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Abstract The authors study the asymptotic behavior of the incompressible Navier-Stokes
fluid with degree of freedom in the porous medium in R

n with n = 2 or 3. They derive the
Darcy law as ε, the character size of the hole, tends to zero. Moreover, the authors obtain
the expression of the degree of freedom from the homogenized model.
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1 Introduction

Homogenization is a mathematical tool that allows changing the scale in problems containing
several characteristic scales. Typical examples of its utilization are finding effective models for
composite materials, in optimal shape design, etc. Another important example, which we are
interested in, is the fluid mechanics of the flow through porous medium.

In porous medium, there are at least two length scales: A microscopic scale and a macro-
scopic scale. Quite often, the partial differential equations describing a physical phenomenon
are posed at the microscopic level whereas only macroscopic quantities are of interest for the
engineers or the physicists. Therefore, effective or homogenized equations should be derived
from the microscopic ones by an asymptotic analysis. To this end, it is convenient to assume
that the porous medium has a periodic structure.

A number of known laws from the dynamics of fluids in porous media were derived using
homogenization. The most well-known example is Darcy law, being the homogenized equation
for one-phase flow through a rigid porous medium. Its formal derivation by two-scale expansion
goes back to the classical paper by Sanchez-Palencia [1], Keller [2] and the classical book
Bensoussan [3]. It was rigorously derived by using oscillating functions by Tartar [4]. In other
cases of periodic porous media, we refer the readers to the papers by Allaire [5–7] and Mikelic
[8–9]. Other works can be seen in [10–11] and the references therein.

Besides the Darcy law, Brinkman [12] introduced a new set of equations, which is called
the Brinkman law, an intermediate between the Darcy and Stokes equations. The so-called
Brinkman law is obtained from the Stokes equations by adding to the momentum equation a
term proportional to the velocity (see [6]).
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In this paper, we are interested in obtaining the homogenized result for the Navier-Stokes
fluid with degree of freedom in porous medium. This model problem was proposed by Lions
[13], where he proved the existence and the regularity of the solutions.

Before stating the system, let us recall the domain we consider. A porous medium is defined
as the periodic repetition of an elementary cell of size ε

(
we assume 1

ε to be an integral
)

in a
bounded domain Ω of R

n with n = 2, 3. The solid part of the porous medium is also taken of
size ε. The domain Ωε is then defined as the intersection of Ω with the fluid part. We consider
an incompressible fluid governed by the Navier-Stokes equations with degree of freedom. So,
we have the following equations:

ε2
∂uε

∂t
+ (uε · ∇)uε − μ�uε + ∇pε = f + wε × uε in Ωε × (0, T ),

∂wε

∂t
+ div(uε ⊗ wε) + κwε = m in Ωε × (0, T ),

div uε = 0 in Ωε × (0, T ),

(1.1)

where uε, pε, wε are the unknown quantities velocity, pressure and degree of freedom of the
fluid, respectively, f ∈ L2(Ω × (0, T )) is the external force.

The system is supplemented with the boundary condition and initial conditions as follows:

uε = 0 on ∂Ωε × (0, T ) (1.2)

and

uε|t=0 = uε
0, wε|t=0 = wε

0, (1.3)

where uε
0, w

ε
0 are bounded in L2(Ωε).

Our aim here is to investigate the asymptotic behavior of uε, pε, wε as ε → 0+ under
the assumptions mentioned above. The main difficulty here is how to pass the limit in the
momentum equations. To overcome this obstacle, we need to revise the estimates on the inertia
and extend the pressure to the whole domain. It is resolved by using the general Poincaré’s
equality in porous medium (see [11]).

The paper is organized as follows. In Section 2, we list some useful results and state the
main results in this paper. In Section 3, we give priori estimates of the unknowns and extend
them to the whole domain. In Section 4, we prove the main result in this paper.

