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1 Introduction

As a dual problem of controllability, the exact boundary observability for linear wave equa-
tions has been deeply studied (see [10-12, 18]). Based on the theory of semi-global classical
solutions to quasilinear hyperbolic systems (see [6, 9]), by a constructive method, Li et al. [4,
7-8] obtained the exact boundary observability for quasilinear hyperbolic systems. Later, Li
[3, 5] and Guo and Wang [1] discussed the exact boundary observability for autonomous and
nonautonomous 1-D quasilinear wave equations, respectively, and showed the implicit dualities
between the corresponding exact boundary controllability and the exact boundary observabil-
ity. For the general 1-D quasilinear hyperbolic equation wu + a(u, ty, Ug)ty + b(U, Uy, Up)Ugy =
c(u, uy, ug), where u is the unknown function of (¢,z) and (a? — 4b)(0,0,0) > 0, Shang and
Zhuang [13] established the corresponding local exact boundary observability, including the
1-D quasilinear wave equation as its special case.

For second-order quasilinear hyperbolic systems, there are few results on the exact boundary
observability. Yu [16] considered the second-order quasilinear hyperbolic system wu + (A +
B) (g, Ut )Upy + AB(Uy g, Uy Uz = F(u, Uz, uy), where u = (ug,--+ ,u,)T is the unknown
vector function of (¢,x), matrices A and B have only n positive eigenvalues and n negative
eigenvalues, respectively. By a constructive method, she obtained the local exact boundary
observability. Later, for a quasilinear coupled hyperbolic system

Ut + (>\ + ,Uz)utm + Aﬂuzz + C(A - I/)S$ = fl’
St +vsy = fa,

where A(0) < 0, 1(0) < 0, v(0) > 0, she got the exact boundary observability by using similar
constructive method and applied this result to a first-order quasilinear hyperbolic system of
diagonal form and proved that the exact boundary observability is still valid even though the
boundary conditions are not coupled (see [17]).
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Recently, for a kind of coupled system of 1-D quasilinear wave equations:

n
Wiy — a3 (W) Wigs + Zaijwj =0 (i=1,---,n),
j=1
where w = (wy, -+ ,w,)T and a;(0) > 0 (i = 1,---,n), the authors of [2] discussed the local
exact boundary observability with various types of boundary conditions and showed the implicit
dualities between the exact boundary controllability and the exact boundary observability.

In this paper, we continue to consider the kind of second-order quasilinear hyperbolic systems
proposed in [14]. Based on the known result on the existence and uniqueness of semi-global C*?
solution to this kind of systems (see [14]), by using a constructive method, we discuss the exact
boundary observability and show the implicit dualities between it and the corresponding exact
boundary controllability given in [14]. The conclusions in both [2] and [13] are of its special
cases.

Consider the following kind of second-order quasilinear hyperbolic systems:

Ut + A(’LL, Uy, ut)uta: + B(U, Uy, ut)ua:a: = C(U, Uy, ut)7 (11)
where u = (uy,- -+ ,uy,)" is the unknown vector function of (¢, z), A(u,v,w) = (a;j(u,v,w)) and
B(u,v,w) = (bjj(u,v,w)) (i,j =1,--- ,n) are both nxn matrices with smooth entries, and have

n real eigenvalues and a complete set of left eigenvectors on the domain under consideration,
respectively. Suppose furthermore that

AB(u,v,w) = BA(u, v, w). (1.2)

Thus, there exists an invertible n x n matrix L(u, v, w) such that

LAL—l(u7U7w) :dlag{Ala 7)‘n}; (13)
LBLil(u,’[),w) :dlag{,ula a,u'n}; (14)
where A1, -+, A\, and p1, - - -, iy, are the real eigenvalues of matrices A and B, respectively, and

L = (l;;) is just the matrix composed by the common left eigenvectors of A and B. Moreover,
we assume that on the domain under consideration

piu,v,w) #0 (i=1,---,n) (1.5)
and
N — 4pi(u,v,w) >0 when pi(u,v,w) >0 (i=1,---,n). (1.6)
In addition, C' = C(u,v,w) = (c1(u,v,w),- -+, cy(u,v,w))T is a smooth vector function with

C(0,0,0) = 0. (1.7)
By [14], system (1.1) has 2n real eigenvalues

NP VNG s TR R, e T
A; T e— A = (i=1,---,n). (1.8)

This paper is organized as follows. In Section 2, we recall the existence and uniqueness of
semi-global C? solution to the second-order quasilinear hyperbolic system (1.1) under different
cases. Then the two-sided and one-sided exact boundary observability are discussed in Section
3, respectively. Finally, in Section 4, we present an implicit duality between the exact boundary

controllability and the exact boundary observability.
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2 Existence and Uniqueness of Semi-global C? Solution

In this section, we recall briefly the result on the semi-global C? solution to the second-order
quasilinear hyperbolic system (1.1) under different cases in [14].
For system (1.1), we give the following initial condition:

t=0: u=o(x), w=9x), 0<z<L, (2.1)
where ¢ = (1, -+ ,n) " is a given C? vector function, 1) = (¢1,--- ,%,)T is a given C* vector
function.

