Rμ, η ∈ S(ϕ1), ϕ1 ∈ [0, π

2 ), |ξ| + |η| 	= 0, let

η +
∑

|α|=2m

aα(y)ξα 	= 0;

(5) for each y0 ∈ ∂Ω, the local BVP’s in local coordinates corresponding to y0

η +
∑

|α|=2m

aα(y0)Dαϑ(y) = 0,

Bj0ϑ =
∑

|β|=mj

bjβ(y0)Dβϑ(y) = hj , j = 1, 2, · · · , m
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has a unique solution ϑ ∈ C0(R+) for all h = (h1, h2, · · · , hm) ∈ Rm and for ξ� ∈ Rμ−1 with
|ξ�| + |η| 	= 0.

Then
(a) for all f ∈ Lp(Ω), p =(p1, p), fk ∈ B

2m(1−θk)
p (G), | argλ| ≤ ϕ, 0 ≤ ϕ < π and

sufficiently large |λ|, the problem (6.1)–(6.3) has a unique solution u ∈ W 2
p(Ω) and the following

coercive uniform estimate holds:

‖u‖W 2
p(Ω) ≤ C

[
‖(L + λ)u‖Lp(Ω) +

2∑
k=1

‖Lku‖
B

2m(1−θk)
p (G)

+ ‖u‖Lp(Ω)

]
;

(b) the operator u → Qu = {Lu, L1u, L2u} is Fredholm from W 2,2m
p (Ω) into Lp(Ω) ×

B
2m(1−θ1)
p (G) × B

2m(1−θ2)
p (G).

Proof Let E = Lp1(G). Consider the operator A defined by

D(A) = W 2m
p1

(G; L0), (Au)(x) =
∑

|β|≤2m

aβ(y)Dβ
y u(x, y).

Then the problem (6.1)–(6.3) can be rewritten in the form of (2.1), (3.1), i.e.,

Lu = f, Lku = fk. (6.4)

Let us apply Theorem 4.1 to problem (6.4). It is known that Lp1(G) ∈ UMD for p1 ∈ (1,∞)
(see [3]). Then in view of the multiplier theorems in E-valued Lp spaces (see [30]), the space
Lp1(G) satisfies the multiplier condition. By virtue of [11, Theorem 8.2], the operator A is R-
positive in Lp1(G) and has the fractional powers, i.e., all conditions of the Theorem 4.1 hold
and we obtain the assertion.

7 Infinite Systems of Parabolic Equations

Consider the mixed problem for an infinite system of parabolic equations

∂um

∂t
− ∂2um

∂x2
+

∞∑
j=1

(2sj + a)uj = fm(x, t),

Lku =
∫ 1

0

Bk(x)um(x, t)dx = 0, k = 1, 2, t ∈ R+,

um(x, 0) = 0, x ∈ (0, 1), s > 0, m = 1, 2 · · · ,∞,

(7.1)

where um = um(x, t) and Bk(x) are linear operators from l
s(1−κ−ε)
q to lq (see [27, §1.18.2] for

the definition of lsq), and here κ = θ0 − 1
2p , 1

2p < θ0 < 1, θ0 = max
k

{θk}, ε ∈ (0, 1 − κ),
1
2p − 1 < θk < 1

2p , θk ∈ (
1
2p , 1

)
. Let G = (0, 1) × R+.

Theorem 7.1 Suppose that Bk are bounded operators from l
s(1−κ−ε)
q to lq for θk ∈ (

1
2p , 1

)
and ε ∈ (

0, 1 + 1
2p − θ0

)
. Then, for f(x, t) = {fm(x, t)}∞1 ∈ Lp(G; lq), p, q ∈ (1,∞) and for

sufficiently large a > 0, the problem (7.1) has a unique solution u = {um(x, t)}∞1 that belongs
to W 1,2

p (G, lq(D), lq) and the following coercive uniform estimate holds:

∥∥∥∂u

∂t

∥∥∥
Lp(G;lq)

+
n∑

k=1

∥∥∥∂2u

∂x2
k

∥∥∥
Lp (G;lq)

+ ‖Au‖Lp(G;lq) ≤ C‖f‖Lp(G;lq).
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Proof Really, let E = lq, A be infinite matrices, defined by

A = [2smδjm], m, j = 1, 2, · · · ,∞.

It is easy to see that the operator A is R-positive in lq. Therefore, all conditions of Theorem
5.1 hold and we obtain the assertion.
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