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Abstract In the dual risk model, the surplus process of a company is a Lévy process
with sample paths that are skip-free downwards. In this paper, the authors assume that
the surplus process is the sum of a compound Poisson process and an independent Wiener
process. The dual of the jump-diffusion risk model under a threshold dividend strategy is
discussed. The authors derive a set of two integro-differential equations satisfied by the
expected total discounted dividend until ruin. The cases where profits follow an exponential
or mixtures of exponential distributions are solved. Applying the key method of the Laplace
transform, the authors show how the integro-differential equations are solved. The authors
also discuss the conditions for optimality and show how an optimal dividend threshold can
be calculated as well.
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1 Introduction

The optimal dividend problem proposed by de Finetti [10] in the XVth international congress
of actuaries is to find the dividend-payment strategy that maximizes the expected discounted
value of dividends which are paid to the shareholders until the company is ruined or bankrupt.
He assumed that the annual gains of a stock company are independent and identically dis-
tributed random variables that only take the value −1 or +1. He also claimed that the optimal
dividend strategy is a barrier strategy, that is, any surplus above a certain level should be paid
to the shareholders immediately as dividends.

The optimal dividend problem in the classical compound Poisson model was first discussed
by Bühlmann [8]. [2, 16] studied the problem with a bounded dividend rate in a Brownian
motion model. They assumed that only dividend strategies with a ceiling for the dividend rate
are admissible. They showed that the optimal dividend strategy is then a threshold strategy,
that is, dividends should be paid to the shareholders at the maximal admissible rate once the
surplus exceeds a certain threshold. A down-to-earth calculation can be found in Gerber and
Shiu [14].

In insurance mathematics, the classical risk model has drawn the attention from researchers
for decades. The surplus in the classical model at time t can be presented as

U(t) = u + ct − S(t), (1.1)
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where u is the initial surplus, c is the premium rate, and S(t) usually modeled by a compound
Poisson process are the aggregate claims by time t. In this model, the optimal dividend strategy
is not a barrier strategy in general (see [8]). In recent years, quite a few papers discussed the
dual model to the classical insurance model. In the dual model, the surplus at time t is

U(t) = u − ct + S(t). (1.2)

For example, Avanzi et al. [4] studied the expected total discounted dividends until ruin under
the barrier strategy. Avanzi and Gerber [5] studied a dual model perturbed by diffusion and
discussed how to determine the optimal value of the barrier. Ng [19] studied the optimal divi-
dend problem under the bounded dividend rate constraint and calculated the optimal threshold
by means of integro-differential equations.

In this paper, we discuss the dual risk model perturbed by diffusion with a bounded dividend
rate constraint. Now the surplus at time t is

U(t) = u − ct + σW (t) + S(t), t � 0. (1.3)

We assume E(S(1)) − c > 0, which means the expected gain per unit time is positive. The
diffusion term adds uncertainty to the expenses. It makes the model closer to the reality. Indeed,
the expense rate can not be a constant in finance. Such a bounded dividend rate constraint
makes our optimal strategy turn out to be a threshold strategy, that is, the company pays
dividends at an admissible maximal rate when the surplus exceeds a threshold b. Comparing
with the barrier strategy at the same level b, the time of ruin under the threshold strategy is
longer, which makes the company prefer the threshold strategy. Indeed, the company with the
barrier dividend policy will eventually go bankrupt, which is discrepant to the real cash flow.

This paper is inspired by [5, 19]. We formulate the problem and prove that the optimal
strategy in our problem is a threshold strategy in Sections 2–3. In Section 4, we show that the
expected total discounted dividends until ruin, denoted as V (u; b), can be characterized as the
solution of a set of two second order integro-differential equations in conjunction with three
boundary conditions. It is shown that V (u; b) can purely depend on the integro-differential
equation satisfied by 0 � u � b. We study the special cases where the profits distribution is
an exponential or mixtures of exponential distributions. Section 5 introduces an alternative
approach— the method of the Laplace transform— to obtain the expected total discounted
dividends until ruin. Finally, we introduce the optimal threshold b∗ in Section 6. With the
help of V (b∗; b∗) = c2−c1

δ + 1

R
(2)
δ

and Vu(b∗; b∗) = 1, b∗ and V (u; b∗) can be determined by the

method of the Laplace transform.

2 Problem Formulation

We consider the dual risk model perturbed by diffusion. The surplus process {X(t)} is given
by

X(t) = u − ct + S(t) + σW (t), t � 0. (2.1)

Here u = X(0) is the initial surplus, and c is a positive constant which stands for the rate of
expense. The aggregate profits process {S(t)} is assumed to be a compound Poisson process,
i.e.,

S(t) =
N(t)∑
i=1

Yi,
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where {N(t)} is a Poisson process with a Poisson parameter λ and individual profit amount Yi’s
are independent and identically distributed with the probability density function p(y), y � 0.
{W (t)} is a standard Wiener process which is independent of {S(t)} and the volatility σ > 0 is
a constant. The diffusion term adds uncertainty to the expenses which makes the model closer
to the reality.

