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Abstract The modular invariants of a family of curves are the degrees of the pullback
of the corresponding divisors by the moduli map. The singularity indices were introduced
by Xiao (1991) to classify singular fibers of hyperelliptic fibrations and to compute global
invariants locally. In semistable case, the author shows that the modular invariants corre-
sponding to the boundary divisor classes are just the singularity indices. As an application,
the author shows that the formula of Xiao for relative Chern numbers is the same as that
of Cornalba-Harris in semistable case.

Keywords Modular invariants, Singularity indices, Moduli space of curves
2000 MR Subject Classification 14D06, 14D22, 14H10

1 Introduction

The modular invariants of a family of curves were introduced by Tan [10]. They are the
degrees of the pullback of the corresponding divisors by the moduli map. In the language of
arithmetic algebraic geometry, a modular invariant is a certain height of arithmetic curves,
for example, Faltings height is the modular invariant corresponding to Hodge class. Modular
invariants can be used to describe the lower bound for effective Bogomolov conjecture which
is about the finiteness of algebraic points of small height (see [15–16]). More recently, Tan
found that the modular invariants are invariants of differential equations, which were expected
by mathematicians in 19th century to study the qualitative properties of differential equations
(see [11]).

Historically, the study of fibred surfaces is started by Kodaira [6], who gave a complete
classification theory for elliptic fibrations. This combinatoric classification of elliptic fibers is
used in the computation of the modular invariants. But such a classification is too complicate
for the case when the genus g ≥ 2. There are more than one hundred classes of singular
fibers of genus 2 (see [8–9]), and the number of classes of singular fibers increases quickly as
the genus becomes bigger. Horikawa [5] classified the singular fibers of genus g = 2 into 5
classes from a different point of view. Based on Horikawa’s work, Xiao [13–14] introduced
the singularity indices (see Definition 2.6) to classify singular fibers of hyperelliptic fibrations.
Furthermore, he obtained the local-global formulas, and determined the fundamental group
from his classification.

In what follows, we will prove that the two basic invariants, the modular invariants corre-
sponding to boundary divisor classes and the singularity indices, coincide with each other for
semistable fibrations.
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Before starting this result, we explain our notations and assumptions.
A family of curves of genus g is a fibration f : S → C whose general fiber F is a smooth

curve of genus g, where S is a complex smooth projective surface, and C is a smooth curve of
genus b. The family is called semistable if all the singular fibers are semistable curves (recall
that a semistable curve F is a reduced connected curve that has only nodes as singularities and
every smooth rational component of F meets the other components at no less than 2 points).
If all the smooth fibers are hyperelliptic, we say that the family is hyperelliptic. We always
assume that f is relatively minimal, i.e., there is no (−1)-curve in any singular fiber.

If r is a non-negative real number, we denote by [r] the integral part of r. Hence when m

is a positive integer, m− 2
[
m
2

]
is zero if m is even, or 1 otherwise.

For a fibration f : S → C, we have three fundamental relative invariants which are non-
negative,

K2
f = K2

S
C

= K2
S − 8(g − 1)(b− 1),

ef = χtop(S)− 4(g − 1)(b− 1),

χf = deg f∗ω S
C

= χ(OS)− (g − 1)(b − 1). (1.1)

Let f be a locally non-trivial fibration, the slope of f is defined as λf = K2
f

χf
.

For g ≥ 2, the moduli map J : C →Mg induced by f is a holomorphic map from C to the
moduli space Mg of semistable curves of genus g. For each Q-divisor class η of Mg, we can
define an invariant η(f) = deg J∗η which satisfies the base change property, i.e., if f̃ : X̃ → C̃

is the pullback fibration of f under a base change π : C̃ → C of degree d, then η(f̃) = d · η(f)

(see [10]). Consequently, for a non-semistable family f , we have η(f) = η(f̃)
d , where f̃ is the

semistable model of f corresponding to a base change of degree d. We call η(f) the modular
invariant of f corresponding to η.

Let Δ0, · · · ,Δ[
g
2

] be the boundary divisors of Mg, and δi(f) be the modular invariant

corresponding to the divisor class δi = [Δi] in Pic(Mg) ⊗ Q, i = 0, 1, · · · , [g2 ]
. Let λ ∈

Pic(Mg) ⊗ Q be the Hodge class, δ = δ0 + · · · + δ[ g
2

], and κ = 12λ− δ. For these classes, we

have modular invariants λ(f), δ(f) and κ(f) of f . If f is semistable, then

λ(f) = χf , δ(f) = ef , κ(f) = K2
f . (1.2)

We say that a singularity p in a semistable curve F is a node of type i if its partial nor-
malization at p consists of two connected components of arithmetic genera i and g − i ≥ i, for
i > 0, and is connected for i = 0. The node of the semistable curve corresponding to a general
point of Δ0 is α-type, i.e., an ordinary double point of an irreducible curve, hence it is a node
of type 0. For a general point in Δi, the corresponding node is of type i (i ≥ 1) (see Figure 1).
Denote by δi(F ) the number of nodes of type i (i ≥ 0) in F .