Let
. H1 Hn . g v
:dlag{~—,---,~—}:d1ag AT, AT 2.2

By [14], according to different signs of Xzi (t =1,---,n) in a neighborhood of (u,v,w) =
(0,0,0), we need only to discuss the following three typical cases.

Case 1 System (1.1) has n positive eigenvalues X;” > (0 and n negative eigenvalues X; <0
(i=1,---,n).

In this case, we prescribe the following nonlinear boundary conditions on the ends x = 0
and x = L, respectively:

_o. {Gr(w)=H(1) (= ),

r=0: {Gq(uaumut) Hq(t) (q — . ’n)7 (2,3)
_ . (Gl =H(1) _ (r: m),

x=1L: {Gg(u,ux,ut) Hit) (s=m n), (2.4)

where G, H,, G, and H, are all C? functions with respect to their arguments, G,, H,, G5
and H are all C! functions with respect to their arguments, and, without loss of generality,
we may assume

Gp(0) =
(p= 1,..

In what follows, the following assumptions will be imposed totally or partially in different

( 0) = G4(0,0,0) =0
1,-

m;s:m—l—l,---,n). (2.5)

5

G, (0)
lqzl

-I-H

situations:
aGl 8G1
e, T 0 . 0
@ @ 0 - 0
Ouy Oy, 1y .

det % o 3Gl+1 (L D ) aaGlJrl . aaGlJrl (L ) ;A 07 (26)

Oury OUnt Ule Una
0Gn 9G, an o gan
8ult 8’U,nt Utz Unz (07070)
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0G4 0G4
. o 0 !
oG, 9G 0 0
ou ou, 1+ -1
det 3Gl-1+1 Gk (L~'D™) aaGlJrl C(;Gzﬂ (L) #0, (2.7)
8u1t aunt U.’lﬂﬂ um
ooowm]  lmoe
Ouyy Oy Uz tna (0,0,0)
0G4 0G4
Jun T o : 0
3G 9Gp 0 - 0
det Qul Qu" (LilDi) — aﬁm-{-l 8am+1 (Lil) # 0, (28)
aGerl o aGerl u o ou
Ouyy Oy .lz .m
G, oG, G O
8’UJ1;C 8Umc
Ouqy Ouny (0,0,0)
0G4 0G4
Jun T o 0 !
oG, 0G,, 0 0
det || Ow Oun | (7 1p*) — | Gy G | (7Y £0.  (2.9)
OGmi1  OGmiy o ou
8U1t OUny e T.W/
oG, oG, P O
Oute Ounyt (0,0,0)

For the convenience of statement, in Case 1 we denote that
5= 2 fori=1,---,1, 5= 2 fori=1,---,m,
=11 fori=l+1,"'7n, 1 fori:m—Fl’...,n.

Case 2 System (1.1) has dy + d3 positive eigenvalues in > 0, XZ > 0 and 2n — (d; + d2)
negative eigenvalues X,: < 0, Xf <0(G=1,--,di; k=di+1,---,do; h=da+1,--- ,n),
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and, without loss of generality, we may assume
di +dy <, (2.10)

namely, the number of positive eigenvalues is less than or equal to that of negative ones.

In this case, we prescribe the following nonlinear boundary conditions on the ends =z = 0
and x = L, respectively:

_ Gp(u) = Hy(t) (p=1,---,1),
x=0 {Gq(u,uz;Ut)_Hq(t) (2:[4_1’... ,d1+d2), (2.11)
L. (G =T (=1 m),
x=1L: {és(uyuxaut)_ﬁs(t) (s=m+1,---,2n— (dy + d3)), (2.12)

where G, H,, G, and H, are all C? functions with respect to their arguments, G,, H,, G
and H, are all C' functions with respect to their arguments, and, without loss of generality,
we may assume

GP(O) =0, GT(O) =0, GQ(anvo) =0, GS(O,O,O) =0
(2.13)
p=1,---,l; g=1+1,---;di+da; r=1,---,m; s=m+1,---,2n — (d1 + da)).