2 Notations, Preliminaries and Main Results

The structure of a porous medium is standard (see [4–5, 8]). To give a good understanding
for the readers, we write it detail again. Let Ω be an open bounded subset of R

n with n = 2 or
3 and define Y = [0, 1]n to be the unit open cube of R

n. Let Ys be a closed smooth subset of Y
with a strictly positive measure. The fluid part is then defined by Yf = Y − Ys. Let θ = |Yf |.
The constant θ is called the porosity of the porous medium. We assume that 0 < θ < 1.

Repeating the domain Yf by Y-periodicity, we get the whole fluid domain Df , and we can
write it as

Df = {x ∈ R
n | ∃k ∈ Zn such that x− k ∈ Yf}.

Then the solid part is defined by Ds = R
n −Df . It is easy to see that Df is a connected

domain, whileDs is formed by separated smooth subsets. In the sequel, we denote for all k ∈ Zn,
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Yk = Y + k and then Yk
f = Yf + k. For all ε, we define the domain Ωε as the intersection of Ω

with the fluid domain scaled by ε, namely, Ωε = Ω∩ εDf . To get a smooth connected domain,
we will not remove the solid part of the cells which intersect with the boundary of Ω. Now, the
fluid domain can be also defined by

Ωε = Ω − ∪{εYk
s , k ∈ Zn, εYk ⊂ Ω}.

Throughout this paper, we denote by Lp(0, T ;Lq(X)) the time-space Lebesgue spaces, where
X would be Ω or Ωε. W s,p(X) will be the classical Sobolev space with all functions, whose
all derivatives up to order s belong to Lp and Hs(X) = W s,2(X). W 1,p

0 (X) is the subset of
W 1,p(X) with trace 0 on X . We also denote by W−s,p′

(X) the dual space of W s,p
0 (X), where p′

is the conjugate exponent of p. C will be constants that may differ from one place to another.
Throughout this paper, we will use ‖ · ‖X to denote the modules for all vectors or matrices if
there is no confusion.

Due to the presence of the holes, the domain Ωε depends on ε and hence to study the
convergence of {uε, ρε, pε}, we have to extend the functions defined in Ωε to the whole domain.
This can be done in two different possible ways.

Definition 2.1 (see [10]) For any fixed ϕ ∈ L1(Ωε), we define

ϕ̃ =
{
ϕ in Ω,
0 in Ω − Ωε

as the null extension and

ϕ̂ =

⎧⎪⎨⎪⎩
ϕ in Ωε,

1
|εYk

f |
∫

εYk
f

ϕ(x)dx in Ω ∩ εYk
s

as the mean value extension.

The relation between the weak limits of both types of extensions is given by the following
lemma.

Lemma 2.1 (see [10]) For all ωε ∈ Lp(Ωε), p ≥ 1, the following two assertions are
equivalent:

(1) ω̂ε ⇀ ω in Lp(Ω); (2) ω̃ε ⇀ θω in Lp(Ω).

A very important property of the porous medium is a variant of the Poincaré’s inequality.
Due to the presence of the holes in Ωε, the Poincaré’s inequality is given by the following lemma.

Lemma 2.2 (see [11]) Let 1 ≤ p, q <∞ and u ∈ W 1,p
0 (Ωε), then

‖u‖Lq(Ωε) ≤ Cε1+n( 1
q− 1

p )‖∇u‖Lp(Ωε),

where C depends only on Yf and p, q satisfies
(1) 1 ≤ p < n, p ≤ q ≤ p∗ = np

n−p ;
(2) p ≥ n, p ≤ q <∞.

Especially, if p = q, we have the standard inequality

‖u‖Lp(Ωε) ≤ Cε‖∇u‖Lp(Ωε).

We introduce the restriction operator by the following lemma.
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Lemma 2.3 (see [4]) There exists an operator Rε with the following properties:
(1) Rε is a bounded linear operator on W 1,p

0 (Ω) ranging in W 1,p
0 (Ωε), p ≥ 2;

(2) Rε[ϕ] = ϕ|Ωε provides ϕ = 0 in Ω − Ωε;
(3) divxϕ = 0 in Ω implies divxRε[ϕ] = 0 in Ωε;
(4) ‖Rε[ϕ]‖Lp(Ωε) + ε‖∇Rε[ϕ]‖Lp(Ωε) ≤ C(‖ϕ‖Lp(Ω) + ε‖∇ϕ‖Lp(Ω)).

