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1 Introduction and Preliminaries

In the theory of Markov processes, it is always interesting and important to explore var-
ious kinds of relationships between X and the transformed process of X under some kind of
transform. Getoor and Steffens [1] studied the relationships among the energy functional, the
balayage operators and the capacities for a Markov process and the same objects for its q-
subprocesses and u-transform; Ying [2] studied the homogeneous multiplicative functionals of
Lévy processes and gave their characterizations; Ying [3] studied the additive and multiplica-
tive functionals of a right Markov process systematically in the setting of weak duality and
proved that any subprocess of a nearly symmetric Markov process was also nearly symmet-
ric and gave a generalized Feynman-Kac formula; Ying [4] proved that the killing transform
of Markov processes was equivalent to strong subordination of the respective Dirichlet forms
and gave a characterization of so-called bivariate smooth measures; Ying [5] studied the h-
transform of symmetric Markov processes and corresponding Dirichlet spaces and discussed
the drift transformation of Fukushima and Takeda’s type; Ying [6] studied the relationships of
Revuz measures, several formulas on the energy functional and capacity between any process
and its subprocesses. Chen et al. [7] investigated the most general Girsanov transformation
leading to another symmetric Markov process. Fukushima et al. [8] extended the classical Dou-
glas integral by using the approach of time change of Markov processes. Song and Ying [9]
established a representation formula for transition density function of a certain type of right
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processes under Girsanov transform and gave the infinitesimal generator of the transformed
process. He and Ying [10] studied how energy functionals and Revuz measures change under
time change of Markov processes and provided an intuitive and direct approach of the Lévy
system and jumping measure of time changed process; Song [11] studied how Revuz measures,
energy functional, capacity and Lévy system change under some Girsanov transform of Hunt
processes.

Ying [5] considered a drift transformation which was in the setting of symmetric right
process. In this paper, we consider a Girsanov transformation of a right Markov process which
is formally like the drift transformation in [5]. However, the right Markov process in our paper
is not symmetric and the transformation is not the same. We will extend the excessive function
in [11] to α-excessive function and generalize the results of [11]. In the following, we will give
the specific explanations.

We start from a right Markov process X = (Ω, F , Ft, θt, P
x)t∈(0,+∞) on the state space

(E, E ) with transition semigroup (Pt){t>0} and resolvent (U q){q≥0}. E is, at least, a separable
Radon space and E is the Borel σ-field of E. A cemetery point Δ is adjoined to E as an isolated
point of E and EΔ := E∪{Δ}, EΔ := σ(E ∪{Δ}) (the symbol ‘:=’ is always read as ‘is defined
to be’). Let ζ := inf{t : Xt = Δ} be the lifetime of X . The filtration (F , Ft) is the augmented
natural filtration of X . Denote by Excq(X) and Sq(X) (q ≥ 0) the cones of q-excessive measures
and q-excessive functions of X , respectively. As usual we write S := S0, Exc := Exc0.

For α > 0, let h ∈ Sα(X) and 0 < h < ∞. Then e−αth(Xt) is a right continuous nonnegative
Ft-supermartingale. By Doob-Meyer decomposition, we have

e−αth(Xt) − h(X0) = M
[h]
t − N

[h]
t ,

where M
[h]
t is a local martingale, N

[h]
t is a continuous increasing additive functional. Refer to

[12] for the theory of additive functionals.
Let

Z
[h]
t :=

∫ t

0

dM
[h]
s

e−αsh(Xs−)
,

which is a martingale additive functional of X . Note that for t < ζ, we have

ΔZ
[h]
t =

1
e−αth(Xt−)

(M [h]
t − M

[h]
t− )

=
1

e−αth(Xt−)
(e−αth(Xt) − e−αth(Xt−))

=
h(Xt)
h(Xt−)

− 1.

Let Z
[h]
t = Z

[h],c
t + Z

[h],d
t be the decomposition as continuous and purely discontinuous parts.