Figure 1 Node of type i (i ≥ 1)

������

������

p

genus i

genus g − i

The general point in the intersection Δi1 ∩ · · · ∩Δik of k distinct boundary divisors corre-
sponds to a semistable curve with k nodes which are of types i1, · · · , ik respectively.
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Let Hg be the moduli space of semistable hyperelliptic curves, the restriction of Δ0 on
Hg breaks up into Ξ0,Ξ1, · · · ,Ξ[

g−1
2

]. We denote by Θi the restriction of Δi (i ≥ 1) on Hg.
Suppose that F is a semistable hyperelliptic curve with hyperelliptic involution σ, and p ∈ F is
a node of type 0. If p = σ(p), then we set k = 0; if p �= σ(p), and the partial normalization of F
at p and σ(p) consists of two connected components of arithmetic genera k and g − k − 1 ≥ k,
then the node p (resp. nodal pair {p, σ(p)}) is called a node (resp. nodal pair) of type (0, k).
Then the nodal pair of the semistable curve corresponding to a general point of Ξk is of type
(0, k) (see Figure 2).

Figure 2 Nodes of type (0, k) (k ≥ 0)

p σ(p) genus k

genus g − k − 1

A semistable hyperelliptic curve is a double cover of a tree of rational curves branched over
2g + 2 points (see [1, X.3]), which is induced by the involution map. Since the points p and
σ(p) map to the same point in some P1, we treat them together as a nodal pair {p, σ(p)}.

Let

N2,1(F ) = {p ∈ F : p is a node of type (0, 0), p = σ(p)},
N2,2(F ) = {{p, σ(p)} ⊂ F : {p, σ(p)} is a nodal pair of type (0, 0), p �= σ(p)}.

Denote by N2k+2(F ) (resp. N2k+1(F )) the set of all the nodal pairs {p, σ(p)} of type (0, k)
(resp. nodes p of type k) (k > 0). Then we define

ξ0(F ) := |N2,1(F )|+ 2|N2,2(F )|,
ξk(F ) := |N2k+2(F )|, δk(F ) := |N2k+1(F )|, k ≥ 1. (1.3)

From now on, we assume that f is hyperelliptic and semistable. Let δk(f) (resp. ξk(f)) be
the modular invariants corresponding to Θk (resp. Ξk). Then (see [4])

δk(f) =
s∑
i=1

δk(Fi) (k ≥ 1), ξk(f) =
s∑
i=1

ξk(Fi) (k ≥ 0), (1.4)

where F1, · · · , Fs are all singular fibers of f , and

δ0(f) = ξ0(f) +
∑
k≥1

2ξk(f). (1.5)

It is proved that in [4], if f is semistable, then

(8g + 4)λ(f) = gξ0(f) +

[
g−1
2

]
∑
k=1

2(k + 1)(g − k)ξk(f) +

[
g
2

]
∑
k=1

4k(g − k)δk(f),

δ(f) = ξ0(f) +

[
g−1
2

]
∑
k=1

2ξk(f) +

[
g
2

]
∑
k=1

δk(f).

(1.6)

On the other hand, for a hyperelliptic fibration f : S → C, Xiao introduced the singularity
indices s2(f), s3(f), · · · , sg+2(f) (see Definition 2.6), and he obtained the following formulas
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(see Theorem 2.1):

(8g + 4)χf = g(s2(f)− 2sg+2(f)) +

[
g−1
2

]
∑
k=2

2(k + 1)(g − k)s2k+2(f)

+

[
g+1
2

]
∑
k=1

4k(g − k)s2k+1(f),

ef = s2(f)− 3sg+2(f) +

[
g−1
2

]
∑
k=1

2s2k+2(f) +

[
g+1
2

]
∑
k=1

s2k+1(f).

(1.7)

Note that Xiao’s equations do not need the semistable condition and sg+2(f) = 0 if f is
semistable (see Corollary 3.1).

Comparing (1.6) with (1.7), it is natural to build up the relation between modular invariants
with singularity indices.

A double point p of a semistable curve F is called separable if F becomes disconnected
when we normalize F locally at p; otherwise, p is called inseparable. Xiao showed that for
each semistable fibration f of genus 2, s2(f) (resp. s3(f)) is the number of inseparable (resp.
separable) double points of all singular fibers of f (see [14]), i.e., ξ0(f) = s2(f), δ1(f) = s3(f).

If we subdivide the inseparable nodal points into nodes of type (0, k) (k ≥ 0), and subdivide
the separable nodes into nodes of type i (i ≥ 1), then we can get that the modular invariants
δi(f), ξj(f) are the same as the singularity indices sk(f).

Theorem 1.1 If f is a semistable hyperelliptic fibration of genus g ≥ 2, then

δk(f) = s2k+1(f) (k ≥ 1), ξk(f) = s2k+2(f) (k ≥ 0) (1.8)

and

δ0(f) = s2(f) + 2s4(f) + · · ·+ 2s
2
[

g−1
2

]
+2

(f). (1.9)

Considering the equations in (1.2) and (1.8), it is likely that there exists a more general
correspondence between modular invariants and relative invariants. Precisely, we expect that if
M is any kind of moduli space of curves, and η is a divisor class ofM, especially the generator of
Pic(M), then there is a reasonable relative invariant which coincides with the modular invariant
η(f) corresponding to η for each semistable family f of curves inM. Recently, there is another
such corresponding showed in [3].

