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1 Introduction

In [1], an optimal investment problem was proposed on the time interval [0, T ]. They used
variables r, b, σ to describe the financial market. The attitude of the investors at the terminal
time T for risk and interest can be describe by the utility function g(y). The goal is to search
the optimal portfolio, and to achieve the maximum profit for investors. In [1], the following
model was deduced to solve the above problem:{

VsVyy + ryVyVyy − θV 2
y = 0, Vyy < 0, (s, y) ∈ [0, T )× R,

V (T, y) = g(y), g′(y) ≥ 0, y ∈ R,
(1.1)

where V = V (s, y) is the undetermined function and r, b, σ are given constants, satisfying
r ≥ 0, σ > 0, b − r > 0, θ = b−r

σ . Usually, we can assume that g(y) = 1 − e−λy, where λ is
some positive constant. In [2–3], the authors studied problem (1.1) and got the existence and
uniqueness of smooth solution.

Note that the variable y in (1.1) means “the initial capital for investors”. Then, it is obvious
that, for y < 0, the investors can not invest anything. Meanwhile, “the initial capital” has to
be finite. For the sake of using in the real world, we only consider the initial-boundary value
problem in the domain [0, T ) × (0, X). In this paper, we discuss the classical solution for the
following problem:⎧⎨⎩

−(ut − rxux)uxx = θu2
x, uxx > 0, (x, t) ∈ (0, X) × (0, T ],

u(x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, X ],
u(0, t) = u0(t), u(X, t) = uX(t), t ∈ [0, T ].

(1.2)

Here, we have used transformation (s, y) = (T − t, x), V (s, y) = −u(x, t) in (1.1).
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By the way, from the viewpoint of partial differential equations, these problems are still
valuable to discuss. In the famous work of Caffarelli- Nirenberg-Spruck [4] for Monge-Ampère
equations, they proved the existence of the strictly convex solution to the following problem:{

detD2
xu = ψ(x, u,Du) for x ∈ (bounded smooth convex domain)Ω ⊂ R

n,
u = φ(x) for x ∈ ∂Ω (1.3)

with the requirement of strictly convexity and the increasing condition:

0 < ψ(x, z, p) ≤ C(1 + |p|2)n
2 for x ∈ Ω, z ≤ maxφ. (1.4)

As Krylov [5] pointed out that the corresponding parabolic problem matching (1.3) should
be {

−ut detD2
xu = ψ̃(x, t, u,Du) for (x, t) ∈ Q = Ω × (0, T ],

u(x, t) = φ̃(x, t) for (x, t) ∈ ∂pQ.
(1.5)

Since we need to use the method of [4], we also require the condition appearing in (1.4) (also
see [7]):

0 < ψ̃(x, t, z, p) ≤ C(1 + |p|2)n
2 for (x, t) ∈ Q, z ≤ maxφ. (1.6)

It is obvious that, for r = 0, (1.2) becomes the type of (1.5), where n = 1, detD2
xu = uxx.

But the requirement (1.6) can not be satisfied for the right-hand side of the problem (1.2) which
may even be zero.

To overcome the difficulties, we observe that we can construct a sub-solution if the data of
our problem satisfy appropriate conditions. Then, we derive the needed a prior estimates and
use the degree theory to obtain the existence of the smooth solutions.

2 Preliminaries

For the equation (1.2) with a given function in the right-hand side, namely, the initial-
boundary value problem of the parabolic Monge-Ampère equation is⎧⎨⎩

−(ut − rxux)uxx = f(x, t), (x, t) ∈ Q,
u(x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, X ],
u(0, t) = u0(t), u(X, t) = uX(t), t ∈ [0, T ].