We now enrich the model. We assume that the dividends are paid to the shareholders
according to some dividend strategies. Let D(t) denote the aggregate dividends paid from time
0 to time t, and then the modified surplus process at time t is

U(t) = u − ct + S(t) + σW (t) − D(t), t � 0. (2.2)

Let

T = inf{t � 0 | U(t) � 0} (2.3)

be the time of ruin and

D =
∫ T

0

e−δtdD(t) (2.4)

be the present value of all aggregate dividends until ruin, where δ > 0 is the force of interest to
discount the dividends. The company looks for a dividend strategy to maximize the expectation
of the random variable D.

For a given D(·), the cost functional is defined by

VD(u) = E

[ ∫ T

0

e−δtdD(t) | U(0) = u
]

= E[D | U(0) = u]. (2.5)

The value function is defined by

V (u) = sup
D(·)∈A

E[D | U(0) = u], u � 0, (2.6)

where A is a class of processes called admissible controls which will be described below.
We study this stochastic optimal control problem under the constraint that only dividend

strategies with a dividend rate bounded by a ceiling are admissible. We call a dividend strategy
admissible if it is non-negative, non-decreasing, absolutely continuous and rate bounded. Thus,
we assume

dD(t) � αdt, (2.7)

where α < ∞ is the dividend rate ceiling.

3 Dynamic Programming

3.1 HJB equation

Proposition 3.1 The value function V defined by (2.6) satisfies the Hamilton-Jacobi-
Bellman (HJB for short) functional equation

max
0�r�α

{r − (c + r)V ′(u)} +
σ2

2
V ′′(u) − (λ + δ)V (u)

+ λ

∫ ∞

0

V (u + y)p(y)dy = 0, u � 0. (3.1)
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Proof We use Bellman’s dynamic programming principle to prove (3.1). We consider a
small time interval [0, ε], ε > 0. Suppose that dividends are paid at rate r between time 0 and
time ε, and then continue optimally. By conditioning on whether a jump occurs at the time
interval [0, ε] and on the amount of the jump, we can obtain that the expectation of the present
value of all dividends until ruin is

rε + e−δε
E

[
(1 − λε)V (u − (c + r)ε + σW (ε)) + λε

∫ ∞

0

V (u + y)p(y)dy
]

+ o(ε). (3.2)

Since

e−δε = 1 − δε + o(ε),

E[V (u − (c + r)ε + σW (ε))] = V (u) − V ′(u)(c + r)ε +
σ2

2
εV ′′(u) + o(ε),

the expression (3.2) is equal to[
r +

σ2

2
V ′′(u) − (c + r)V ′(u) − (λ + δ)V (u) + λ

∫ ∞

0

V (u + y)p(y)dy
]
ε + V (u) + o(ε). (3.3)

Because V (u) is the optimal value, it must be equal to the maximum value of the expression
(3.3), where r ∈ [0, α]. Thus, we obtain the functional equation (3.1).

On the left-hand side of the equation (3.1), the expression to be maximized is

r[1 − V ′(u)]

for r ∈ [0, α]. Thus, the optimal dividend rate at time 0 is

r = 0 if V ′(u) > 1,

r = α if V ′(u) < 1.

Then, at time t ∈ [0, T ], the optimal dividend rate is

r = 0 if V ′(U(t)) > 1,

r = α if V ′(U(t)) < 1.
(3.4)

Such a dividend strategy has the character of a bang-bang strategy.

Remark 3.1 (3.4) can be interpreted as follows: When V ′(U(t)) > 1, the company can be
considered efficient, so it is best to leave all the funds with the company and pay no dividend.
On the other hand, when V ′(U(t)) < 1, the company is inefficient, it is advantageous to pay
out as many dividends as allowable. The problem of decision between dividend payout and
plowback is a classical problem in corporate finance.

3.2 Verification of optimality
We have shown that the value function V satisfies the HJB equation (3.1). However, this

does not guarantee that any solution of the HJB equation (3.1) is the value function. The
following theorem (the verification theorem) shows that a strategy is indeed an optimal strategy
if its corresponding cost functional satisfies the HJB equation (3.1).

Theorem 3.1 Suppose that v(u) satisfies the HJB equation (3.1). Then for all u � 0,
suppose that v is a C2-function satisfying the HJB equation (3.1), and then, for all u � 0 and
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D(·) ∈ A, we have that v(u) � VD(u). Consequently, if there exists a D∗(·) ∈ A such that
v(u) = VD∗(u), then

v(u) = sup
D(·)∈A

E[D | U(0) = u] = V (u).