Denote by Lt the Doléan-Dade exponential martingale of Z
[h]
t . Then it admits a representation

as the following:

L
[h]
t = exp

(
Z

[h],c
t − 1

2
〈Z [h],c〉t

)
eZ

[h],d
t

∏
s≤t

h(Xs)
h(Xs−)

e−( h(Xs)
h(Xs−)−1)1{t<ζ},



Revuz Measures, Energy Functionals and Capacities Under Girsanov Transform 867

which is a martingale of X . Consequently, the formula

dQx

dP x

∣∣∣
Ft

= L
[h]
t

uniquely determines a family of probability measure on (Ω, F∞). It is known that X is a
right Markov process on E under these new measures (cf. [13, Section 62]). We will use
(Y, F , Ft, Q

x, x ∈ E) to denote the transformed process. Here Yt(ω) = Xt(ω) but we use
Yt for emphasis when working with Qx. By Itô’s formula, we have

L
[h]
t =

e−αth(Xt)
h(X0)

exp
( ∫ t

0

dN
[h]
s

e−αsh(Xs)

)
.

Let Qt and Vt be the semigroup and resolvent of Y , respectively, that is, for any f ∈ E , we
have

Qtf(x) = P x(f(Xt)L
[h]
t ) = P x

(
f(Xt)

e−αth(Xt)
h(X0)

exp
(∫ t

0

dN
[h]
s

e−αsh(Xs)

))
, (1.1)

V qf(x) =
∫ ∞

0

e−qtQtf(x)dt

= P x
( ∫ ∞

0

e−qtf(Xt)
e−αth(Xt)

h(X0)
exp

( ∫ t

0

dN
[h]
s

e−αsh(Xs)

)
dt

)
(q ≥ 0).

The process Y is called the Girsanov transform of X by (Lt){t>0} or induced by α-excessive
function h.

In this article, we will get some potential objects under the transform, such as Revuz
measures, energy functionals, capacities and Lévy systems.

2 Revuz Measures, Energy Functionals, Capacities

In this section, we will get the relationships of some potential objects between the process
X and the transformed process Y which is defined in Section 1. In the following, we denote
by Sq(Y ) and Excq(Y ) (q ≥ 0) the cones of q-excessive measures and q-excessive functions of
Y , respectively. Particularly, denote by S(Y ) and Exc(Y ) the cones of excessive measures and
excessive functions of Y , respectively.

Lemma 2.1 For any q ≥ 0, if u ∈ Sq(Y ), then hu ∈ Sq+α(X). Particularly, if u ∈ S(Y ),
then hu ∈ Sα(X).

Proof By the definition of q-excessive function, we have

u ∈ Sq(Y ) ⇔ e−qtQtu(x) ≤ u(x), lim
t→0

e−qtQtu(x) = u(x).

By (1.1), we have

Ptf(x) = Qx
(
f(Xt)

h(X0)
e−αth(Xt)

exp
(
−

∫ t

0

dN
[h]
s

e−αsh(Xs)

))
.



868 R. L. Song

Thus it follows that

e−(q+α)tPt(hu)(x)

= P x(e−qte−αth(Xt)u(Xt))

= Qx
(
e−qte−αth(Xt)u(Xt)

h(X0)
e−αth(Xt)

exp
(
−

∫ t

0

dN
[h]
s

e−αsh(Xs)

))

= h(x)e−qtQx
(
u(Xt) exp

(
−

∫ t

0

dN
[h]
s

e−αsh(Xs)

))
≤ h(x)e−qtQtu(x)

≤ h(x)u(x)

and

lim
t→0

e−(q+α)tPt(hu)(x) = h(x) lim
t→0

e−qtQx(u(Xt) e−
∫ t
0

dN
[h]
s

e−αsh(Xs) ) = h(x)u(x).

Then also by the definition of q-excessive function, we have hu ∈ Sq(X).

Lemma 2.2 For any q ≥ 0, if μ ∈ Excq(Y ), then 1
hμ ∈ Excq+α(X). Particularly, if

μ ∈ Exc(Y ), then 1
hμ ∈ Excα(X).

Proof We assume that f ∈ pE (positive measurable function with respect to E ) in
the following. By the definition of q-excessive measure, we have μ ∈ Excq(Y ) if and only
if μe−qtQt ≤ μ.

