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Abstract The authors study, by applying and extending the methods developed by
Cazenave (2003), Dias and Figueira (2014), Dias et al. (2014), Glassey (1994-1997), Kato
(1987), Ohta and Todorova (2009) and Tsutsumi (1984), the Cauchy problem for a damped
coupled system of nonlinear Schrédinger equations and they obtain new results on the local
and global existence of H'-strong solutions and on their possible blowup in the supercritical
case and in a special situation, in the critical or supercritical cases.
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1 Introduction

The study of blowup of solutions for a damped nonlinear Schréodinger equation has been
developed in the papers by Tsutsumi [14] and by Ohta and Todorova [10]. More recently,
the problem was addressed by [4], for the case of inhomogeneous damping. Stimulated by the
relevance for physical applications, there was also significant interest in exploring the blowup
phenomenon in a system of coupled nonlinear Schrédinger equations with cubic nonlinearity,
with the linear coupling [7] and without the linear coupling [12-13]. A rather complete list of the
available results can be found in [7]. Two sufficient conditions for the finite-time blowup have
also been established for the supercritical case of the coupled nonlinear Schrédinger equations,
one of which has gain and another has dissipation, both balanced with each other (see [5]).

In this paper we consider the system:
iug = —Au+iviu+kv— (g1|ulP~t + glv|?) u, (1.1)
ivg = —Av+ivv+ku— (glu*+ gafv|P~ 1) v ’
with initial data ug,vo € H'(RY), where 1 < N < 3, and % <p-1,withp—-1< ﬁ if
N =3, 71,72 € R describe gain (71,2 > 0) or dissipation (71,2 < 0), k € R is the linear coupling,
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91,92 >0, g € R, u(w,t),v(x,t) € C, » € RV, t > 0. The particular case p — 1 =2, N > 3 and
1 = —72 was considered in [5] for the study of the possible blowup of H!-strong solutions.

The system (1.1) may appear in various physical contexts. As a few examples, we mention
an optical coupler (N = 1) with passive and active arms (see [1]) and the self-phase modulation
(described by g1 and go) stronger than the Kerr nonlinearity (p > 3). Alternatively, the model
describes propagation of a pulse in an elliptically polarized medium (see [9]) with dissipation
where the two polarizations are linearly coupled. In two- and three-dimensional settings, the
model can describe diffraction, focusing and filamentation of a transversely polarized electro-
magnetic wave (see [3]) where the orthogonally polarized components (they are described by u
and v) are linearly coupled (or alternatively, two beams are linearly coupled) and are subject
to absorption or gain (described by 71,2). In these cases, the evolutional variable ¢ describes
distance along the propagation direction of the beam. Further, at N = 3, the model describes
a collapse of an unstable binary mixture of Bose-Einstein condensates (see [11]) subject to the
removal and adding atoms.

In this paper we first study the existence and uniqueness of H'-strong solutions of the system
(1.1) in the sense of Kato (see [2, 8]) by applying some variants of Strichartz’s inequalities (see
[10]) and some convenient a priori estimates (Theorems 2.1 and 3.1). In the second part of this
paper, we extend the main result of [5] in the supercritical case (Theorem 4.1) and give a new

result in the critical case (Theorem 4.2).

2 Local Existence in H*(RY)

In this section we will study the local existence in H!(R") to the Cauchy problem for the
system (1.1) with initial data (ug,vo) € (H'(RY))?. Recall that we have + < p—1 < 5
(< 4+o0cif N=1,2)and 1 < N <3. Thecasep—1= % is called the critical case.

To prove the local existence of solutions, we apply Kato’s method (see [2, 8]) by adapting
the proof of Theorem 4.4.6 in [2].