(2.1)

In this section we use Q to denote (0, X)× [0, T ].
We assume that
(h1) There exist some constants α ∈ (0, 1), μ > 0, such that

f(x, t) ∈ C2+α,1+ α
2 (Q), f(x, t) > μ

in Q.
(h2) g(x) ∈ C4+α([0, X ]) satisfies g′′(x) ≥ μ in [0, X ], and u0(t), uX(t) ∈ C2+α([0, T ]) satisfy

−u′0(t) ≥ μ, −u′X(t) − ru0(t) + ruX(t) ≥ μ in [0, T ].
(h3) The data of problem (2.1) satisfy the compatibility conditions up to the second order.
The compatibility condition is necessary for parabolic equations, which is one of the main

differences to the elliptic type. The key point is that the initial data of the problem satisfy the
smooth conditions at corner points. For instance, the 0th-order compatibility condition is

g(0) = u0(0), g(X) = uX(0).
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The 1st order compatibility condition is

−u′0(0)g′′(0) = f(0, 0), −(u′X(0) − rXg′(X))g′′(X) = f(X, 0).

Using the method in [6], by some modification, we can get the following result.

Theorem 2.1 If conditions (h1)–(h3) hold, then the problem (2.1) has a unique solution
u(x, t) ∈ C4+α,2+ α

2 (Q) satisfying −(ut − rxux) > 0, uxx > 0 in Q.

3 Main Result

We note that (1.2) is invariant with the transformation x �→ Xx. Hence, without loss of
generality, we can assume that X = 1, and in the following, we use Q to denote (0, 1) × (0, T ].
Then, (1.2) becomes ⎧⎨⎩

−(ut − rxux)uxx = θu2
x, uxx > 0, (x, t) ∈ Q,

u(x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, 1],
u(0, t) = u0(t), u(1, t) = u1(t), t ∈ [0, T ].

(3.1)

Now, we only consider the non-degenerate case of Equation (3.1). In our case, the solution
should be called a strong convex monotonic function. Here, a function u(x, t) is called a strong
convex monotonic function, if u(x, t) ∈ C2,1(Q) and

uxx(x, t) > 0, ux(x, t) < 0, (ut(x, t) − rxux(x, t)) < 0, ∀(x, t) ∈ Q.

Since we will establish the existence of problem (3.1) in C4+α,2+ α
2 (Q), we find the following

necessary conditions:
(H1) There exist some constants α ∈ (0, 1), μ > 0, u0(t), u1(t) ∈ C2+α([0, T ]), and g(x) ∈

C4+α([0, 1]) satisfying −u′0(t) ≥ μ, −u′1(t)−ru0(t)+ru1(t) ≥ μ in [0, T ], and g′(x) < 0, g′′(x) ≥
μ in [0, X ].

(H2) The data of problem (3.1) satisfy compatibility conditions up to the second order.
(H3) There exists some constant ν > 0 and two strong convex monotonic functions u0(x, t),

u(x, t) ∈ C4+α,2+ α
2 (Q), satisfying

− (ut − rxux)uxx > −(u0
t − rxu0

x)u0
xx, ∀(x, t) ∈ Q,

− (ut − rxux)uxx > θu2
x, ∀(x, t) ∈ Q,

ux(x, t) ≤ −ν < 0, ∀(x, t) ∈ Q.

The following two lemmas give the sufficient conditions for (H3) to hold.

Lemma 3.1 If (H1)–(H2) and the following condition holds:

− [(1 − x)u′0(t) + xu′1(t)]g
′′(x) + rx[g′(x) − u0(t) + u0(0) + u1(t) − u1(0)]g′′(x)

> θ{g′(x) − [u0(t) − u0(0)] + [u1(t) − u1(0)]}2 (3.2)

and for some constant c1 > 0, we have

g′(x) − [u0(t) − u0(0)] + [u1(t) − u1(0)] ≤ −c1, ∀(x, t) ∈ Q. (3.3)

Then, we have some convex monotonic function u(x, t) ∈ C4+α,2+ α
2 (Q) satisfying⎧⎨⎩

−(ut − rxux)uxx > θu2
x > 0, ∀(x, t) ∈ Q,

u(x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, 1],
u(0, t) = u0(t), u(1, t) = u1(t), t ∈ [0, T ].

(3.4)
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Proof We let

u(x, t) = g(x) + (1 − x)[u0(t) − u0(0)] + x[u1(t) − u1(0)].

Hence, we get our result.