In what follows, the following assumptions will be imposed totally or partially in different
situations:

oG oG
8u1 aun
duy Oup -1n— r—-1p+
det 0Gi  0Gin (L7 D7 )14y (LD )g1,413)
8u1t aunt
aGlerdz . aGlerdz
Ouyy Oy
0 . 0
0 0
—| 9G:  9G | (LT Yy (T ay) # 0, (2.14)
Ou1y Oz
8Gd1+d2 L 8Gd1+d2
aulz aunz (0,0,0)
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8G1 8G1
8u1 aun
96, e
0 Oy, —1y— Y —
det || 51, oG | (T D Nt asary (D D ) 41,d1a3))
ault aunt
aGlerdz aGlerdz
Ouyy Oy
0 0
0 0
- | 9Gin G141 (L) da 4 1oty (L) (dy 41,1 4o} #0, (2.15)
8’U,1x 8un:r
8Gd1+d2 L 8Gd1+d2
Ouiy Oz (0,0,0)
oG, oG,
ouy ouy,
G, G,
ou 5‘un — — T —
det 8am1+1 8am+1 ((L 1D ){d2+17n}~(L 1D+){d1+17"})
aUM aunt
aéQn—(le,-dQ) L. aéQn—(dl-‘rdg)
Oury Oy
0 . 0
0 . 0
— 86m+1 o 8@m+1 ((Lil){dﬁ_l’n}E(Lil){dl_i_l’n}) 7& 0, (2.16)
8U1x OUng
OGon—(dy-+ds) OGon—(dy+ds)
8U17; 8“”1 (0,0,0)

in which (L*ID*){Ldl} indicates the matrix composed of the first column to the d;th column
of matrix (L~1D7), etc.
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In Case 2, we denote that

g_ 2 fori=1,---,1, E_ 2 fori=1,---,m,
|1 fori=1+1,---,d; +do, 1 fori=m+1,---,2n— (di + da).
Case 3 System (1.1) has 2n positive eigenvalues Xf >0(=1,---,n).

In this case, we need only 2n boundary conditions on the end x = 0:

r=0: u=H(t), wu,=H({), (2.17)

where H = (Hy,---,H,)T is a given C? vector function, H = (Hy,--- ,H,)" is a given C!

vector function.

First of all, in Case 1 we give the following lemma on the existence and uniqueness of

semi-global C? solution to system (1.1) (see [14]).

Lemma 2.1 Suppose that (2.6) and (2.9) hold, and the conditions of C* compatibility are
satisfied at the points (t,xz) = (0,0) and (0, L), respectively. Then, for any given and pos-
sibly quite large T > 0, if the norms |[(¢,¥)|lc20,z1xc1(0,L]: ||(Hp, Hy)llo2(0,1)xc1j0,1) and
[(Hr, H)lle2po,rixcror) 0 = 1,50 g =141, ,n; 7 =1,---,m; s =m+1,---,n)
are small enough, the forward mized initial-boundary value problem (1.1), (2.1) and (2.3)—(2.4)
admits a unique semi-global C? solution u = u(t,x) on the domain R(T) = {(t,x) | 0 < t <
T, 0 < x < L} with small C? norm, and

n
[ull czirery < C(H(% Vlle2o,ixero.n) + Y IN(Hi, Hi)”ca[o,T]ch[o,T])a (2.18)
i=1
where C' is a positive constant.

Corollary 2.1 If ||(¢,¥)|lc2(0,2)xc1j0,2) 8 suitably small, then the Cauchy problem (1.1)
and (2.1) admits a unique global C? solution u = u(t,z) on its whole mazimum determinate

domain with small C? norm, and

[ullez < Cll(p,¥)llczjo.L1x (0,115 (2.19)

where C is a positive constant.

Remark 2.1 If we give the following final condition
t=T: u=(x), w=V(), 0<z<L, (2.20)

where ® = (®1,---,®,)T is a given C? vector function, ¥ = (¥y,--- , ¥, )T is a given C! vector
function. Suppose that (2.7)—(2.8) hold, and the conditions of C? compatibility are satisfied at
the points (¢,z) = (7,0) and (T, L), respectively. For any given and possibly quite large T' >
0, if the norms [|(®, ¥)||c2(0,L1xc1(0,1s |(Hps Ho)llo2p0.11x 010,71 and [(H o, Hs) || o2(0,1)x 010,17
p=1,---,l;g=1+1,---,n;r=1,--- ;m; s=m+1,--- ,n) are small enough, the backward
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mixed initial-boundary value problem (1.1), (2.20) and (2.3)—(2.4) admits a unique semi-global

C? solution on the domain R(T) with small C? norm, and

lullc2rery < C(H(‘I), U)|lc2o,Lxcrio,n) + Y H(HivFi)||CS[Q7T]><Cg[07T])a (2.21)
i=1

where C' is a positive constant.

In Case 2 and Case 3, we have the corresponding existence and uniqueness of semi-global

C? solution, see Lemma 2.2 and Lemma 2.3, respectively (see [14]).