In addition, we can find the restriction operator Rε satisfies a compatibility relation with
the extension operator introduced in Definition 2.1, namely,

〈∇ω̂, ϕ〉 = −
∫

Ω

ω̂ divϕdx = −
∫

Ωε

ω divRε[ϕ]dx, ∀ϕ ∈ C∞
0 (Ω).

Finally, we define the permeability matrix A. For 1 ≤ i ≤ n, let (ωi, πi) ∈ H1(Yf ) ×
L2(Yf )/R be the unique solution of the following system:⎧⎪⎪⎨⎪⎪⎩

−�ωi + ∇πi = ei in Yf ,

divωi = 0 in Yf ,

ωi = 0 on ∂Ys,

where ωi, πi are Y-periodic, ei is the standard basis of R
n. Set ωε

i = ωi

(
x
ε

)
, πε

i = πi

(
x
ε

)
. Then

we get the cell problem ⎧⎪⎪⎨⎪⎪⎩
−ε2�ωε

i + ε∇πε
i = ei in εYf ,

divωε
i = 0 in εYf ,

ωε
i = 0 on ∂(εYs),

where ωε
i , π

ε
i are εY-periodic.

Lemma 2.4 (see [4, 10]) Let ωε
i , π

ε
i be the solution to the cell problem and be extended to

zero outside Ωε. Then the following estimates hold:

‖ωε
i ‖[Lq(Ωε)]n ≤ C, ‖πε

i ‖Lq(Ωε)/R ≤ C, ε‖∇ωε
i ‖[Lq(Ωε)]n ≤ C

for any 1 ≤ q ≤ +∞, C only depends on q and Yf .

Let us define

A = (Ai,j)n
i,j=1, Ai,j =

1
|εYf |

∫
εYf

(ωε
i )jdx =

1
|Yf |

∫
Yf

(ωi)jdx. (2.1)

The periodic lemma (see [1]) shows that (ωε
i )j converges weakly (or weakly � for p = +∞) to

its average on εYf in Lp(Ωε) for 1 ≤ p ≤ +∞. It is easy to see that A is a symmetric positive
defined matrix. The form of the permeability matrix has different form if Ys has different form.
For more information about A, we refer the interested readers to [6] for detail.

Now we introduce the definition of weak solution to the system (1.1)–(1.3).

Definition 2.2 We shall say that a trio {uε, pε, wε} is a weak solution of (1.1)–(1.3), sup-
plemented with the boundary and initial conditions (1.4) and (1.5) if and only if

(1) uε ∈ L∞(0, T ;L2(Ωε)) ∩ L2(0, T ;H(Ωε)), and∫ T

0

∫
Ωε

(ε2uε · ϕt + uε ⊗ uε : ∇ϕ− μ∇uε : ∇ϕ)dxdt

= −
∫ T

0

∫
Ωε

(wε × uε) · ϕdxdt−
∫

Ωε

ε2uε
0 · ϕ(x, 0)dx −

∫ T

0

∫
Ωε

f · ϕdxdt
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holds for any ϕ ∈ C∞
0 ([0, T ) × Ωε) with divϕ = 0. H(X) = {u | u ∈ H1

0 (X), div u = 0}.
(2) wε ∈ L∞(0, T ;L2(Ωε)) ∩ L2(Ωε × (0, T )), and the integral identity∫ T

0

∫
Ωε

(wεψt + wεuε · ∇ψ − κwεψ)dxdt = −
∫ T

0

∫
Ωε

mψdxdt−
∫

Ωε

wε
0ψ(x, 0)dx

holds for any ψ ∈ C∞
0 ([0, T )× Ωε).