We start by writing system (1.1) in the form:

oo

u

where Y= (v)v Yo = (28) € (HI(RN))2a
~A 0
Hp= ( 0 _A> 2
(G \_  (alult+ gl 0
ao=( G5 )= (""" -+ o) ¢

mo= (5 e= ()

Bi(u,v) =imu+ kv, Ba(u,v)=ku+iyyv.

and

ie.,
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We decompose G 2 as follows:

Gi(p) = 1G(u) + G(v,u),  Ga(p) = g2G(v) + G (u,v)
with the functions G(-) and G(-,-) defined as follows:

Gu) = —[ulP~ u, Gu,v) = —glu>v.
Now we easily derive
[lor]? ur = o2 wa| < e (jor]* + [o2]® + fual® + Juaf?) (Jur = waf + o1 = val)

and the same estimate for ||u;|? v1 — |ua|? va|. Moreover,

[Jua [P~ un = fua P us| < e (ua P 4 JualP™H) Jur — ual,

and we get a similar estimate for ||vy [P~ vy — |va|P~Lug].
With r = (p — 1) + 2 = p + 1, we derive, for r’ such that % + % =1, (u12,01,2) €
H(RY) x H'(RY),
|G (ug) = G(ur)|l g < ¢ ([fual
G (uz, v2) = G(ur,v1)

1 1
o A lluallpe ) lug —

LT
I+ <c(lulza + luallza + oallZa + [lv2]|74)

x ([lur — uzf s + [[or — v2llp4),
and similar estimates for G(v) and ||é(1)2, ug) — é(vl, u1)||L%;

VGl < ellullf [IVullz-,
IVG(u,)ll, 4 < cllollis [IVullzs + Vol o oll s [lul 24]
< c[(lvllZs + lullZs) (IVullzs + 1V0llz4)],

and similar estimates for ||[VG(v)]

o and [[VG(v,u)]| 4.

Moreover, we have

| B1(uz2,v2) — Bi(ur,v1)||z2 < c(llug —uil|z + [lv2 — v1L2),

IVB1(u, v)][2 < c([VullL2 + [Vl L2),

and similar estimates for Bs.
Now we fix M, T > 0 to be chosen latter as in the proof of Theorem 4.4.6 in [2] and, with

r =max(2,p—+ 1,4) = max(p + 1,4), we consider the admissible pair (in Strichartz’s sense, see

[2, Section 2.3])
2 1 1
(q,7), E *N(§ - ;)

We introduce the space

X={pe (L®T.T;H)NLY(~T,T;W""))*}
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with the distance

d(e1,2) = |Jur — 'Uf2||LL1(7T,T;L"') + JJur — 'Uf2||L°°(7T,T,L2)

+ v = vallpa-rrpr) + lv1r = v2llpee (—71;12),
where @15 = (43 ) and the subset

E={pe X ||lullga—rrwrry + lull Loo(—1.1:81)

+ lollpa-r Wiy + [Vl Lo (- iy < M},

which is a complete metric space with distance d.
Now, with S(t) = 2t and t € R, denoting the Schrédinger group in L2, we introduce, for
peFE, (’U,O,UQ) (S (Hl(RN))Q,

o) = (). (2.2)
with the entries
) = S0 + 1 [ S0~ 9) Gau(s)0(5)s
+ i/OtS(t—s) By (u(s), vo(s))ds, (2.3)
o) = SO+ 1 [ - ) Gau(s)v(5)s
+ i/OtS(t—s)Bg(u(s),v(s))ds. (2.4)

Now, reasoning as in the proof of Theorem 4.4.6 in [2], we can prove, by the previous

estimates and applying Strichartz’s inequalities, that
H(p) € C([-T,T); H) N LY(=T,T; Wh"),
and for a convenient M and a sufficiently small T' > 0, H(u,v) € E and

d(p1,p2) for ¢1,¢09 € E.

|~

d(H(p1), H(p2)) <
The uniqueness in C([-T,T]; H') and the blowup alternative follow as in Theorem 4.4.6 in [2].
We have the following theorem.

Theorem 2.1 Let (ug,vp) € (H*(RN))2. Then, the Cauchy problem for the system (1.1)
has a unique strong solution (u,v) € C([0, Timax); (HY)2(RN)) with initial data (ug,vo) defined

on a mazimal time interval [0, Trax)-

3 Global Existence for K =0

In this section we prove the global existence of the particular case when the linear coupling

is absent, and the system obeys sufficiently strong dissipation.
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Given v € R, let us consider the semigroup (S, (t)):>0 in L2(RY) defined by
S, (t) =e"S(t).
We need to apply Strichartz’s estimates (see [2]). We recall that a pair (¢,r) is admissible if
2
2 N(l _ 1)
q 2 r
with2 <r <2 2<r<ooif N=1,2<r <ooif N =2).

