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Abstract This paper deals with the homogenization of a class of nonlinear elliptic prob-
lems with quadratic growth in a periodically perforated domain. The authors prescribe a
Dirichlet condition on the exterior boundary and a nonhomogeneous nonlinear Robin con-
dition on the boundary of the holes. The main difficulty, when passing to the limit, is that
the solution of the problems converges neither strongly in L2(Ω) nor almost everywhere
in Ω. A new convergence result involving nonlinear functions provides suitable weak con-
vergence results which permit passing to the limit without using any extension operator.
Consequently, using a corrector result proved in [Chourabi, I. and Donato, P., Homoge-
nization and correctors of a class of elliptic problems in perforated domains, Asymptotic
Analysis, 92(1), 2015, 1–43, DOI: 10.3233/ASY-151288], the authors describe the limit
problem, presenting a limit nonlinearity which is different for the two cases, that of a
Neumann datum with a nonzero average and with a zero average.
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1 Introduction

In this paper, we study the homogenization of a class of a nonlinear elliptic problems con-
taining a nonlinear term depending on the solution uε and on its gradient ∇uε with quadratic
growth. The problem is posed in the perforated domain Ω∗

ε = Ω\Tε obtained by removing from
an open bounded set Ω of RN (N ≥ 2) a closed set Tε representing a set of ε-periodic holes
of size ε. We prescribe a Dirichlet condition on the exterior boundary Γε

0 and a nonhomoge-
neous nonlinear Robin condition on the boundary Γε

1 of the holes. More precisely, we study the
asymptotic behavior, as ε tends to zero, of the bounded solution uε of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div(Aε(x, uε)∇uε) + λuε = bε(x, uε,∇uε) + f in Ω∗
ε ,

(Aε(x, uε)∇uε) · ν + εγρε(x)h(uε) = gε on Γε
1,

uε = 0 on Γε
0,

(1.1)

where λ ≥ 0 and ν is the unit external normal vector with respect to Ω∗
ε.
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1Université de Monastir, UR Analysis and Control of PDE, UR13ES64, Department of Mathematics
Faculty of Sciences of Monastir 5019 Monastir, Tunisia. E-mail: ichourabi@yahoo.fr
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The function f belongs to Lm(Ω) with m > N
2 and ρ(x) = ρ

(
x
ε

)
, where ρ is a Y -periodic

function that belongs to L∞(∂T ), Y and T being the reference cell and the reference hole,
respectively.

We assume that Aε(x, t) = A
(

x
ε , t

)
is a bounded, uniformly elliptic, Y -periodic matrix field

and that the function bε(x, t, ξ) is a Carathéodory function on Ω × R × RN with quadratic
growth with respect to the third variable.

We also suppose that gε is defined by

gε(x) =

⎧⎪⎨⎪⎩
εg

(x
ε

)
, if M∂T (g) �= 0,

g
(x
ε

)
, if M∂T (g) = 0,

where g is a Y -periodic function in Lr(∂T ) with r > N − 1 and M∂T (g) denotes its mean over
∂T .

Let us mention that this type of equations appears in calculus of variations and stochastic
control and the nonlinear term b(y, t, ξ) appears in the Euler equation of certain functionals.

The homogenization of this kind of equation with a linear matrix field Aε(x) involving a
term bε(x, t, ξ) continuous in x variables and with quadratic growth with respect to ξ has been
studied in [4–5] for a fixed domain and in [19] for perforated domains with Neumann boundary
condition and f = 0. In [20] the case where bε(x, t, ξ) is singular in t in a fixed domain has been
studied.

The homogenization result of problem (1.1) is stated in Theorem 2.1. The main feature
of this result is that the expression of the limit nonlinearity b0 depends on the average of the
nonhomogeneous boundary function g. This is due to the fact that, as proved in [10], the
corrector results for the associated linear problem are different in the two cases M∂T (g) �= 0
and M∂T (g) = 0.

More precisely, according to these two cases, we derive two different limit problems for the
L2-limit u0 of the zero extension of uε:

(1) If M∂T (g) �= 0 or g ≡ 0, the function u0 is a solution of the problem⎧⎨⎩−div(A0(u0)∇u0) + θλu0 + cγh(u0) = b0(u0,∇u0) +
|∂T |
|Y | M∂T (g) + θf in Ω,

u0 = 0 on ∂Ω,

where θ = |Y \T |
|Y | and A0(t) is the homogenized matrix introduced in [1] (see also [2–3, 8]) for

quasilinear problems with Neumann conditions in perforated domains and the constant cγ is
defined by

cγ =

⎧⎨⎩
|∂T |
|Y | M∂T (ρ), if γ = 1,

0 if γ > 1.

The function b0 is given by

b0(s, ξ) =
1
|Y |

∫
Y \T

b(y, s, C(y, s)ξ)dy, ∀s ∈ R, ∀ξ ∈ RN ,

where {Cε(·, s)} is the usual corrector.
(2) If M∂T (g) = 0 (with g �≡ 0) and A is independent of t, i.e., A(y, t) = A(y) in Y , the

function u0 is a solution of the problem{−div(A0∇u0) + θλu0 + cγh(u0) = b0(u0,∇u0) + θf in Ω,

u0 = 0 on ∂Ω,



Homogenization of Elliptic Problems in Perforated Domains 835

where A0 is the now classical constant homogenized matrix introduced in [18]. The function b0
is defined by

b0(t, ξ) =
1
|Y |

∫
Y \T

b(y, s, C(y)ξ + ∇χ̂g(y))dy for every ξ ∈ RN ,

where Cε is the usual corrector (independent of t) and the function χ̂g is the solution of the
related problem posed in the reference cell with a nonhomogeneous Neumann data g.

As in [4–5, 19–20], the main tool in the homogenization process is a corrector result. To do
that, we construct a suitable associated linear problem. The homogenization and the corrector
results for this linear problem have been already proved in [10]. We use here the result about
correctors proved therein and we show that the corrector for the linear problem is also a corrector
for our nonlinear problem in both cases M∂T (g) �= 0 and M∂T (g) = 0.

Here, the main difficulty in particular, when passing to the limit in the nonlinear problem, is
due to the presence of the holes, and the solutions converge neither strongly in L2(Ω) nor almost
everywhere in Ω. To overcome this difficulty, we do not use the extension operators as done
in [19] for the case of homogeneous Neumann condition. We apply here the periodic unfolding
method introduced in [12] (see [13] for more details) and extended to perforated domains in
[16–17] (see also [11] for more general situations). Using the fact that the unfolding operator
T ∗

ε for perforated domains transforms any function defined on Ω∗
ε into a function defined on a

fixed domain, we prove a new technical convergence result involving nonlinear functions, stated
in Theorem 4.1, which provides suitable weak convergence results. This technical tool allows to
pass to the limit and to prove the corrector result simplifying the proofs and the presentation,
even in the case studied in [19].