The existence of weak solutions with finite energy is the following.

Theorem 2.1 (see [13]) Under the above conditions and assumptions, for any fixed ε > 0,
there exists a global solution (uε, pε, wε) of the system (1.1)–(1.3) in the sense of Definition 2.2.

In this paper, we always assume that

H : uε
0 → u0 strongly in L2(Ωε), wε

0 → w0 strongly in L2(Ωε). (2.2)

With all the preparation above, we are now in the position to state our main result in this
paper.

Theorem 2.2 Let {uε, pε, wε}ε>0 be a family of weak solutions to the system (1.1)–(1.3).
We also assume that H is satisfied. Then, there exist three functions u, p, w such that

p̂ε → p weakly in L2(0, T ;H1(Ω)),
wε → w weakly in L2(Ω × (0, T )),
uε

ε2
→ u weakly in L2(Ω × (0, T )),

(2.3)

where {u, p, w} satisfies the following homogenized system:

div u = 0 in Ω × (0, T ),

μu = A(−∇p+ f) in Ω × (0, T ),

w = w0e−κt +
∫ t

0

m(x, τ)e−κ(t−τ)dτ in Ω × (0, T ),

(2.4)

where A is the so-called permeability matrix, which is defined by (2.1). Moreover, u,w satisfy
the following initial conditions:

u|t=0 = u0, w|t=0 = w0, ∀x ∈ Ω, (2.5)

and u|∂Ω = 0 for any t ∈ (0, T ).

Remark 2.1 The relationship of u and ∇p is often called the linear Darcy law. If we
assume that lim

t→+∞m(x, t) = M(x), we find that the degree of freedom w is determined only by

M and κ for t is large enough.

3 Uniform Bounds

In this section, we collect all available bounds on the family {uε, pε, wε}. Let us begin with
the basic estimates.
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3.1 Priori estimates for uε and wε

In this subsection, we will obtain some estimates for the solutions to the system (1.1)–(1.3)
which are independent of ε.

Lemma 3.1 Let {uε, wε} be the solution pair to (1.1)–(1.3). Under the conditions in The-
orem 2.2, for ε ∈ (0, 1) small enough, the following estimates hold:

‖uε‖L∞(0,T ;L2(Ωε)) ≤ C, ε−1‖∇uε‖L2(Ωε×(0,T )) ≤ C,

‖wε‖L∞(0,T ;L2(Ωε)) ≤ C, ‖wε‖L2(Ωε×(0,T )) ≤ C,

where C does not depend on ε.

Firstly, multiplying (1.2) by wε and integrating over Ωε × (0, t) for any t ∈ [0, T ], we have∫
Ωε

|wε|2dx+ 2κ
∫ t

0

∫
Ωε

|wε|2dxdτ ≤
∫

Ωε

|wε
0|2dx+ 2

∫ t

0

∫
Ωε

mwεdxdτ.

We have

‖wε‖L∞(0,T ;L2(Ωε)) ≤ C, ‖wε‖L2(Ωε×(0,T )) ≤ C, (3.1)

where C does not depend on ε.
Secondly, multiplying the momentum equations by uε and integrating over Ωε × (0, t) for

any t ∈ [0, T ], we have∫
Ωε

|uε|2dx+ 2με−2

∫ t

0

∫
Ωε

|∇uε|2dxdτ

≤
∫

Ωε

|uε
0|2dx+ 2

∫ t

0

∫
Ωε

f · uεdxdτ + 2
∫ t

0

∫
Ωε

(wε × uε) · uεdxdτ.

By Lemma 2.2, the force term can be estimated by∫ t

0

∫
Ωε

f · uεdxdτ ≤ C

∫ T

0

∫
Ωε

|f |2dxdt+ με−2

∫ T

0

∫
Ωε

|∇uε|2dxdt.