Using the same notation as in [2, 10], we define

B(0) = [ 5(02) 1(:)as

and

Pi(t) = /OSV(t —3) f(s)ds = e”t/o S(t—s)e 7 f(s)ds.

We have the following estimates (see [2, 10]).
For every admissible pair (¢,7) and Vo € L2, there exists a constant ¢ > 0 such that, with
LP = LP(RY) and T > 0,

1SC) fllzaorsry < cllfllzz, Ve € L2, (3.1)

with ¢ independent of T
1@} Laco, 7507 < el fll Lo 0,70 (3.2)
193] o 0,752) < €llf | L (0,757 (3.3)

with ¢ independent of T, % + % =1, % i —

q -
Moreover, if 2 < r < 22 (or 2 < 7 < 400 if N = 1) and 6,0 € |1,4o00[ are such that

%—F%:N(%—%),then

||(I>}/HL9(O,T;LT) S Cc HfHLél(O,T;LT/) (34)

with ¢ independent of T" and % + % =1.
Now, by using the Duhamel formula, we write the system (1.1), for the local solution, in

the integral form. In the case k = 0 for ¢ € [0, Tinax) we have

ult) = So(t) o + i / Sou(t = 5) (—galu(s) P~ u(s) — glos) Pu(s))ds,
(3.5)

v(t) = Salt) vo + i/o Sy (t = ) (—glu(s)|*v(s) = galv(s)P~ v(s))ds.

Next we state a global existence result of the Cauchy problem for the system (1.1) with
k=0.

Theorem 3.1 Assume v1,72 < 0 and k = 0. Then, for any (uo,vo) € (H'(RN))? there
exists v*(||uol| g, ||vollgr) > 0 such that, for all y1,v2 < —7*, Tmax = +00.
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First we prove the following important result.

Lemma 3.1 Under the conditions of the Theorem 3.1, assume that there exist constants
e >0 and 5y < 0 such that for v; <7, i = 1,2, we have, with w = ug, wi = vy,
155:() wo | Lo o, 400szoy < & if P—12>2, (3.6)

2(p—1)(p+1)
4—(N-2)(p—-1)’

where 6 =
1S5 () wollzsovocizsy <& if p—1<2. (3.7)
Then Thax = +00.
Proof Letgbedeﬁnedby%—l—%:N(%—%) f0r2<r<13—]j2 (or2<r<+o0if N=1)
(see (3.4)). We have

iy (3.8)

/o o i
pr=r, pd =0, o

| =

Applying (3.5) we derive, for ¢t € [0,T], T < Tax,
(@)l + lo(E) ]
< luollmr + flvollm + ||<I>‘u|p vl (o, mn) + ”q)?jp—lvHL“(O,T;Hl)
+ ||‘I)(|u\2+|v\2)u||L°°(0,T;H1) + ||‘I>’(Y\2u|2+|v\2)v||L°°(0,T;H1)' (3.9)

Now we start with the following case.
MHp-—1>2.
In this case we have
u* < T+ [ufP™h o < 14 o

’/St—se”’1s dsH

et _1q
< sup (" ) fule o
7l

We estimate

1P I o 0,711y < Sup et
te(0,T)

te(0,7)
< | (3.10)
S o IWllLe=(0,T;H")> .
Pl (1)
and similarly,
1
192| Los (0,111 < Tl vl o< (0,7 H1)- (3.11)

Hence, for |v;| large enough, it follows from (3.3) and (3.9) that

[ll Los 0,751y + [0l oo,y < 2 (ol e + llvoll ) + elllu™ ull Lot o 7w
+ CH|U|p_1v||L<1/(O,T;L"")
+el|[ulP~ (v + VoDl ar o7y
+ cllfolP~H (u + [VuDll o 0,7,y (3.12)
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with ¢ being a constant independent of 7.
Now we estimate the typical term |[|u[? Dv|| 1o (o 7. (D = 3Z) in the right-hand side of
L] J
(3.12).