Proof Consider any admissible dividend strategies with dividend rate r(t) and surplus U(t)
at time t. We claim that

E

[ ∫ T

0

e−δtr(t)dt | U(0) = u
]

� v(u). (3.5)

To prove (3.5), we consider the compensated process

{
e−δtv(U(t)) −

∫ t

0

e−δτκ(τ)dτ
}

, 0 � t � T, (3.6)

where

κ(τ) = lim
ε→0

1
ε
E[e−δεv(U(τ + ε)) − v(U(τ)) | U(τ)]. (3.7)

Note that κ(τ) is the generator of the Itô diffusion, and then (3.6) is a martingale (see [20,
Theorem 7.3.3, p. 123]). We have

E

[
e−δ(t∧T )v(U(t ∧ T )) −

∫ t∧T

0

e−δτκ(τ)dτ | U(0) = u
]

= v(u), (3.8)

which implies

E

[
−

∫ t∧T

0

e−δτκ(τ)dτ | U(0) = u
]

� v(u). (3.9)

By a calculation similar to that by which we obtained (3.3), we see

κ(τ) = [−c − r(τ)]v′(U(τ)) +
σ2

2
v′′(U(τ)) − (λ + δ)v(U(τ))

+ λ

∫ ∞

0

v(U(τ) + y)p(y)dy. (3.10)

Because the function v(u) satisfies the HJB equation (3.1), the sum of r(τ) and the expression
(3.10) can not be positive. That is,

r(τ) + κ(τ) � 0. (3.11)

Together with (3.9), we have

E

[ ∫ t∧T

0

e−δτ r(τ)dτ | U(0) = u
]

� v(u). (3.12)

Finally, (3.5) can be obtained by taking the limit t → ∞. Then we have v(u) � VD(u). The
remainder of the theorem is obvious, so the proof is completed.
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4 Integro-Differential Equations

If the solution of the HJB equation (3.1) has the property that V ′(x) > 1 for x < b and
V ′(x) < 1 for x > b, for some number b, then the optimal dividend strategy is particularly
appealing: When 0 < U(t) < b, no dividends are paid, otherwise, when U(t) > b, dividends are
paid at the maximal rate α. Such a dividend strategy is called a threshold strategy. After a
threshold dividend strategy with a threshold level b applied, the dynamics of the surplus process
U(t) become

dU(t) = −c̃(U(t)) + σdW (t) + dS(t), U(0) = u, (4.1)

where

c̃(x) =
{

c1 = c, when 0 � x < b,
c2 = c + α, when x > b.

The present value of all aggregate dividends until ruin is

D(b) = (c2 − c1)
∫ T

0

e−δtI(U(t) > b)dt,

where I is the identity operator. The expected present value of all aggregate dividends until
ruin is

V (u; b) = E[D(b) | U(0) = u].

Since the surplus U(t) has different paths for 0 � U(t) < b and U(t) > b, then we define

V (u; b) =
{

V1(u), when 0 � u < b,
V2(u), when u > b.

We derive a set of integro-differential equations satisfied by V (u; b) in the following propo-
sition.

Proposition 4.1 The expectation of the discounted dividend V (u; b) satisfies the following
integro-differential equations: When 0 � u < b,

(λ + δ)V1(u) + c1V
′
1 (u) − σ2

2
V ′′

1 (u)

= λ

∫ b−u

0

V1(u + y)p(y)dy + λ

∫ ∞

b−u

V2(u + y)p(y)dy, (4.2)

and when u > b,

(λ + δ)V2(u) + c2V
′
2(u) − σ2

2
V ′′

2 (u) = λ

∫ ∞

0

V2(u + y)p(y)dy + c2 − c1, (4.3)

with the initial condition V1(0) = 0, and continuity conditions V1(b) = V2(b) and V ′
1(b) = V ′

2(b).

Proof Firstly, we consider the case where u > b and fix a small enough time τ such that
u − c2τ + σW (τ) > b. By conditioning on whether a jump occurs and on the amount of the
jump at the time interval [0, τ ], it follows that

V2(u) = (c2 − c1)
1 − e−δτ

δ
+ E[e−(δ+λ)τV2(u − c2τ + σW (τ))]
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+ E

[ ∫ τ

0

λe−(λ+δ)t

∫ ∞

0

V2(u − c2t + σW (t) + y)p(y)dydt
]
. (4.4)

Combining with the identities

e−(δ+λ)τ = 1 − (δ + λ)τ + o(τ), e−δτ = 1 − δτ + o(τ)

and

E[V2(u − c2τ + σW (τ))] = V2(u) − c2τV ′
2 (u) +

σ2

2
τV ′′

2 (u) + o(τ),

we subtract V2(u) on both sides of (4.4), divide by τ and let τ → 0. This induces (4.3).
Using a similar argument, we can also derive the corresponding integro-differential equation

satisfied by V1(u).
Since ruin occurs immediately if the initial surplus is zero and no dividend is paid, the initial

condition holds.