By Lemma 2.2 and (3.1), the last term can be estimated by∣∣∣2 ∫ t

0

∫
Ωε

(wε × uε) · uεdxdτ
∣∣∣ ≤ 2‖wε‖L∞(0,T ;L2(Ωε))‖uε‖2

L2(0,T ;L4(Ωε))

≤ 2Cε
1
2 ‖wε‖L∞(0,T ;L2(Ωε))‖∇uε‖2

L2(Ωε×(0,T ))

≤ με−2‖∇uε‖2
L2(Ωε×(0,T ))

for ε ∈ (0, 1) small enough.
By the initial conditions, we immediately deduce

‖uε‖L∞(0,T ;L2(Ωε)) ≤ C, ε−1‖∇uε‖L2(Ωε×(0,T )) ≤ C, (3.2)

where C does not depend on ε. By Lemma 2.2, we also have

ε−2‖uε‖L2(Ωε×(0,T )) ≤ C. (3.3)
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3.2 Extensions of uε, wε and pε

Note that Ωε will vary as ε tends to 0+. We need to extend the unknowns uε, wε and pε to
the whole domain Ω. It is reasonable to take null extensions for uε and wε since the velocity
on the solid part is 0. That is, we can define

ũε =

{
uε for x ∈ Ωε,

0 for x ∈ Ω − Ωε,
w̃ε =

{
wε for x ∈ Ωε,

0 for x ∈ Ω − Ωε.
(3.4)

We will still denote the extensions by uε and wε if there are no confusions.
The extension of the pressure pε is different from uε and wε. The reason is that the pressure

on the solid part will not disappear even if the velocity is 0 on it. To give the extension on pε,
we define a function in the following way:

〈F , ϕ〉Ω×(0,T ),Ω×(0,T ) = 〈∇pε,Rεϕ〉Ωε×(0,T ),Ωε×(0,T )

=
〈
f + wε × uε − ε2

∂uε

∂t
− (uε · ∇)uε + μ�uε,Rεϕ

〉
Ωε×(0,T ),Ωε×(0,T )

(3.5)

for ϕ ∈ C∞
0 (Ω × (0, T )). Rε is defined by Lemma 2.3.

Now, we give estimates on the right-hand side. We only consider the case n = 3 because
n = 2 is much easier.

|〈f,Rεϕ〉Ωε×(0,T ),Ωε×(0,t)| ≤ ‖f‖L2(Ωε×(0,T ))‖Rεϕ‖L2(Ωε×(0,T ))

≤ C(‖ϕ‖L2(Ωε×(0,T )) + ε‖∇ϕ‖L2(Ωε×(0,T ))).

By Lemma 2.2, Lemma 2.3 and estimations in (3.2), we have

‖〈wε × uε,Rεϕ〉Ωε×(0,T ),Ωε×(0,t)|
≤ ‖wε‖L2(Ωε×(0,T ))‖uε‖L2(0,T ;L6(Ωε))‖Rεϕ‖L∞(0,T ;L3(Ωε))

≤ Cε1+3( 1
6− 1

2 )‖∇uε‖L2(Ωε×(0,T ))‖Rεϕ‖L∞(0,T ;L3(Ωε))

≤ Cε(‖ϕ‖L∞(0,T ;L3(Ωε)) + ε‖∇ϕ‖L∞(0,T ;L3(Ωε))).

To the third term, we have∣∣∣〈ε2 ∂uε

∂t
,Rεϕ

〉
Ωε×(0,T ),Ωε×(0,t)

∣∣∣ ≤ ε2‖uε‖L2(Ωε×(0,T ))‖Rεϕt‖L2(Ωε×(0,T ))

≤ Cε4(‖ϕt‖L2(Ωε×(0,T )) + ε‖∇ϕt‖L2(Ωε×(0,T ))).

By using Lemmas 2.2–2.3 and (3.2) again, we have

|〈(uε · ∇)uε,Rεϕ〉Ωε×(0,T ),Ωε×(0,t)|
≤ ‖uε‖L2(0,T ;L6(Ωε))‖∇uε‖L2(Ωε×(0,T ))‖Rεϕ‖L∞(0,T ;L3(Ωε))

≤ Cε2(‖ϕ‖L∞(0,T ;L3(Ωε)) + ε‖∇ϕ‖L∞(0,T ;L3(Ωε))).