Thus it follows that

1
h

μe−(q+α)tPtf(x)

=
∫

E

e−(q+α)tP x(f(Xt))
1

h(x)
μ(dx)

=
∫

E

e−qt 1
h(x)

Qx
(
e−αtf(Xt)

h(X0)
e−αth(Xt)

exp
(
−

∫ t

0

dN
[h]
s

e−αsh(Xs)

))
μ(dx)

≤
∫

E

e−qtQx
(f(Xt)

h(Xt)

)
μ(dx)

≤ μ
(f

h

)
=

1
h

μ(f).

Thus we get the desired result.
The above two lemmas give the relationships of excessive functions and excessive measures

of X and Y .
Revuz measures were first introduced for ordinary additive functionals in [14]. Let m ∈

Exc(X) and A ∈ RAF (raw additive functional). Then the Revuz measure of A relative to m

is defined by

ρX,m
A (f) :=↑ lim

t↓0
1
t
Pm

(∫ t

0

f(Xs)dAs

)
,
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where ↑ (↓) means increasing (decreasing). Let Xα denote the α-subprocess of X , that is, the
semigroup of Xα is defined by Pα

t := e−αtPt. We have

Exc(X) ⊂ Excα(X) = Exc(Xα).

Let ρX , ρXα

and ρY denote the Revuz measures of X, Xα and Y , respectively.

Theorem 2.1 Let μ ∈ Exc(Y ) and A be an increasing continuous additive functional which
is finite on [0, ζ[. Then

ρY,μ
A = h · ρXα, 1

h μ

A .

Particularly, if 1
hμ ∈ Exc(X), then

ρY,μ
A = h · ρX,1h μ

A .

Proof If At =
∫ t

0
a(Xs)ds, where a is a bounded positive Borel function, then for any

μ ∈ Exc(X), we have ρX,μ
A = a · μ. Since μ ∈ Exc(Y ), by Lemma 2.2, we have 1

hμ ∈ Exc(Xα).
Thus

ρY,μ
A = a · μ, ρ

Xα, 1
h μ

A = a · 1
h

μ.

Then

ρY,μ
A = h · ρXα, 1

h μ

A .

For a general A which is an increasing continuous additive functional, define a strictly increasing
continuous additive functional H by Ht := At + t ∧ ζ, then

ρY,μ
H = ρY,μ

A + μ := μ̃, ρ
Xα, 1

h μ

H = ρ
Xα, 1

h μ

A +
1
h

μ :=
1̃
h

μ.

By time-change, let

X̃α
t := Xα

H−1
t

, Ỹt := YH−1
t

, Ãt := AH−1
t

.

Since At � Ht, then Ãt � dt. By Motoo’s theorem (cf. [13, (66.2)]), there is a bounded positive
Borel function ã, such that Ãt =

∫ t

0 ã(Xs)ds for all t ≥ 0 a.s. P
1
h μ. By the discussion in the

first part of the proof, we have

ρ
X̃α, 1̃

h μ

Ãt
= ã

1̃
h

μ = ã
(
ρ

Xα, 1
h μ

A +
1
h

μ
)
,

ρỸ ,μ̃

Ãt
= ãμ̃ = ã(ρY,μ

A + μ).

And by time-change (cf. [10]), we have

ρ
Xα, 1

h μ

A = ρ
X̃α, 1̃

h μ

Ãt
, ρY,μ

A = ρ̃Ỹ ,μ̃

Ãt
.

Thus it follows that

ρY,μ
A = h · ρXα, 1

h μ

A .
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If 1
hμ ∈ Exc(X), by [15, (8.10)], we have

ρ
Xα, 1

h μ

A = ρ
X, 1

h μ

A ,

then
ρY,μ

A = h · ρX, 1
h μ

A .

This theorem gives the relationship of Revuz measures between X and Y . In the proof, we
use the method in [16]. We see that time-change plays an important role in the above proof.

The energy functional L (of X) is defined on Exc(X) × S(X) by

LX(m, u) = sup{μ(u) : μU ≤ m}.

Refer to [15] for the basic properties of energy functional L.
Let LX , Lα and LY denote the energy functional of X, Xα and Y , respectively.
Before we get our results, we will explain our ideas as follows. Since h ∈ Excα(X) and

Excα(X) = Exc(Xα), then h ∈ Exc(Xα). Since 0 < h < ∞, let Xα,h denote the h-transform
of Xα, Pα,h

t denote the semigroup of Xα,h, then for t > 0,

Pα,h
t f(x) = P x

(
e−αtf(Xt)

h(Xt)
h(X0)

)
.