In §2, we recall Xiao’s study of hyperelliptic fibration. In §3, we repeat the work (see [12])
of Yuping Tu on semistable criterion, and then we prove our result locally by constructing
bijective maps between sets of singularities R∗ with sets of nodes (or nodal pairs) N∗.

2 Singularity Indices

2.1 Genus g data

Let P be a smooth surface, and R be a reduced even divisor (the image of R in Pic(P ) is
divisible by 2) on P . Let δ be an invertible sheaf such that OP (R) = δ⊗2, and we call δ the
square root of R for convenience. In fact, a reduced even divisor R on P and an invertible sheaf
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δ with OP (R) = δ⊗2 determine a unique double cover π : S → P branched along R (see [2,
I.7]). Thus (R, δ) is called a double cover datum. If R is reduced smooth, then S is smooth.

If ψ1 : P1 → P is a blow-up of P at a singular point x of R of order m, set

R1 := ψ∗
1(R)− 2

[m
2

]
E, δ1 := ψ∗

1δ −
[m

2

]
E, (2.1)

where E is the exceptional (−1)-curve of ψ1. Then (R1, δ1) is called a reduced even inverse
image of (R, δ) under ψ1. In what follows, we call R1 a reduced even inverse image of R briefly,
since δ1 is determined by (R, δ) and R1.

Definition 2.1 An even resolution of R is a sequence of blow-ups ψ̃ = ψ1 ◦ ψ2 ◦ · · · ◦ ψr,

ψ̃ : (P̃ , R̃) = (Pr, Rr)
ψr→ · · ·→(P2, R2)

ψ2→ (P1, R1)
ψ1→ (P0, R0) = (P,R) (2.2)

satisfying the following conditions:
(i) R̃ is a smooth reduced even divisor,

(ii) Ri is the reduced even inverse image of Ri−1 under ψi.
Furthermore, ψ̃ is called the minimal even resolution of the singularities of R if
(iii) ψi is the blow-up of Pi−1 at a singular point xi of Ri−1 for any 1 ≤ i ≤ r.
If the even resolution of ψ̃ : P̃ → P of R is minimal, then for any even resolution ψ′ : P ′ → P ,

there exists a morphism α : P ′ → P̃ such that α(R′) = R̃, α(δ′) = δ̃. Here α(δ′) = δ̃ means that
there exists a divisor D′ ∈ Pic(P ′) with δ′ ∼= OP ′(D′) such that δ̃ ∼= OP̃ (α(D′)). Note that the
minimal even resolution is unique.

If xi ∈ Pi−1 lies in Ej (j < i), that is, ψj ◦ · · · ◦ ψi−1(xi) = xj , then we say that xi is
infinitely near xj . Let xi be a singularity of order ordxi(R) = mi. If mi ≤ 3 and for any xj
infinitely near xi (j > i) we have mj ≤ 3, then xi is called a negligible singularity, since such a
singularity does not change the invariants K2

f , χf (see [13, (2)]).
Unless stated otherwise, the singularities (resp. smooth points) of R include all the infinitely

near singularities (resp. smooth points) of Ri in Pi for 1 ≤ i ≤ r. If we want to specify a
singularity (resp. smooth point) p of R, we will point out the surface which p lies in.

Now we want to introduce the genus g datum associated to a hyperelliptic fibration f : S →
C, according to Xiao’s approach in [13–14].

Since the generic fiber F of f is hyperelliptic, we glue the involution σF of F together, and
then we get a rational map σ : S → S. The map σ is in fact a morphism, because f is assumed
to be relatively minimal. Let ρ : S̃ → S be the minimal composition of blow-ups of S at all
the isolated fixed points of σ, and σ̃ : S̃ → S̃ be the induced map of σ on S̃. Then P̃ = S̃

〈σ̃〉 is

smooth. Let θ̃ : S̃ → P̃ be the corresponding double cover branched along a smooth reduced
divisor R̃ in P̃ . Then θ̃∗(OS̃) ∼= OP̃ ⊕ δ̃∨, where δ̃∨ is an invertible sheaf with δ̃⊗2 ∼= OP̃ (R̃).

Let ΦK : S ��� Proj(f∗ω S
C

) be the relative canonical map, then ΦK is a generic double

cover, for its restriction on a generic fiber F is the double cover induced by σF . Let ρ̂ : Ŝ → S

be the minimal composition of blow-ups at all base points of ΦK and all isolated fixed points.
Then the birational morphism Ŝ → S̃ is an isomorphism because of the minimality of ρ. Hence
ρ̂ = ρ and Ŝ ∼= S̃. This gives another process to get the double cover θ̃ : S̃ → P̃ and the branch
locus R̃.
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C

The morphism ϕ̃ : P̃ → C induced by f is a birational ruling (a fibration whose general
fibers are rational curves). There are many choices to give a birational morphism ψ̃ : P̃ → P

mapping to a geometric ruled surface P . The morphism ψ̃ induces a reduced divisor R = ψ̃(R̃)
in P . All such geometric ruled surfaces differ by elementary transforms. We want to choose
one such that R2 is the smallest.