The last term is estimated by

|〈μ�uε,Rεϕ〉Ωε×(0,T ),Ωε×(0,t)| = −〈μ∇uε,∇Rεϕ〉Ωε×(0,T ),Ωε×(0,t)

≤ C‖∇uε‖L2(Ωε×(0,T ))‖∇Rεϕ‖L2(Ωε×(0,T ))

≤ C(‖ϕ‖L2(Ωε×(0,T )) + ε‖∇ϕ‖L2(Ωε×(0,T ))).
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If we choose the test function ϕ such that divϕ = 0, we have

〈F , ϕ〉Ω×(0,T ),Ω×(0,T ) = 0.

Thus, F , being orthogonal to divergence free functions, is the gradient of some functions ϑ. A
result from [14] shows that up to a constant, we have

ϑ = pε, then F = ∇ϑ = ∇pε in Ωε.

At this moment, we can say that we have extended pε to the whole domain. We denote the
extension function by P ε. It remains to determine the expression of P ε on the solid part.
Suppressing the t dependence, following the steps in [15], we choose a smooth test function ϕ

in (3.5), with compact support in one of the solid parts Ys, and we have

P ε = constant in Ys.

Next, we choose a smooth test function in (3.5), with compact support in the entire cell Yf .
Integrating by parts, we have

P ε = p̂ε =
1

|Yf |
∫
Yf

pεdx in Ys.

In fact, we have proved the following lemma.

Lemma 3.2 The extension of pε, denoted by p̂ε, has the form

p̂ε =

⎧⎪⎨⎪⎩
pε in Ωε,

1
|Yf |

∫
Yf

pεdx in Ys.
(3.6)

Moreover,

∇p̂ε ∈ L2(Ω × (0, T )) + εL1(0, T ;L
3
2 (Ω)) + ε2L1(0, T ;W−1,32 (Ω))

+ εL2(0, T ;H−1(Ω)) + ε4H−1(0, T ;L2(Ω)) + ε5H−1(Ω × (0, T )). (3.7)

4 Proof of the Main Result

In this section, we focus on the proof of Theorem 2.2. It contains three parts:
(1) The convergence results in (2.3);
(2) Recover the system (2.4);
(3) Determine the initial and boundary conditions (2.5).

Proof of Theorem 2.2 Note that the velocity ε−2uε and the degree of freedom wε are
both bounded in L2(Ω × (0, T )). By using the standard compactness theorem, we can extract
subsequences, still denoted by itself, such that

ε−2uε ⇀ u weakly in L2(Ω × (0, T )),

wε ⇀ w weakly in L2(Ω × (0, T )).

Due to (3.7), we can decompose ∇p̂ε as following:

∇p̂ε =∇p̂ε
1 + ε∇p̂ε

2 + ε2∇p̂ε
3 + ε∇p̂ε

4 + ε4∇p̂ε
5 + ε4∇p̂ε

6,
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where ∇p̂ε
i , i = 1, 2, · · · , 6 is bounded uniformly in the corresponding space respectively. As

above, we assume that ∇p̂ε
1 ⇀ ∇p weakly in L2(Ω × (0, T )) and ∇p̂ε

i ⇀ ∇pi weakly in the
corresponding space respectively for i = 2, 3, · · · , 6. Let ϕ ∈ C∞

0 (Ω × (0, T )). We have∫ T

0

∫
Ω

∇p̂ε · ϕdxdt

=
∫ T

0

∫
Ω

(∇p̂ε
1 + ε∇p̂ε

2 + ε2∇p̂ε
3 + ε∇p̂ε

4 + ε4∇p̂ε
5 + ε4∇p̂ε

6) · ϕdxdt

→
∫ T

0

∫
Ω

∇p · ϕdxdt as ε→ 0+,

which implies

∇p̂ε ⇀ ∇p weakly in L2(Ω × (0, T )).