Lemma 2.2 Suppose that (2.14) and (2.16) hold, and the conditions of C* compatibility
are satisfied at the points (t,x) = (0,0) and (0,L), respectively. Then, for any given and
possibly quite large T' > 0, if the norms ||(¢,¥)|lc2(0,1xc1j0,L15 [|(Hps Hy)llc2(0,11x01 0,77 and
||(FT7F5)||C2[O7T]><01[07T] (p=1,---,l; ¢g=14+1,--- ,di+dy; r=1,--- ,m; s=m+1,--- ,2n—
(dy + d2)) are small enough, the forward mized initial-boundary value problem (1.1), (2.1) and
(2.11)(2.12) admits a unique semi-global C? solution u = u(t,z) on the domain R(T) with

small C? norm, and

dy+ds 2n—(d1+d2) o
lullcziaery < C (I Wllczomxorom + I Hillgspm+ > Hillgagg)s (2:22)
=1 =1

where C is a positive constant.

Lemma 2.3 For any given and possibly quite large T > 0, if the norms

H (% w) HC?[O,L] xC1[0,L] and H (H7 F) ||c2[o,T] x C1[0,T]

are small enough, and the conditions of C* compatibility are satisfied at the point (t,z) = (0,0),
the forward mized initial-boundary value problem (1.1), (2.1) and (2.17) admits a unique semi-

global C? solution u = u(t,z) on the domain R(T) with small C* norm, and
lullczrery < CUI(@,¥)lle2(0,1xcrj0,z) + I(H, H)ll 20,11 % j0,11); (2.23)
where C' is a positive constant.

3 Local Exact Boundary Observability in Case 1

Theorem 3.1 (Two-Sided Exact Boundary Observability) Suppose that a;j, bij, ci, i,
pis lij (i,5=1,---,n) are all C* functions with respect to their arguments, and (2.6) and (2.9)
hold. Suppose furthermore that

Gy, ,Gy) IGig1,--+,Gn)
—_—— 0, 3.1
8(“1) o aul) u=0 7é 8(“’([4»1)1) e aumc) (0,0,0) ( )
and
8(617"' 7am) 8(am—i-lv"' ;én)
S, m) 0, 0. 3.2
a(ulv T 7um) u=0 7& a(u(m+1)xa to ;una:) (0,0,0) 7& ( )
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Let

1 1
T>L max { _ } (3.3)
i=Ln LAF(0,0,0)7 [47(0,0,0)
For any given initial data (p(x), ¢
(s )2 p0,1x 1o,y and ||(H, H)|| ¢
are satisfied at the points (t,z) = (0, ) and (0, L), respectively, if we have the observed values
g = kg(t), upe = kp(t) (p = 1,---,1; g =1+1,---,n) at x = 0 and us = ks(t), s =
ke(t) (r=1,---,m; s=m+1,---,n) at x = L on the interval [0,T), then the initial data
(¢(x),1(x)) can be uniquely determined by these observed values and (H(t), H(t)). Moreover,

(z)) and boundary functions (H(t), H(t)) with small norms
51 15 such that the conditions of C? compatibility
5[0,T]xC%[0,T)

we have the following observability inequality:

l n m
(e, V)l c2po,L1x01j0,L] < C(Z Epllcror + Y [Eqllczior + Y IEnllorjom

p=1 g=l+1 r=1
+ > Esllozor + 1L EDllgso zycipom ) (3.4)
s=m+1

where C' is a positive constant.

Proof Since ||(v,%)|lc2p0,21xc[0,) and ||(H, F)”C‘S[O,T]xcg[O,T] are small, by Lemma 2.1,
the mixed initial-boundary value problem (1.1), (2.1) and (2.3)—(2.4) admits a unique C? solu-
tion on the domain R(T') with small C? norm. Thus, the corresponding C? norms or C'! norms
of the observed values u, = ky(t), upe = kp(t) (p = 1,---,1; ¢g=1+1,---,n) at z = 0, and
Ug :R(t), Upg :E(t) (r=1,---,m; s=m+1,---,n) at x = L are all small.

By (3.1), in a neighborhood of (u,v,w) = (0,0,0), the boundary condition (2.3) at x = 0

can be equivalently rewritten as

U :g(Hlv"'le;ulJrl;"';un) (p:]-val)a
=0: P P 3.5
v {uqx :gq(HlJrl;"' 7Hnau7ut;u1x;"' 7ulz) (q:l+17 an)v ( )

where g, (p =1,---,1) are C? functions, g, (¢ =1+ 1,--- ,n) are C! functions, and by (2.5),

we have

Then, the values u;(t) of u; (i =1,---,n) at & = 0 can be uniquely determined by the observed
values uy = kq(t) (g=1+1,--- ,n) at z = 0 as follows:

