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1 Introduction and Main Results

Let f(z) be meromorphic function in the complex plane C. We assume that the reader is
familiar with the standard notations of Nevanlinna theory of the value distribution of meromor-
phic functions, such as the characteristic function T (r, f), the proximity function m(r, f), the
counting function N(r, f), as well as the first and second main theorems (see [1–4]). The no-
tation S(r, f) denotes any quantity that satisfies the condition: S(r, f) = o(T (r, f)) as r → ∞
possibly outside an exceptional set E of r of finite linear measure lim

r→∞
∫
[1,∞)∩E

dr
r < ∞. A

meromorphic function a(z) is called a small function of f(z) if and only if T (r, a(z)) = S(r, f).
Many authors have studied the problems of the existence or the growth of meromorphic

solutions of systems of complex differential equations, and obtained some results (see [5–9]). In
recent years, there has been renewed interests in difference (discrete) equations and difference
analogues of Nevanlinna’s theory in the complex plane C (see [10–24]). Chiang and Feng [13],
as well as Halburd and Korhonen [21] established a difference analogue of the Logarithmic
derivative lemma independently. The foundations of the theory of complex difference equations
were laid by Julia, Birkhoff, Batchelder and others in the early twentieth century. Later on,
Shimomura [24] and Yanagihara [22–23] considered nonlinear complex difference equations by
the method of Nevanlinna’s theory.

In 2011, Korhonen [21] investigated the properties of finite-order meoromorphic solutions of
the equation

H(z, w)P (z, w) = Q(z, w), (1.1)
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where P (z, w) = P (z, w(z), w(z+c1), · · · , w(z+cn)), c1, · · · , cn ∈ C, and obtained the following
result.

Theorem A Let w(z) be a finite-order meromorphic solution of (1.1), where P (z, w) is
a homogeneous difference polynomial with meromorphic coefficients, and H(z, w) and Q(z, w)
are polynomials in w(z) with meoromorphic coefficients having no common factors. If

max{degw(H), degw(Q) − degw(P )} > min{degw(P ), ord0(Q) − ord0(P )},

then N(r, w) �= S(r, w), where ord0(P ) denotes the order of zero of P (z, x0, x1, · · · , xn) at
x0 = 0 with respect to the variable x0.

In 2012, Gao [17] extended the above result of (1.1) to the systems, and obtained some
properties of the proximity function and the counting function of meoromorphic solutions to
systems of difference equations such as

{
Φ1(z, w1, w2) = R1(z, w1),
Φ2(z, w1, w2) = R2(z, w2),

(1.2)

where Ri(z, wi(z)) (i = 1, 2) are rational functions in wi(z) (i = 1, 2) with meromorphic coeffi-
cients which are small functions of fi(z) (i = 1, 2) respectively, and Φ1(z, w1, w2), Φ2(z, w1, w2)
are difference polynomials which are defined as

Φ1(z, w1, w2) = Φ1(z, w1(z), w2(z), w1(z + c1), w2(z + c1), · · · , w1(z + cn), w2(z + cn))

=
∑
(i)

a(i)(z)
2∏

k=1

wik0
k wik1

k (z + c1) · · · wikn

k (z + cn),

Φ2(z, w1, w2) = Φ2(z, w1(z), w2(z), w1(z + c1), w2(z + c1), · · · , w1(z + cn), w2(z + cn))

=
∑
(j)

b(j)(z)
2∏

k=1

wjk0
k wjk1

k (z + c1) · · · wjkn

k (z + cn),

with the coefficients {a(i)(z)}, {b(j)(z)} being small functions with respect to both w1 and w2,
and ci ∈ C, for all i = 1, 2, · · · , n.

So far, the previous researches are only on the complex differential equations (systems) or
difference equations (systems), but not on difference-differential equations (systems). There-
fore, it is very important and meaningful to study the cases of difference-differential equations
(systems), and this paper will mainly investigate some properties of meromorphic solutions of
the systems of difference-differential equations. By the way, let me give out the definition of
difference-differential equation and the system of difference-differential equations as follows.