In the rest, a curve D means a nonzero effective divisor.

Definition 2.2 Let D be an irreducible curve on a fibred surface S with fibration f : S → C.
If f(D) is a point, we call D a vertical curve.

Lemma 2.1 (see [13, Lemma 6]) There is a birational morphism ψ̃ : P̃ → P over C, where
every fiber of the induced morphism ϕ : P → C is P1, such that, letting δ be the image of δ̃ in
P , and Rh be the sum of the non-vertical irreducible components of R. Then R2 is the smallest
among all such choices, and the singularities of Rh are at most of order g + 1. Therefore as R
is reduced, the singularities of R are of order at most g+2, and if p is a singular point of order
g + 2, R contains the fiber of ϕ passing through p.

Definition 2.3 Let P be a geometric ruled surface over C, and (R, δ) be a double cover
datum on P . If (R, δ) satisfies that RΓ = 2g + 2, where Γ is a generic fiber of ϕ : P → C,
and the order of any singularity of the non-vertical part Rh of R is at most g + 1, then we call
(P,R, δ) a genus g datum.

We have shown that there is a genus g datum (P,R, δ) (Lemma 2.1) associated to a given
hyperelliptic fibration f . On the other hand, let (P,R, δ) be a genus g datum over a smooth
curve C, ψ̃ : P̃ → P be the minimal even resolution of (P,R), and θ̃ : S̃ → P̃ be the double
cover determined by (R̃, δ̃). Let ρ : S̃ → S be the morphism of contracting all the vertical
(−1)-curves, then we get a hyperelliptic fibration f : S → C. Hence we need to study the
vertical (−1)-curves in S̃.

Lemma 2.2 (see [14]) Let (P,R, δ) be a genus g datum, and Γ be any fiber of P → C,
whose inverse image in S̃ is a (−1)-curve. In other words, the strict transform of Γ in P̃ is a
(−2)-curve contained in R̃. If g is even, then one of the following two cases is satisfied:

(1) Rh intersects with Γ at two distinct points x, y, mx(Rh) = my(Rh) = g + 1; or
(2) Rh intersects with Γ at one point, and the point is a singularity of type (g + 1→ g + 1)

(see Definition 2.4), which is tangent to Γ.
If g is odd, then Rh intersects with Γ at one point, and it is a singularity of type (g + 2→

g + 2), which is tangent to Γ.

Lemma 2.3 (see [14]) Suppose that E is a vertical (−1)-curve in S̃, then the image Ẽ
of E in P̃ is an isolated (−2)-curve contained in R̃, and Ẽ either comes from a blow-up of a
singularity of R with odd order, or is a strict transform of a fiber in Lemma 2.2. Conversely,
for any singularity of R with odd order or any fiber in Lemma 2.2, there is a corresponding
vertical (−2)-curve.
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Remark 2.1 As stated in [13], if we start from a hyperelliptic fibration f : S → C, we can
choose a genus g datum (P,R, δ) such that R2 is the smallest, and then the case (1) in Lemma
2.2 does not occur. Accordingly, Lemma 2.3 turns to be Lemma 7 in [13]. In what follows, we
always assume that the genus g datum associated with f satisfies that R2 is the smallest.

Consequently, we only need to consider genus g datum for hyperelliptic fibrations.

2.2 Singularity indices

Based on the above preparation, we are able to define the singularity indices.
Let (P,R, δ) be a genus g datum over a smooth curve C, and ψ̃ in (2.2) be the minimal

even resolution of (P,R). We decompose ψ̃ into ψ′ : P̃ → P̂ followed by ψ̂ : P̂ → P , where
ψ′ and ψ̂ are composed respectively of negligible and non-negligible blow-ups. We may assume
ψ̂ = ψ1 ◦ · · · ◦ ψt for t ≤ r. Denote by (R̂, δ̂) the reduced even inverse image of (R, δ) in P̂ .

Definition 2.4 Let xi be a singularity of Ri−1 of order 2k + 1
(
1 ≤ k ≤ [

g+1
2

])
. If Ri has

a unique singularity on the inverse image of xi, say xi+1, with order 2k + 2, then we call xi a
singularity of type (2k + 1→ 2k + 1).

Definition 2.5 Let f : S → C be a fibration and D be a reduced curve on S. Let φ : D → C

be the natural morphism induced by f . Let ν : D̃ → D be the normalization of D, Dh be the
union of all the irreducible components of D̃ which maps projectively onto C, and νh : Dh → D

be the induced map. The ramification index r(D) of φ is defined as follows:
If q ∈ Dh is a ramification point of φ ◦ νh, then the ramification index rq(D) is defined as

usual.
If p is a singularity of D of order mp, then the ramification index is rp(D) = mp(mp − 1).
If E is an isolated vertical curve of D̃, then the ramification index is rE(D) = χtop(E).
Furthermore, we define

r(D) :=
∑
q∈Dh

rq(D) +
∑
p∈D

mp(mp − 1)−
∑

E⊂D̃ isolated
vertical curve

χtop(E). (2.3)

Remark 2.2 It is easy to see that r(D) = D2+DK S
C
, from the adjoint formulaKSD+D2 =

−2χ(O(D)) (see [14]).