Lemma 3.2 If the condition in the above lemma is satisfied, then there is some strong
convex monotonic function u0(x, t) ∈ C4+α,2+ α

2 (Q) satisfying⎧⎨⎩
−(u0

t − rxu0
x)u0

xx < −(ut − rxux)uxx, ∀(x, t) ∈ Q,
u0(x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, 1],
u0(0, t) = u0(t), u0(1, t) = u1(t), t ∈ [0, T ],

(3.5)

and |u0|
C4+α,2+ α

2 (Q)
≤ K. Here the constant K only depends on the data of our problem (3.1).

Proof Let A(x, t) = −t2η(t) − θc2
1

4 (1 − η(t)), and

η(t) =

{
1, t ∈

[
0, δ

2

]
,

0, t ∈ [δ, T ],
δ ≤

√
θc21
2

.

Then, it is obvious that A(x, t) ∈ C2+α,1+ α
2 (Q), −θc

2
1

2
≤ A(x, t) ≤ 0, and

A(0, 0) = A(1, 0) = At(0, 0) = At(1, 0) = Ax(0, 0) = Ax(1, 0) = Axx(0, 0) = Axx(1, 0) = 0.

Let f0(x, t) = −(ut − rxux)uxx +A(x, t). We can check f0(x, t) > 0 in Q and

f0(x, t) < −(ut − rxux)uxx, ∀(x, t) ∈ Q = (0, 1) × (0, T ].

On the other hand, f0 also satisfies the compatibility conditions up to the second order.
Using Theorem 2.1, we have a unique strong convex monotonic function

u0(x, t) ∈ C4+α,2+ α
2 (Q)

satisfying (3.5) and
|u0|

C4+α,2+ α
2 (Q)

≤ K.

Since u is the sub-solution for u0, u0
x(1, t) ≤ ux(1, t). By u0

xx > 0, we have u0
x(x, t) < 0.

By the proof of the above two lemmas, we have that the sufficient condition for (H3) is that
Equation (3.1) has a strong convex monotinic sub-solution or that the following sub-solution

u(x, t) = g(x) + (1 − x)[u0(t) − u0(0)] + x[u1(t) − u1(0)]

satisfies ux(x, t) ≤ −c1, ∀(x, t) ∈ Q. In what follows, we use the degree theory to prove that
the problem (3.1) has a strong convex monotonic solution. Let us consider the Banach space

C4,2
0 (Q) = {w(x, t) ∈ C4,2(Q);w(x, t)|∂pQ = 0}

and its open subset,

S = {v(x, t) ∈ C4,2
0 (Q) | v > 0 in Q, vx|x=0 > 0, vx|x=1 < 0, (v + u) is a strong cover solution}.

For a sufficiently large constant R, denote

SR = S ∩ {v(x, t) ∈ C4,2
0 (Q); |v|c4,2

0 (Q) < R}.
We need the following lemma from [8].
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Lemma 3.3 Denote Kρ to be an interval in R
1 with radius ρ. Let w(x, t) in Q satisfy the

Hölder condition for t with an exponential α and a Hölder constant μ1. Also assume that the
derivative wx exists. It means that for any t ∈ [0, T ], w(x, t) is Hölder continuous with respect
to x. More explicitly, we have

max
Kρ,0≤t≤T

oscx{wx(x, t),Kρ ∩ (0, X)} ≤ μ2ρ
β .

Then, the derivative wx in Q satisfies the Hölder condition for t with an exponential δ = αβ
(1+β) .

The Hölder constant μ only depends on α, β, μ1, μ2.

Lemma 3.4 If (H1)–(H3) hold, then, for any v ∈ S, τ ∈ [0, 1], the following problem⎧⎨⎩
−(uτ

t − rxuτ
x)uτ

xx = f τ (x, t) = τθ(u + v)2x + (1 − τ)f0(x, t), (x, t) ∈ Q,
uτ (x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, 1],
uτ (0, t) = u0(t), u(1, t) = u1(t), t ∈ [0, T ]

(3.6)

has a unique solution uτ (x, t) ∈ C4+α,2+ α
2 (Q), and satisfies |uτ |

c4+α,2+ α
2 (Q)

≤ K0, where K0

only depends on the data of the problem but not on τ .

Proof By Lemma 3.3, we know that the right-hand-side function f τ (x, t) ∈ C2+α,1+ α
2 (Q).

