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1 Introduction

As a dual problem of controllability, the exact boundary observability for linear wave equa-
tions has been deeply studied (see [10–12, 18]). Based on the theory of semi-global classical
solutions to quasilinear hyperbolic systems (see [6, 9]), by a constructive method, Li et al. [4,
7–8] obtained the exact boundary observability for quasilinear hyperbolic systems. Later, Li
[3, 5] and Guo and Wang [1] discussed the exact boundary observability for autonomous and
nonautonomous 1-D quasilinear wave equations, respectively, and showed the implicit dualities
between the corresponding exact boundary controllability and the exact boundary observabil-
ity. For the general 1-D quasilinear hyperbolic equation utt + a(u, ux, ut)utx + b(u, ux, ut)uxx =
c(u, ux, ut), where u is the unknown function of (t, x) and (a2 − 4b)(0, 0, 0) > 0, Shang and
Zhuang [13] established the corresponding local exact boundary observability, including the
1-D quasilinear wave equation as its special case.

For second-order quasilinear hyperbolic systems, there are few results on the exact boundary
observability. Yu [16] considered the second-order quasilinear hyperbolic system utt + (A +
B)(u, ux, ut)utx + AB(u, ux, ut)uxx = F (u, ux, ut), where u = (u1, · · · , un)T is the unknown
vector function of (t, x), matrices A and B have only n positive eigenvalues and n negative
eigenvalues, respectively. By a constructive method, she obtained the local exact boundary
observability. Later, for a quasilinear coupled hyperbolic system{

utt + (λ + μ)utx + λμuxx + c(λ− ν)sx = f1,
st + νsx = f2,

where λ(0) < 0, μ(0) < 0, ν(0) > 0, she got the exact boundary observability by using similar
constructive method and applied this result to a first-order quasilinear hyperbolic system of
diagonal form and proved that the exact boundary observability is still valid even though the
boundary conditions are not coupled (see [17]).
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Recently, for a kind of coupled system of 1-D quasilinear wave equations:

witt − a2
i (w)wixx +

n∑
j=1

aijwj = 0 (i = 1, · · · , n),

where w = (w1, · · · , wn)T and ai(0) > 0 (i = 1, · · · , n), the authors of [2] discussed the local
exact boundary observability with various types of boundary conditions and showed the implicit
dualities between the exact boundary controllability and the exact boundary observability.

In this paper, we continue to consider the kind of second-order quasilinear hyperbolic systems
proposed in [14]. Based on the known result on the existence and uniqueness of semi-global C2

solution to this kind of systems (see [14]), by using a constructive method, we discuss the exact
boundary observability and show the implicit dualities between it and the corresponding exact
boundary controllability given in [14]. The conclusions in both [2] and [13] are of its special
cases.

Consider the following kind of second-order quasilinear hyperbolic systems:

utt + A(u, ux, ut)utx +B(u, ux, ut)uxx = C(u, ux, ut), (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u, v, w) = (aij(u, v, w)) and
B(u, v, w) = (bij(u, v, w)) (i, j = 1, · · · , n) are both n×nmatrices with smooth entries, and have
n real eigenvalues and a complete set of left eigenvectors on the domain under consideration,
respectively. Suppose furthermore that

AB(u, v, w) = BA(u, v, w). (1.2)

Thus, there exists an invertible n× n matrix L(u, v, w) such that

LAL−1(u, v, w) = diag{λ1, · · · , λn}, (1.3)

LBL−1(u, v, w) = diag{μ1, · · · , μn}, (1.4)

where λ1, · · · , λn and μ1, · · · , μn are the real eigenvalues of matrices A and B, respectively, and
L = (lij) is just the matrix composed by the common left eigenvectors of A and B. Moreover,
we assume that on the domain under consideration

μi(u, v, w) �= 0 (i = 1, · · · , n) (1.5)

and

λ2
i − 4μi(u, v, w) > 0 when μi(u, v, w) > 0 (i = 1, · · · , n). (1.6)

In addition, C = C(u, v, w) = (c1(u, v, w), · · · , cn(u, v, w))T is a smooth vector function with

C(0, 0, 0) = 0. (1.7)

By [14], system (1.1) has 2n real eigenvalues

λ̃−i =
λi −

√
λ2

i − 4μi

2
, λ̃+

i =
λi +

√
λ2

i − 4μi

2
(i = 1, · · · , n). (1.8)

This paper is organized as follows. In Section 2, we recall the existence and uniqueness of
semi-global C2 solution to the second-order quasilinear hyperbolic system (1.1) under different
cases. Then the two-sided and one-sided exact boundary observability are discussed in Section
3, respectively. Finally, in Section 4, we present an implicit duality between the exact boundary
controllability and the exact boundary observability.
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2 Existence and Uniqueness of Semi-global C2 Solution

In this section, we recall briefly the result on the semi-global C2 solution to the second-order
quasilinear hyperbolic system (1.1) under different cases in [14].

For system (1.1), we give the following initial condition:

t = 0 : u = ϕ(x), ut = ψ(x), 0 ≤ x ≤ L, (2.1)

where ϕ = (ϕ1, · · · , ϕn)T is a given C2 vector function, ψ = (ψ1, · · · , ψn)T is a given C1 vector
function.

Let

D± = diag
{ μ1

λ̃±1
, · · · , μn

λ̃±n

}
= diag{λ̃∓1 , · · · , λ̃∓n }. (2.2)

By [14], according to different signs of λ̃±i (i = 1, · · · , n) in a neighborhood of (u, v, w) =
(0, 0, 0), we need only to discuss the following three typical cases.