When we consider a singular fiber F of f , the singularities and ramification points of branch
locus are those over f(F ) if there is no confusion.

Definition 2.6 (see [13–14]) Let f : S → C be a hyperelliptic fibration, and (P,R, δ) be
the corresponding genus g datum. Suppose that F is a singular fiber of f . We denote by Γ the
fiber of P → C over f(F ). The singularity indices sk(F ) (2 ≤ k ≤ g+2) are defined as follows.

(1) Let E1, · · · , Ek be all the isolated vertical (−2)-curves in R̂. Letting R̂p = R̂−E1−· · ·−
Ek, then s2(F ) is defined to be the ramification index of R̂p over the point f(F ). Concisely, if
we denote by R2,1(F ) the set of all ramification points of R̃ over f(F ), by R2,2(F ) the set of
all singularities of R̂p, and by R2,−(F ) the set of all vertical components in R̂p, then

s2(F ) =
∑

q∈R2,1(F )

(
(Γ, R̃)q − 1

)
+

∑
q∈R2,2(F )

mq(mq − 1)− 2|R2,−(F )|. (2.4)

(2) If k is odd, denote by Rk(F ) the set of all singularities of R of type (k → k), then
sk(F ) := |Rk(F )|.
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(3) If k ≥ 4 is even, denote by Rk(F ) the set of all singularities of R of order k, not
belonging to a singularity of type (k + 1→ k + 1) or (k − 1→ k − 1), then sk(F ) := |Rk(F )|.

Define

sk(f) =
s∑
i=1

sk(Fi), (2.5)

where F1, · · · , Fs are all the singular fibers of f .

Remark 2.3 Xiao introduced the singularity indices in order to compute the contribution
of singular fibers to the invariants K2

f , χf . It is convenient to put xi, xi+1 in Definition 2.4
together, and regard the pair {xi, xi+1} of points as one singularity of type (2k + 1→ 2k + 1),
that is, the total contribution of xi and xi+1 to singularity indices adds one to s2k+1 only.

Example 2.1 Let (x, t) be the local coordinate of P1 ×Δ, where Δ is the open unit disc
of C. Let

h(x, t) = (x + t)((x− a0)2 + t)((x − a1)2 + t2)

· ((x− a2 + t)2 + t3)((x − a2 − t)2 + t3)((x− a3)3 + t6), (2.6)

where ai’s are distinct nonzero complex numbers. Let f : SΔ → Δ be the local fibration of
genus g defined by y2 = h(x, t). Let F = f−1(0) be the fiber of f over the origin, and Γ be the
fiber of P1 ×Δ→ Δ over the origin.

Figure 3 The minimal even resolution

p3

Γ

p2
2 2

p1����

p0
�
�

2

ψ̃←

Γ

p3 p31
E31

E32

p2 p21 p22
E2

2 2
p1

E1

p0
�
�

2

The branch locus is R = {(x, t) ∈ P1×Δ : h(x, t) = 0}, and RΓ′ = 12, where Γ′ is the generic
fiber of P1×Δ→ Δ. Hence g = 5 by Riemann-Hurwitz formula. Let pi = (ai, 0) (i = 0, 1, 2, 3),
then p2 and p3 are non-negligible.

Let p21 and p22 be the infinitely near points of p2, which are smooth points of R̂. Let p31 be
the infinitely near singularity of p3, then {p3, p31} is a singularity of type (3 → 3). Therefore
R̂p = R which is the strict transform in P̂ , and

R2,1(F ) = {p0, p21, p22}, R2,2(F ) = {p1}, R2,−(F ) = ∅,
R3(F ) = {{p3, p31}}, R4(F ) = {p2}. (2.7)

Furthermore, the singularity indices are

(s2(F ), s3(F ), · · · , s7(F )) = (5, 1, 1, 0, 0, 0). (2.8)

Using the singularity indices, Xiao obtained the following formulas.
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Theorem 2.1 (see [14, Theorem 5.1.7]) Let f : S → C be a hyperelliptic fibration of genus
g, then

(8g + 4)χf = g(s2(f)− 2sg+2(f)) +

[
g−1
2

]
∑
k=2

2(k + 1)(g − k)s2k+2(f) +

[
g+1
2

]
∑
k=1

4k(g − k)s2k+1(f),

ef = s2(f)− 3sg+2(f) +

[
g−1
2

]
∑
k=1

2s2k+2(f) +

[
g+1
2

]
∑
k=1

s2k+1(f),

(2g + 1)K2
f = (g − 1)s2(f) + 3sg+2(f) +

[
g−1
2

]
∑
k=1

aks2k+2(f) +

[
g+1
2

]
∑
k=1

bks2k+1(f),

where ak = 6((k + 1)(g − k)− 4g − 2) and bk = 12k(g − k)− 2g − 1.

Corollary 2.1 (see [14]) If f is hyperelliptic, then the slope of f

4g − 4
g

� λf �

⎧⎪⎨
⎪⎩

12− 8g + 4
g2

, if g is even,

12− 8g + 4
g2 − 1

, if g is odd.