Remark 4.1 Though V (u; b) and Vu(u; b) are continuous at b, it may not be the case for
Vuu(u; b). Indeed, from (4.2),

(λ + δ)V1(b−) + c1V
′
1(b−) − σ2

2
V ′′

1 (b−) = λ

∫ ∞

0

V2(b + y)p(y)dy,

while from (4.3),

(λ + δ)V2(b+) + c2V
′
2(b+) − σ2

2
V ′′

2 (b+) = λ

∫ ∞

0

V2(b + y)p(y)dy + c2 − c1.

As a result,

c2V
′
2(b+) − c1V

′
1(b−) − σ2

2
[V ′′

2 (b+) − V ′′
1 (b−)] = c2 − c1, (4.5)

which implies that

V ′′
1 (b−) �= V ′′

2 (b+),

unless V ′
1(b−) = V ′

2(b+) = 1. This fact will be used later in the determination of the optimal
level of threshold.

Remark 4.2 For further reference, it is useful to rewrite the integro-differential equations
as follows: When 0 � u � b,

(λ + δ)V1(u) + c1V
′
1(u) − σ2

2
V ′′

1 (u) = λ

∫ b

u

V1(x)p(x − u)dx + λ

∫ ∞

b

V2(x)p(x − u)dx, (4.6)

and when u > b,

(λ + δ)V2(u) + c2V
′
2(u) − σ2

2
V ′′

2 (u) = λ

∫ ∞

u

V2(x)p(x − u)dx + c2 − c1. (4.7)

Remark 4.3 When σ = 0, for 0 � u � b,

(λ + δ)V1(u) + c1V
′
1(u) = λ

∫ b−u

0

V1(u + y)p(y)dy + λ

∫ ∞

b−u

V2(u + y)p(y)dy,

and for u > b,

(λ + δ)V2(u) + c1V
′
2(u) = λ

∫ ∞

0

V2(u + y)p(y)dy + c2 − c1.

These results were obtained in [19].
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4.1 Explicit results for exponentially distributed profits
In this section, we obtain the explicit solution of (4.6)–(4.7) when jump amounts are expo-

nentially distributed.
Let profits Yi’s follow an exponential distribution with p(y) = βe−βy for y > 0. Substituting

the distribution density function into (4.7), we have, for u > b,

(λ + δ)V2(u) + c2V
′
2(u) − σ2

2
V ′′

2 (u) = λβ

∫ ∞

u

V2(y)e−βydy + (c2 − c1).

Applying the operator
(

d
du − β

)
to both sides, we get

σ2

2
V ′′′

2 (u) −
(βσ2

2
+ c2

)
V ′′

2 (u) + (c2β − λ − δ)V ′
2 (u) + βδV2(u) − β(c2 − c1) = 0.

The third-order linear differential equation above has a particular solution c2−c1
δ . Since the

characteristic equation of the differential equation

1
2
σ2r3 −

(βσ2

2
+ c2

)
r2 + (c2β − λ − δ)r + βδ = 0

has a negative root r1 and two positive roots r2, r3 (r1 < 0 < r2 < β < r3), we obtain

V2(u) = D1er1u + D2er2u + D3er3u +
c2 − c1

δ
,

where D1, D2 and D3 are undetermined coefficients. From

(c2 − c1)
∫ T

0

e−δtI(U(t) > b)dt < (c2 − c1)
∫ ∞

0

e−δtdt =
c2 − c1

δ
,

it is clear that
0 � V (u; b) � c2 − c1

δ
.

We have D3 � 0. To prove that D3 = 0, we consider the derivative of V2(u):

V ′
2(u) = D1r1er1u + D2r2er2u + D3r3er3u.

If D3 < 0, then V ′
2 (u) < 0 for sufficiently large values of u, which contradicts the fact that V2

is increasing in u. Thus, D3 = 0 and D1 < 0. Using exactly the same argument, we can also
derive that D2 = 0. Therefore,

V2(u) = D1er1u +
c2 − c1

δ
. (4.8)

To solve V1, we substitute the expression for V2(u) above into (4.6) and obtain

(λ + δ)V1(u) + c1V
′
1 (u) − σ2

2
V ′′

1 (u) = λβeβu

∫ b

u

V1(y)e−βydy +
λβD1

β − r1
e(r1−β)b+βu

+
λ(c2 − c1)

δ
e−β(b−u)

for 0 � u � b. Applying the operator
(

d
du − β

)
to both sides, we have

σ2

2
V ′′′

1 (u) −
(βσ2

2
+ c1

)
V ′′

1 (u) + (c1β − λ − δ)V ′
1(u) + βδV1(u) = 0.
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Hence

V1(u) = E1es1u + E2es2u + E3es3u, (4.9)

where E1, E2 and E3 are undetermined coefficients. s1, s2 and s3 (s1 < 0 < s2 < β < s3) are
the solutions of the characteristic equation

1
2
σ2s3 −

(βσ2

2
+ c1

)
s2 + (c1β − λ − δ)s + βδ = 0.