Definition 1.1 We call an equation a difference-differential equation, if this equation con-
tains the difference and the differential of one function at the same time.

Definition 1.2 Corresponding to difference-differential equations in Definition 1.1, we
will call the systems which contain difference-differential equations the systems of difference-
differential equations.
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In this paper, inspired by the ideas of Gao, the author will mainly investigate some properties
of the meromorphic solutions of the systems of complex differential-difference equations, and
extend the results obtained by Gao [17] to the systems of the following form (1.5), which is
different from the systems of complex differential equations or systems of complex difference
equations. That will be an innovative contribution of this paper.

Let cl (l=1, 2, · · · , n)∈C, I, J be two finite sets of multi-indexes (i0, i1, · · · , in), (j0, j1, · · · ,

jn) respectively. Ω1(z, w1, w2), Ω2(z, w1, w2) are difference-differential polynomials which are
defined as

Ω1(z, w1, w2)=
∑
(i∈I)

a(i)(z)
2∏

k=1

wik0
k (w′

k(z + c1))ik1 (w′′
k (z + c2))ik2 · · · (w(n)

k (z + cn))ikn , (1.3)

Ω2(z, w1, w2)=
∑

(j∈J)

b(j)(z)
2∏

k=1

wjk0
k (w′

k(z + c1))jk1 (w′′
k (z + c2))jk2 · · · (w(n)

k (z + cn))jkn , (1.4)

respectively, where the coefficients {a(i)(z)}, {b(j)(z)} are small functions with respect to both
w1 and w2 in the sense that

T (r, a(i)) = S(r, wk), T (r, b(i)) = S(r, wk), k = 1, 2,

as r tends to infinity outside of an exceptional set E of finite logarithmic measure
∫

E
dx
x < ∞.

Denote

λ11 = max
(i)

{ n∑
l=0

i1l

}
, λ12 = max

(i)

{ n∑
l=0

i2l

}
,

λ21 = max
(j)

{ n∑
l=0

j1l

}
, λ22 = max

(j)

{ n∑
l=0

j2l

}
,

μ11 = max
(i)

{ n∑
l=0

(l + 1)i1l

}
, μ12 = max

(i)

{ n∑
l=0

(l + 1)i2l

}
,

μ21 = max
(j)

{ n∑
l=0

(l + 1)j1l

}
, μ22 = max

(j)

{ n∑
l=0

(l + 1)j2l

}
.

Now, we will investigate the following systems of complex difference-differential equations:{
Ω1(z, w1, w2) = R1(z, w1),
Ω2(z, w1, w2) = R2(z, w2),

(1.5)

where Ω1(z, w1, w2), Ω2(z, w1, w2) are difference-differential polynomials defined as (1.3)–(1.4),
respectively, and

R1(z, w1) =
P1(z, w1)
Q1(z, w1)

=

p1∑
i=0

a1i(z)wi
1

q1∑
i=0

b1i(z)wi
1

,

R2(z, w2) =
P2(z, w2)
Q2(z, w2)

=

p2∑
i=0

a2i(z)wi
2

q2∑
i=0

b2i(z)wi
2

,
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with coefficients {a(i)(z)}, {b(j)(z)}, {aki(z)}, {bkj(z)}, k = 1, 2 being all meromorphic func-
tions and small functions with respect to both w1 and w2, a1p1b1q1 �= 0, a2p2b2q2 �= 0.

The difference-differential polynomial Ωk(z, w1, w2) is said to be homogeneous with respect
to wk(z) (k = 1, 2) if the degree dk = ik0 + ik1 + · · · + ikn of each term is non-zero and the
same for all i ∈ I.

The order of growth of a meromorphic solution (w1, w2) is defined as

ρ(w1, w2) = max{ρ(w1), ρ(w2)},

where
ρ(wk) = lim sup

r→∞
log T (r, wk)

log r
.

The main results are as follows.

Theorem 1.1 If (w1, w2) is a finite-order meromorphic solution of system (1.5), where
Ω1(z, w1, w2), Ω2(z, w1, w2) are homogeneous difference-differential polynomials in w1 and w2

respectively, Rk(z, wk), k = 1, 2 are irreducible rational functions in wk, and

max{q1, p1} > 1 + 2μ11 + μ12,

max{q2, p2} > 1 + 2μ21 + μ22.