Then, it is easy to check that f τ (x, t) > 0 in Q, and satisfies compatibility conditions up to the
second order. Hence, by Theorem 2.1, we have the conclusion.

Lemma 3.5 Suppose that (H1)–(H3) hold. For any v ∈ S, the problem (3.6) has a unique
solution uτ ∈ C4+α,2+ α

2 (Q). Denote vτ = uτ − u. Define some map T τv = vτ . Then, we get
that

T τ : v ∈ S �→ vτ ∈ C4,2
0 (Q)

is a compact continuous map.

Proof By Lemma 3.4 and the parabolic equation theory (see [10–11]), the image of the
map T τ is C4+α,2+ α

2 . Since |uτ |
C4+α,2+ α

2 (Q)
≤ K0, not depending on τ , we have that T τ is a

compact map.

Lemma 3.6 There is a bounded constant M > 0, such that all solutions u(t, x) of the
following problem ⎧⎨⎩

−(ut − rxux)uxx = τθu2
x + (1 − τ)f0(x, t), (x, t) ∈ Q,

u(x, 0) = g(x), g′(x) ≤ 0, x ∈ [0, 1],
u(0, t) = u0(t), u(1, t) = u1(t), t ∈ [0, T ]

(3.7)

satisfy
|u|

C4+α,2+ α
2 (Q)

≤M.

Proof We note that u ≥ u and

u ≤ u = (1 − x)u0(t) + xu1(t). (3.8)

Hence, there is some bounded constant M1 > 0, such that

sup
Q

|u| ≤M1, sup
Q

|ux| ≤M1. (3.9)



710 M. Li and C. Y. Ren

Let us estimate −ut. Define some linear operator

L̃u = [−uxx]
∂

∂t
+ [−(ut − rxux)]

∂2

∂x2
+ [rxuxx]

∂

∂x
− 2τθux

∂

∂x
.

Consider the following test function w(x, t) = −ut +
k

2
u. We have

L̃u(w) = uxxutt − k

2
utuxx + ututxx − k

2
utuxx − rxuxutxx +

k

2
rxuxuxx

− rxuxxutx +
k

2
rxuxuxx + 2τθuxutx − kτθuxux

= −(1 − τ)f0
t (x, t) + k(1 − τ)f0(x, t)

= (1 − τ)f0(x, t){k − [ln f0(x, t)]t}.

If k ≥ k3 ≡ sup
Q

|[ln f0(x, t)]t|, we haveL̃u(w) ≥ 0. By the maximum principle, we have

sup
∂pQ

(
− ut +

k3

2
u
)
≥ sup

Q

(
− ut +

k3

2
u
)
. (3.10)

Using the same linear operator L̃u, we consider another two test functions

v3 = ektut, v4 = rxuxekt.

Direct calculation shows

L̃u(v3) = −uxxuttekt − kutuxxekt − ututxxekt + rxuxutxxekt

+ rxuxxuxtekt − 2τθuxutxekt

= (1 − τ)f0
t ekt − kutuxxekt,

L̃u(v4) = −uxxrxuxtekt − rxuxuxxektk − 2rutuxxekt − rxutuxxxekt

+ 2r2xuxuxxekt + r2x2uxuxxxekt + r2xuxuxxekt

+ r2x2uxxuxxekt − 2τθruxuxekt − 2τθrxuxuxxekt

= rxekt(1 − τ)f0
x + 2r(1 − τ)f0ekt − krxuxuxxekt,

L̃u(−v3 + v4) = −(1 − τ)ektf0
t + rxekt(1 − τ)f0

x + 2r(1 − τ)f0ekt

− kekt(−utuxx + rxuxuxx)

= (1 − τ)ekt(−f0
t + rxf0

x + 2rf0) − kekt[τθu2
x + (1 − τ)f0]

= −ekt{k[τθu2
x + (1 − τ)f0] + (1 − τ)(f0

t − rxf0
x − 2rf0)}.

If k ≥ k4 ≡ sup
Q

∣∣∣ (1 − τ)(f0
t − rxf0

x − 2rf0)
τθu2

x + (1 − τ)f0

∣∣∣, we get L̃u(−v3 + v4) ≤ 0, ∀(x, t) ∈ Q. Then, we

have
inf
∂pQ

(−v3 + v4) ≤ inf
Q

(−v3 + v4).