Since V1(0) = 0, we have

E1 + E2 + E3 = 0. (4.10)

On the other hand, with the continuity condition: V1(b−) = V2(b+), we have

E1es1b + E2es2b + E3es3b = D1er1b +
c2 − c1

δ
. (4.11)

With the first-order continuity condition: V ′
1(b−) = V ′

2(b+), we have

E1s1es1b + E2s2es2b + E3s3es3b = D1r1er1b. (4.12)

Substituting back the solution for V1(u) and V2(u) into (4.6), we have

(λ + δ)(E1es1u + E2es2u + E3es3u) + c1(s1E1es1u + s2E2es2u + s3E3es3u)

− σ2

2
(s2

1E1es1u + s2
2E2es2u + s2

3E3es3u)

= λβeβu

∫ b

u

[E1es1y + E2es2y + E3es3y]e−βydy

+ λβeβu

∫ ∞

b

[
D1er1y +

c2 − c1

δ

]
e−βydy.

Since the expression above must be satisfied for all 0 < u < b, the sum of the coefficients of eβu

is zero, i.e.,

E1es1b

s1 − β
+

E2es2b

s2 − β
+

E3es3b

s3 − β
+

D1er1b

β − r1
+

c2 − c1

βδ
= 0. (4.13)

We have (4.10)–(4.13) to solve for E1, E2, E3 and D1. Then the solution for V (u; b) can be
expressed as

V (u; b) =

{
E1es1u + E2es2u + E3es3u for 0 � u � b;

D1er1u +
c2 − c1

δ
for u > b.

4.2 V (u; b) as a function of V1(u)
When profits follow an exponential distribution, we have

V2(u) = D1er1u +
c2 − c1

δ

for D1 < 0. In this section, we show that the presentation above holds for any other profit
distribution, which implies that V (u; b) can be expressed as a function of V1(u). So it is not
necessary to solve V2(u) explicitly.

Firstly, we need to deduce the generalized Lundberg fundamental equation, which plays an
important role in the risk theory.
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Lemma 4.1 Consider a compound Poisson jump-diffusion dual model, where no dividend-
distribution policy is imposed and expenses are paid continuously at a constant rate c,

Ũ(t) = u − ct + σW (t) + S(t).

Then the Laplace transform of the time of ruin, φ(u), is given by

φ(u) = E[e−δT | Ũ(0) = u] = eRδu,

where Rδ is the unique non-positive root of the generalized Lundberg fundamental equation

−δ − θc + λ(MY (θ) − 1) +
1
2
σ2θ2 = 0, (4.14)

where MY is the moment-generating function of Yi.

Proof Consider a process {Zθ(t) : t � 0} defined by Zθ(t) = e−δt+θŨ(t). Since {Ũ(t)} has
independent and stationary increments, {Zθ(t)} is a martingale if and only if E(Zθ(t)) = Zθ(0).
This condition is equivalent to

exp
(
− δt + θu − θct + λt(MY (θ) − 1) +

1
2
σ2θ2t

)
= exp(θu).

Then, we obtain the generalized Lundberg fundamental equation

−δ − θc + λ(MY (θ) − 1) +
1
2
σ2θ2 = 0.

Let Rδ be the unique non-positive root of (4.14), and note that 0 < ZRδ
(t) � 1 for 0 � t � T

gives that {ZRδ
(t ∧ T )} is a bounded martingale. An application of the optional sampling

theorem shows E(ZRδ
(t ∧ T )) = ZRδ

(0) for every t. By applying the dominated convergence
theorem, we can obtain E(ZRδ

(T )) = ZRδ
(0), which is the result asserted.

Remark 4.4 By considering the slope of λ(MY (θ) − 1) − θc + 1
2σ2θ2, it can be observed

that Rδ = 0 if and only if δ = 0 and c � λμ, where μ is the mean of Yi. Since we assume δ > 0,
Rδ will be strictly less than 0 no matter the drift of {Ũ(t)} is positive or not.

Theorem 4.1 For u > b,

V (u; b) = (c2 − c1)
1 − eR

(2)
δ (u−b)

δ
+ eR

(2)
δ (u−b)V (b; b), (4.15)

where R
(2)
δ is the unique negative root of the generalized Lundberg fundamental equation

λ(MY (θ) − 1) − c2θ +
1
2
σ2θ2 = δ.