This paper is organized as follows: In Section 2 we present the problem and state the main
results. In Section 3 we recall some preliminary results. Section 4 is devoted to the proof of
the homogenization result.

2 Position of the Problem and Statement of the Main Results

In order to state the main results of this paper, we recall some general notations introduced
in [11] (see also [12] for the unfolding periodic method in perforated domains).

We denote by
Ω an open bounded set of RN (N ≥ 2) with ∂Ω being Lipschitz continuous;
Y =]0, l1[× · · ·×]0, lN [ the reference cell, where li > 0 for all 1 ≤ i ≤ N ;
T , the reference hole, a compact set contained in Y and Y ∗ = Y \T the perforated reference

cell, with ∂T Lipschitz-continuous with a finite number of connected components;
Tε =

⋃
k∈Ξε

ε(k + T ) the closed set of RN representing the holes, where

G =
{
ξ ∈ RN : ξ =

N∑
i=1

kibi, (k1, · · · , kN ) ∈ ZN
}
, Ξε = {ξ ∈ G, ε(ξ + Y ) ⊂ Ω}, where

b = (b1, · · · , bN) is a basis in RN ;
Ω∗

ε = Ω\Tε the perforated domain;
Ω̂ε = interior

( ⋃
k∈Ξε

ε(k + Y )
)

and Ω̂∗
ε = Ω̂ε\Tε the corresponding perforated set;

Λε = Ω\Ω̂ε and Λ∗
ε = Ω∗

ε\Ω̂∗
ε the corresponding perforated set.

As in [8, 17], we decompose (see Figure 1) the boundary of the perforated domain Ω∗
ε as

follows:

∂Ω∗
ε = Γε

0 ∪ Γε
1, where Γε

1 = ∂Ω̂∗
ε ∩ ∂Tε and Γε

0 = ∂Ω∗
ε\Γε

1.

In the sequel, we also denote by
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Figure 1 The perforated domain Ω∗
ε and the reference cell Y

χ
E

the characteristic function of a subset E of RN ;
|E| the Lebesgue measure of a Lebesgue-measurable subset E of RN and |∂E| the (N − 1)-

Hausdorff measure in RN of its boundary ∂E;

MY ∗(v) =
1

|Y ∗|

∫
Y ∗
v(y) dy the average of any function v ∈ L1(Y ∗);

M∂T (v) =
1

|∂T |

∫
∂T

v(y) dσy the average of any function v ∈ L1(∂T );

ṽ or (v)∼ the extension by zero on Ω of any function defined on Ω∗
ε;

ν the unit external normal vector with respect to Y \T or Ω∗
ε ;

M(α, β,Ω) the set of matrix fields A = (aij)1≤i,j≤N ∈ (L∞(Ω)) such that{
(A(x)λ, λ) ≥ α(|λ|)2,
|A(x)λ| ≤ β|λ|,

for x a.e in Ω, any λ ∈ RN and α, β ∈ R, with 0 < α < β;

θ =
|Y ∗|
|Y | the proportion of material;

c different strictly positive constants independent of ε.
Let us recall that

χ
Ω∗

ε
⇀ θ weakly* in L∞(Ω), (2.1)

as ε tends to zero.

Our purpose is to study the asymptotic behavior, as ε tends to zero, of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−div(Aε(x, uε)∇uε) + λuε = bε(x, uε,∇uε) + f in Ω∗

ε ,

(Aε(x, uε)∇uε) · ν + εγρε(x)h(uε) = gε on Γε
1,

uε = 0 on Γε
0,

(2.2)

where we suppose that
(H1) λ ≥ 0.
(H2) 0 ≤ f ∈ Lm(Ω) with m > N

2 , f �≡ 0.
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(H3) The real matrix field A : (y, t) ∈ Y ×R �−→ A(y, t) = {aij(y, t)}i,j=1,··· ,N ∈ RN2
satisfies

the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) A(y, t) is Y -periodic for every t and a Carathéodory function, i.e., A(y, ·) is

continuous for almost every y ∈ Y and A(·, t) is measurable for every t ∈ R;

(2) A(·, t) ∈M(α, β, Y ) for every t ∈ R;

(3) A is Lipschitz continuous with respect to the second variable, i.e.,

∃K ∈ R : |A(y, t) −A(y, t1)| ≤ K|t− t1| a.e. y ∈ Y, for t �= t1 ∈ R.

(H4) The function h is an increasing and continuously differentiable function such that for
some positive constant C and an exponent q, one has⎧⎪⎪⎪⎨⎪⎪⎪⎩

h(0) = 0,

∀t ∈ R, |h′(t)| ≤ C(1 + |t|q−1), with

1 ≤ q ≤ ∞ if N = 2 and 1 ≤ q ≤ N
N−2 if N > 2.

(H5) The function ρ is positive and Y -periodic, and it belongs to L∞(∂T ).
(H6) The function g is Y -periodic and belongs to Ls(∂T ), where s > N − 1.
(H7) The function b : (y, t, ξ) ∈ Y × R × RN �−→ b(y, t, ξ) ∈ R satisfies the following condi-

tions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) b(y, t, ξ) is Y -periodic for every (t, ξ) ∈ R × RN , and is a Carathéodory function, i.e.,

b(y, ·, ·) is continuous for a.e. y ∈ Y and b(·, t, ξ) is measurable for every(t, ξ) ∈ R × RN;

(2) for some positive constant c0, one has

|b(y, t, ξ)| ≤ c0(1 + |ξ|2) for a.e. y ∈ Y, ∀t ∈ R, ∀ξ ∈ RN;

(3) d1 and d2 are continuous increasing functions with d1(0) ≥ 0 and d2(0) = 0, such that

|b(y, t, ξ) − b(y, t, ξ′)| ≤ d1(|t|)(1 + |ξ| + |ξ′|)|ξ − ξ′| for a.e. y ∈ Y, ∀t ∈ R, ∀ξ, ξ′ ∈ RN

and

|b(y, t, ξ) − b(y, t′, ξ)| ≤ d2(|t− t′|)(1 + |ξ|2) for a.e. y ∈ Y, ∀t, t′ ∈ R, ∀ξ ∈ RN.