0. [T = (L0, H(0), Faa(8), -+ Ful®) (0 =1, ,0),
-0 {0220 =1+t 7
and
n l
[lceom < C( Y IRallozom + Y IHpllcaom)- (3.8)

q=I+1 p=1
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On the other hand, the values @;;(t) of u;z (i =1,---,n) at = 0 can be uniquely determined
by the observed values u, = k,(t) (p=1,---,1) at z = 0 as follows:
z=0:
{ﬂpl’(t) :Ep(t) _ (p: ]-a 71)7 (3 9)
ﬂql’(t) :gq(HlJrl(t)a aHn(t)aﬂ(t)vﬂ,(t)vkl(t)v 7kl(t)) (q:l—i—l,'“ ,TL)
and
l _ n _ n
[Tzllcrpory < C(Z kpllcro,r) + Z kqllc2i0,m + Z ||Hi||C5[0,T]>- (3.10)
p=1 q=Il+1 =1

Similarly, by (3.2), in a neighborhood of (u,v,w) = (0,0,0), the boundary condition (2.4)

at x = L can be equivalently rewritten as

urzgr(ﬁla"'vﬁmvuerlv"';un) (T:]-a"'vm)v
r=1L: V= — 3.11
{usx:gs(Hm-i-lv"'aHnau7utaulxa"'7umx) (S:m+1a"'7n)a ( )
where g, (r =1,---,m) are C? functions, g, (s = m+1,--- ,n) are C! functions, and by (2.5),
we have
7,.(0,---,0)=7g,0,---,00=0 (r=1,---,m; s=m+1,---,n). (3.12)

Then, the values u;(t) of u; (i = 1,--+ ,n) at x = L can be uniquely determined by the observed

values us = kq(t) (s=m+1,--- ,n) at x = L as follows:
r=1" ?T(t)ZZT(Hl(t)a"' aHm(t)akarl(t)a"' akn(t)) (7“:]_,-” 7m)7 (313)
us(t) = ks(t) (s=m+1,---,n)
and
e <0( Y Flleson + 3 1Frllcsom). (314)
s=m-+1 r=1
On the other hand, the values ;. (t) of u;y (i = 1,---,n) at x = L can be uniquely determined
by the observed values u,, = k() (r =1,--- ,m) at x = L as follows:
r=15L:
U (t) = B (t) B o (r=1m), (3.15)
_ —Z — = = .
ﬂsw(t) = gs(Herl(t)a : 7Hn(t)7ﬂ(t)aﬂ (t)v kl(t)v T 7km(t)) (S =m+1,--- 7n)
and
[Tzllorp0m < C(Z %rllciory+ D MEsleoom + Hﬁiﬂ(ﬁ[o,ﬂ)- (3.16)
r=1 s=m+1 i=1

Changing the role of ¢ and x, we consider the rightward Cauchy problem for system (1.1)

with the initial condition

z=0: ui:ﬂi(t), uix:ﬂix(t), 0<tsT (Z:]., ,n). (317)
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By Corollary 2.1 and noting (3.8) and (3.10), this Cauchy problem admits a unique C? solution

u = u(t,z) on its whole maximum determinate domain, and

l n n
lillez < C( X Wpllcrom + - WRallczo + 3 I Hillesp.m))- (3.18)
p=1 q=Il+1 =1

Similarly, the leftward Cauchy problem for system (1.1) with the final condition
x="L: u=0(t), wgx=u(t), 0<t<T (i=1,---,n) (3.19)

admits a unique C? solution u = u(¢, x) on its whole maximum determinate domain, and

m

= n = n —
lillez < (X Ikllerom + > ksl + Y Hillesom )- (3.20)
=1

r=1 s=m-+1
Obviously, both u = u(t,z) and u = i(t,x) are the restrictions of the solution u = u(t, z) to
the original mixed problem on the corresponding domains, respectively.
Noting (3.3), these two maximum determinate domains must intersect each other. Then,

there exists Ty (0 < Ty < T') such that the value (®(x), ¥(x)) of (u,us) at t = Ty can be
uniquely determined by u = u(t, ) and u = i(t, x). Noting (3.18) and (3.20), we have

l n mo
(@, )| c20,21x 1 j0,2) < C(Z Epllcror + Y Ikgllezor + > Ikellcror

p=1 q=Il+1 r=1
n = [—
+ > IRsllezo.m + I Dlcsorixcmon ) (3.21)
s=m-+1

We now consider the backward mixed initial-boundary value problem for system (1.1) with
t=To: (u,u)=(®(z),¥(x)), 0<x<L, (3.22)

i=1,---,n), (3.23)
i=1,---,n) (3.24)

r=0: wu=m1u;
r=L: u=7u;
on the domain R(Tp) = {(t,x) | 0 <t < Ty, 0 <z < L}. By Remark 2.1, this backward mixed

problem admits a unique C? solution u = wuy(t, ), which is the restriction of the original C?

solution u = u(t,z) on the domain R(Tp), thus we have

[ullc2iremyy < CUN®, ©)lle2(0,L1xcj0.) + [1(@ @)l e2(0,71xc2(0,17)- (3.25)
By (2.1) and noting (3.8), (3.14) and (3.21), we get the desired observability inequality (3.4).