Proof Let χ = u − b and denote the first passage time until the surplus process descends
χ units by T

(2)
−χ. We consider a life status with the failure time T

(2)
−χ. Dividends are paid at the

rate (c2 − c1) until T
(2)
−χ. A life insurance of 1 payable at time T

(2)
−χ discounted at a continuously

compounded rate of δ has the expected present value A = eR
(2)
δ χ according to Lemma 4.1. With

the relation A + δa = 1, we have a = 1−eR
(2)
δ

χ

δ . Since the total discounted dividends until ruin
are the sum of the continuous annuity payable until T

(2)
−χ with a payment rate (c2 − c1) and the

discounted dividends until ruin after the first downcrossing level b,

V (b + χ; b) = (c2 − c1)a + AV (b; b)
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= (c2 − c1)
1 − eR

(2)
δ

χ

δ
+ eR

(2)
δ

χV (b; b), (4.16)

which is the result asserted. This method is discussed in [19].

In view of Theorem 4.1, we do not need to solve V2(u) to obtain V (u; b) when 0 � u � b.
Instead, we can directly substitute (4.16) into (4.2) to obtain an integro-differential equation
to solve V (u; b) when 0 � u � b:

(δ + λ)V (u; b) + c1Vu(u; b) − σ2

2
Vuu(u; b)

= λ

∫ b−u

0

V (u + y; b)p(y)dy +
λ(c2 − c1)

δ

∫ ∞

b−u

p(y)dy

+ λ
[
V (b; b) − c2 − c1

δ

] ∫ ∞

b−u

eR
(2)
δ

(u−b+y)p(y)dy. (4.17)

The equation above is analogous to Equation (2.4) in [5] with the exception of the term
involving R

(2)
δ .

Remark 4.5 When profits follow an exponential distribution, we have already proved

V2(u) = D1er1u +
c2 − c1

δ
.

Together with (4.15), we can verify that⎧⎨⎩r1 = R
(2)
δ ,

D1 =
(
V (b; b) − c2 − c1

δ

)
e−R

(2)
δ b.

(4.18)

4.3 Mixtures of exponential distributions
In this section we show how V (u; b) can be calculated when

p(y) =
n∑

i=1

Aiβie−βiy, y > 0, (4.19)

where β1 < β2 < β3 < · · · < βn, Ai > 0, and A1 + A2 + · · · + An = 1.
For notational convenience, we write

V2(u) = Geru +
c2 − c1

δ
, (4.20)

where G = [V (b; b) − c2−c1
δ ]e−R

(2)
δ b and r = R

(2)
δ .

The substitution of (4.19) in (4.6) induces

(δ + λ)V1(u) + c1V
′
1(u) − σ2

2
V ′′

1 (u)

= λ

n∑
i=1

Aiβieβiu

∫ b

u

V1(y)e−βiydy

+
λ(c2 − c1)

δ

n∑
i=1

Aieβi(b−u) + λG
n∑

i=1

Aiβi

βi − r
e−(βi−r)b+βiu. (4.21)
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Applying the operator
(

d
du −β1

)(
d
du −β2

) · · · ( d
du −βn

)
to both sides, we obtain an (n+2)-th

order homogeneous linear differential equation (with undetermined coefficients) for V (u; b). We
assume that the roots of the corresponding characteristic equation are distinct. Hence, we get

V1(u) =
n+1∑
k=0

Ckesku, 0 � u � b, (4.22)

where s0 < s1 < · · · < sn+1 and C1, C2,· · · , Cn+1 are undetermined coefficients.
Substituting V1(u) into the original integro-differential equation (4.2), we obtain

n+1∑
k=0

(
λ + δ + c1sk − 1

2
σ2s2

k

)
Ckesku

= λ
n∑

i=1

n+1∑
k=0

AiβiCk

βi − sk
(esku − e−(βi−sk)b+βiu)

+ λG

n∑
i=1

Aiβi

βi − r
e−(βi−r)b+βiu +

λ(c2 − c1)
δ

n∑
i=1

Aie−βi(b−u).

Since the expression above holds for all 0 � u � b, by comparing the coefficients of esku and
eβiu, we obtain

δ + λ + c1sk − 1
2
σ2s2

k = λ
n∑

i=1

Aiβi

βi − sk
, k = 0, 1, 2, · · · , n + 1 (4.23)

and

n+1∑
k=0

Ckeskb

βi − sk
=

Gerb

βi − r
+

c2 − c1

βiδ
, i = 1, 2, 3, · · · , n. (4.24)

Hence, s0, s1, s2, · · · , sn+1 are the roots of

δ + λ + c1s − 1
2
σ2s2 = λ

n∑
i=1

Aiβi

βi − s

and

s0 < 0 < s1 < β1 < s2 < β2 < · · · < βn−1 < sn < βn < sn+1.