For almost every x in Ω, every t in R and every ξ in RN , we set

Aε(x, t) = A
(x
ε
, t

)
, bε(x, t, ξ) = b

(x
ε
, t, ξ

)
, ρε(x) = ρ

(x
ε

)
(2.3)

and

gε(x) =

⎧⎪⎨⎪⎩
εg

(x
ε

)
, if M∂T (g) �= 0,

g
(x
ε

)
, if M∂T (g) = 0.

(2.4)

We introduce now the space

Vε = {v ∈ H1(Ω∗
ε) : v = 0 on Γε

0},
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equipped with the norm

‖v‖Vε = ‖∇v‖L2(Ω∗
ε) for every v ∈ Vε,

and the variational formulation of problem (2.2)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

Ω∗
ε

Aε(x, uε)∇uε∇ϕ dx+ εγ

∫
Γ∗

1

ρεh(uε)ϕ dσ + λ

∫
Ω∗

ε

uεϕ dx

=
∫

Ω∗
ε

bε(x, uε,∇uε)ϕ dx+
∫

Ω∗
ε

fϕ dx+
∫

Γ∗
1

gεϕ dσ, ∀ϕ ∈ Vε ∩ L∞(Ω∗
ε).

(2.5)

The existence of a solution to problem (2.5), under the assumptions (H1)–(H7), has been proved
in [9, Theorem 6.1] together with the boundedness of the solution and some uniform estimates
for the sequence {uε}ε. More precisely, it was proved that there exists a constant c such that

‖uε‖Vε ≤ c, ‖uε‖L∞(Ω∗
ε) ≤ c, (2.6)

where c is independent of ε and depends only on α, m, s and the Sobolev embedding constant,
with the numbers α, m and s being defined by (H2)–(H3) and (H6), respectively.

We recall that (see [1–2, 8, 10]) for every fixed t ∈ R, the homogenized matrix A0(t) is
defined by

A0(t)λ =
1
|Y |

∫
Y \T

A(y, t)∇yŵλ(y, t)dy, ∀λ ∈ RN, (2.7)

where

ŵλ(y, t) = λy − χ̂λ(y, t) (2.8)

and for every t ∈ R and λ ∈ RN, the function χ̂λ(·, t) is the solution to the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(A(·, t)∇yχ̂λ(·, t)) = −div(A(·, t)λ) in Y \T,

A(·, t)(λ −∇yχ̂λ(·, t)) · ν = 0 on ∂T,

χ̂λ(·, t) is Y-periodic,

1
|Y \T |

∫
Y \T

χ̂λ(·, t) dy = 0.

(2.9)

We also define for any ε and every fixed t ∈ R, the corrector matrix Cε(·, t) = (Cε
ij(·, t))1≤i,j≤n,

given by (see [10]) ⎧⎪⎪⎨⎪⎪⎩
Cε(x, t) = C

(x
ε
, t

)
, a.e. in Ω∗

ε ,

Cij(y, t) =
∂ŵj

∂yi
(y, t), i, j = 1, · · · , N, a.e. on Y,

(2.10)

where {ej}N
j=1 is the canonical basis of RN .

We recall below its main properties.

Proposition 2.1 (see [10]) Under the assumption (H3), let uε be the solution of problem
(2.2). Then, there exists a constant c1, independent of ε, such that for some r > 2,

‖Cε(·, t)‖Lr(Ω∗
ε) ≤ c1 for every ε and for any t ∈ R. (2.11)
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Moreover, the functions Cε(·, uε) are equi-integrable and⎧⎨⎩(i) Cε(·, uε) ⇀ I weakly in (L2(Ω))N2
,

(ii) Aε(·, uε)Cε(·, uε) ⇀ A0(u0) weakly in (L2(Ω))N2
.

(2.12)

We can now state the main result of this paper.

Theorem 2.1 Under the assumptions (H1)–(H7), let uε be the solution of problem (2.2).
Then, there exists a subsequence {uε} (still denoted by ε), a function u0 ∈ H1

0 (Ω) ∩ L∞(Ω)
and a Carathéodory function b0 : R × RN → R such that{

(i) ũε → θu0 weakly in L2(Ω) and weakly ∗ in L∞(Ω),

(ii) (bε(·, uε,∇uε))∼ → b0(u0,∇u0) on D′(Ω),
(2.13)

where θ is defined by (2.1).
The homogenized problems, depending on the mean of g, are the following ones:
(1) If M∂T (g) �= 0 or g ≡ 0, the function u0 is a solution of the problem⎧⎨⎩−div(A0(u0)∇u0) + θλu0 + cγh(u0) = b0(u0,∇u0) +

|∂T |
|Y | M∂T (g) + θf in Ω,

u0 = 0 on ∂Ω,
(2.14)

where the homogenized matrix A0(t) is given by (2.7) for every fixed t ∈ R, and the constant cγ
is defined by

cγ =

⎧⎨⎩
|∂T |
|Y | M∂T (ρ), if γ = 1,

0, if γ > 1.
(2.15)

The function b0 is given by

b0(s, ξ) =
1
|Y |

∫
Y \T

b(y, s, C(y, s)ξ)dy, ∀s ∈ R, ∀ξ ∈ RN , (2.16)

where the corrector matrix fields {Cε(·, s)} are defined by (2.10). Moreover,

−div(Aε(·, ũε)∇̃uε) → −div(A0(u0)∇u0) strongly on H−1(Ω). (2.17)

(2) If M∂T (g) = 0 (with g �≡ 0) and A is independent of t, i.e., A(y, t) = A(y) in Y , the
function u0 is a solution of the problem{−div(A0∇u0) + θλu0 + cγh(u0) = b0(u0,∇u0) + θf in Ω,

u0 = 0 on ∂Ω,
(2.18)

where the constant homogenized matrix A0 is given by (2.7) (independent of t).
The function b0 is defined by

b0(t, ξ) =
1
|Y |

∫
Y \T

b(y, s, C(y)ξ + ∇χ̂g(y))dy for every ξ ∈ RN , (2.19)
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where Cε(·) is defined by (2.10) (independent of t) and the function χ̂g is the solution of the
following problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div(A∇χ̂g) = 0 in Y \T,

A∇χ̂g · ν = g on ∂T,

χ̂g is Y-periodic,

MY ∗(χ̂g) = 0.

(2.20)

Moreover,

−div(Aε∇̃uε) → −div(A0∇u0) strongly on H−1(Ω). (2.21)

This result will be proved in Section 4.

Remark 2.1 Let us point out the main novelty in this result. It concerns the fact that
the presence of gε in the nonhomogeneus boundary condition of problem (2.2) gives rise to
two different limit nonlinearities b0 in the problem, according to the case M∂T (g) �= 0 or
M∂T (g) = 0.