From (3.8) we derive
_ —1
ul?= Doll ot 0,752y < € lulao gpry 1DV Laomwrm). (3.13)

Next, we fix 0 < ¢t < T. By using the estimate (3.4), from the Duhamel formula (3.5), we
deduce by (3.6):

lulloo,t2my < 1S5(-) woll ogo,2m)
N2 -1y llLo©,62m) + 120200zl Lo ©,0:27)
< e el o

el ull g 02y + Mol 0l o 0,025 (3.14)

Now, we remark that, for D, = {z € RY | |u(x)| > L a.e.}, with x,, being the characteristic

function of D,, and for each ¢,

Ml wll g = lIxp, [ul?w+ (1= xp, ) ful* ull L

< MalP~ e + 1= xp ) Tl ull e

and
1= xp, ) [ul?ull e < 1(1 - XDu)UHiz% [Jul -
—1
< JJul 5 ] or
<25 fug| 2 [lull -
Since §' = % < 0, it follows that
2 _ < pfl ~ c
Il 1y < €l il + o il

» c
<c ||U’||L9(Q,t;Lr) + |71| ||u||L9(O,t;LT)
with ¢ being a constant independent of ¢.

The same conclusion can be obtained for the term |||1)|2v||L§/(O t.ry- Therefore, putting

together all the terms, we obtain, for |y;1| and |y2| big enough,

llullLoo,e;0y + vl Loco,e:nmyde +erlllull oo,y + IVl Leco,e:0m))? (3.15)

with ¢; being a constant independent of ¢.

On the other hand, using again the Duhamel formula and the Strichartz’s estimates, we



672 J.-P. Dias, M. Figueira and V. V. Konotop

derive

lullLac,e;wrry + [0l Lo,
< |IS™() wollaco,ewrry + 1572 () voll Laco,ewrr)
FN2a o1, ey + IR, [l La,w1m)
< c(lJuollmr + llvollar) + elllulP~ ull ar o w1y
+ el ol o o,y + ell(Jul® + [0I*) ull o o,y
+ el (fo? + [ul?) vll or 0,1y - (3.16)

Next we proceed as before to estimate the last two terms on the right-hand side more
precisely (with D, = {z € RN | |v(z)| > 1 a.e.}):

1ol Dull o 0,41y = X, [0 D+ (1= xp, ) [0 Dl ot 0,1

< lP=" Dull o 0,60y + 11 = xp.) [0 Dl par 0.4,

< N0l ¢y Il ocowrry + T lull oo

= LO(0,t;L7) La(0,t; W) Il La(0,t;Whr)-
Then, for |y;| and |y2| large enough, it follows from (3.16) that

HU’HL‘I(O,t;leT‘) + ||’U||L‘1(O,t;W1,"')
< e (Juoll s + llvoll i) + e2 (full ogoizry + ol zoozm P
“(lullzo.ewrry + [0l Lagosswir)) (3.17)

with co being a constant independent of ¢.

Now, let ¢y = max(cy, c2) and choose € such that 237=2 ¢y P! < 1. By the continuity of the
functions ¢ — [[ullLeo(o,¢;m) + [|VllLoo,0ry and t — |lullpa,e;wrry + [Vl Lo(o,e;w1r), it follows
from (3.15) and (3.17) that

llull oo, rsnmy + vllLeco,rinry < 8€
and
[ullLago,rswrry + [Vl ao,riwrry < 2¢o ([[uollar + [[volla)-

The conclusion follows now from (3.12)—(3.13).

(I p—1<2.

Notice that, since % < p—1, the condition p—1 < 2 implies N > 2, which means in our case
N = 3. The proof follows the same steps used in the previous case p—1 > 2. The first estimate
(3.12) remains true with p — 1 replaced by 2 when the admissible pair (g,7) corresponds now
to 7 = 4. The estimate (3.13) is now

Hal Dol o ot < el rize IDell o v

and the estimates (3.15) and (3.17) are obtained by following the same scheme. For example,
to estimate |u||zs(0,¢;24), just like in (3.14), we use the assumption ||.S,,(-) uol|£8(0,400,24) < €
and we must only estimate

11 11 3
-1
el UHLé(O,t;L%)’ §+§:3<___): 4
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using the decomposition |u[P~'u = x,, |u[P"'u+ (1 — x, ) |u[’~'u. With the corresponding
estimates (3.15) and (3.17) we conclude in the same way.

Now we can pass to the following proof.