Case 1 System (1.1) has n positive eigenvalues λ̃+
i > 0 and n negative eigenvalues λ̃−i < 0

(i = 1, · · · , n).

In this case, we prescribe the following nonlinear boundary conditions on the ends x = 0
and x = L, respectively:

x = 0 :
{
Gp(u) = Hp(t) (p = 1, · · · , l),
Gq(u, ux, ut) = Hq(t) (q = l + 1, · · · , n), (2.3)

x = L :
{
Gr(u) = Hr(t) (r = 1, · · · ,m),
Gs(u, ux, ut) = Hs(t) (s = m+ 1, · · · , n),

(2.4)

where Gp, Hp, Gr and Hr are all C2 functions with respect to their arguments, Gq, Hq, Gs

and Hs are all C1 functions with respect to their arguments, and, without loss of generality,
we may assume

Gp(0) = 0, Gr(0) = 0, Gq(0, 0, 0) = 0, Gs(0, 0, 0) = 0
(p = 1, · · · , l; q = l + 1, · · · , n; r = 1, · · · ,m; s = m+ 1, · · · , n). (2.5)

In what follows, the following assumptions will be imposed totally or partially in different
situations:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt
...

...

∂Gn

∂u1t
· · · ∂Gn

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(L−1D−) −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx
...

...

∂Gn

∂u1x
· · · ∂Gn

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0, (2.6)
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det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt
...

...

∂Gn

∂u1t
· · · ∂Gn

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(L−1D+) −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx
...

...

∂Gn

∂u1x
· · · ∂Gn

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0, (2.7)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gm

∂u1
· · · ∂Gm

∂un

∂Gm+1

∂u1t
· · · ∂Gm+1

∂unt
...

...

∂Gn

∂u1t
· · · ∂Gn

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(L−1D−) −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gm+1

∂u1x
· · · ∂Gm+1

∂unx
...

...

∂Gn

∂u1x
· · · ∂Gn

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0, (2.8)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gm

∂u1
· · · ∂Gm

∂un

∂Gm+1

∂u1t
· · · ∂Gm+1

∂unt
...

...

∂Gn

∂u1t
· · · ∂Gn

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(L−1D+) −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gm+1

∂u1x
· · · ∂Gm+1

∂unx
...

...

∂Gn

∂u1x
· · · ∂Gn

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(L−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0. (2.9)

For the convenience of statement, in Case 1 we denote that

δ =
{

2 for i = 1, · · · , l,
1 for i = l + 1, · · · , n, δ =

{
2 for i = 1, · · · ,m,
1 for i = m+ 1, · · · , n.

Case 2 System (1.1) has d1 + d2 positive eigenvalues λ̃±j > 0, λ̃+
k > 0 and 2n− (d1 + d2)

negative eigenvalues λ̃−k < 0, λ̃±h < 0 (j = 1, · · · , d1; k = d1 + 1, · · · , d2; h = d2 + 1, · · · , n),
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and, without loss of generality, we may assume

d1 + d2 ≤ n, (2.10)

namely, the number of positive eigenvalues is less than or equal to that of negative ones.

In this case, we prescribe the following nonlinear boundary conditions on the ends x = 0
and x = L, respectively:

x = 0 :
{
Gp(u) = Hp(t) (p = 1, · · · , l),
Gq(u, ux, ut) = Hq(t) (q = l + 1, · · · , d1 + d2),

(2.11)

x = L :
{
Gr(u) = Hr(t) (r = 1, · · · ,m),
Gs(u, ux, ut) = Hs(t) (s = m+ 1, · · · , 2n− (d1 + d2)),

(2.12)

where Gp, Hp, Gr and Hr are all C2 functions with respect to their arguments, Gq, Hq, Gs

and Hs are all C1 functions with respect to their arguments, and, without loss of generality,
we may assume

Gp(0) = 0, Gr(0) = 0, Gq(0, 0, 0) = 0, Gs(0, 0, 0) = 0

(p = 1, · · · , l; q = l + 1, · · · , d1 + d2; r = 1, · · · ,m; s = m+ 1, · · · , 2n− (d1 + d2)).
(2.13)

In what follows, the following assumptions will be imposed totally or partially in different
situations:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt
...

...

∂Gd1+d2

∂u1t
· · · ∂Gd1+d2

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

((L−1D−){1,d2}
...(L−1D+){1,d1})

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx
...

...

∂Gd1+d2

∂u1x
· · · ∂Gd1+d2

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
((L−1){1,d2}

...(L−1){1,d1})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0, (2.14)
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det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gl

∂u1
· · · ∂Gl

∂un
∂Gl+1

∂u1t
· · · ∂Gl+1

∂unt
...

...

∂Gd1+d2

∂u1t
· · · ∂Gd1+d2

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

((L−1D−){d2+1,d2+d1}
...(L−1D+){d1+1,d1+d2})

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gl+1

∂u1x
· · · ∂Gl+1

∂unx
...

...

∂Gd1+d2

∂u1x
· · · ∂Gd1+d2

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
((L−1){d2+1,d2+d1}

...(L−1){d1+1,d1+d2})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0, (2.15)

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂u1
· · · ∂G1

∂un
...

...

∂Gm

∂u1
· · · ∂Gm

∂un

∂Gm+1

∂u1t
· · · ∂Gm+1

∂unt
...

...

∂G2n−(d1+d2)

∂u1t
· · · ∂G2n−(d1+d2)

∂unt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

((L−1D−){d2+1,n}
...(L−1D+){d1+1,n})

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

...
...