From (1.1), we see that the process Xα,h can be seen as the killing process of Y by the decreasing
multiplication functional M , where

M := exp
(
−

∫ t

0

dN
[h]
s

e−αsh(Xs)

)
.

We will use the process Xα,h as a bridge to get the relationships of energy functional and
capacity between the process X and the process Y . We will get the relationship between
Lα(LX) and LY in the following Theorem 2.2.

Theorem 2.2 Let μ ∈ Exc(Y ), u ∈ S(Y ), then

Lα
( 1

h
μ, hu

)
= LY (μ, u) + ρ

Xα, 1
h μ

N [h] (u).

Particularly, if 1
hμ ∈ Exc(X), hu ∈ S(X), then

LX
(1

h
μ, hu

)
+ αμ(u) = LY (μ, u) + ρ

X, 1
h μ

N [h] (u).

Proof By Lemmas 2.1–2.2, we have

1
h

μ ∈ Exc(Xα), hu ∈ S(Xα).

Due to [1, (4.8)], we have

LXα,h

(μ, u) = Lα
(1

h
μ, hu

)
. (2.1)
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The process Xα,h can be seen as the M -subprocess of Y , where

M = exp
(
−

∫ t

0

dN
[h]
s

e−αsh(Xs)

)
.

Due to Theorem 3.3 in [6], we have

LXα,h

(μ, u) = LY (μ, u) + ρY,μ
M (u). (2.2)

By (2.1)–(2.2), we have

Lα
(1

h
μ, hu

)
= LY (μ, u) + ρY,μ

M (u). (2.3)

By Theorem 2.1, we have

ρY,μ
M = h · ρXα, 1

h μ

M . (2.4)

The Stieltjes logarithm of M is

[M ]t :=
∫ t

0

d(−Ms)
Ms

=
∫ t

0

dN
[h]
s

e−αsh(Xs)
.

Due to [6, Corollary 2.8], we have

ρ
Xα, 1

h μ

M = ρ
Xα, 1

h μ

[M ] =
1
h
· ρXα, 1

h μ

N [h] . (2.5)

Using (2.3)–(2.5), it follows that

Lα
( 1

h
μ, hu

)
= LY (μ, u) + ρ

Xα, 1
h μ

N [h] (u).

If 1
hμ ∈ Exc(X), hu ∈ S(X), since

Lα
(1

h
μ, hu

)
= LX

( 1
h

μ, hu
)

+ αμ(u)

and

ρ
Xα, 1

h μ

N [h] = ρ
X, 1

h μ

N [h] ,

then we have

LX
( 1

h
μ, hu

)
+ αμ(u) = LY

(
μ, u

)
+ ρ

X, 1
h μ

N [h] (u).

The Hunt’s balayage operation Rq
T is defined on Excq(q > 0). That is, for any terminal time

T ,

Rq
T μ(f) := Lq(μ, P q

T U qf) for μ ∈ Excq(X).

For μ ∈ Exc(X),

RT μ :=↑ lim
q↓0

Rq
T μ.

Let E e := σ
( ⋃

q≥0

Sq
)
. If B ∈ E e and μ ∈ Excq (q ≥ 0), we shall write Rq

Bμ in place of Rq
TB

μ.
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For B ∈ E e and q ≥ 0, the q-capacity of B with m ∈ Exc(X) is defined by

Γq
m(B) : = Lq(m, P q

B1) = Lq(Rq
Bm, 1),

Γm(B) : = Γ0(B).

That is
Γm(B) = L(m, PB1) = L(RBm, 1).

An exact terminal time T is called strict if T ◦ θT = 0 a.s. In the case that T = TB, the hitting
time of B ∈ E e, T is strict if and only if XT ∈ Br, where Br is the set of regular points of B.
The set B is called strict if TB is. Let ΓX and ΓY denote the capacity of X and Y , respectively.