Proof of Theorem 3.1 Assume first p — 1 > 2. We will prove that (3.6) holds. Since we

have [[S(t) uoll o1 < c uoll, ¢ > 0, we derive

+oo
0 0 0 c 0
155310l o 0, 400 Lo 1) :/O "MS () ug|| 7o dt < o [[woll -

Therefore,

| < eluolla (g )

U 0 . CllU 1

T RONEO oo ety = BTN 9110 o

and the same conclusion holds for S,,vo. Similar estimates prove (3.7) in the case p — 1 < 2.
Hence, the assumptions in Lemma 3.1 are satisfied and thus Theorem 3.1 is proved.

4 Blowup Results

In this section we will study the possible blowup of the local in-time H'-strong solutions
(u,v) of the Cauchy problem for the system (1.1) with initial data (ug,vo) € (H*(RY))? such
that

|z|uo, |zjvo € LARM).

In the following we perform formal calculations which can be justified by suitable regulari-

sations that allow us to prove that
|z u(z,-), |z[v(,-) € C([0, Tmax); L*).

The main ideas are based on the seminal work of Glassey [6], in [7, 10] and in the previous
paper [5] where the case p — 1 = 2 is studied.

We start by proving some preliminar estimates to the local solution (u,v) € C([0, Timax);
(H1)2).

It is easy to derive, for ¢ € [0, Timax) and with [ - dz = [y -dz,

1d
oy /|u|2dx = 'yl/|u|2dx +k Im/vﬂdx,

1
3 %/|v|2dx = 'yg/|v|2dx +k Im/uﬁdm.

So
d 2 2 2 2
% (|ul* + Jv[*)dz =2y [ [ul*dz + 27 [ |v]*dz
< 2’y/(|u|2 + |o2)de (4.1)

with v = max(|y1], |72]).
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Then we obtain
Qt) = [lu®)|Z: + lo@®)lIZ2 < e (lluollZz + llvoll72)- (4.2)
We define the energy

E(t) = %/|Vu(t)|2da: + %/|Vv(t)|2da: s Re/u(t) T(t)de

- [l as - 24 oot

g
-4 [P P (4.3)
From the system (1.1) we deduce
dE 2 2 p+1 p+1
FT [Vul*dz + 2 [ [Vo]"dz —y1g1 [ [ul""dz — 292 [ [v[PT da

— (1 + ’yg)g/|u|2 lv2dz + k (71 +72) Re/uﬁdm. (4.4)
We need the following result.

Lemma 4.1 Assumep—1> %. Then the solution (u,v) € C([0, Tiax); H') of the system
(1.1) with initial data (uo,vo) € (HY)? verifies the inequality

t ~
E(t) < E(0) +537/(||VUH%2 +[VollZa + lullbh + oll7hi)dr + ¢ Q(0) e
0

with
maX{]—leaQQ}a ’Lf (71 + ’)/2)9 > Oa
53: ma’x{17|g|+gla|g|+g2}a ’Lf (71 +72)g<0a N:1a27
orif (v1+72)9<0, p—1>2, N=3
and "
7; ’Lf (71"—72)920;
G =1 [k| + .
wa Zf (71+72)g<05 N:1527

orif (m+72)g<0, p—1>2, N=3.

Proof If (71 + v2) g > 0, it follows from (4.4) that
¢ ¢
E(0) < BO)+ @7 [ (IVulffs + [Tols + lulih + lolh)ar + 16l [ Qrar
0 0

where ¢ = max{1, g1, g2}, and since Q(r) < e>7Q(0), we obtain the result with c3 = @ If
(71 +72) g < 0, we remark that

1 1
/|u|2 lv2dz < 5 /|u|4dx+ 3 /|v|4dx

1 1 1
<5 fluptide s g fprtide s 3 [Quf + oP)da
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for N =1,2 withp—1> % and for N = 3 with p — 1 > 2. The result now follows from (4.4)

as before.

Now we define the variance
Y(t) = Yi(t) + V(0
with
Yi(0) = [lof uPde. Ya(t) = [ laf ol d.
and let
Vi(t) = 4Im/(Vu c2)ade,  Va(t) = 4Im/(Vv . 2) vz,

We derive from (1.1) that
Y/ (t) = Vi(t) + 2 Yi(t) + 2k Irn/|az:|2 vude,
YI(t) = Va(t) + 29Ya(¢) + 2k Im/|a:|2 wtdz,
So
Y'(t) = Vi(t) 4+ Va(t) + 2 Y1 (t) + 272Ya(t).

