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A Description of Fixed Subgroups of Free Groups*
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Abstract Let F' be a finitely generated free group. Martino and Ventura gave an explicit
description for the fixed subgroups of automorphisms of F'. The author generalizes their
results to injective endomorphisms.
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1 Introduction

Throughout this paper, let F' be a finitely generated free group.

The rank of F, denoted by r(F), is the cardinality of a basis of F. As usual, Aut(F)
denotes the automorphisms of F'; End(F') denotes the endomorphisms of F', and Inj(F') denotes
the injective endomorphisms of F'.

Let ¢ : I — F be an endomorphism of F. We will denote ¢ as acting right of argument,
and © — (2)¢ (the parentheses will be omitted if there is no risk of confusion). A subgroup
H < F is called ¢-invariant if H¢ < H. In this case, the restriction of ¢ to H will be denoted
by ¢|H : H — H, which is an endomorphism of H.

Except when r(F) = 1, Inn(F), the subgroup of inner automorphisms, is isomorphic to F.
For any y € F, we will write v, to denote the inner automorphism of right conjugation by y

lzy = x¥. Similarly, for

(denoted by exponential notation). Thus v, : F' — F, > 7y, =y~
any subgroup H < F, we denote by HY = 3y~ ! Hy its right conjugation by y.
The fixed subgroup of an endomorphism ¢ of F, denoted by Fix ¢, is the subgroup of

elements in F fixed by ¢:
Fixp ={z € F:x¢p =z}

Following [8], a subgroup H < F'is called 1-auto-fixed (resp. 1l-endo-fixed and 1-inj-fixed),
when there exists an automorphism (resp. endomorphism and injective endomorphism) ¢ of F'
such that H = Fix ¢.

In [9], Stallings raised a question: What subgroups S of F' can be of the form Fix 37 Here,

0 refers to an automorphism of the free group F.
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It is easy to see that the trivial subgroup is l-auto-fixed. Also a cyclic subgroup H = (z)
of F is l-auto-fixed if and only if it is pure, i.e., " € H implies x € H, and in this case,
H = Fix~, (for more details, see [7]). So, the interesting cases begin with subgroups of rank 2.

The maximal-rank case was completely settled by Collins and Turner. In [3], they gave a
complete description of the 1-auto-fixed subgroups H < F with r(H) = r(F).

The goal of this paper is to generalize Martino-Ventura’s results (Theorem 1.1 below) to
injective endomorphisms (Theorem 1.2 below). In [7], Martino and Ventura generalized Collins
and Turner’s results, finding a similar description which applies to all 1-auto-fixed subgroups

without restriction. For later use, we give the Martino-Ventura result below.

Theorem 1.1 (see [7, Theorem 1.4]) Let F be a nontrivial finitely generated free group
and ¢ € Aut(F) such that Fix ¢ # 1. Then, there exist integers r, s > 0, ¢p-invariant non-trivial
subgroups Ky, --- , K, < F, primitive elements y1,--- ,ys € F, a subgroup L < F', and elements
L#R, € Hj = Ky %% Ky % (y1,-+-,y;), j=0,--+ s — 1, such that

F=Ki*- %K. %y, -+ ,ys) * L
and y;¢ = h;flyj for j=1,---,s; moreover,
F1X¢ = <w15 e 7w7'7y1_1h0y17 e 7ys_1h8—1y8>

for some non-proper powers 1 # w; € K; and some 1 # h; € H; such that hj¢ = h;-hjh;fl, 1=
1,---,r j=0,---,s—1.

Remark 1.1 For 1 # hg € Hy = Ky *--- * K., we can know that Hy = K1 % --- % K, #£ 1.

So, in fact, » > 1 in Theorem 1.1.

A subgroup H < F is called a free factor of F', if it admits a basis which can be extended
to a basis of F'. Thus, if H is a free factor of F', then there exists a subgroup L < F, such
that F' = H % L. For any free factor H < F'; we have r(H) < r(F') with equality if and only if
H=F.

An element w € F is called an F-primitive element when there exist words wy,ws, -+ ,wy,
such that {w,ws, -+ ,w,} is a basis of F'.

In this paper, we show that the Martino-Ventura result (Theorem 1.1) also holds for inj-fixed

subgroups in free groups, that is the following theorem.