This is due to the fact that the corrector results for the associated linear problem are different
in the two cases, as recalled in Theorem 3.2.

We end this section by stating the following result, which shows that Cε is a corrector for
the nonlinear problem (2.5).

Corollary 2.1 Under the assumptions of Theorem 2.1 and the notation therein, we have
the following assertions:

(1) If M∂T (g) �= 0 or g = 0, then

lim
ε→0

‖∇uε − Cε(·, uε)∇u0‖L1(Ω∗
ε)N = 0.

(2) If M∂T (g) = 0 and A is independent of t, i.e., A(y, t) = A(t) in Y , then

lim
ε→0

∥∥∥∇uε − Cε(·)∇u0 −∇yχ̂g

( ·
ε

)∥∥∥
L1(Ω∗

ε)N
= 0.

Proof This corollary is a straightforward consequence of Theorem 3.4 and Theorem 4.1
proved in Sections 3 and 4, respectively.

3 Some Preliminary Results

In this section, we recall some homogenization and corrector results proved in [10].
To do that, we introduce as in [10] a linear operator Lε from H−1(Ω) to (Vε)′ verifying the

following assumption:
(H8) If {ψε} is a sequence such that

‖ψε‖Vε ≤ c and ψ̃ε ⇀ θψ0 weakly in L2(Ω), (3.1)

then

lim
ε→0

〈Lε(Z), ψε〉V ′
ε ,Vε = 〈Z,ψ0〉H−1(Ω),H1

0 (Ω). (3.2)
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Remark 3.1 Let us point out that there exist many operators Lε verifying the assumption
(H8), which can be constructed in different ways.

For instance, the assumption (H8) is satisfied for Lε = P ∗
ε (see Remark 4.3 of [10]), where

P ∗
ε is the adjoint of the linear extension operators Pε introduced by Cioranescu D. and Saint

Jean Paulin J. in [18]. Let us recall that for any sequence {vε}ε in Vε, we have that

{‖vε‖Vε ≤ c and ṽε ⇀ θv0 weakly in L2(Ω)} ⇔ Pεvε ⇀ v0 weakly in H1
0 (Ω). (3.3)

Another (different) operator can be defined by using the periodic unfolding method as done in
[21] when studying the correctors for the wave equation in perforated domains via the above
method. We refer to [10, Remark 2.3] for more details and comments.

We recall first the following homogenization result.

Theorem 3.1 (see [10]) Under the assumptions (H1)–(H6) and (H8), let Z be given in
H−1(Ω) and let vε be the unique solution of problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div(Aε(x, zε)∇vε) + λvε = Lε(Z) in Ω∗
ε,

(Aε(x, zε)∇vε) · ν + εγρε(x)h(zε) = gε on Γε
1,

vε = 0 on Γε
0,

(3.4)

where the sequence {zε}ε belongs to Vε and Aε, ρε and gε are given by (2.3) and (2.4).
Suppose that the sequence {zε}ε satisfies (3.1), that is

‖zε‖Vε ≤ c and z̃ε ⇀ θz0 weakly in L2(Ω),

with z0 ∈ H1
0 (Ω) and θ given by (2.1). Then, as ε tends to 0, we have the following convergences:{

(i) ṽε ⇀ θv0 weakly in L2(Ω),

(ii) Aε(·, zε)∇̃vε ⇀ A0(z0)∇v0 weakly in (L2(Ω))N .
(3.5)

The function v0 is the unique solution of the problem⎧⎨⎩−div(A0(z0)∇v0) + θλv0 = − cγh(z0) + Z +
|∂T |
|Y | M∂T (g) in Ω,

v0 = 0 on ∂Ω,
(3.6)

where the homogenized matrix A0(t) and the constant cγ are defined by (2.7) and (2.15) respec-
tively.

Let us recall now the results concerning the convergence of the energies and the corrector,
proved in [10] where we distinguish the two cases given in (2.4).

Theorem 3.2 (see [10]) Under the assumptions of Theorem 3.1, let A0 be defined by (2.7)
and χ̂g defined by (2.20). Let vε and v0 be the solutions of problems (3.6) and (3.4), respectively.

(1) If M∂T (g) �= 0 or g ≡ 0, then

Aε(·, zε)∇̃vε∇̃vε ⇀ A0(z0)∇v0∇v0 weakly in L1(Ω).

Moreover, if {Cε(·, zε)} is defined by (2.10), we have

lim
ε→0

‖∇vε − Cε(·, zε)∇v0‖L1(Ω∗
ε)N = 0.
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(2) If M∂T (g) = 0 (with g �≡ 0) and A is independent of t, i.e., A(y, t) = A(y) in Y , then

Aε(·)
(
∇̃vε −∇yχ̂g

( ·
ε

))
∇̃vε ⇀ (A0∇v0 + MY ∗(A∇χ̂g))∇v0 weakly in L1(Ω).

Moreover, if Cε(·) is defined by (2.10) (independent of t), we have

lim
ε→0

∥∥∥∇vε − Cε(·)∇v0 −∇yχ̂g

( ·
ε

)∥∥∥
L1(Ω∗

ε)N
= 0.

The proof of the corrector result given in [10] is based on the proposition below, which will
be needed in the sequel.

Proposition 3.1 (see [10]) Under the assumptions of Theorem 3.1 and with the notations
therein, we have the following assertions:

(1) If M∂T (g) �= 0 or g ≡ 0, then

lim sup
ε→0

‖∇vε − Cε(·, zε)Φ‖L2(Ω∗
ε)N ≤ c‖∇v0 − Φ‖L2(Ω)N , ∀Φ ∈ (C∞

0 (Ω))N .

(2) If M∂T (g) = 0 (with g �≡ 0) and A is independent of t, i.e., A(y, t) = A(t) in Y , then

lim sup
ε→0

∥∥∥∇vε − Cε(·)Φ −∇yχ̂g

( ·
ε

)∥∥∥
L2(Ω∗

ε)N
≤ c‖∇v0 − Φ‖L2(Ω)N , ∀Φ ∈ (C∞

0 (Ω))N .

In both cases, c = C(α, β) is a constant independent of Φ.

We also recall the following property.

Lemma 3.1 (see [5]) Let {gε}ε be a sequence of functions which converges weakly in L1(Ω)
to a function g0 and let {tε}ε be a sequence of equibounded and measurable functions, which
converges almost pointwise in Ω to a function t0. Then

lim
ε→0

∫
Ω

gεtεdx =
∫

Ω

g0t0dx.

We end this section by stating the following result.