0 · · · 0

∂Gm+1

∂u1x
· · · ∂Gm+1

∂unx
...

...

∂G2n−(d1+d2)

∂u1x
· · · ∂G2n−(d1+d2)

∂unx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
((L−1){d2+1,n}

...(L−1){d1+1,n})

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(0,0,0)

�= 0, (2.16)

in which (L−1D−){1,d1} indicates the matrix composed of the first column to the d1th column
of matrix (L−1D−), etc.
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In Case 2, we denote that

δ̃ =
{

2 for i = 1, · · · , l,
1 for i = l + 1, · · · , d1 + d2,

δ̃ =
{

2 for i = 1, · · · ,m,
1 for i = m+ 1, · · · , 2n− (d1 + d2).

Case 3 System (1.1) has 2n positive eigenvalues λ̃±i > 0 (i = 1, · · · , n).

In this case, we need only 2n boundary conditions on the end x = 0:

x = 0 : u = H(t), ux = H(t), (2.17)

where H = (H1, · · · , Hn)T is a given C2 vector function, H = (H1, · · · , Hn)T is a given C1

vector function.

First of all, in Case 1 we give the following lemma on the existence and uniqueness of
semi-global C2 solution to system (1.1) (see [14]).

Lemma 2.1 Suppose that (2.6) and (2.9) hold, and the conditions of C2 compatibility are
satisfied at the points (t, x) = (0, 0) and (0, L), respectively. Then, for any given and pos-
sibly quite large T > 0, if the norms ‖(ϕ, ψ)‖C2[0,L]×C1[0,L], ‖(Hp, Hq)‖C2[0,T ]×C1[0,T ] and
‖(Hr, Hs)‖C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l + 1, · · · , n; r = 1, · · · ,m; s = m + 1, · · · , n)
are small enough, the forward mixed initial-boundary value problem (1.1), (2.1) and (2.3)–(2.4)
admits a unique semi-global C2 solution u = u(t, x) on the domain R(T ) = {(t, x) | 0 ≤ t ≤
T, 0 ≤ x ≤ L} with small C2 norm, and

‖u‖C2[R(T )] ≤ C
(
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] +

n∑
i=1

‖(Hi, Hi)‖Cδ [0,T ]×Cδ[0,T ]

)
, (2.18)

where C is a positive constant.

Corollary 2.1 If ‖(ϕ, ψ)‖C2[0,L]×C1[0,L] is suitably small, then the Cauchy problem (1.1)
and (2.1) admits a unique global C2 solution u = u(t, x) on its whole maximum determinate
domain with small C2 norm, and

‖u‖C2 ≤ C‖(ϕ, ψ)‖C2[0,L]×C1[0,L], (2.19)

where C is a positive constant.

Remark 2.1 If we give the following final condition

t = T : u = Φ(x), ut = Ψ(x), 0 ≤ x ≤ L, (2.20)

where Φ = (Φ1, · · · ,Φn)T is a given C2 vector function, Ψ = (Ψ1, · · · ,Ψn)T is a given C1 vector
function. Suppose that (2.7)–(2.8) hold, and the conditions of C2 compatibility are satisfied at
the points (t, x) = (T, 0) and (T, L), respectively. For any given and possibly quite large T >

0, if the norms ‖(Φ,Ψ)‖C2[0,L]×C1[0,L], ‖(Hp, Hq)‖C2[0,T ]×C1[0,T ] and ‖(Hr, Hs)‖C2[0,T ]×C1[0,T ]

(p = 1, · · · , l; q = l+1, · · · , n; r = 1, · · · ,m; s = m+1, · · · , n) are small enough, the backward
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mixed initial-boundary value problem (1.1), (2.20) and (2.3)–(2.4) admits a unique semi-global
C2 solution on the domain R(T ) with small C2 norm, and

‖u‖C2[R(T )] ≤ C
(
‖(Φ,Ψ)‖C2[0,L]×C1[0,L] +

n∑
i=1

‖(Hi, Hi)‖Cδ[0,T ]×Cδ[0,T ]

)
, (2.21)

where C is a positive constant.

In Case 2 and Case 3, we have the corresponding existence and uniqueness of semi-global
C2 solution, see Lemma 2.2 and Lemma 2.3, respectively (see [14]).

Lemma 2.2 Suppose that (2.14) and (2.16) hold, and the conditions of C2 compatibility
are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. Then, for any given and
possibly quite large T > 0, if the norms ‖(ϕ, ψ)‖C2[0,L]×C1[0,L], ‖(Hp, Hq)‖C2[0,T ]×C1[0,T ] and
‖(Hr, Hs)‖C2[0,T ]×C1[0,T ] (p = 1, · · · , l; q = l+1, · · · , d1+d2; r = 1, · · · ,m; s = m+1, · · · , 2n−
(d1 + d2)) are small enough, the forward mixed initial-boundary value problem (1.1), (2.1) and
(2.11)–(2.12) admits a unique semi-global C2 solution u = u(t, x) on the domain R(T ) with
small C2 norm, and

‖u‖C2[R(T )] ≤ C
(
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] +

d1+d2∑
i=1

‖Hi‖C δ̃[0,T ] +
2n−(d1+d2)∑

i=1

‖Hi‖C δ̃[0,T ]

)
, (2.22)

where C is a positive constant.