To compute the second derivative we take the derivative of V;(t), i = 1,2. First,
VI(t) = 4Im/(Vut -x)udz + 4Im/(m - Vu) upda

= —4N Im/utﬂdx - 8Im/(x - V@) upde

and
—4N Im/utﬂdx = 4N[/|Vu|2dx - g1/|u|p+1dx
- g/|u|2 lv[2dx + k Re/vﬂdm},
-8 Im/(a: -Vu) wydr = SRe/(a: V) [~ Au — g1 |ulP"ru — glv|* u]de
+ 8k Re/(x - Vu) vdz —871Im/(a: - V) udz
= 8/|Vu|2dx - 4N/|Vu|2dx

g [P~ ag [ V) oPda
+ 8k Re/(x -Va)dz + 871 Im/(x - Vu) uda.

Then

1—
Vi(t) = 8/|Vu|2dx +4Ng; 21)/|u|p+1dx - 4Ng/|u|2 lv2dx

p+
—4g /(x - Vul?) |v*dz + 4kNRe/vﬂdx

+ 8k Re/(m'Vﬂ)vdx—l—S’lem/(x'Vu)ﬂdx.

(4.6)
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11)/|v|p+1dx —4Ng/|u|2 lv2dx

—4g /(a: V)2 |ul?dz + 4k:NRe/uﬁdx

Similarly,

1_
Vi (t :8/v 2dx + 4N
2() |U| x 92p+

+ 8k Re/(:c - V7)) udz + 82 Im/(x - Vo) vde. (4.7
By (4.5) we derive

Y(t) = V() + V5 (t) +2m Y7 (t) + 272 Y5 (1)
=V/(t) + V3 (t) + 2 Vi(t) + 22 Va(t)

k(y1 —2) Im/|$| vade 4+ 497 Vi (1) + 473 Ya(t).

}17/|u|p+1dx
]1)/|v|p+1dx - 4Ng/|u|2 lv|2dx

+ 167 Im/(x -Vu)adr + 16721m/(x - Vo) vde

So we obtain, from (4.6)—(4.7),

1—
Y (t) = 8/|Vu|2dx + 8/|Vv|2dx+4Ng1p+

1—
+ 4N
92p+

+ 4k (1 — 72) Im/|x| vade + 472 Y1 (t) + 443 Ya(t). (4.8)

Now, we will assume p — 1 > %.

Since p — 1 > %, we can choose 0 such that

4
0<d <N, p—1>g.

Rearranging the terms on the right-hand side of (4.8), we derive by (4.3),

V() = —NE 5/ N) [Vl + |Vol?]dz
4N /4
+ PR (5 +1-p g1/|u|p+1dx + 92 /|v|p+1dx}

+ (% —4 Ng/lﬂl2 [v[da + 167 Im/(fc - Vu)ude

+ 162 Im/(m -Vo)vde + 4k (11 — 72) Im/|x|2vﬂdx

— 8Nk Re/uidx+47f Yi(t) 4+ 473 Ya(t). (4.9)

First we assume N = 3. If g > 0, since p—1 > % (we keep the notation with N by technical

reasons), we choose § such that

4
2<§ <N, p—1>5.
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If g < 0, we must assume p — 1 > 2. In the case p — 1 > 2, we choose § = 2, so the term

(8 —4)Ng [ |ul? |v|*dz in (4.9) can be canceled. If p — 1 = 2, we choose § = X2,
easily check that § < N, p—1=2> %, and we have

p4TN1(§ +1-p)|n / [l dz + go / oz + (3 - 4)Ng / Jul?lv?dz

= 2N(%—;;> {g1/|u|4da: + g2/|v|4dx} + 4N(%—;;) g/|u|2 |v|2dx

and

9]
SN

Collecting all these cases and taking into account that

29 [1uf? oPda] < 2lgluls folls < <2 (llulls + 2ol

1671 Im/(m - Vu)udr + 16 2 Im/(m - Vo) tde

(N =) (IVullZ: + [IVol3) + 25—(HMIIL2+HMHLz)