Moreover, the left equality holds if and only if s2(f) �= 0, sk = 0 (k > 2), and the right equality
holds if and only if s

2
[

g
2

]
+1
�= 0 and the rest singularity indices are all zero.

3 Modular Invariants in Semistable Case

At the beginning of this section, we fix notations firstly.
Let (P,R, δ) be a genus g datum over a smooth curve C, and ψ̃ in (2.2) be the minimal

even resolution. Let f : S → C be the fibration determined by the datum, and F be a singular
fiber of f . Denote by F̃ the total transform of F by ρ : S̃ → S, which is a birational morphism
contracting all the vertical (−1)-curves. Let Γ be the fiber of ϕ : P → C over t = f(F ), and we
call Γ the image of F in P briefly. Let Γ̃ = ψ̃∗(Γ) be the total transform of Γ by the minimal
even resolution ψ̃ : P̃ → P of R. To keep it simple, we also denote by R (resp. Γ) the strict
transform of R (resp. Γ) under the even resolution ψ̃.

F̃ ⊂ S̃ θ̃ ��

ρ

��

P̃ ⊃ Γ̃

ψ̃

��
F ⊂ S ����������

f ����������� P ⊃ Γ

ϕ
�����������

t ∈ C
Denote by B = θ̃−1(Γ) the inverse image of Γ in F̃ , and by Bi = θ̃−1(Ei) the inverse image

of the exceptional curve Ei. Then B (resp. Bi) may be composed by two irreducible curves B′

and B′′ (resp. B′
i and B′′

i ). Letting

Γ̃ = Γ +
r∑
i=1

miEi, (3.1)
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then

F̃ = θ̃∗(Γ̃) = θ̃∗(Γ) +
r∑
i=1

miθ̃
∗(Ei) = nB +

r∑
i=1

niBi, (3.2)

where n = 1, 2 and ni = mi or ni = 2mi. Therefore, F = ρ(F̃ ) is obtained by contracting
(−1)-curves in F̃ .

Definition 3.1 An even resolution at point p of R is a sequence of blow-ups ψ̌p = ψ1 ◦ψ2 ◦
· · · ◦ ψl

(P̌ , Ř) = (Pl, Rl)
ψl→ · · ·→(P2, R2)

ψ2→ (P1, R1)
ψ1→ (P0, R0) = (P,R) (3.3)

satisfying the following conditions:
(i) All the points of Ř infinitely near p, including p, are smooth.
(ii) Ri is the reduced even inverse image of Ri−1 under ψi.
Furthermore, ψ̌p is called the minimal even resolution at p if
(iii) ψi is the blow-up of Pi−1 at a singular point pi of Ri−1, which is infinitely near p, for

any 1 ≤ i ≤ l.
If the resolution ψ̌p is minimal, we call the desired number lp of blow-ups the length of

the minimal even resolution ψ̌p at p. The exceptional curves Ei’s (1 ≤ i ≤ l) in Pl are called
exceptional curves from p briefly. For example, if p is an ordinary singularity of even order,
then lp = 1; if p is a singularity of type (3→ 3), then lp ≥ 2.

Let p be a singularity of R, and E1, · · · , Elp be all the exceptional curves from p in Plp . Set
Ep := m1E1 + · · ·+mlpElp , Bp := θ̃∗(Ep), where mi = multEi(Ep) = multEi(Γ̃). Then we call
Ep the block of Γ̃ from p, and call Fp := ρ(Bp) the block of F from p. Assume that Γ is not
contained in R. Let p1, · · · , pe be all the singularities of R on Γ in P , and Bp0 = θ̃∗(Γ). Then
we can decompose F into finite blocks F = Fp0 +Fp1 + · · ·+Fpe , and we call this decomposition
the modular decomposition of F .

Example 3.1 (Continuation of Example 2.1) Let f : SΔ → Δ be the local fibration in
Example 2.1. Then lp1 = 1, lp2 = 1, lp3 = 2. The blocks of Γ̃ are Ep1 = E1, Ep2 = E2, Ep3 =
E31 + E32.

Figure 4 Modular decomposition of F

B

q0

B1
q11

q12
B′

2

B′′
2

B32

q21

q22
q3

q23 q24

Here E1, E2, E32 are not contained in R̃, and E31 is contained in R̃. Then the blocks of F are
Fp0 = B, Fp1 = B1, Fp2 = B′

2 +B′′
2 , Fp3 = B32. In these equations, B is a rational curve with

a node q0; B1 is P1 meeting B at two points q11, q12; B′
2 and B′′

2 are both P1 meeting with B

at q21, q22 respectively and meeting with each other at two points q23, q24; and B32 is a smooth
elliptic curve meeting with B at q3. Then F is semistable, and the modular decomposition of

F is F =
2∑
i=0

Fpi = B +B1 + (B′
2 +B′′

2 ) +B32.
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3.1 Semistable criterion

There is a criterion for semistable hyperelliptic fiber given by Tu [12]. We rewrite the result
and its proof here, because the reference is in Chinese.