Theorem 3.2 (One-Sided Exact Boundary Observability) — Suppose that ai;, bij, ¢i, i,
wis lij (i, =1,---,n) are all C* functions with respect to their arguments, and (2.6), (2.8)-
(2.9) and (3.1) hold. Let

1 1
T> L(A max —————— + max ~7) (3.26)
=1m )\j(0,0,0) i=1,n |/\i_(0a070)|
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For any given initial data (¢(x),(x)) and boundary functions (H(t), H(t)) with small norms
(2, V) llc20,01xc1p0,2) and ||(H, H)Hcé 0.7x (0,1 Such that the conditions of C? compatibility
are satisfied at the points (t,z) = (0, ) and (0, L), respectively, if we have the observed values
Uy = kg(t), upe = kp(t) (p=1,--+,1; g=1+1,---,n) at & = 0 on the interval [0,T], then the
initial data (¢(x),v(x)) can be uniquely determined by these observed values and (H(t), H(t)).

Moreover, we have the following observability inequality:

(5 9) ||C2[0,L] xC1[0,L)]

l n
<X Ileon+ 3 alewom + 1 Dlospmueror). (320

p=1 q=l+1
where C' is a positive constant.

Proof Changing the role of t and x, we consider the rightward Cauchy problem for system
(1.1) with the initial condition (3.17), which admits a unique C? solution u = u(t,z) on its
whole maximum determinate domain and (3.18) holds. Obviously, v = «(t, ) is the restriction
of the C? solution u = u(t, ) to the original mixed problem on the corresponding domain.

Noting (3.26), this maximum determinate domain must intersect x = L. Then, there exists
Ty (0 < Ty < T') such that the value (®(z), ¥(x)) of (u,u;) at t = Tp can be uniquely determined
by u = u(t,z). Noting (3.18), we have

||(67$)HCQOL xC1[0,L] <C(Z||k e, + Z Hk HCQ[OT]“‘”H”C‘SOT) (3.28)
q=Il+1

We consider the backward mixed initial-boundary value problem for system (1.1) with the
final condition (3.22) and boundary conditions (3.23) and (2.4) on the domain R(Tp). By
Remark 2.1, this backward mixed problem admits a unique C? solution u = uy(t,z) on the
domain R(Tp), which is just the restriction of the original C? solution u = wu(t,x) on the

domain R(Ty), thus we have

lullczirery) < CUIR, )20, c1x o) + ITllezpo,r) + I1H | 630, 2))- (3.29)
By (2.1) and noting (3.8) and (3.28), we get the desired observability inequality (3.27).
Remark 3.1 In Case 1, if the boundary conditions are particularly given as
x=0:u; =H;(t) (i=1,---,n), (3.30)
r=L:u=Hi(t) (i=1,--,n), (3.31)
it is easy to see that assumptions (3.1)—(3.2) are automatically satisfied.

Remark 3.2 In Case 1, since the number of positive eigenvalues for system (1.1) is equal
to that of negative eigenvalues, similar result holds if we take observed values at x = L instead
of at x = 0, and hypotheses (2.6), (2.8)-(2.9) and (3.1) are replaced by (2.6)-(2.7), (2.9) and
(3.2).
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4 Local Exact Boundary Observability in Case 2 and Case 3

Let
a:m+(d1+d2)—n. (4.1)

Assume that a > 0.

Theorem 4.1 (Two-Sided Exact Boundary Observability) Suppose that aij, bij, i, i,
pis Lij (i,5=1,---,n) are all C* functions with respect to their arguments, and (2.10), (2.14)
and (2.16) hold. Suppose furthermore that

(G, ,Gy) 20, Gy, Gayvay) (4.2)
a(ula T ;ul) u=0 a(u(l+1)xv T au(d1+d2)x) (0,0,0)
and
Gy, G aam a"'vén— b
a(GI; ;Gm) # 07 ( +1 2 (d1+dz)) ‘ # O (43)
8(“’1) e ;um) u=0 8(u(a+1)zv e )uYLZ') (0:070)
Let
1
T > L ma :ti (44)
" [A77(0,0,0)]

For any given initial data (¢(x),(x)) and boundary functions (H(t), H(t)) with small norms
(2, ¥)llc20,2)xc1p0,2) and ||(H, )H05 0.T1x 70717 such that the conditions of C? compatibility
are satisfied at the points (t,x) = (0,0) and (0, ) respectively, if we have the observed values
u?I:E?I(t);upI:Ep(t)’upx t)(@=1+1,--- n;p=1,--; p=(di+d2) +1,---,n)
at x =0 and uz = kz(t), u t)

8!
[0,T], then the initial data (p(x),9(x)) can be uniquely determined by these observed values

ki
=k, (t) S=m+1,---,n; y=1,--- ,a) at x = L on the interval
and (H(t), H(t)). Moreover, we have the following observability inequality:

n

l —
I ¥llczo e < C( X lloom+ Y. Iksllero

p=1 p=(d1+d2)+1
+ Z K3l (0,19 +ZW‘5 i1y Z 13l c2j0,1)
q=I+1 s=m+1
+II(H, H)HCS[O?T]XCE[O’T}), (4.5)

where C is a positive constant.