Then N(r, w1) = S(r, w1) and N(r, w2) = S(r, w2) can not hold at the same time, possibly
outside of an exceptional set of finite logarithmic measure.

Theorem 1.2 If (w1, w2) is a finite-order meromorphic solution of system (1.5), where
Ω1(z, w1, w2), Ω2(z, w1, w2) are homogeneous difference-differential polynomials in w1 and w2

respectively, Rk(z, wk), k = 1, 2 are irreducible rational functions in wk, and

max{q2, p2} − μ22 > 0, max{q1, p1} − μ11 > 0,

(μ11 − max{q1, p1})(μ22 − max{q2, p2}) > μ12μ21 + λ12μ21,

(μ21 − max{q2, p2})(μ11 − max{q1, p1}) > μ22μ11 + λ22μ11.

Then there are
m(r, w1) = o(T (r, w1)), m(r, w2) = o(T (r, w2))

when r tends to infinity outside of an exceptional set of finite logarithmic measure.

2 Main Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1 (see [3]) Let f(z) be a meromorphic function. Then for all irreducible rational
functions in f ,

R(z, f(z)) =
P (z, f(z))
Q(z, f(z))

=

p∑
i=0

ai(z)f i

q∑
j=0

bj(z)f j



Some Properties of Meromorphic Solutions to Systems of Complex Differential-Difference Equations 723

such that the meromorphic coefficients ai(z), bj(z) satisfy

T (r, ai) = S(r, f), i = 0, 1, 2, · · · , p,

T (r, bj) = S(r, f), j = 0, 1, 2, · · · , q,

one has
T (r, R(z, f)) = max{p, q}T (r, f) + S(r, f).

Lemma 2.2 (see [4]) If f(z) is a transcendental meromorphic function, then

N(r, f (k)) ≤ (k + 1)N(r, f) + S(r, f),

T (r, f (k)) ≤ (k + 1)T (r, f).

Lemma 2.3 (see [13]) Let f(z) be a meromorphic function with order ρ = ρ(f), ρ < +∞,

and let c be a fixed nonzero complex number. Then for each ε > 0, one has

T (r, f(z + c)) = T (r, f(z)) + O(rρ−1+ε) + O(log r).

Lemma 2.4 (see [13]) Let f(z) be a nonconstant meromorphic function with order ρ =
ρ(f), ρ < +∞, and c be a fixed nonzero complex number. Then for each 1 > δ > 0, one has

m
(
r,

f(z + c)
f(z)

)
= o

(T (r, f(z))
rδ

)
= S(r, f),

m(r, f(z + c)) = m(r, f) + S(r, f)

for all r outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.5 Let f(z) be a nonconstant meromorphic function with order ρ = ρ(f), ρ <

+∞, and c be a fixed nonzero complex number. Then

m
(
r,

f (k)(z + c)
f(z)

)
= S(r, f),

m(r, f (k)(z + c)) ≤ m(r, f) + S(r, f)

for all r outside of a possibly exceptional set with finite logarithmic measure.

Proof By the logarithmic derivative lemma, there is

m
(
r,

f (k)(z + c)
f(z + c)

)
= S(r, f(z + c)) = S(r, f).

Then, from Lemma 2.4 and the above, we have

m
(
r,

f (k)(z + c)
f(z)

)
= m

(
r,

f (k)(z + c)
f(z + c)

f(z + c)
f(z)

)

≤ m
(
r,

f (k)(z + c)
f(z + c)

)
+ m

(
r,

f(z + c)
f(z)

)

= S(r, f).
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Moreover,

m(r, f (k)(z + c)) = m
(
r,

f (k)(z + c)
f(z)

f(z)
)

≤ m
(
r,

f (k)(z + c)
f(z)

) + m(r, f
)

= m(r, f) + S(r, f).