Lemma 3.1 (see [12]) If F is a semistable singular fiber of a hyperelliptic fibration f :
S → C, then we have the following results:

(1) If g is odd, then Γ is not contained in R; if g is even and Γ is contained in R, then Γ
is the fiber in Lemma 2.2.

(2) If p is a smooth point of R in P , then the intersection number of R with Γ at p is
(R,Γ)p ≤ 2.

(3) If p is a singularity of R in P , then we have (R,Γ)p = ordp(R).
(4) Let q ∈ Ri (i ≥ 1) be an infinitely near singularity, then there is exactly one exceptional

curve Eq passing through q, and (R,Eq)q = ordq(R).
(5) Let q ∈ Ri and Eq be the same as (4). If ordq(R) = l is even, then Eq is not contained

in R̃. If ordq(R) = l is odd, then either Eq is contained in R̃, and thus Eq is from a singularity
of type (k → k) (k is odd, k ≥ l); or Eq is not contained in R̃, and thus q is a singularity of
type (l → l).

(6) Let q be an infinitely near smooth point, and Eq be the irreducible component passing
through q, then (R,Eq)q ≤ 2 and Eq is not contained in R̃.

Proof (1) Suppose Γ ⊆ R̃. Then B is a component of F̃ with multiplicity 2, for π∗(Γ) = 2B,
furthermore, B2 = Γ2

2 . If Γ2 ≤ −4, then B2 ≤ −2. Hence B is a multiple component in F̃

which can not be contracted, contradicting with the assumption that F is semistable. Thus
we get that if Γ ⊆ R̃, then Γ is a (−2)-curve in P̃ . If g is odd, then any singularity of R is of
type (g + 2 → g + 2), and we need twice blow-up so that the intersection point of Γ with the
exceptional curve is a smooth point of R. Hence there is a (−1)-curve, say E2, with multiplicity
2 in Γ̃. It is easy to see that E2 is not contained in R̃, and π∗(2E2) = 2B2 in F is irreducible
with B2

2 ≤ −2. Therefore B2 is an un-contractible multiple component in semistable curve F̃ ,
which is impossible. So when g is odd, Γ is not contained in R.

(2) In what follows, we may assume that Γ is not contained in R since (1). Let n = (R,Γ)p,
we take the local coordinate (x, t) of p such that the local equations of Γ and R near p are t = 0
and t+ xn = 0 respectively. Then the local equation of F in S is y2 − xn = 0. If n ≥ 3, it is a
singularity of type An−1 on F , and thus F is not semistable.

(3) Suppose not, then (R,Γ)p > ordp(R). Let ψ1 be the blow-up at p, and E1 be the
exceptional curve. Then the intersection point p′ of Γ with E1 is still on R. Let ψ2 be the
successive blow-up at p1 and E2 be the exceptional curve. Then the total transform of Γ by
ψ1 ◦ ψ2 is Γ̃2 = Γ + 2E2 + E1, and B2 is with multiplicity at least 2 in F . Hence B2 is a
(−1)-curve in S̃, E2 is a (−2)-curve in R̃, and p1 is a singularity of type (k → k) (k is odd)
(see Lemma 2.2). Furthermore, there is a singularity p2 on E2 of order k + 1. Let ψ3 be the
blow-up at p2 with exceptional curve E3. Then Γ̃3 = Γ + 2E3 + 2E2 +E1, E3 is not contained
in R̃, and B3 is an un-contractile multiple component in F̃ .

(4) Suppose that E1 and E2 are both through q. When ordq(R) is even, then the exceptional
curve E3 of the blow-up at q is of multiplicity at least 2, and E3 is not contained in R̃. So B3

is an un-contractile multiple component in F . When ordq(R) = k is odd, then q should be of
type (k → k), and E3 is contained in R̃ with multiplicity at least 2. Blowing up the infinitely
near singularity q′ of q, then the exceptional curve E4 is not contained in R̃ of multiplicity at
least 2, which is impossible. The proof of the second part of (5) is analogous to that of (3).
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(5) Suppose that ordq(R) is even and Eq is contained in R̃, then ordq(Ri) is odd. The
exceptional curve E′ of the blow-up ψ : Pi+1 → Pi at q is contained in R̃. Thus E2

q ≤ −2
in P̃ , and E2

q ≤ −4 in S̃. So Eq corresponds to an un-contractile multiple component in F .
Consequently, we proved the first part of (4). The second part of (4) is a direct corollary of
Lemma 2.3.

(6) The proof of the second part is the same as that of (1), and the rest is the same as that
of (2). We omit the detail.

Remark 3.1 Let F be a semistable fiber of f , and p be a singularity of R. Then there
is exactly one irreducible component Ep passing through p. We call Ep the exceptional curve
through p. Note that Ep is either Γ or an exceptional curve.

Corollary 3.1 If F is a semistable hyperelliptic fiber of genus g, then sg+2(F ) = 0.

Proof By Lemma 3.1 (1), we know that if g is odd, then sg+2(F ) = 0; if g is even, then Γ
is the fiber in Lemma 2.2, and we can check the result directly.