Proof The proof of Theorem 4.1 is similar to that of Theorem 3.1. By (4.2), in a neigh-
borhood of (u,v,w) = (0,0,0), the boundary condition (2.11) at x = 0 can be equivalently

rewritten as

U;p:gp(Hl,"',H[,Ul+1,"',un) (p:17al)a
z=0: Uge = gq(HlJrlv" : 7Hd1+d2au7utau1x7" : 7ulwau((d1+d2)+l)x7" : 7unm)
(g=1+1,--,di +d),
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where g, (p =1, ,1) are C? functions, g, (¢ =1+ 1, ,dy + d2) are C*! functions, and by
(2.13), we have

gp(o’vo):gq(o”o):o (p—]_’vl, q:l+1’7d1+d2)

Then, the values w;(t) of u; (i = 1,--- ,n) at x = 0 can be uniquely determined by the observed

values uz = kg(t) (¢=1+1,---,n) at x = 0 as follows:

xr=0: {Ep(t) = gp(Hl(t)v T 7Hl(t)aEl+1(t)7 T 7En(t)) (IZ: s,
g(t) = kg(t) (@=1+1--.,n)
and
fallcsom < (Y Fallowom +Z|\H lezom)-
q=I+1 =
On the other hand, the values %;;(t) of u;; (i =1,---,n) at x = 0 can be uniquely determined

by the observed values u,, = k,(t), uz, = E,;(t) p=1,---,1; p=(di+d2)+1,---,n) at

x = 0 as follows:
0. {%(t) Fol), Tpalt) = Rplt) (=1, 1 F=(d1 +da) + 1,0+ ),
Ugo(t) = gg(His1(t), -+, Hay 4, (1), 0(¢), W (¢ ) o0, k5(1) (q=1+1,- ,di +da)

and

n

l _ n
[@lcon <C( oloon+ Y. Ikslloom+ . IRalcwor + 1 Hllgsgom )-
p=1 p=(d1+d2)+1 q=I+1

The observed values at x = L depend on the value of a;, which is divided into two subcases.
(a) a =0, namely, m =n — (dy + da).

By (4.3), in a neighborhood of (u,v,w) = (0,0,0), the boundary condition (2.12) at z = L

can be equivalently rewritten as

—ps [T Enms ) (=L
r=1L: i = .
Ui :gi(Herlv"' ;Hern;uvut) (Z = ]-a' v 7n)a

where g, (r = 1,---,m) are C? functions, g; (i = 1,--- ,n) are C* functions, and by (2.13), we

have

Then, the values u;(t) of u; and the values U;, (t) of u;, (i =1,--+,n) at x = L can be uniquely
determined by the observed values uz = k3(t) (§ =m +1,---,n) at @ = L as follows:

(1) =g, (Hi(t), - s Hn(t), ki1 (1), k() (r=1,---,m),

= — /T = = =/ .

Tlt) = 91 (8), a7, T @) (=1, m)
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and

n

|@ E)lozomieron < C( D Rsllczom + 1Tl o)

s=m+1
(b) « > 0, namely, m > n — (d; + da).

By (4.3), in a neighborhood of (u,v,w) = (0,0,0), the boundary condition (2.12) at z = L

can be equivalently rewritten as

r=1": {U'T :gr(ﬁlf" 7ﬁma£m+1a"' 7“’”) (T: 1) 7m)7
UBax :gﬁ(Herlv" ’ aHQn—(dl—i-dg)auvut;ulxv"' 7uozz) (5 =a+1,- an)v

where g, (r = 1,---,m) are C? functions, gs (B=a+1,---,n) are C' functions, and by
(2.13), we have

yr(0,70):§5(0,70):0 (r:17,m; ﬁ:a+1,7n)

Then, the values w;(t) of u; (i = 1,--- ,n) at z = L can be uniquely determined by the observed

values uz = kz(t) (§=m+1,--- ,n) at z = L as follows:
r=1": ﬁr(t)ZZT(Fl(t)a aﬁm(t)ﬂE’erl(t)ﬂ"' aEn(t)) (7“:]_,'” am)a
us(t) = ks(t) (s=m+1,---,n)
and
n — m o
[@ezom <C( Y IRsllero + Y [Hrlloziom)-
s=m+1 r=1
On the other hand, the values % (t) of u;; (i =1, ,n) at x = L can be uniquely determined
by the observed values ., = k~(t) (y =1, ,a) at x = L as follows:
x=1L: {?W(t):EW(Q — = (y="1,--,0),
Upr(t) = Gg(Hmi1(8); -+ Hon(dy4d) (8), (), W (1), k5 (1)) (B=a+1,---,n)
and

n

Fellosom < O( Y MRslleo + X [Rallcso) + 1l g5 4,)-
S=m-+1 y=1
The rest of the proof is similar to the proof of Theorem 3.1 and can be omitted.