Lemma 2.3 For any given and possibly quite large T > 0, if the norms

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖C2[0,T ]×C1[0,T ]

are small enough, and the conditions of C2 compatibility are satisfied at the point (t, x) = (0, 0),
the forward mixed initial-boundary value problem (1.1), (2.1) and (2.17) admits a unique semi-
global C2 solution u = u(t, x) on the domain R(T ) with small C2 norm, and

‖u‖C2[R(T )] ≤ C(‖(ϕ, ψ)‖C2[0,L]×C1[0,L] + ‖(H,H)‖C2[0,T ]×C1[0,T ]), (2.23)

where C is a positive constant.

3 Local Exact Boundary Observability in Case 1

Theorem 3.1 (Two-Sided Exact Boundary Observability) Suppose that aij, bij, ci, λi,
μi, lij (i, j = 1, · · · , n) are all C1 functions with respect to their arguments, and (2.6) and (2.9)
hold. Suppose furthermore that

∂(G1, · · · , Gl)
∂(u1, · · · , ul)

∣∣∣
u=0

�= 0,
∂(Gl+1, · · · , Gn)
∂(u(l+1)x, · · · , unx)

∣∣∣
(0,0,0)

�= 0 (3.1)

and

∂(G1, · · · , Gm)
∂(u1, · · · , um)

∣∣∣
u=0

�= 0,
∂(Gm+1, · · · , Gn)
∂(u(m+1)x, · · · , unx)

∣∣∣
(0,0,0)

�= 0. (3.2)
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Let

T > L max
i=1,··· ,n

{ 1

λ̃+
i (0, 0, 0)

,
1

|λ̃−i (0, 0, 0)|
}
. (3.3)

For any given initial data (ϕ(x), ψ(x)) and boundary functions (H(t), H(t)) with small norms
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖Cδ[0,T ]×Cδ[0,T ], such that the conditions of C2 compatibility
are satisfied at the points (t, x) = (0, 0) and (0, L), respectively, if we have the observed values
uq = kq(t), upx = kp(t) (p = 1, · · · , l; q = l + 1, · · · , n) at x = 0 and us = ks(t), urx =
kr(t) (r = 1, · · · ,m; s = m + 1, · · · , n) at x = L on the interval [0, T ], then the initial data
(ϕ(x), ψ(x)) can be uniquely determined by these observed values and (H(t), H(t)). Moreover,
we have the following observability inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

q=l+1

‖kq‖C2[0,T ] +
m∑

r=1

‖kr‖C1[0,T ]

+
n∑

s=m+1

‖ks‖C2[0,T ] + ‖(H,H)‖Cδ [0,T ]×Cδ[0,T ]

)
, (3.4)

where C is a positive constant.

Proof Since ‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖Cδ[0,T ]×Cδ[0,T ] are small, by Lemma 2.1,
the mixed initial-boundary value problem (1.1), (2.1) and (2.3)–(2.4) admits a unique C2 solu-
tion on the domain R(T ) with small C2 norm. Thus, the corresponding C2 norms or C1 norms
of the observed values uq = kq(t), upx = kp(t) (p = 1, · · · , l; q = l + 1, · · · , n) at x = 0, and
us = ks(t), urx = kr(t) (r = 1, · · · ,m; s = m+ 1, · · · , n) at x = L are all small.

By (3.1), in a neighborhood of (u, v, w) = (0, 0, 0), the boundary condition (2.3) at x = 0
can be equivalently rewritten as

x = 0 :
{
up = gp(H1, · · · , Hl, ul+1, · · · , un) (p = 1, · · · , l),
uqx = gq(Hl+1, · · · , Hn, u, ut, u1x, · · · , ulx) (q = l + 1, · · · , n), (3.5)

where gp (p = 1, · · · , l) are C2 functions, gq (q = l + 1, · · · , n) are C1 functions, and by (2.5),
we have

gp(0, · · · , 0) = gq(0, · · · , 0) = 0 (p = 1, · · · , l; q = l + 1, · · · , n). (3.6)

Then, the values ui(t) of ui (i = 1, · · · , n) at x = 0 can be uniquely determined by the observed
values uq = kq(t) (q = l + 1, · · · , n) at x = 0 as follows:

x = 0 :
{
up(t) = gp(H1(t), · · · , Hl(t), kl+1(t), · · · , kn(t)) (p = 1, · · · , l),
uq(t) = kq(t) (q = l + 1, · · · , n)

(3.7)

and

‖u‖C2[0,T ] ≤ C
( n∑

q=l+1

‖kq‖C2[0,T ] +
l∑

p=1

‖Hp‖C2[0,T ]

)
. (3.8)
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On the other hand, the values uix(t) of uix (i = 1, · · · , n) at x = 0 can be uniquely determined
by the observed values upx = kp(t) (p = 1, · · · , l) at x = 0 as follows:

x = 0 :{
upx(t) = kp(t) (p = 1, · · · , l),
uqx(t) = gq(Hl+1(t), · · · , Hn(t), u(t), u′(t), k1(t), · · · , kl(t)) (q = l + 1, · · · , n)

(3.9)

and

‖ux‖C1[0,T ] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

q=l+1

‖kq‖C2[0,T ] +
n∑

i=1

‖Hi‖Cδ[0,T ]

)
. (3.10)

Similarly, by (3.2), in a neighborhood of (u, v, w) = (0, 0, 0), the boundary condition (2.4)
at x = L can be equivalently rewritten as

x = L :
{
ur = gr(H1, · · · , Hm, um+1, · · · , un) (r = 1, · · · ,m),
usx = gs(Hm+1, · · · , Hn, u, ut, u1x, · · · , umx) (s = m+ 1, · · · , n),