Theorem 2.3 Let B ∈ E and be strict, μ ∈ Exc(Y ). Then

ΓY
μ (B) +

1
h

ρ
Xα, 1

h RBμ

N [h] (Pα
Bh) = Lα

(1
h

μ, Pα
Bh

)
= Lα

(
Rα

B

( 1
h

μ
)
, h

)
. (2.6)

Particularly, if 1
hμ, 1

hRBμ ∈ Exc(X) and Pα
Bh ∈ S(X), then

ΓY
μ (B) +

1
h

ρ
X, 1

h RBμ

N [h] (Pα
Bh) = LX

( 1
h

μ, Pα
Bh

)
+

α

h
μ(Pα

Bh). (2.7)

Proof Since μ ∈ Exc(Y ), h ∈ S(Xα), then RBμ ∈ Exc(Y ), Pα
Bh ∈ S(Xα). By Lemma 2.2,

we have 1
hμ, 1

hRBμ ∈ Exc(Xα).
By the definition of capacity, we have

ΓXα,h

μ (B) = LXα,h

(μ, Pα,h
B 1) = Lα

(1
h

μ, hPα,h
B 1

)
= Lα

( 1
h

μ, Pα
Bh

)
= Lα

(
Rα

B

( 1
h

μ
)
, h

)
. (2.8)

In the above reasoning, we use (2.1) to get the second equality and use [1, (5.4)(i)] to get the
third equality.

Since the process Xα,h is the M -subprocess of Y , and by using [6, (4.11)], we have

ΓXα,h

μ (B) = ΓY
μ (B) + ρY,RBμ

M (QM
B 1). (2.9)

By (2.4)–(2.5), we get

ρY,RBμ
M = ρ

Xα, 1
h RBμ

N [h] (2.10)

and

QM
B 1 =

1
h

Pα
Bh. (2.11)

By (2.8)–(2.11), we have the result (2.6).
Particularly, if 1

hμ, 1
hRBμ ∈ Exc(X) and Pα

Bh ∈ S(X), we have

ρ
Xα, 1

h RBμ

N [h] (Pα
Bh) = ρ

X, 1
h RBμ

N [h] (Pα
Bh), (2.12)

Lα
( 1

h
μ, Pα

Bh
)

= LX
( 1

h
μ, Pα

Bh
)

+
α

h
μ(Pα

Bh). (2.13)

By (2.6) and (2.12)–(2.13), we have the result (2.7).
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3 Lévy System

A Lévy system for X is a pair (N, H), where N is a kernel on (E, E u) (where E u is the
σ-algebra of universally measurable subsets of E) with N(x, {x}) = 0 for any x ∈ E and H is a
continuous additive functional of X having bounded 1-potential, such that for any F ∈ pE u×E u

vanishing on the diagonal and any predictable process Z, we have

P x
∑

0<s≤t

ZsF (Xs−, Xs) = P x

∫ t

0

ZsNF (Xs)dHs,

where
NF (x) :=

∫
F (x, y)N(x, dy).

Refer to [13, §73] for the existence of Lévy systems. Now we state the relationship of Lévy
system of X and Y .

Theorem 3.1 If (N, H) is a Lévy system of X, then (N ′, H) is a Lévy system of Y , where

N ′(x, dy) := N(x, dy)
h(y)
h(x)

.

Proof By the definition of Lévy system, for any F ∈ pE u × E u, we have

Qx
∑

0<s≤t

ZsF (Xs−, Xs)

= P x
∑

0<s≤t

ZsF (Xs−, Xs)Ls

= P x
∑

0<s≤t

ZsF (Xs−, Xs)e−αs h(Xs)
h(X0)

e
∫

s
0

dN
[h]
r

e−αrh(Xr)

=
1

h(x)
P x

∑
0<s≤t

e−αsZsh(Xs−)F (Xs−, Xs)
h(Xs)
h(Xs−)

e
∫ s
0

dN
[h]
r

e−αrh(Xr)

=
1

h(x)
P x

∫ t

0

e−αsZsh(Xs−)e
∫ s
0

dN
[h]
r

e−αrh(Xr) N ′F (Xs)dHs

= P x

∫ t

0

e−αsZs
h(Xs)
h(X0)

e
∫

s
0

dN
[h]
r

h(Xr) N ′F (Xs)dHs

= Qx

∫ t

0

ZsN
′F (Xs)dHs.

The fifth equation is due to the continuity of H . Then also by the definition of Lévy system,
we have that (N ′, H) is a Lévy system of the process Y .
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