Similarly to Theorem 3.2, we have the following theorem.

Theorem 4.2 (One-Sided Exact Boundary Observability) Suppose that a;j, bij, i, i,
pis lij (i,5=1,---,n) are all C* functions with respect to their arguments, and (2.10), (2.14)-
(2.16) and (4.2) hold. Let

1 1
r >L( .7:111,1-5-1-},(@ Xi(o 0 0)’ X-i-(o 0 0)}
k=dq+1,--- ,do J Y k » Vo
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1 1
4 max T ' o
g 3 {IA (0,0,0)] |Af(0,0,0)|}) (4.6)

h=dg+1,---

For any given initial data (¢(x),(x)) and boundary functions (H(t), H(t)) with small norms
(2, V)llc210,2)xc1j0,2) and ||(H, H)HCJ[O,T 1xCT0.T]’ such that the conditions of C? compatibility
are satisfied at the points (t,x) = (0,0) and (0, L), respectively, if we have the observed values
ug = kg(t), upe = kp(t), upe = kz(t) (@=1+1,---,m; p=1,---,1; p=(dy +d2) +1,--- ,n)
at x = 0, then the initial data ((x),v(x)) can be uniquely determined by these observed values

and (H(t), H(t)). Moreover, we have the following observability inequality:

n

l —
I Wlcwomxcron < (X lloor + > Il
p=1 p=(d1+d2)+1

+ 3 Wallozom + I Ml gig ryeeior): A7)
g=1+1

where C is a positive constant.

Remark 4.1 In Case 2, suppose that the boundary conditions are particularly given as

_n- (IdmO)L(O)Uf = HN(t),
c=1: {(0 Tn—a,)L(0)u = H(t), "
(0,Tn—a,)L(0)uy = H(2).

By Laplace theorem of determinant (see [15]), for the invertible matrix L(0), there exists a
nonsingular subdeterminant composed of the elements of the intersections of, for instance, the
first row to the doth row with the first column to the dsth column, and we denote this do-

subdeterminant of L(0) as ‘L(O) (}j::: Zz) (n — dg)-algebraic cofactor of

this de-subdeterminant satisfies ‘L(O) (Zzi}f::: Z)

(4.2) is automatically satisfied. Similarly, we can also get (4.3).

In Case 3, we need only to consider the local one-sided exact boundary observability at
x=L.

Theorem 4.3 (One-Sided Exact Boundary Observability at z = L)  Suppose that a;;, bij,
Ciy Niy iy Lij (4,7 =1,---,n) are all C' functions with respect to their arguments. Let
1
T>L max ———. (4.10)
i=1+n 1= (0,0,0)
For any given initial data (¢(x),(x)) and boundary functions (H(t), H(t)) with small norms
(2, V)llc210,2)xc1j0,2) and ||(H, F)|‘02[07T]XCI[O7T], such that the conditions of C? compatibility
are satisfied at the point (t,x) = (0,0), if we have the observed values (u,uz) = (U(t), U (t)) at
x = L, then the initial data (p(x),9¥(x)) can be uniquely determined by these observed values
and (H(t), H(t)). Moreover, we have the following observability inequality:

(e, ) lczo,1xcro,) < C (1@ )l c2p0, 17 % 10,71 + I1(H, H) |l e2jo,71x 61 j0,17) » (4.11)
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where C' is a positive constant.

5 Implicit Duality Between Controllability and Observability

Comparing the observability discussed above with the controllability obtained in [14], we
may find an implicit duality between the exact boundary controllability and the exact boundary
observability for this kind of second-order quasilinear hyperbolic systems.

For the two-sided control, we have

(i) The controllability time is equal to the observability time, and both of them are sharp.
The restriction on the controllability time essentially means that the two maximum determinate
domains for the forward and backward Cauchy problems do not intersect each other, while, the
restriction on the observability time essentially means that the two maximum determinate
domains for the leftward and rightward Cauchy problems must intersect each other.

(ii) Both the number of boundary controls and the number of boundary observed values

are equal to 2n, which is the number of all positive eigenvalues and negative eigenvalues.

For the one-sided control, we have

(i) The controllability time is still equal to the observability time, and both of them are
sharp. The restriction on the controllability time essentially means that the two maximum
determinate domains for the forward and backward one-sided mixed problems do not intersect
each other, while, the restriction on the observability time essentially means that the maximum
determinate domain for the rightward Cauchy problems must intersect x = L.

(ii) Both the number of boundary controls and the number of boundary observed values are
equal to the maximum value between the number of positive eigenvalues and that of negative

eigenvalues.
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