(3.11)

where gr (r = 1, · · · ,m) are C2 functions, gs (s = m+1, · · · , n) are C1 functions, and by (2.5),
we have

gr(0, · · · , 0) = gs(0, · · · , 0) = 0 (r = 1, · · · ,m; s = m+ 1, · · · , n). (3.12)

Then, the values ui(t) of ui (i = 1, · · · , n) at x = L can be uniquely determined by the observed
values us = ks(t) (s = m+ 1, · · · , n) at x = L as follows:

x = L :

{
ur(t) = gr(H1(t), · · · , Hm(t), km+1(t), · · · , kn(t)) (r = 1, · · · ,m),
us(t) = ks(t) (s = m+ 1, · · · , n)

(3.13)

and

‖u‖C2[0,T ] ≤ C
( n∑

s=m+1

‖ks‖C2[0,T ] +
m∑

r=1

‖Hr‖C2[0,T ]

)
. (3.14)

On the other hand, the values uix(t) of uix (i = 1, · · · , n) at x = L can be uniquely determined
by the observed values urx = kr(t) (r = 1, · · · ,m) at x = L as follows:

x = L :{
urx(t) = kr(t) (r = 1, · · · ,m),
usx(t) = gs(Hm+1(t), · · · , Hn(t), u(t), u′(t), k1(t), · · · , km(t)) (s = m+ 1, · · · , n)

(3.15)

and

‖ux‖C1[0,T ] ≤ C
( m∑

r=1

‖kr‖C1[0,T ] +
n∑

s=m+1

‖ks‖C2[0,T ] +
n∑

i=1

‖Hi‖Cδ[0,T ]

)
. (3.16)

Changing the role of t and x, we consider the rightward Cauchy problem for system (1.1)
with the initial condition

x = 0 : ui = ui(t), uix = uix(t), 0 ≤ t ≤ T (i = 1, · · · , n). (3.17)
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By Corollary 2.1 and noting (3.8) and (3.10), this Cauchy problem admits a unique C2 solution
u = ũ(t, x) on its whole maximum determinate domain, and

‖ũ‖C2 ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

q=l+1

‖kq‖C2[0,T ] +
n∑

i=1

‖Hi‖Cδ[0,T ]

)
. (3.18)

Similarly, the leftward Cauchy problem for system (1.1) with the final condition

x = L : ui = ui(t), uix = uix(t), 0 ≤ t ≤ T (i = 1, · · · , n) (3.19)

admits a unique C2 solution u = ˜̃u(t, x) on its whole maximum determinate domain, and

‖˜̃u‖C2 ≤ C
( m∑

r=1

‖kr‖C1[0,T ] +
n∑

s=m+1

‖ks‖C2[0,T ] +
n∑

i=1

‖Hi‖Cδ[0,T ]

)
. (3.20)

Obviously, both u = ũ(t, x) and u = ˜̃u(t, x) are the restrictions of the solution u = u(t, x) to
the original mixed problem on the corresponding domains, respectively.

Noting (3.3), these two maximum determinate domains must intersect each other. Then,
there exists T0 (0 < T0 < T ) such that the value (Φ(x),Ψ(x)) of (u, ut) at t = T0 can be
uniquely determined by u = ũ(t, x) and u = ˜̃u(t, x). Noting (3.18) and (3.20), we have

‖(Φ,Ψ)‖C2[0,L]×C1[0,L] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

q=l+1

‖kq‖C2[0,T ] +
m∑

r=1

‖kr‖C1[0,T ]

+
n∑

s=m+1

‖ks‖C2[0,T ] + ‖(H,H)‖Cδ[0,T ]×Cδ[0,T ]

)
. (3.21)

We now consider the backward mixed initial-boundary value problem for system (1.1) with

t = T0 : (u, ut) = (Φ(x),Ψ(x)), 0 ≤ x ≤ L, (3.22)

x = 0 : u = ui(t) (i = 1, · · · , n), (3.23)

x = L : u = ui(t) (i = 1, · · · , n) (3.24)

on the domain R(T0) = {(t, x) | 0 ≤ t ≤ T0, 0 ≤ x ≤ L}. By Remark 2.1, this backward mixed
problem admits a unique C2 solution u = ub(t, x), which is the restriction of the original C2

solution u = u(t, x) on the domain R(T0), thus we have

‖u‖C2[R(T0)] ≤ C(‖(Φ,Ψ)‖C2[0,L]×C1[0,L] + ‖(u, u)‖C2[0,T ]×C2[0,T ]). (3.25)

By (2.1) and noting (3.8), (3.14) and (3.21), we get the desired observability inequality (3.4).

Theorem 3.2 (One-Sided Exact Boundary Observability) Suppose that aij , bij , ci, λi,
μi, lij (i, j = 1, · · · , n) are all C1 functions with respect to their arguments, and (2.6), (2.8)–
(2.9) and (3.1) hold. Let

T > L
(

max
i=1,··· ,n

1

λ̃+
i (0, 0, 0)

+ max
i=1,··· ,n

1

|λ̃−i (0, 0, 0)|
)
. (3.26)
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For any given initial data (ϕ(x), ψ(x)) and boundary functions (H(t), H(t)) with small norms
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖Cδ[0,T ]×Cδ[0,T ], such that the conditions of C2 compatibility
are satisfied at the points (t, x) = (0, 0) and (0, L), respectively, if we have the observed values
uq = kq(t), upx = kp(t) (p = 1, · · · , l; q = l+ 1, · · · , n) at x = 0 on the interval [0, T ], then the
initial data (ϕ(x), ψ(x)) can be uniquely determined by these observed values and (H(t), H(t)).
Moreover, we have the following observability inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L]

≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

q=l+1

‖kq‖C2[0,T ] + ‖(H,H)‖Cδ[0,T ]×Cδ[0,T ]

)
, (3.27)

where C is a positive constant.