Proposition 3.2 Under assumption (H7), let {bε}ε be the sequence of the Carathéodory
functions given by (2.3). Then, the function b0 given by (2.16) or (2.19) satisfies (H7) and for
any φ in (C∞

0 (Ω))N and ϕ0 in L∞(Ω), one has the following assertions:
(1) If M∂T (g) = 0 or g = 0, then

[bε(x, ϕ0, C
εφ)]∼ ⇀ b0(ϕ0, φ) weakly in L1(Ω), (3.7)

where {Cε(·, zε)} is defined by (2.10).
(2) If M∂T (g) = 0 and A is independent of t, i.e., A(y, t) = A(y) in Y ,

[bε(x, ϕ0, C
εφ+ ∇χ̂g)]∼ ⇀ b0(ϕ0, φ) weakly in L1(Ω), (3.8)

where Cε(·) is defined by (2.10) (independent of t) and the function χ̂g is the solution of problem
(2.20).

Proof The convergence (3.7) is a simple consequence of Theorem 2.6 of [19] (see also [5] for
the case of a fixed domain) and the convergence (3.8) can be deduced by the same arguments
as those used to prove (3.7).
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4 Proof of the Main Result

4.1 A technical result
In this section, we give a preliminary tool which will play an essential role in proving the

corrector result stated in Theorem 4.2, and seems interesting by itself.
To prove it, we use the periodic unfolding method, introduced in [12] (see [13] for a general

presentation and detailed proofs) and extended to perforated domains in [16–17] (see [11] for
more general situations and a comprehensive presentation).

Theorem 4.1 Let {ψε} be a sequence satisfying (3.1).
(1) The following convergences hold:

lim
ε→0

∫
Ω∗

ε

|ψε − ψ0|2dx = 0, lim
ε→0

∫
Ω∗

ε

|ψε|2dx = θ

∫
Ω

|ψ0|2dx. (4.1)

(2) Let p ∈ [1,+∞) and {hε} be a sequence in Lp(Ω) such that

hε ⇀ h0 weakly in Lp(Ω), (4.2)

for some h0 in Lp(Ω). Suppose further that F : R → R is a continuous function such that
F (ψε) ∈ Lq(Ω), with ⎧⎨⎩q ∈ (p′,+∞) with

1
p

+
1
p′

= 1, if p > 1,

q = +∞, if p = 1.
(4.3)

If

‖F (ψε)‖Lq(Ω) ≤ c (4.4)

for some positive constant c independent of ε, then

lim
ε→0

∫
Ω∗

ε

hεF (ψε) dx =
∫

Ω

h0F (ψ0) dx. (4.5)

Moreover, if

hε → h0 strongly in Lp(Ω), (4.6)

then

lim
ε→0

∫
Ω∗

ε

hεF (ψε) dx = θ

∫
Ω

h0F (ψ0) dx. (4.7)

In particular,

F (ψε) ⇀ θF (ψ0), (4.8)

weakly in Lp′
(Ω) if p > 1 and weakly ∗ in L∞(Ω) if p = 1.

Proof Convergences (4.1) follow from Corollary 1.13, Corollary 1.19 and Theorem 2.13 of
[11].

In order to show (4.5), let us first recall (see [11]) that for any Lebesgue-measurable function
φ on Ω∗

ε, the unfolding operator T ∗
ε is defined as

T ∗
ε (φ)(x, y) =

⎧⎨⎩φ
(
ε
[x
ε

]
Y

+ εy
)

a.e. for (x, y) ∈ Ω̂ε × Y ∗,

0 a.e. for (x, y) ∈ Λε × Y ∗.
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In view of Proposition 1.14 of [11], the assumption (4.2) implies that there exists some
function ĥ0 in Lp(Ω × Y ∗) such that

T ∗
ε (hε) ⇀ ĥ0 weakly in Lp(Ω × Y ∗), (4.9)

with

1
|Y |

∫
Y ∗
ĥ0(·, y) dy = h0. (4.10)

Using again Theorem 2.13 of [11], we derive that

T ∗
ε (ψε) → ψ0 strongly in L2(Ω, H1(Y ∗)).

Then, there exists a subsequence (still denoted by {ε}) such that

T ∗
ε (ψε) → ψ0 a.e. in Ω × Y ∗,

so that in view of the continuity of F , we get (for a subsequence)

T ∗
ε (F (ψε)) = F (T ∗

ε (ψε)) → F (ψ0) a.e. in Ω × Y ∗. (4.11)

Moreover, using the properties of Tε (see [11, Proposition 1.12 and Corollary 1.13]), we deduce
that

lim
ε→0

∫
Ω∗

ε

hεF (ψε) dx = lim
ε→0

1
|Y |

∫
Ω×Y ∗

T ∗
ε (hε)(x, y)T ∗

ε (F (ψε))(x, y) dxdy. (4.12)

On the other hand, if p > 1, thanks to (4.11), the Hölder inequality provides the equin-
tegrability of |T ∗

ε (F (ψε)) − F (ψ0)|p
′
. Then, using (4.4) we can apply the Vitali’s theorem to

obtain

T ∗
ε (F (ψε)) → F (ψ0) strongly in Lp′

(Ω × Y ∗),

and this convergence holds for the whole sequence, since the limit is uniquely determined.
Consequently, from (4.9), we have

lim
ε→0

1
|Y |

∫
Ω×Y ∗

T ∗
ε (hε)(x, y)T ∗

ε (F (ψε))(x, y) dxdy =
1
|Y |

∫
Ω×Y ∗

ĥ0(x, y)F (ψ0) dxdy. (4.13)

Since F (ψ0) is independent of y, in view of (4.10) this gives the result for p > 1.
Let p = 1 now. Then, thanks to (4.3)–(4.4), (4.9) and (4.11), we can still pass to the limit

in the right-hand side of (4.12) by applying Lemma 3.1 in Ω × Y ∗, with gε = T ∗
ε (hε) and

tε = T ∗
ε (ψε). We obtain again (4.13) and conclude as in the previous case.

Finally, observe that if (4.6) holds, from Corollary 1.19 of [11], one has ĥ0 = h0 which
implies that

1
|Y |

∫
Ω×Y ∗

ĥ0(x, y)F (ψ0) dxdy = θ

∫
Ω

h0F (ψ0) dx,

since θ = |Y ∗|
|Y | . This gives (4.7) and in particular (4.8) (taking hε = h0), which concludes the

proof.
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4.2 A corrector result for the nonlinear problem
In this section we prove Theorem 2.1. To do that, we adapt some arguments introduced in

[4–5] for the case of oscillating coefficients in a fixed domain, and extended for the linear case
in the periodically perforated domains in [19]. We make here an essential use of Theorem 4.1,
proved in the previous section.