Theorem 1.2 Let F be a nontrivial finitely generated free group and ¢ € Inj(F) such
that Fix¢ # 1. Then, there exist integers v > 1, s > 0, ¢-invariant non-trivial subgroups
Ky, K, < F, primitive elements y1,--- ,ys € F, a subgroup L < F (L # 1 if ¢ & Aut(F)),
and elements 17éh;- €H; =Ky - %K, *(y1, - ,y5), j=0,---,s—1, such that

F:Kl*"'*Kr*<y17"' 7yS>>|<_L
and y;¢ = h;flyj for j=1,---.s; moreover,

F1X¢ = <w1a T 7wT7y;1h0y17 e 7ys_1hsflys>
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for some non-proper powers 1 # w; € K; and some 1 # h; € H; such that hj¢ = h;hjh;fl, 1=

Loy, j=0,,5—1.

This paper is organized as follows. In Section 2, we will give the proof of Theorem 1.2, and

in Section 3, we will give some corollaries and examples.

2 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2.

Definition 2.1 Suppose ¢ € End(F). Then we denote by F¢> the stable image of ¢, i.e.,
[ee]
F¢™ = () F¢'
i=0
and

Poo = QIFO™ : F§™ — F¢>.

It is shown in [5] that r(F¢>) < r(F), ¢ is an automorphism, and clearly Fix ¢ = Fix oo <
Fo™.

Lemma 2.1 Let ¢ € Inj(F) be an injective endomorphism of the finitely generated free
group F. Then F¢™> is a free factor of F, i.e.,

F=F¢>* L
for a subgroup L < F; moreover, L =1 if and only if ¢ € Aut(F).
Proof It follows from [6, Problem 33 on p. 118] that F¢™ is a free factor of F¢™ for almost
all n. So there exists an integer n and a subgroup L’ < F such that
F¢m" = F¢> x L.
Since ¢ € Inj(F), ¢" : F — F¢" = F¢> % L' is an isomorphism. Let L = L'(¢™)~!. Then
F = (F6 « L)(¢") " = (F6=)(") "« L'(¢") " = P« L.
Clearly, L = 1 if and only if ¢ € Aut(F).

Proof of Theorem 1.2 If ¢ is surjective, then ¢ € Aut(F), by Theorem 1.1, we have
done.

Otherwise, following Lemma 2.1, we have F' = F¢>* « L L" #1,and 1 < r(F¢>) < r(F),
so F'¢> is finitely generated. Applying Theorem 1.1 to F¢™ and ¢oo € Aut(F¢™), there
exist integers r > 1, s > 0, ¢oo-invariant non-trivial subgroups Ky, --- , K, < F¢>, primitive
elements yy, - -+ ,ys € F¢p>, asubgroup L' < F¢>, and 1 # h; € H; = Ky I+ (y1, -+, Y;),
j=0,---,s—1, such that

F¢w:K1*"'*KT*<y17"'7ys>*L/
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and Yo = h;flyj for j =1,---,s; moreover,
. _ -1 -1
F1X¢OO_ <(U1,"' y Wry Up h0y17"' yYs h8—1y8>

for some non-proper powers 1 # w; € K; and some 1 # h; € H; such that hjpe = h;hjh;_l, 1=
L-yr, j=0,---,s— 1L
Let L =L'« L"”. Then L # 1. Since ¢oo = ¢|F¢>° and Fix ¢ = Fix ¢oo, we have

F:F(boo*L/,:Kl*"'*Kr*<y17"'7yS>*L

and
Fix ¢oo - <W1; e, Wy yl_lhoylv e ay;1h571y5>~
Thus Theorem 1.2 holds.

3 Some Corollaries and Examples

In this section, we will give some corollaries and examples of Theorem 1.2.

From Theorem 1.2, we immediately have the following corollary.

Corollary 3.1 (see [1, 10]) Let F,, be the free group of rank n and ¢ : F,, — F,, be an
injective endomorphism. If ¢ € Aut(F,), then r(Fix @) < n; if ¢ & Aut(F,), then r(Fix ¢) <
n— 1.

In fact, it is also shown in [10] that if ¢ : F), — F,, is an endomorphism which is not an

automorphism, then r(Fix ¢) < n — 1. So, we have the following definition.