Proof Changing the role of t and x, we consider the rightward Cauchy problem for system
(1.1) with the initial condition (3.17), which admits a unique C2 solution u = ũ(t, x) on its
whole maximum determinate domain and (3.18) holds. Obviously, u = ũ(t, x) is the restriction
of the C2 solution u = u(t, x) to the original mixed problem on the corresponding domain.

Noting (3.26), this maximum determinate domain must intersect x = L. Then, there exists
T0 (0 < T0 < T ) such that the value (Φ(x),Ψ(x)) of (u, ut) at t = T0 can be uniquely determined
by u = ũ(t, x). Noting (3.18), we have

‖(Φ,Ψ)‖C2[0,L]×C1[0,L] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

q=l+1

‖kq‖C2[0,T ] + ‖H‖Cδ[0,T ]

)
. (3.28)

We consider the backward mixed initial-boundary value problem for system (1.1) with the
final condition (3.22) and boundary conditions (3.23) and (2.4) on the domain R(T0). By
Remark 2.1, this backward mixed problem admits a unique C2 solution u = ub(t, x) on the
domain R(T0), which is just the restriction of the original C2 solution u = u(t, x) on the
domain R(T0), thus we have

‖u‖C2[R(T0)] ≤ C(‖(Φ,Ψ)‖C2[0,L]×C1[0,L] + ‖u‖C2[0,T ] + ‖H‖Cδ[0,T ]). (3.29)

By (2.1) and noting (3.8) and (3.28), we get the desired observability inequality (3.27).

Remark 3.1 In Case 1, if the boundary conditions are particularly given as

x = 0 : ui = Hi(t) (i = 1, · · · , n), (3.30)

x = L : ui = Hi(t) (i = 1, · · · , n), (3.31)

it is easy to see that assumptions (3.1)–(3.2) are automatically satisfied.

Remark 3.2 In Case 1, since the number of positive eigenvalues for system (1.1) is equal
to that of negative eigenvalues, similar result holds if we take observed values at x = L instead
of at x = 0, and hypotheses (2.6), (2.8)–(2.9) and (3.1) are replaced by (2.6)–(2.7), (2.9) and
(3.2).



Exact Boundary Observability 815

4 Local Exact Boundary Observability in Case 2 and Case 3

Let

α = m+ (d1 + d2) − n. (4.1)

Assume that α ≥ 0.

Theorem 4.1 (Two-Sided Exact Boundary Observability) Suppose that aij, bij, ci, λi,
μi, lij (i, j = 1, · · · , n) are all C1 functions with respect to their arguments, and (2.10), (2.14)
and (2.16) hold. Suppose furthermore that

∂(G1, · · · , Gl)
∂(u1, · · · , ul)

∣∣∣
u=0

�= 0,
∂(Gl+1, · · · , Gd1+d2)

∂(u(l+1)x, · · · , u(d1+d2)x)

∣∣∣
(0,0,0)

�= 0 (4.2)

and

∂(G1, · · · , Gm)
∂(u1, · · · , um)

∣∣∣
u=0

�= 0,
∂(Gm+1, · · · , G2n−(d1+d2))

∂(u(α+1)x, · · · , unx)

∣∣∣
(0,0,0)

�= 0. (4.3)

Let

T > L max
i=1,··· ,n

1

|λ̃±i (0, 0, 0)| . (4.4)

For any given initial data (ϕ(x), ψ(x)) and boundary functions (H(t), H(t)) with small norms
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖

C δ̃[0,T ]×C δ̃[0,T ]
, such that the conditions of C2 compatibility

are satisfied at the points (t, x) = (0, 0) and (0, L), respectively, if we have the observed values
uq̃ = kq̃(t), upx = kp(t), up̃x = k̃p̃(t) (q̃ = l + 1, · · · , n; p = 1, · · · , l; p̃ = (d1 + d2) + 1, · · · , n)
at x = 0 and us̃ = ks̃(t), uγx = kγ(t) (s̃ = m+1, · · · , n; γ = 1, · · · , α) at x = L on the interval
[0, T ], then the initial data (ϕ(x), ψ(x)) can be uniquely determined by these observed values
and (H(t), H(t)). Moreover, we have the following observability inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

p̃=(d1+d2)+1

‖k̃p̃‖C1[0,T ]

+
n∑

q̃=l+1

‖kq̃‖C2[0,T ] +
α∑

γ=1

‖kγ‖C1[0,T ] +
n∑

s̃=m+1

‖ks̃‖C2[0,T ]

+ ‖(H,H)‖
C δ̃[0,T ]×C δ̃[0,T ]

)
, (4.5)

where C is a positive constant.

Proof The proof of Theorem 4.1 is similar to that of Theorem 3.1. By (4.2), in a neigh-
borhood of (u, v, w) = (0, 0, 0), the boundary condition (2.11) at x = 0 can be equivalently
rewritten as

x = 0 :

⎧⎨⎩
up = gp(H1, · · · , Hl, ul+1, · · · , un) (p = 1, · · · , l),
uqx = gq(Hl+1, · · · , Hd1+d2 , u, ut, u1x, · · · , ulx, u((d1+d2)+1)x, · · · , unx)

(q = l + 1, · · · , d1 + d2),
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where gp (p = 1, · · · , l) are C2 functions, gq (q = l + 1, · · · , d1 + d2) are C1 functions, and by
(2.13), we have

gp(0, · · · , 0) = gq(0, · · · , 0) = 0 (p = 1, · · · , l; q = l + 1, · · · , d1 + d2).