Finally, combining (4.24) with the initial condition and the continuity conditions

n∑
k=0

Ck = 0,

n∑
k=0

Ckeskb = Gerb +
c2 − c1

δ
,

n∑
k=0

Ckskeskb = Grerb,

we have a system of n + 3 equations to solve C0, C1, · · · , Cn+1 and G. Then the solution for
V (u; b) can be expressed as

V (u; b) =

⎧⎪⎪⎨⎪⎪⎩
n∑

k=0

Ckesku for 0 � u � b;

Geru +
c2 − c1

δ
for u > b.

(4.25)
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5 Laplace Transforms

In the last section, we have already calculated V (u; b) purely depending on the integro-
differential equation satisfied by 0 � u � b and have illustrated the result explicitly for the
exponential distribution and mixtures of exponential distributions. Now, we introduce an al-
ternative method for the general cases.

Considering the convolution form in the integral part of (4.2)–(4.3), we apply the Laplace
transform to solve V (u; b). In order to discuss the domain of the Laplace transform, we replace
the variable u by z = b − u for 0 < u � b. z denotes the distance between the threshold and
the initial surplus, and we define W by

W (z; b) = V (b − z; b), 0 � z � b.

In particular,

W (0; b) = V (b; b)

and

W (b; b) = 0.

In terms of the function W (z; b), the integro-differential equation (4.17) becomes

(δ + λ)W (z; b) + c1Wz(z; b)− σ2

2
Wzz(z; b)

= λ

∫ z

0

W (y; b)p(z − y)dy +
λ(c2 − c1)

δ

∫ ∞

z

p(y)dy

+ λ
[
W (0; b) − c2 − c1

δ

] ∫ ∞

z

eR
(2)
δ

(y−z)p(y)dy (5.1)

with the initial condition W (0; b) = V (b; b) and the boundary condition W (b; b) = 0.
We extend the definition of W by (5.1) to z � 0 and denote the resulting function by w.

Then, the equation (5.1) becomes

(δ + λ)w(z) + c1w
′(z) − σ2

2
w′′(z)

= λ

∫ z

0

w(y)p(z − y)dy +
λ(c2 − c1)

δ

∫ ∞

z

p(y)dy

+ λ
[
w(0) − c2 − c1

δ

] ∫ ∞

z

eR
(2)
δ (y−z)p(y)dy (5.2)

with two constraints w(0) = V (b, b) and w(b) = 0.
Let ŵ and p̂ be the Laplace transform of w and the density p, respectively. Namely,

ŵ(ξ) =
∫ ∞

0

e−ξzw(z)dz, p̂(ξ) =
∫ ∞

0

e−ξyp(y)dy.

Taking the Laplace transforms in the equation (5.2) for w(z) and p(y), we obtain

(λ + δ) + c1w(0) − c1ξŵ(ξ) − 1
2
σ2w′(0) +

1
2
σ2ξw(0) − 1

2
σ2ξ2ŵ(ξ)

= λŵ(ξ)p̂(ξ) +
λ(c2 − c1)

δ

1 − p̂(ξ)
ξ

+ λ
[
w(0) − c2 − c1

δ

] p̂(−R
(2)
δ ) − p̂(ξ)

ξ + R
(2)
δ

(5.3)
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and hence

ŵ(ξ) =
A(ξ)

c1ξ + 1
2σ2ξ2 + λp̂(ξ) − (λ + δ)

, (5.4)

where

A(ξ) = c1w(0) − 1
2
σ2w′(0) +

1
2
σ2ξw(0) + λw(0)

p̂(ξ) − p̂(−R
(2)
δ )

ξ + R
(2)
δ

+
λ(c2 − c1)

δ

R
(2)
δ [p̂(ξ) − 1] + ξ[p̂(−R

(2)
δ ) − 1]

ξ(ξ + R
(2)
δ )

.

We thus have the following procedure for determining V (u; b) and b for a given value of w(0) =
V (b; b) and w′(0) = Vu(b; b). Firstly, determine w(z) by the inversion of (5.4). Then the
underlying value of b follows from the condition that w(b) = 0. Finally, V (u; b) = w(b − u),
0 � u � b.