3 Proofs of the Theorems

Proof of Theorem 1.1 Suppose that (w1, w2) is a finite-order meromorphic solution of
the system (1.5). By the Lemma 2.1 and the system (1.5), there are

T (r, Ω1(r, w1, w2)) = T
(
r,

P1(z, w1)
Q1(z, w1)

)
= max{q1, p1}T (r, w1) + S(r, w1), (3.1)

T (r, Ω2(r, w1, w2)) = T
(
r,

P2(z, w2)
Q2(z, w2)

)
= max{q2, p2}T (r, w2) + S(r, w2) (3.2)

for all r outside of an exceptional set of finite logarithmic measure.

By Lemmas 2.4–2.5, we can get that

m(r, Ω1(r, w1, w2)) ≤ λ11m(r, w1) + λ12m(r, w2) + S(r, w1) + S(r, w2), (3.3)

m(r, Ω2(r, w1, w2)) ≤ λ21m(r, w1) + λ22m(r, w2) + S(r, w1) + S(r, w2) (3.4)

for all r outside of an exceptional set of finite logarithmic measure.

As

λ11 ≤ μ11, λ12 ≤ μ12, λ21 ≤ μ21, λ22 ≤ μ22,

m(r, Ω1(r, w1, w2)) ≤ μ11m(r, w1) + μ12m(r, w2) + S(r, w1) + S(r, w2), (3.5)

m(r, Ω2(r, w1, w2)) ≤ μ21m(r, w1) + μ22m(r, w2) + S(r, w1) + S(r, w2) (3.6)

for all r outside of an exceptional set of finite logarithmic measure.

Thus, from the assumptions of Theorem 1.1, combining (3.1) and (3.5), (3.2) and (3.6),
respectively, we have

N(r, Ω1(r, w1, w2)) ≥ (1 + μ11 + μ12)T (r, w1) − μ12m(r, w2) + S(r, w1) + S(r, w2), (3.7)

N(r, Ω2(r, w1, w2)) ≥ (1 + μ21 + μ22)T (r, w2) − μ21m(r, w1) + S(r, w1) + S(r, w2). (3.8)

However, on the other hand, it follows that

N(r, Ω1(r, w1, w2)) ≤ μ11N(r, w1) + μ12N(r, w2) + S(r, w1) + S(r, w2), (3.9)

N(r, Ω2(r, w1, w2)) ≤ μ21N(r, w1) + μ22N(r, w2) + S(r, w1) + S(r, w2). (3.10)
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So combing (3.9) and (3.7), (3.10) and (3.8), respectively, we can obtain

(1 + μ11 + μ12)T (r, w1)

≤ μ11T (r, w1) + μ12N(r, w2) + μ12T (r, w2) + S(r, w1) + S(r, w2), (3.11)

(1 + μ21 + μ22)T (r, w2)

≤ μ21N(r, w1) + μ22T (r, w2) + μ21T (r, w1) + S(r, w1) + S(r, w2). (3.12)

By the suppositions that N(r, w1) = S(r, w1) and N(r, w2) = S(r, w2), we can get by the last
inequality that

(1 + μ12)T (r, w1) ≤ μ12T (r, w2) + S(r, w1) + S(r, w2),

(1 + μ21)T (r, w2) ≤ μ21T (r, w1) + S(r, w1) + S(r, w2).

That is,

(1 + μ12 + o(1))T (r, w1) ≤ (μ12 + o(1))T (r, w2),

(1 + μ21 + o(1))T (r, w2) ≤ (μ21 + o(1))T (r, w1).

By the last inequation, we can get that

(1 + μ12)(1 + μ21) < μ12μ21.

Thus, from the last inequality, we can get a contradiction. Therefore, the proof of Theorem
1.1 is complete.