Then, the values ui(t) of ui (i = 1, · · · , n) at x = 0 can be uniquely determined by the observed
values uq̃ = kq̃(t) (q̃ = l + 1, · · · , n) at x = 0 as follows:

x = 0 :
{
up(t) = gp(H1(t), · · · , Hl(t), kl+1(t), · · · , kn(t)) (p = 1, · · · , l),
uq̃(t) = kq̃(t) (q̃ = l+ 1, · · · , n)

and

‖u‖C2[0,T ] ≤ C
( n∑

q̃=l+1

‖kq̃‖C2[0,T ] +
l∑

p=1

‖Hp‖C2[0,T ]

)
.

On the other hand, the values uix(t) of uix (i = 1, · · · , n) at x = 0 can be uniquely determined
by the observed values upx = kp(t), up̃x = k̃p̃(t) (p = 1, · · · , l; p̃ = (d1 + d2) + 1, · · · , n) at
x = 0 as follows:

x = 0 :

{
upx(t) = kp(t), up̃x(t) = k̃p̃(t) (p = 1, · · · , l; p̃ = (d1 + d2) + 1, · · · , n),

uqx(t) = gq(Hl+1(t), · · · , Hd1+d2(t), u(t), u′(t), kp(t), k̃p̃(t)) (q = l + 1, · · · , d1 + d2)

and

‖ux‖C1[0,T ] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

p̃=(d1+d2)+1

‖k̃p̃‖C1[0,T ] +
n∑

q̃=l+1

‖kq̃‖C2[0,T ] + ‖H‖C δ̃[0,T ]

)
.

The observed values at x = L depend on the value of α, which is divided into two subcases.

(a) α = 0, namely, m = n− (d1 + d2).

By (4.3), in a neighborhood of (u, v, w) = (0, 0, 0), the boundary condition (2.12) at x = L

can be equivalently rewritten as

x = L :
{
ur = gr(H1, · · · , Hm, um+1, · · · , un) (r = 1, · · · ,m),
uix = gi(Hm+1, · · · , Hm+n, u, ut) (i = 1, · · · , n),

where gr (r = 1, · · · ,m) are C2 functions, gi (i = 1, · · · , n) are C1 functions, and by (2.13), we
have

gr(0, · · · , 0) = gi(0, · · · , 0) = 0 (r = 1, · · · ,m; i = 1, · · · , n).

Then, the values ui(t) of ui and the values uix(t) of uix (i = 1, · · · , n) at x = L can be uniquely
determined by the observed values us̃ = ks̃(t) (s̃ = m+ 1, · · · , n) at x = L as follows:

x = L :

⎧⎪⎨⎪⎩
ur(t) = gr(H1(t), · · · , Hm(t), km+1(t), · · · , kn(t)) (r = 1, · · · ,m),
us̃(t) = ks̃(t) (s̃ = m+ 1, · · · , n),
uix(t) = gi(Hm+1(t), · · · , Hm+n(t), u(t), u′(t)) (i = 1, · · · , n)
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and

‖(u, ux)‖C2[0,T ]×C1[0,T ] ≤ C
( n∑

s̃=m+1

‖ks̃‖C2[0,T ] + ‖H‖
C δ̃[0,T ]

)
.

(b) α > 0, namely, m > n− (d1 + d2).

By (4.3), in a neighborhood of (u, v, w) = (0, 0, 0), the boundary condition (2.12) at x = L

can be equivalently rewritten as

x = L :
{
ur = gr(H1, · · · , Hm, um+1, · · · , un) (r = 1, · · · ,m),
uβx = gβ(Hm+1, · · · , H2n−(d1+d2), u, ut, u1x, · · · , uαx) (β = α+ 1, · · · , n),

where gr (r = 1, · · · ,m) are C2 functions, gβ (β = α + 1, · · · , n) are C1 functions, and by
(2.13), we have

gr(0, · · · , 0) = gβ(0, · · · , 0) = 0 (r = 1, · · · ,m; β = α+ 1, · · · , n).

Then, the values ui(t) of ui (i = 1, · · · , n) at x = L can be uniquely determined by the observed
values us̃ = ks̃(t) (s̃ = m+ 1, · · · , n) at x = L as follows:

x = L :

{
ur(t) = gr(H1(t), · · · , Hm(t), km+1(t), · · · , kn(t)) (r = 1, · · · ,m),
us̃(t) = ks̃(t) (s̃ = m+ 1, · · · , n)

and

‖u‖C2[0,T ] ≤ C
( n∑

s̃=m+1

‖ks̃‖C2[0,T ] +
m∑

r=1

‖Hr‖C2[0,T ]

)
.

On the other hand, the values uix(t) of uix (i = 1, · · · , n) at x = L can be uniquely determined
by the observed values uγx = kγ(t) (γ = 1, · · · , α) at x = L as follows:

x = L :

{
uγx(t) = kγ(t) (γ = 1, · · · , α),
uβx(t) = gβ(Hm+1(t), · · · , H2n−(d1+d2)(t), u(t), u

′(t), kγ(t)) (β = α+ 1, · · · , n)

and

‖ux‖C2[0,T ] ≤ C
( n∑

s̃=m+1

‖ks̃‖C2[0,T ] +
α∑

γ=1

‖kγ‖C1[0,T ] + ‖H‖
C δ̃[0,T ]

)
.