Definition 3.1 A subgroup H < F,, (n > 2) is called mazimum-rank 1-endo-fized (resp.
1-inj-fized) if there exists an endomorphism (resp. injective endomorphism) ¢ of F such that
H =Fix¢ and r(H) = { *20{0

Corollary 3.2 If ¢ € Inj(F) with maximum-rank 1-inj-fized subgroup, then there exist
integers r > 1, s > 0, and primitive elements w1, -+ ,wr, Y1, ,Ys, 2 € F (z = 1 if and only if
¢ € Aut(F)), such that

Fr=(wr) %o wp) * (yn) oo (ys) + (2),

and wi$ = wi, y;¢ = hi_yy;, 1# h} € Hj = (wi) * - (wr) * (y1) - *(y;), j=1,--+,s;
moreover,

F1X¢ = <w1a e awrvyflhoyla e 7y;1hsflys>a
for some 1 # h; € Hj such that hj¢ = h;-hjh;_l, j=0,---,5s—1.
Proof Following from Theorem 1.2, we have

T(FiX¢):7"+S:T(K1*"'*KT*<:U1;"' ays>)~

Since r(K;) > 1, we have r(K;) = 1. Thus K; & Z; moreover, since K;¢ < K; and Fix¢pN K, =

(wi), we have K; = (w;), i =1,--- ,r.
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Remark 3.1 When ¢ € Aut(F) and r(Fix¢) = r(F'), Corollary 3.2 is the main result of
[3]-

From the example below, we can easily know that Corollary 3.2 does not hold for ¢ € End(F)

with maximum-rank 1-endo-fixed subgroup.

Example 3.1 Let F' = (a, b) be a free group of rank 2 freely generated by {a,b}, and let
¢ € End(F) be given by

¢:F—F, a—ada*btath, b1

Then it is easy to know that
Fix ¢ = (a®b~ta~'b).

So, (a?b~'a~'b) is a maximum-rank 1-endo-fixed subgroup of F. However, following from [2],

a’b~ta~b is not a primitive element of F. So, Corollary 3.2 does not hold for ¢ € End(F).

Corollary 3.3 Every injective endomorphism of F,, (n > 2) with mazimum-rank 1-inj-fived

subgroup fizes a primitive element of F,.
Proof It follows immediately from Corollary 3.2.

Remark 3.2 When ¢ € Aut(F) and r(Fix ¢) = r(F'), Corollary 3.3 is the main theorem of

[4]: Every automorphism of F;, with a fixed subgroup of rank n fixes a primitive element of F,,.

If the injective endomorphism ¢ of F;, is not with the maximum-rank 1-inj-fixed subgroup,
then Corollary 3.3 does not hold.

Example 3.2 Let F' = (a, b) be a free group of rank 2 freely generated by {a,b}, and let
¢ € Aut(F) be given by
¢:F—F, a~— aba, b+— ab.

Then it is easy to know that
Fix ¢ = (b"'a"'ba).

Clearly, b~ ta~'ba is not a primitive element of F. So, Fix ¢ contains no primitive elements.

Acknowledgements The author would like to thank Prof. Boju Jiang for valuable com-

munications and suggestions. The author also thanks the referee for his or her comments.

References

[1] Bestvina, M. and Handel, M., Train tracks and automorphisms of free groups, Ann. of Math., 135, 1992,
1-51.

[2] Cohen, M., Metzler, W. and Zimmermann, A., What does a basis of F|[a, b] look like? Math. Ann., 257,
1981, 435—445.

[3] Collins, D. and Turner, E., All automorphisms of free groups with maximal rank fixed subgroups, Math.
Proc. Cambridge Philos. Soc., 119, 1996, 615-630.

[4] Collins, D. and Turner, E., An automorphism of a free group of finite rank with maximal rank fixed point
subgroup fixes a primitive element, J. Pure Appl. Algebra, 88, 1993, 43-49.



718
(5]

[6]
[7]

Q. Zhang

Imrich, W. and Turner, E., Endomorphisms of free groups and their fixed points, Math. Proc. Cambridge
Philos. Soc., 105, 1989, 421-422.

Magnus, W., Karrass, A. and Solitar, D., Combinatorial Group Theory, Wiley, New York, 1966.

Martino, A. and Ventura, E., A description of auto-fixed subgroups in a free group, Topology, 43, 2004,
1133-1164.

Martino, A. and Ventura, E., On automorphism fixed subgroups of a free group, J. Algebra, 230, 2000,
596—607.

Stallings, J., Graphical theory of automorphisms of free groups, Combinatorial Group Theory and Topol-
ogy, Ann. of Math. Stud., Vol. 111, Princeton University Press, Princeton, NJ, 1987.

Turner, E., Test words for automorphisms of free groups, Bull. London Math. Soc., 28, 1996, 255-263.