The main idea is to define a suitable linear problem associated to a weak cluster point of
the sequence of the solutions of problem (2.2) and then prove that the corrector for this linear
problem is also a corrector for the original nonlinear problem.

Observe first that from (2.6) there exists a subsequence {uε} (still denoted by ε), which will
be fixed from now on, and a function u0 ∈ H1

0 (Ω) ∩ L∞(Ω) such that

ũε ⇀ θu0 weakly in L2(Ω) and weakly ∗ in L∞(Ω), (4.14)

as ε tends to zero, where θ is defined by (2.1).
Then, in the present situation, the suitable linear problem associated to problem (2.2) is the

following one:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div(Aε(x, uε)∇vε) + λvε

= Lε

(
− div(A0(u0)∇u0) + θλu0 + cγh(u0) −

|∂T |
|Y | M∂T (g)

)
in Ω∗

ε,

(Aε(x, uε)∇vε) · ν + εγρε(x)h(uε) = gε on Γε
1,

vε = 0 on Γε
0,

(4.15)

where Lε is a linear operator satisfying (H8).
Its variational formulation is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω∗

ε

Aε(x, uε)∇vε∇φ dx+ λ

∫
Ω∗

ε

vεφ dx+ εγ

∫
Γε

1

ρεh(uε)φ dσ

=
∫

Γε
1

gεφ dσ +
〈
Lε

(
− div(A0(u0)∇u0) + θλu0

+cγh(u0) −
|∂T |
|Y | M∂T (g)

)
, φ

〉
V ′

ε ,Vε

, ∀φ ∈ Vε.

(4.16)

In view of Theorem 3.1, written for zε = uε and

Z = −div(A0(u0)∇u0) + θλu0 + cγh(u0) −
|∂T |
|Y | M∂T (g),

using (4.14) we deduce that

ṽε ⇀ θv0 weakly in L2(Ω),

as ε tends to zero, where θ is defined by (2.1) and v0 ∈ H1
0 (Ω) is the unique solution of the

equation
−div(A0(x, u0)∇v0) + θλv0 = −div(A0(x, u0)∇u0) + θλu0.

Hence, v0 = u0, so that

ṽε ⇀ θu0 weakly in L2(Ω). (4.17)

We approximate now the function u0 ∈ H1
0 (Ω) ∩ L∞(Ω) by a sequence {un} ⊂ D(Ω) such

that {
(i) un → u0 strongly in H1

0 (Ω), as n→ +∞,

(ii) ‖un‖L∞(Ω) ≤ c,
(4.18)
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for any n, where c is independent of n.
Let us introduce, for any n ∈ N, the sequence {vn,ε}ε where the function vn,ε is the solution

of the problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div(Aε(x, uε)∇vn,ε) + λvn,ε = Lε

(
− div(A0(u0)∇un)

+θλun + cγh(u0) −
|∂T |
|Y | M∂T (g)

)
in Ω∗

ε,

(Aε(x, uε)∇vn,ε)ν + εγρε(x)h(uε) = gε on Γε
1,

vn,ε = 0 on Γε
0,

whose variational formulation is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω∗

ε

Aε(x, uε)∇vn,ε∇φ dx+ λ

∫
Ω∗

ε

vn,εφ dx+ εγ

∫
Γε

1

ρεh(uε)φ dσ

=
∫

Γε
1

gεφ dσ +
〈
Lε

(
− div(A0(u0)∇un) + θλun

+cγh(u0) −
|∂T |
|Y | M∂T (g)

)
, φ

〉
V ′

ε ,Vε

, ∀φ ∈ Vε.

(4.19)

Then, for any n, we apply again Theorem 3.1, written here for zε = uε and for

Z = −div(A0(u0)∇un) + θλun + cγh(u0) −
|∂T |
|Y | M∂T (g).

The same argument used to prove (4.17) gives

ṽn,ε ⇀ θun weakly in L2(Ω), (4.20)

as ε tends to zero, where θ is defined by (2.1). Moreover,

‖vn,ε‖Vε ≤ c, (4.21)

where c is independent of n and ε, and from the classical results of Stampacchia [24], for any
fixed n, we have

‖vn,ε‖L∞(Ω∗
ε) ≤ cn, (4.22)

where cn is a constant independent of ε.
The following theorem is the essential tool to prove the corrector result for the nonlinear

problem.

Theorem 4.2 Under the assumptions (H1)–(H7), let uε be a sequence of solution of problem
(2.5) and vε be a solution of problem (4.19). Then, up to a subsequence, we have

lim
ε→0

‖∇uε −∇vε‖(L2(Ωε))N = 0.

Proof Let Φε be the function defined by

Φε = ξμ(uε − vn,ε) ∈ Vε ∩ L∞(Ω∗
ε), (4.23)

where μ is a suitable positive constant to be chosen later on, and

ξμ(s) = seμs2
, ∀s ∈ RN .
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Taking Φε as a test function in (2.5) and (4.19), after subtraction of two identities, we obtain∫
Ω∗

ε

Aε(x, uε)∇(uε − vn,ε)∇(uε − vn,ε)ξ′μ(uε − vn,ε) dx+ λ

∫
Ω∗

ε

(uε − vn,ε)2eμ(uε−vn,ε)2 dx

=
∫

Ω∗
ε

bε(x, uε,∇uε)ξμ(uε − vn,ε) dx+
∫

Ω∗
ε

fξμ(uε − vn,ε) dx

−
〈
Lε

(
− div(A0(un)∇un) + θλun + cγh(u0) −

|∂T |
|Y | M∂T (g)

)
, ξμ(uε − vn,ε)

〉
V ′

ε ,Vε

.

Using (H1), (H3) and the property (2) of (H7), since ξ′μ ≥ 0, we get

α

∫
Ω∗

ε

|∇(uε − vn,ε)|2ξ′μ(uε − vn,ε) dx ≤ c0

∫
Ω∗

ε

(1 + |∇uε|2)|ξμ(uε − vn,ε)| dx

+
∫

Ω∗
ε

fξμ(uε − vn,ε) dx− 〈Lε(−div(A0(un)∇un) + θλun), ξμ(uε − vn,ε)〉V ′
ε ,Vε

≤ c0

∫
Ω∗

ε

(1 + 2|∇(uε − vn,ε)|2 + 2|∇vn,ε|2)|ξμ(uε − vn,ε)| dx+
∫

Ω∗
ε

fξμ(uε − vn,ε) dx

−
〈
Lε

(
− div(A0(un)∇un) + θλun + cγh(u0) −

|∂T |
|Y | M∂T (g)

)
, ξμ(uε − vn,ε)

〉
V ′

ε ,Vε

.