The rest of the proof is similar to the proof of Theorem 3.1 and can be omitted.

Similarly to Theorem 3.2, we have the following theorem.

Theorem 4.2 (One-Sided Exact Boundary Observability) Suppose that aij , bij, ci, λi,
μi, lij (i, j = 1, · · · , n) are all C1 functions with respect to their arguments, and (2.10), (2.14)–
(2.16) and (4.2) hold. Let

T >L
(

max
j=1,··· ,d1

k=d1+1,··· ,d2

{ 1

λ̃±j (0, 0, 0)
,

1

λ̃+
k (0, 0, 0)

}
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+ max
k=d1+1,··· ,d2
h=d2+1,··· ,n

{ 1

|λ̃−k (0, 0, 0)| ,
1

|λ̃±h (0, 0, 0)|
})
. (4.6)

For any given initial data (ϕ(x), ψ(x)) and boundary functions (H(t), H(t)) with small norms
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖

C δ̃[0,T ]×C δ̃[0,T ]
, such that the conditions of C2 compatibility

are satisfied at the points (t, x) = (0, 0) and (0, L), respectively, if we have the observed values
uq̃ = kq̃(t), upx = kp(t), up̃x = k̃p̃(t) (q̃ = l + 1, · · · , n; p = 1, · · · , l; p̃ = (d1 + d2) + 1, · · · , n)
at x = 0, then the initial data (ϕ(x), ψ(x)) can be uniquely determined by these observed values
and (H(t), H(t)). Moreover, we have the following observability inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
( l∑

p=1

‖kp‖C1[0,T ] +
n∑

p̃=(d1+d2)+1

‖k̃p̃‖C1[0,T ]

+
n∑

q̃=l+1

‖kq̃‖C2[0,T ] + ‖(H,H)‖
C δ̃[0,T ]×C δ̃[0,T ]

)
, (4.7)

where C is a positive constant.

Remark 4.1 In Case 2, suppose that the boundary conditions are particularly given as

x = 0 :
{

(Id2 , 0)L(0)u = H(t),
(Id1 , 0)L(0)ux = H̃(t),

(4.8)

x = L :

{
(0, In−d2)L(0)u = H(t),

(0, In−d1)L(0)ux = H̃(t).
(4.9)

By Laplace theorem of determinant (see [15]), for the invertible matrix L(0), there exists a
nonsingular subdeterminant composed of the elements of the intersections of, for instance, the
first row to the d2th row with the first column to the d2th column, and we denote this d2-
subdeterminant of L(0) as

∣∣∣L(0)
(
1,··· ,d2
1,··· ,d2

)∣∣∣ �= 0. Meanwhile, the (n − d2)-algebraic cofactor of

this d2-subdeterminant satisfies
∣∣∣L(0)

(
d2+1,··· ,n
d2+1,··· ,n

)∣∣∣ �= 0. Thus it is easy to see that the assumption
(4.2) is automatically satisfied. Similarly, we can also get (4.3).

In Case 3, we need only to consider the local one-sided exact boundary observability at
x = L.

Theorem 4.3 (One-Sided Exact Boundary Observability at x = L) Suppose that aij, bij,
ci, λi, μi, lij (i, j = 1, · · · , n) are all C1 functions with respect to their arguments. Let

T > L max
i=1,··· ,n

1

λ̃−i (0, 0, 0)
. (4.10)

For any given initial data (ϕ(x), ψ(x)) and boundary functions (H(t), H(t)) with small norms
‖(ϕ, ψ)‖C2[0,L]×C1[0,L] and ‖(H,H)‖C2[0,T ]×C1[0,T ], such that the conditions of C2 compatibility
are satisfied at the point (t, x) = (0, 0), if we have the observed values (u, ux) = (u(t), ux(t)) at
x = L, then the initial data (ϕ(x), ψ(x)) can be uniquely determined by these observed values
and (H(t), H(t)). Moreover, we have the following observability inequality:

‖(ϕ, ψ)‖C2[0,L]×C1[0,L] ≤ C
(‖(u, ux)‖C2[0,T ]×C1[0,T ] + ‖(H,H)‖C2[0,T ]×C1[0,T ]

)
, (4.11)
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where C is a positive constant.

5 Implicit Duality Between Controllability and Observability

Comparing the observability discussed above with the controllability obtained in [14], we
may find an implicit duality between the exact boundary controllability and the exact boundary
observability for this kind of second-order quasilinear hyperbolic systems.

For the two-sided control, we have
(i) The controllability time is equal to the observability time, and both of them are sharp.

The restriction on the controllability time essentially means that the two maximum determinate
domains for the forward and backward Cauchy problems do not intersect each other, while, the
restriction on the observability time essentially means that the two maximum determinate
domains for the leftward and rightward Cauchy problems must intersect each other.

(ii) Both the number of boundary controls and the number of boundary observed values
are equal to 2n, which is the number of all positive eigenvalues and negative eigenvalues.

For the one-sided control, we have
(i) The controllability time is still equal to the observability time, and both of them are

sharp. The restriction on the controllability time essentially means that the two maximum
determinate domains for the forward and backward one-sided mixed problems do not intersect
each other, while, the restriction on the observability time essentially means that the maximum
determinate domain for the rightward Cauchy problems must intersect x = L.

(ii) Both the number of boundary controls and the number of boundary observed values are
equal to the maximum value between the number of positive eigenvalues and that of negative
eigenvalues.
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