Finally, by using the Nec̆as’s inequality (see [16–17]), we obtain p ∈ L2(0, T ;H1(Ω)) and

p̂ε ⇀ p weakly in L2(0, T ;H1(Ω)).

In the sequel, we derive the homogenized model of (1.1)–(1.3). Note that

ε−2div uε = 0.

Let
ϕ ∈ C∞

0 (Ω × (0, T )).

We have

0 =
∫ T

0

∫
Ω

ε−2div uε ϕdxdt = −
∫ T

0

∫
Ω

ε−2uε · ∇ϕdxdt

→ −
∫ T

0

∫
Ω

u · ∇ϕdxdt =
∫ T

0

∫
Ω

div u ϕdxdt,

which implies div u = 0 in Ω × (0, T ).
Let ϕ ∈ C∞

0 (Ω× (0, T )). Taking ωε
iϕ as a test function in the momentum equations, where

ωε
i is defined in Lemma 2.4 and has been extended 0 on ∂Ω, we have∫ T

0

∫
Ω

ε2
∂uε

∂t
· ωε

iϕdxdt+
∫ T

0

∫
Ω

(uε · ∇)uε · ωε
iϕdxdt − μ

∫ T

0

∫
Ω

�uε · ωε
iϕdxdt

+
∫ T

0

∫
Ω

∇pε · ωε
iϕdxdt =

∫ T

0

∫
Ω

f · ωε
iϕdxdt+

∫ T

0

∫
Ω

wε × uε · ωε
iϕdxdt.

Now we compute the limit of each term in above equality,∣∣∣ ∫ T

0

∫
Ω

ε2
∂uε

∂t
· ωε

iϕdxdt
∣∣∣ =

∣∣∣ε2 ∫ T

0

∫
Ω

uε · ωε
iϕtdxdt

∣∣∣
≤ Cε2‖uε‖L2(Ω×(0,T )) → 0 as ε→ 0+.
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By Lemma 2.2 and Lemma 2.4, we have∣∣∣ ∫ T

0

∫
Ω

(uε · ∇)uε · ωε
iϕdxdt

∣∣∣
=

∣∣∣ − ∫ T

0

∫
Ω

uε × uε : ∇ωε
iϕdxdt−

∫ T

0

∫
Ω

uε × uε : ωε
i ⊗∇ϕdxdt

∣∣∣
≤ C‖∇ωε

i ‖L2(Ω×(0,T ))‖uε‖2
L2(0,T ;L4(Ω)) + C‖ωε

i ‖L2(Ω×(0,T ))‖uε‖2
L2(0,T ;L4(Ω))

≤ Cε−1ε2+6( 1
4− 1

2 )‖∇uε‖2
L2(0,T ;L2(Ω)) + Cε2+6( 1

4− 1
2 )‖∇uε‖2

L2(0,T ;L2(Ω))

≤ Cε
3
2 → 0 as ε→ 0+.

To the last term, using Lemma 2.2 and Lemma 2.4, we have∣∣∣ ∫ T

0

∫
Ω

wε × uε · ωε
iϕdxdt

∣∣∣ ≤ C‖uε‖L2(0,T ;L4(Ω))‖ωε
i ‖L∞(0,T ;L4(Ω))

≤ Cε
1
2 → 0 as ε→ 0+.

It is obvious that ∫ T

0

∫
Ω

f · ωε
iϕdxdt →

∫ T

0

∫
Ω

Af · ϕdxdt as ε→ 0+ (4.1)

and ∫ T

0

∫
Ω

∇pε · ωε
iϕdxdt = −

∫ T

0

∫
Ω

pεωε
i · ∇ϕdxdt

→ −
∫ T

0

∫
Ω

Ap∇ · ϕdxdt =
∫ T

0

∫
Ω

A · ∇pϕdxdt (4.2)

as ε tends to zero.
Finally, we consider the limit of −μ ∫ T

0

∫
Ω �uε · ωε

iϕdxdt. We have

− μ

∫ T

0

∫
Ω

�uε · ωε
iϕdxdt

= μ

∫ T

0

∫
Ω

∇uε : ∇ωε
iϕdxdt + μ

∫ T

0

∫
Ω

∇uε : ωε
i ⊗∇ϕdxdt

= I1 + I2.