Let us take μ = c2
0

α2 . For this choice, one gets αξ′μ(s) − 2c0|ξμ(s)| ≥ α
2 for any s, so that using

again (H3), we get

α

2

∫
Ω∗

ε

|∇(uε − vn,ε)|2 dx ≤
∫

Ω∗
ε

|∇(uε − vn,ε)|2(αξ′μ(uε − vn,ε) − 2c0|ξμ(uε − vn,ε)|) dx

≤ c0

∫
Ω∗

ε

(
1 +

2
α
Aε(x, uε)∇vn,ε∇vn,ε

)
|ξμ(uε − vn,ε)| dx+

∫
Ω∗

ε

fξμ(uε − vn,ε) dx

−
〈
Lε

(
− div(A0(un)∇un) + θλun + cγh(u0) −

|∂T |
|Y | M∂T (g)

)
, ξμ(uε − vn,ε)

〉
V ′

ε ,Vε

. (4.24)

From (2.6), (4.21)–(4.22), the function uε−vn,ε satisfies (3.1) and the sequence {ξμ(uε−vn,ε)}
is bounded in L∞(Ω) (for fixed n).

Hence, applying Theorem 4.1 to ψε = uε − vn,ε and p = m, first with h = f and F = ξμ,
and then with h = c0 and F = |ξμ|, we obtain

lim
ε→0

∫
Ω∗

ε

fξμ(uε − vn,ε) + c0|ξμ(uε − vn,ε)| dx

= θ

∫
Ω

fξμ(u0 − vn) dx+ θc0

∫
Ω

|ξμ(u0 − vn)| dx. (4.25)

Observe now that in view of Theorem 3.2 we can apply Theorem 4.1 for p = 1 to the
functions

hε = Aε(x, uε)∇̃vn,ε∇̃vn,ε, ψε = uε − vn,ε, F = |ξμ|.
We get

lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇vn,ε∇vn,ε|ξμ(uε − vn,ε)| dx =
∫

Ω

θA0(u0)∇vn∇vn|ξμ(u0 − vn)| dx. (4.26)

On the other hand, from (2.6) and (4.22)–(4.23), using again Theorem 4.1, we deduce that
zε = ξμ(uε − vn,ε) satisfies (3.1) with z0 = ξμ(u0 − vn).
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Then, the assumption (H8) given in Section 3 implies that

lim
ε→0

〈
Lε

(
− div(A0(un)∇un) + θλun + cγh(u0) −

|∂T |
|Y | M∂T (g)

)
, ξμ(uε − vn,ε)

〉
V ′

ε ,Vε

=
〈
− div(A0(un)∇un) + θλun + cγh(u0) −

|∂T |
|Y | M∂T (g), ξμ(u0 − vn)

〉
H−1(Ω),H1

0 (Ω)

.= In. (4.27)

Collecting (4.24)–(4.27), we get

lim sup
ε→0

α

2

∫
Ω∗

ε

|∇(uε − vn,ε)|2 dx

≤ 2θ
c0
α

∫
Ω

A0(u0)∇vn∇vn|ξμ(u0 − vn)| dx

+ θ

∫
Ω

(|f | + c0)|ξμ(u0 − vn)| dx+ c‖un − u0‖H1
0 (Ω) + In. (4.28)

Hence, using (H2)–(H3), (4.18) and (4.23) we deduce that

lim
n→∞ lim sup

ε→0

α

2

∫
Ω∗

ε

|∇(uε − vn,ε)|2 dx = 0. (4.29)

On the other hand, taking vn,ε − vε as test function in (4.16) and (4.19), subtracting the
two identities and passing to the limit, one can easily deduce that

lim
ε→0

∫
Ω∗

ε

|∇(vn,ε − vε)|2 dx ≤ lim
ε→0

α

∫
Ω∗

ε

(Aε(x, uε)∇(vn,ε − vε)∇(vn,ε − vε)) dx

=
∫

Ω

(A0(un)∇un∇un −A0(u0)∇un∇u0) dx

≤ c‖un − u0‖H1
0 (Ω),

where the right-hand side goes to zero as n→ ∞, by virtue of (4.18).
This, together with (4.29), gives the result, since

∫
Ω∗

ε

|∇(uε − vε)|2 dx ≤ 2
∫

Ω∗
ε

|∇(uε − vn,ε)|2 dx+ 2
∫

Ω∗
ε

|∇(vn,ε − vε)|2 dx.

4.3 Proof of Theorem 2.1

We distinguish here the two cases given by (2.4).

Let us treat first the case where M∂T (g) �= 0 or g ≡ 0. Let {φn}n∈N be a sequence in
(C∞

0 (Ω))N such that

φn → ∇u0 strongly in (L2(Ω))N . (4.30)
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Then, for any ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), using (3) of (H7), (2.6) and (2.16), we get∣∣∣ ∫

Ω

[
(bε(x, uε,∇uε))∼ϕ−

∫
Ω

b0(u0,∇u0)ϕ
]

dx
∣∣∣

≤
∫

Ω∗
ε

|bε(x, uε,∇uε) − bε(x, uε, C
εφn)||ϕdx|

+
∣∣∣ ∫

Ω

[(bε(x, uε, C
εφn))∼ − b0(u0, φn)]ϕ dx

∣∣∣
+

∫
Ω

|b0(u0, φn) − b0(u0,∇u0)||ϕ|dx

≤ d1(c)
∫

Ω∗
ε

(1 + |∇uε| + |Cεφn|)|∇uε − Cεφn||ϕ|dx

+
∣∣∣ ∫

Ω

[(bε(x, uε, C
εφn))∼ − b0(u0, φn)]ϕ dx

∣∣∣
+ cd1(c)

∫
Ω

(1 + |φn| + |∇u0|)|φn −∇u0||ϕ|dx
.= Iε

n + Jε
n + Jn. (4.31)

Let us pass to the limit as ε tends to zero in the right-hand side of this inequality.
Concerning the first term, by a similar argument as in [5, 19], using (2.6), (2.12), (4.30),

and Proposition 3.1, we have

lim sup
ε→0

Iε
n ≤ d1(c) lim sup

ε→0

∫
Ω∗

ε

(1 + 2|∇uε| + |Cεφn −∇uε|)|∇uε − Cεφn||ϕ|dx

≤ lim sup
ε→0

(‖Cεφn −∇uε‖L2(Ω) + ‖Cεφn −∇uε‖2
L2(Ω))

≤ c(‖φn −∇u0‖L2(Ω) + ‖φn −∇u0‖2
L2(Ω)).