Hence, we obtain

inf
Q

(−ut + rxux) ≥ e−k4T inf
∂pQ

(−ut + rxux). (3.11)
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Note that on {x = 0} × [0, T ],
−ut + rxux = u′0(t).

On [0, x] × {t = 0}, we have

−ut + rxux =
τθ[g′(x)]2 + (1 − τ)f0(x, t)

g′′(x)
.

On {x = 1} × [0, T ], we have

−ut + rxux = −ut + rux ≥ −u′1(t) + rux(x, t)|x=1

= −u′1(t) − ru0(t) + ru1(t),

where u is the sup-solution of u defined by (3.8). Now combining (H1)–(H2), (3.9)–(3.11), there
are some bounded constants c1,M2 > 0, such that

|ut| ≤M2, inf
Q

(−ut + rxux) ≥ c1 > 0. (3.12)

Then, using Equation (3.7), there are bounded constants ν1 > 0, M3 > 0, such that

0 < ν1 ≤ uxx ≤M3, ∀(x, t) ∈ Q. (3.13)

Taking the derivative with respect to t in (3.7), we have

−[uxx]
∂

∂t
(ut) + [−ut + rxux]

∂2

∂x2
(ut) + [rxuxx − 2τθux]

∂

∂x
(ut) = (1 − τ)f0

t .

The above equation is a linear equation about ut. Using Hölder estimates for bounded coefficient
linear parabolic equations, we have

[ut]cα, α
2 (Q)

≤M4, where M4 only depends on problem data.

Combining (3.12)–(3.13) and using Equation (3.7), we have

[uxx]
cα, α

2 (Q)
≤M5.

Combining all the results that we have obtained and using Schauder estimates, we have our
conclusion.

Lemma 3.7 There exists some bounded constant R > 0, such that the operator I − T τ has
no zero on ∂SR.

Proof By the definition of SR, we know that there exists no solution of Equation (3.7) on
|v|C4,2 = R. In what follows, we will have no solution of Equation (3.7) on ∂SR, either. Suppose
that u satisfies (3.7) on ∂SR. Then, we have u ≥ u and at least one of the following three cases
holds: u = u holds at some interior point of Q; (u − u)x|x=0 = 0; (u − u)x|x=1 = 0. By the
maximum principle and Hopf lemma (as Theorem 3 in [9]), we have τ > 0. But we also have

(ut − rxux)uxx − (ut − rxux)uxx − τ(θu2
x − θu2

x)

= −τ [−(ut − rxux)uxx − θu2
x] + (1 − τ)[f0(x, t) + (ut − rxux)uxx]

≤ 0.

Since τ > 0, the equality will not appear in the above inequality. Again using the maximum
principle and Hopf lemma, we have u ≡ u, which is a contradiction. Now, we can prove the
main theorem.
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Theorem 3.1 If conditions (H1)–(H3) hold, then the problem (3.1) only has a unique strong
convex monotonic solution u = u(x, t) ∈ C4+α,2+ α

2 (Q).

Proof The maximum principle implies the uniqueness. We only need to discuss the exis-
tence. Since SR is a bounded subset in the Banach space C4,2

0 (Q), the map

T τ : SR �→ C4,2
0 (Q)

is a continuous compact operator. There is no zero for the operator I − T τ in ∂SR. Thus, for
τ ∈ [0, 1], we can define the Leray-Schauder degree

deg(I − T τ , SR, 0).

By the homotopy invariant for the Leray-Schauder degree, we have

deg(I − T 1, SR, 0) = deg(I − T 0, SR, 0).

By the uniqueness, we have T 0 ≡ v0 = u0 − u, ∀v ∈ SR. Hence, we have

(I − T 0)(v) ≡ I − v0, ∀v ∈ SR,

which implies deg(I − T 0, SR, 0) = deg(I − v0, SR, 0). Using the translation invariant and nor-
malization of the Leray-Schauder degree, we have deg(I − v0, SR, 0) = deg(I, SR, v

0) = 1. Thus,
we obtain deg(I − T 1, SR, 0) = 1. We have completed the proof.
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