Due to (3.2), we have

|I2| ≤ Cε(ε−1‖∇uε‖L2(Ω×(0,T )))‖wε
i ‖L2(Ω×(0,T )) → 0

as ε tends to zero.
Integrating by parts in I1, we have

I1 = −μ
∫ T

0

∫
Ω

uε · �ωε
iϕdxdt − μ

∫ T

0

∫
Ω

uε ⊗∇ϕ : ∇ωε
i dxdt

= I11 + I12.
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Due to (3.3), we have

|I12| ≤ Cε(ε−2‖uε‖L2(Ω×(0,T )))(ε‖∇ωε
i ‖L2(Ω×(0,T ))) → 0 as ε→ 0+.

By Lemma 2.4, we write I11 in the following way:

I11 = μ

∫ T

0

∫
Ω

ε−2uε · (ei − ε∇πε
i )ϕdxdt

= μ

∫ T

0

∫
Ω

ε−2uε · eiϕdxdt− μ

∫ T

0

∫
Ω

ε−1uε · ∇πε
iϕdxdt

= I111 + I112.

It is obvious

|I112| =
∣∣∣μ ∫ T

0

∫
Ω

ε−1uε πε
i · ∇ϕdxdt

∣∣∣ ≤ Cε→ 0 as ε→ 0+

and

I111 → μ

∫ T

0

∫
Ω

u · eiϕdxdt. (4.3)

Combining (4.1)–(4.3), we obtain

μu = A(−∇p+ f) in D′(Ω × (0, T )). (4.4)

To pass the limit to (1.2), we take ϕ ∈ C∞
0 (Ω × [0, T )) as a test function and we have

−
∫ T

0

∫
Ω

wεϕtdxdt+
∫ T

0

∫
Ω

div (uεwε)ϕdxdt +
∫ T

0

∫
Ω

κwεϕdxdt

=
∫ T

0

∫
Ω

mϕdxdt+
∫

Ω

wε
0ϕ(x, 0)dx.

Note that ∣∣∣ ∫ T

0

∫
Ω

div (uεwε)ϕdxdt
∣∣∣ =

∣∣∣ − ∫ T

0

∫
Ω

uεwε · ∇ϕdxdt
∣∣∣

≤ Cε2 → 0 as ε→ 0+.

Passing the limit, we obtain

−
∫ T

0

∫
Ω

wϕtdxdt+
∫ T

0

∫
Ω

κwϕdxdt =
∫ T

0

∫
Ω

mϕdxdt+
∫

Ω

w0ϕ(x, 0)dx,

which implies that

∂w

∂t
+ κw = m in D′(Ω × (0, T )) (4.5)

and w|t=0 = w0(x).
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The expression of the degree of freedom in (4.6) can be written as

w = w0e−κt +
∫ t

0

m(x, τ)e−κ(t−τ)dτ, (4.6)

where we assume that w vanishes on the boundary of Ω.
At last, using the fact that ε−2uε is bounded in L2(Ω × (0, T )) and ε−2 ∂uε

∂t is bounded in
H−1(0, T ;L2(Ω)), we conclude that ε−2uε is bounded in C([0, T ];L2(Ω)). Then ε−2uε make
sense at t = 0. Passing the limit, we have u|t=0 = u0. For any t ∈ (0, T ), ε−1uε is bounded in
H1

0 (Ω). Then the trace of ε−2uε on ∂Ω makes sense. Passing the limit, we obtain u|∂Ω = 0.
Collecting all the information above, Theorem 2.2 is then proved.
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