Remark 5.1 It is easy to see from the graph of

−1
2
σ2θ2 + θc2 + λ + δ = λMY (θ)

that R
(2)
δ → 0 when c2 → ∞. As a result, the limit of the final term in A(ξ) is

lim
c2→∞

λ(c2 − c1)
δ

R
(2)
δ [p̂(ξ) − 1] + ξ[p̂(−R

(2)
δ ) − 1]

ξ(ξ + R
(2)
δ )

= λ lim
c2→∞

c2

δ

R
(2)
δ [p̂(ξ) − 1] + ξ[p̂(−R

(2)
δ ) − 1]

ξ(ξ + R
(2)
δ )

= λ lim
R

(2)
δ →0

λ[MY (R(2)
δ ) − 1] + 1

2σ2(R(2)
δ )2 − δ

δξ(ξ + R
(2)
δ )

R
(2)
δ [p̂(ξ) − 1] + ξ[p̂(−R

(2)
δ ) − 1]

R
(2)
δ

= λ lim
R

(2)
δ →0

− 1
ξ2

{
[p̂(ξ) − 1] +

ξ[p̂(−R
(2)
δ )] − p̂(0)

R
(2)
δ

}
= − λ

ξ2
[p̂(ξ) − 1 − ξp̂′(0)].

It means that when c2 → ∞,

ŵ(ξ) →
c1w(0) − 1

2σ2w′(0) + 1
2σ2ξw(0) + λ

ξ w(0)[p̂(ξ) − 1] − λ
ξ2 [p̂(ξ) − 1 − ξp̂′(0)]

c1ξ + 1
2σ2ξ2 + λp̂(ξ) − (λ + δ)

,

which is the Laplace transform of the corresponding w for the barrier strategy (see (4.5) in [5]).
Thus, the barrier strategy can be viewed as a limiting case of the threshold strategy.

Remark 5.2 For σ = 0, an equivalent result to (7.3) in [4] can be obtained directly.

6 Calculating the Optimal Threshold

In this section, we study the problem of the determination of the optimal threshold. For a
particular value of the initial surplus u, we want to find an optimal threshold level b∗ such that
the expected total discounted dividends until ruin V (u; b) are maximized. Thus

∂V (u; b)
∂b

∣∣∣
b=b∗

= 0. (6.1)
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We show how b∗ and V (u; b∗) can be calculated below.
If we differentiate the identity Vu(b−; b) = Vu(b+; b), we obtain another identity:

Vuu(b−; b) +
∂2V (u; b)

∂u∂b

∣∣∣
u=b−

= Vuu(b+; b) +
∂2V (u; b)

∂u∂b

∣∣∣
u=b+

. (6.2)

For b = b∗, the second term of both sides vanishes because of (6.1). It follows that

Vuu(b∗−; b∗) = Vuu(b∗+; b∗), (6.3)

and thus Vuu(u; b∗) is continuous at b∗. This phenomenon is named the high contact condition
in finance literature and the smooth pasting condition in the literature on optimal stopping
problems. By Remark 4.1 in Section 4, we have

Vu(b∗; b∗) = Vu(b∗−; b∗) = Vu(b∗+; b∗) = 1. (6.4)

It follows that

Vuu(b∗; b∗) = Vuu(b∗−; b∗) = Vuu(b∗+; b∗) = 0. (6.5)

By using (4.15) and the above equations, we have

Vu(u; b) = − (c2 − c1)R
(2)
δ

δ
eR

(2)
δ (u−b) + R

(2)
δ eR

(2)
δ (u−b)V (b; b), (6.6)

and hence

V (b∗; b∗) =
c2 − c1

δ
+

1

R
(2)
δ

. (6.7)

In fact, the form of V (b∗; b∗) in the exponential case holds for all profit distributions.

Remark 6.1 For σ = 0, R
(2)
δ shares exactly the same definition as Theorem 2 in [19]. Thus,

(6.7) coincides with (25) in [19].

Remark 6.2 By using the definition of R
(2)
δ , we can rewrite V (b∗; b∗) as

V (b∗; b∗) =
(c2 − c1)R

(2)
δ + δ

δR
(2)
δ

=
λ(MY (R(2)

δ ) − 1) − 1
2σ2(R(2)

δ )2

δR
(2)
δ

− c1

δ
.

Since lim
c2→∞R

(2)
δ = 0, we obtain

lim
c2→∞V (b∗; b∗) =

λμ − c1

δ
, (6.8)

which coincides with (5.9) in [4] and (5.4) in [5]. A similar result has been obtained by Ger-
ber [11] for the pure diffusion model.

Now we turn to the problem of determining V (u; b∗) and b∗. Formula (6.7) is crucial for
implementing the method of the Laplace transform described in Section 5. Formula (6.7) is
equivalent to W (0; b∗) = c2−c1

δ + 1

R
(2)
δ

. Thus we proceed as follows. In (5.4) we set w(0) =
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c2−c1
δ + 1

R
(2)
δ

and w′(0) = 1, so we obtain the function w(z) by the inversion of its Laplace

transform. Then b∗ is the zero of w(z), and

V (u; b∗) = w(b∗ − u), 0 � u � b∗. (6.9)

Together with (4.15), we can deduce the optimal level of threshold and V (u; b∗) for u � 0.
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