omu

and
4k (1 — ) Im/|x|2vﬂdx < 4Ky Y (8),

it follows from (4.9) that
Y'() + e2(|Vull7z + | Voll72 + lullfri + oll7)
16
< Y(t)+ 5 NE(t) + 4Nkl Q(¢t)

with
6

1
= k,N)=4 4~k 25—
a1 =c1(v, b, N) =49" + 47]k[ + 7 N3

and
co = ca(v,k,N)
min{%(]\f—é),}% gl<p—1—§), }% gg(p—l—g)}, if g >0,

4 4
= min{Z(N—Z)—gl( 3)—1g2(p—3)}, ifg<0and p—1>2,

+1 pt
2 . { 991 9V 92 .
— minqg1l,g1 + ;g2 + }, if —\/g1g2<9g<0and p—1=2.
5 VG2 Va1

By applying Lemma 4.1, from (4.10), we derive the following inequality:

1 1
Y'(t) + co(VullZs + [IVol|Zs + lull 7y + ol i)

16
<caY(t)+ 5 NE(0) + cge®t

t
+1 +1
+ 03/0 (IVullZs + IV0l1Zs + lull 7 + ol )dr

Then we

(4.10)

(4.11)

(4.12)

(4.13)
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with 16 A
632?N753, C4:4N<|k3|+553)Q(0)

Next, we show that the inequality (4.13), which holds for N = 3, can also be verified for
N =1,2, up to a few changes in the constants.
The critical point is to dominate the term (£ —4) Ng [ [u[? [v[*dz in (4.9).

Assume now N = 2. Since p —1 > % = 2, we have

/|U,|2 |U|2dx < 3 /|u|p+1dx + 5 /|U|p+1dx—|— 5 /(|u|2 + |U|2)dx

and we choose § = > < 2 such that
1> 2
p 5
and

(%—4)|9| <min{1% 91<P—1—%),ﬁ gz(P—l—%)}

It follows that (4.13) holds with constants ¢ and ¢4 given by

02(%/‘5,2)2111111{54 (2—52)ai 91(P—1—i) 4 gz(P—l—i)}

5y p+1 5 ) pr1 5
and
(v.k2) = [ (k] + £ 22) +2(—= —2) lol] @)
ca(v,k,2) = —c — = .
a(y 5 75 g
Finally, assume N = 1. We have p — 1 > % = 4 and we choose § = é; < 1 such that
p—1-— % > 0. By the Gagliardo—Nirenberg inequality, we derive
lullzs < cllVullzz lullze < e[VulZa + c(e) [lulz:
with € > 0 to be chosen.
Thus
8
(5 =)ol [1uf* oPda
1
4
< (5 —2) lale (IVula + 1V2]32) + (@) (hull g2 + [10]32)
and we choose € such that
(5 -2)lgle < 2 (1-a)
5 TE=5 b
Once again we obtain (4.13) with the constants
2 4 4 4 4
kil 2o oo ) A )
e2(7, b, 1) = min | = 1)p+191p 5 ) o1 2 5

24t

and that the term c4 e?7! is now replaced by c4(7, k, 1) €57 with

ex(r 1) = 4[] + 5 (1)) Q(O) + () Q*(0).
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Now, let
t ps
1 1
= [ Ul + 19005 + s + ol aras,

From (4.13) we obtain

t
Y(t)+cap(t) < F(t) + 01// T)drds +03/ p(T)dr (4.14)
0
with
Y(0) + Y(0)t + % NE(0)t* + % (e — 24t —1), if N >1,
F(t) = )
8 64(1) .
Y Y —BO)t* 4+ =5 (""" -6+t -1 f N=1.
(0) + (O)t"'(; (0)t +3672 (e 6+t —1), i
Next, we introduce the functions
M(t) = sup F(1)+1, t>0, (4.15)
T€[0,¢]
t2 C3
G@fhmﬂq5+mpgj)—q. (4.16)

We can now state a blowup theorem for the supercritical case.