This, together with (4.30), implies

lim
n→∞ lim sup

ε→0
Iε
n = 0. (4.32)

For the third term Jn (independent of ε), we have

lim
n→∞ lim sup

ε→0
Jn ≤ c lim

n→∞ ‖φn −∇u0‖L2(Ω) = 0. (4.33)

It remains to pass to the limit in the second term. To this aim, we write

Jε
n ≤

∣∣∣ ∫
Ω

[(bε(x, u0, C
εφn))∼ − b0(u0, φn)]ϕ dx

∣∣∣
+

∣∣∣ ∫
Ω

[(bε(x, u0, C
εφn))∼ − (bε(x, uε, C

εφn))∼] dx
∣∣∣

≤
∣∣∣ ∫

Ω

[(bε(x, u0, C
εφn))∼ − b0(u0, φn)]ϕ dx

∣∣∣ + c

∫
Ω∗

ε

|uε − u0| dx,

where we used the assumption (H7) and again (2.12) and (4.30).
Consequently, by Proposition 3.2 and Theorem 4.1,

lim
n→∞ lim sup

ε→0
Jε

n = 0. (4.34)
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Hence, by (4.31)–(4.34) for any ϕ ∈ H1
0 (Ω) ∩ L∞(Ω), we have

lim
ε→0

∣∣∣ ∫
Ω

[
(bε(x, uε,∇uε))∼ϕ−

∫
Ω

b0(u0,∇u0)ϕ
]

dx
∣∣∣ = 0. (4.35)

Moreover, from (2.1) and (4.14), we derive

lim
ε→0

λ

∫
Ω∗

ε

uεϕ dx = lim
ε→0

λ

∫
Ω

ũεϕ dx = λθ

∫
Ω

u0ϕ dx (4.36)

and

lim
ε→0

∫
Ω∗

ε

fϕ dx = lim
ε→0

∫
Ω

fχ
Ω∗

ε
ϕ dx = θ

∫
Ω

fϕ dx. (4.37)

On the other hand, using the unfolding periodic method and arguing as in [10] (see also [8]),
we get

lim
ε→0

ε

∫
Γε

1

ρε(x)h(uε)ϕ dσx = cγ

∫
Ω

h(u)ϕ dx, (4.38)

where cγ is defined by (2.15) and

lim
ε→0

∫
Γε

1

gε(x)ϕ dσx =
|∂T |
|Y | M∂T (g)

∫
Ω

ϕ dx. (4.39)

Let us prove now (2.17). For any ψ ∈ H1
0 (Ω), from Theorem 4.2, the assumption (H3) and the

Hölder inequality, we obtain

lim
ε→0

div
〈
Aε(x, ũε)∇̃uε, ψ

〉
H−1(Ω),H1

0 (Ω)

= lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇uε∇ψ dx

= lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇vε∇ψ dx+ lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇(uε − vε)∇ψ dx

= lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇vε∇ψ dx, (4.40)

where vε is the solution of problem (4.15).
On the other hand, thanks to (3.5)(ii) and (4.17), we can apply Theorem 3.1 (written for

zε = uε and z0 = v0 = u0) to problem (4.15) and we have

lim
ε→0

∫
Ω∗

ε

Aε(x, uε)∇vε∇ψ dx =
∫

Ω

A0(u0)∇u0∇ψ dx.

This together with (4.40) gives (2.17).
Hence, using (2.17) and (4.35)–(4.39), we can pass to the limit in (2.5) for any ϕ in H1

0 (Ω)∩
L∞(Ω) and obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω∗

ε

A0(u0)∇u0∇ϕ dx+ θλ

∫
Ω

u0ϕ dx+ cγ

∫
Ω

u0ϕ dx

=
∫

Ω∗
ε

b0(u0,∇u0)ϕ dx+
|∂T |
|Y | M∂T (g)

∫
Ω

ϕ dx+ θ

∫
Ω

fϕ dx,

∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω),

(4.41)
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where b0 is given by (2.16), i.e., the variational formulation of the homogenized problem (2.18).

Let us consider now the case M∂T (g) = 0 and that A is independent of t. Using (3) of (H3),
for ϕ ∈ H1

0 (Ω) ∩ L∞(Ω), we write here∣∣∣ ∫
Ω

(bε(x, uε,∇uε))∼ϕ dx−
∫

Ω

b0(u0,∇u0)ϕ dx
∣∣∣

≤
∫

Ω∗
ε

|bε(x, uε,∇uε) − bε(x, uε, C
εφn + ∇χ̂g)||ϕ|dx

+
∣∣∣ ∫

Ω

[(bε(x, uε, C
εφn + ∇χε))∼ − b0(u0, φn)]ϕ dx

∣∣∣ +
∫

Ω

|b0(u0, φn) − b0(u0,∇u0)||ϕ|dx

≤ b1(c)
∫

Ω∗
ε

(1 + |∇uε| + |Cεφn + ∇χε||∇uε − Cεφn −∇χ̂g||ϕ|dx

+
∣∣∣ ∫

Ω

[(bε(x, uε, C
εφn + ∇χ̂g))∼ − b0(u0, φn)]ϕ dx

∣∣∣
+ cb1(c)

∫
Ω

(1 + |φn| + |∇u0||φn −∇u0||ϕ|)dx.

Then, arguing as before and using here the results corresponding to this case, we have

(bε(x, uε,∇uε))∼ ⇀ b0(u0,∇u0) weakly in L1(Ω), (4.42)

where b0 is now given by (2.19).
On the other hand, (4.36)–(4.38) still hold true and from Proposition 3.8 of [10],

lim
ε→0

∫
Γε

1

gε(x)ϕ dσx = 0.

Finally, the convergence (2.21) follows as before by using (4.40). Hence, again we can pass to
the limit in (2.5) for this case, to obtain⎧⎪⎪⎨⎪⎪⎩

∫
Ω∗

ε

A0(u0)∇u0∇ϕ dx + θλ

∫
Ω

u0ϕ dx+ cγ

∫
Ω

u0ϕ dx

=
∫

Ω∗
ε

b0(u0,∇u0)ϕ dx+ θ

∫
Ω

fϕ dx, ∀ϕ ∈ H1
0 (Ω) ∩ L∞(Ω)

(4.43)

with b0 given by (2.19), which is the variational formulation of the homogenized problem (2.18).
This ends the proof of Theorem 2.1.
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linéaires stationnaires, Ann. Faculte Sci. Toulouse, IV, 1982, 1–27.

[3] Bendib, S., Homogénéisation d’une classe de problèmes non linéaires avec des conditions de Fourier dans
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