Proof of Theorem 1.2 Suppose that (w1, w2) is a finite-order meromorphic solution of
the system (1.5). By Lemmas 2.4–2.5, we can get that

m(r, Ω1(r, w1, w2)) ≤ λ11m(r, w1) + λ12m(r, w2) + S(r, w1) + S(r, w2), (3.13)

m(r, Ω2(r, w1, w2)) ≤ λ21m(r, w1) + λ22m(r, w2) + S(r, w1) + S(r, w2) (3.14)

for all r outside of an exceptional set of finite logarithmic measure.
By Lemma 2.1 and the system (1.5), there are

T (r, Ω1(r, w1, w2)) = T
(
r,

P1(z, w1)
Q1(z, w1)

)
= max{q1, p1}T (r, w1) + S(r, w1), (3.15)

T (r, Ω2(r, w1, w2)) = T
(
r,

P2(z, w2)
Q2(z, w2)

)
= max{q2, p2}T (r, w2) + S(r, w2) (3.16)

for all r outside of an exceptional set of finite logarithmic measure.
So, combining (3.13) and (3.15), (3.14) and (3.16), respectively, we can have

N(r, Ω1(r, w1, w2)) + λ11m(r, w1) + λ12m(r, w2) + S(r, w1) + S(r, w2)

≥ m(r, Ω1(r, w1, w2)) + N(r, Ω1(r, w1, w2)) = T (r, Ω1(r, w1, w2))

= max{q1, p1}T (r, w1) + S(r, w1), (3.17)

N(r, Ω2(r, w1, w2)) + λ21m(r, w1) + λ22m(r, w2) + S(r, w1) + S(r, w2)

≥ m(r, Ω2(r, w1, w2)) + N(r, Ω2(r, w1, w2)) = T (r, Ω2(r, w1, w2))

= max{q2, p2}T (r, w2) + S(r, w1) (3.18)
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for all r outside of an exceptional set of finite logarithmic measure.
Moreover, by Lemma 2.2, it follows that

N(r, Ω1(r, w1, w2)) ≤ μ11N(r, w1) + μ12N(r, w2) + S(r, w1) + S(r, w2), (3.19)

N(r, Ω2(r, w1, w2)) ≤ μ21N(r, w1) + μ22N(r, w2) + S(r, w1) + S(r, w2) (3.20)

for all r outside of an exceptional set of finite logarithmic measure. Therefore, from (3.17) and
(3.19), there is

max{q1, p1}T (r, w1)

≤ μ11N(r, w1) + μ12N(r, w2) + λ11m(r, w1) + λ12m(r, w2) + S(r, w1) + S(r, w2)

≤ (λ11 − μ11)m(r, w1) + μ11T (r, w1) + (μ12 + λ12)T (r, w2) + S(r, w1) + S(r, w2).

That is

(μ11 − λ11)m(r, w1)

≤ (μ11 − max{q1, p1} + o(1))T (r, w1) + (μ12 + λ12 + o(1))T (r, w2) (3.21)

for all r outside of an exceptional set of finite logarithmic measure. By (3.18) and (3.20), there
is

max{q2, p2}T (r, w2)

≤ μ21N(r, w1) + μ22N(r, w2) + λ21m(r, w1) + λ22m(r, w2) + S(r, w1) + S(r, w2)

≤ μ21T (r, w1) + μ22T (r, w2) + S(r, w1) + S(r, w2).

Thus

(max{q2, p2} − μ22 + o(1))T (r, w2) ≤ (μ21 + o(1))T (r, w1). (3.22)

Therefore, by the supposition that

max{q2, p2} − μ22 > 0,

combining (3.21)–(3.22), we can obtain

(μ11 − λ11)m(r, w1) ≤ (μ11 − max{q1, p1} + o(1))T (r, w1)

+
(μ12 + λ12 + o(1))(μ21 + o(1))

max{q2, p2} − μ22
T (r, w1).

Therefore,

(μ11 − λ11)m(r, w1) ≤
(
μ11 − max{q1, p1} +

μ12μ21 + λ12μ21 + o(1)
max{q2, p2} − μ22

)
T (r, w1).

By the supposition that

(μ11 − max{q1, p1})(μ22 − max{q2, p2}) > μ12μ21 + λ12μ21
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and the last inequality, we have

m(r, w1) = o(T (r, w1))

for all r outside of a set of finite logarithmic measure.
Similarly, we can also obtain that

m(r, w2) = o(T (r, w2))

for all r outside of a set of finite logarithmic measure.
Therefore, we have completed the proof of Theorem 1.2.
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