Theorem 4.1 Assumep—1 > % and the Cauchy problem (1.1) with initial data (ug,vg) €
(HY)2.  Let (u,v) € C([0, Tmax); (HY)?) be the corresponding local solution. Assume that
(|z|uo, |x|vo) € (L?)? and if N = 3, we have

p—1>2, if (m1+72)g9<0,
p—1>2 if g<0,
p—1>2, if — /5192 <g<0.

Assume also that there exists To > 0 such that

F(Tp) +1 <0, (4.17)
G(Tp) < 1. (4.18)

Then the solution (u,v) blows up in finite time with Tiax < Tp.
Proof Let us define
Ty =sup{t € [0,Tp] | Y(7) < M(Tp), 7 € [0,t]}.

It follows from (4.14)—(4.15) and (4.17) that, for ¢ € [0, Ty],

Y(t)+ —02
Cgp(t) §F( )-l—ClM T() 9

SM(To)—l—f—ClM(To)Q +63/0 ()dT

t

< M(Tp) + ¢ /0 p(r)dr. (4.19)
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Applying Gronwall’s inequality, we obtain
M (T

(To) exp (c—3 t).
C2 C2

Using this estimate, back to the right-hand side of (4.15), we derive

p(t) <

Y(t) < F(t)+G(Tp), tel0,Ty],
and by (4.18), Y(T1) < M(Tp). Then Ty = Ty. Hence,
Y(Ty) < F(Ty) +1 <0,
which is absurd since Y > 0.

Remark 4.1 As can be seen by an adaptation of the proofs in Lemma 1 in [5], where the
particular case p — 1 = 2 is considered, the blowup assumptions (4.17)—(4.18) are satisfied in

that case, for a certain T > 0, if the initial energy

(N + 2)M (T max)
E0) < SNT? ,

0,min

where
M(t) =14 Y(0) + Co(e>'* — 1)

with v =71 = =2 > 0 and Tp max, Z0,min defined in Lemma 1 in [5].

Remark 4.2 The blowup result of Theorem 4.1 can be extended to higher dimensions if

p—1> % with the same proof as in the case N = 3.

Now, we consider a special case of the Cauchy problem for the system (1.1), which includes

the critical case, although it requires the absence of the linear coupling.

Theorem 4.2 Assumingk =0, v1 =y =0 >0, g >0andp—1 > % (critical and

supercritical cases). Let (u,v) € ([0, Tmax); (H)?) be the local solution to the Cauchy problem
for the system (1.1) with initial data (ug,vo) € (H')?, (xug,zvo) € (L?)%. Then, if E(0) <0,

the solution blows up in finite time, that is, Tmax < +00.

Proof We have in this case, by (4.4),

dE
- - a[/|Vu|2dx+/|Vv|2dx—g1/|u|p+1dx —92/|’U|p+1d$— 20g/|u|2 |v|2dx}

2 2
= a[/|Vu|2dx+/|Vv|2dx— i/|u|p+1dx - i/|u|p+1dx}
p+1 p+1

291 2g2
—20 u2v2dx—|—a( — )/u”“dm—i—a( - )/vp+1da:.
g [l ofds + o (225 ) [lu 292 g2) [1o

Since

2
—~ __1<o,
p+1

we derive, with

dE
v = |l = |l 7 S27E,
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SO

e 2" E(t) < E(0) < 0.

Now, from (4.6) and (4.7), we deduce

Vi) +Va(t)) = 20(Va(t) + V(1)) =

1—
= 8/|Vu|2dx + 8/|Vv|2dfn+4Ng11 +p /|u|p+1dx
p

1—
+4Ngs P /|v|p+1da: - 4Ng/|u|2 |v|2dx
1+p

491
=16F N(1—p)+4 Pt
BEW) + 12 (V1= p) +4) [l do

4 go
1+p

+

(N(1—-p)+4) /|v|p+1dx - 4Ng/|u|2 lv|2dz.

Since g >0and p—1> %, we derive

Fin

So

%[e_Qat(Vl 4 Vz)] S e—QO'tE(t).

ally, from (4.5) we have

Y{(t) —20Yi(t) = Vi(t), Yi(t) —20Ya(t) = Va(t).

d
&(e—Qat Y(t)) — e—QJt(Vl 4 Vg)

Therefore

2
% i[e—%t(vl + W) <e ' E{t)<Ey<0

@Y (1) = o

and the conclusion follows.
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