3.2 Proof of Theorem 1.1

We first consider the effect of the smooth points of R to the arithmetic genus.

Lemma 3.2 Let F be a semistable fiber of f . Assume that the image Γ of F in P is not
contained in R. Suppose that all the intersection points p1, · · · , pk1 , q1, · · · , qk2 of R with Γ are
smooth, where (Γ, R)pi = 2 and (Γ, R)qj = 1.

(1) If k2 �= 0, then F is an irreducible curve with k1 nodes corresponding to pi’s, the
geometric genus of F is

[
k2−1

2

]
, and

pa(F ) =
[ΓR− 1

2

]
=

[2k1 + k2 − 1
2

]
=

[
k1 +

k2 − 1
2

]
.

(2) If k2 = 0, then F is composed of two smooth rational curves which meet with each other
at k1 distinct points. Thus

F = Θ̃∗(Γ) +
k1∑
i=1

Θ̃∗(Ei) = (B′ +B′′) +
k1∑
i=1

Bi,

where every irreducible component is a smooth rational curve, Bi meets B′ and B′′ normally at
one point respectively for each 1 ≤ i ≤ k1, and there is no other intersection. Hence

pa(F ) =
[ΓR− 1

2

]
= k1 − 1.

Proof The proof is obvious, and we omit it.

Then we consider the effect of singularities.

Lemma 3.3 Suppose that F is a semistable fiber of f , and the image Γ of F in P is not
contained in R. If p is a singularity of R such that the exceptional curve Ep through p is not
contained in the branch locus, then the arithmetic genus of the block Fp of F from p is

pa(Fp) =
[ (Ep, R)p − 1

2

]
. (3.4)
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Proof We use induction on the length lp of the minimal even resolution ψ̃p of R at p. Note
that

[ (2k+2)−1
2

]
=

[ (2k+1)−1
2

]
= k, and ordp(R) = (R,Ep)p for any singularity of R on Ep from

Lemma 3.1. We may assume that Ep is Γ, since the proof for exceptional curves is similar.
If lp = 1, then ordp(R) = 2k + 2 is even and p is an ordinary singularity. The exceptional

curve E1 from p is not contained in R, and E1 meets R in P1 transversely at 2k + 2 distinct
points. Hence Ep = E1, and Bp = B1 with pa(B1) = k.

If lp = 2 and ordp(R) = 2k + 2 is even, then there is exactly one infinitely near singularity
p1 of R in P1, which is an ordinary singularity of even order, say 2k2. Hence E1, E2 are not
contained in R, Ep = E1 +E2, and Ep meets R in P2 transversely at 2k+ 2 distinct points. Let
E1R = 2k1 + 2, then k1 + k2 = k. Thus pa(B1) = k1, pa(B2) = k2 − 1, and B1 intersects with
B2 at two points transversely. So pa(Fp) = pa(Bp) = pa(B1) + pa(B2) + 1 = k.

If lp = 2 and ordp(R) = 2k + 1 is odd, then p is a singularity of (2k + 1 → 2k + 1). So
E1 is contained in R, E2 is not contained in R, and Ep = E1 + E2, where E2 meets R2 in P2

transversely at 2k + 2 distinct points. It is easy to see that B1 is a (−1)-curve and B2 is a
smooth curve with genus k. Hence pa(Fp) = pa(B2) = k.

Assume that (3.4) holds for any positive integer l < lp. We want to prove that (3.4) holds
for lp.

If ordp(R) = 2k + 1 is odd, let ψ1 : P1 → P be the blow-up at p. Then there is exactly
one infinitely near singularity q of R in P1, and (R,E1)q = 2k + 1, ordq(R1) = 2k + 2. Let
ψ2 : P2 → P1 be the successive blow-up at q. It is clear that E1 is contained in R, but E2 is
not.

Let q1, · · · , qα be all the infinitely near singularities of q in P2. Hence lqi < lp for 1 ≤ i ≤ α.
Suppose that q1, · · · , qβ (β ≤ α) are all the singularities with even order. Let (R,E2)qi = 2ki+2
for 1 ≤ i ≤ β, and let (R,E2)qj = 2kj + 1 for β + 1 ≤ j ≤ α. Let the total intersection number
of R with E2 at all the smooth points of R in P2 be (R,E2)sm. Then

2k + 2 =
β∑
i+1

(2ki + 2) +
α∑

j=β+1

(2kj + 1) + (R,E2)sm + 1

= 2(k1 + · · ·+ kβ) + 2β + 2(kβ+1 + · · ·+ kα) + (α− β) + (R,E2)sm + 1

= 2(k1 + · · ·+ kα) + (R,E2)sm + (α + β) + 1.

Hence

k =
( α∑
i=1

ki

)
+

(R,E2)sm + α+ β − 1
2

. (3.5)

It is easy to see that in P̃ , R̃E2 = (R,E2)sm + (α− β) + 1. By Lemma 3.2,

pa(B2) =
[ ((R,E2)sm + (α− β) + 1)− 1

2

]
=

(R,E2)sm + α− β − 1
2

. (3.6)

The block of Γ̃ from p is Ep = E1 + E2 +
α∑
i=1

Eqi . Combining (3.5) and (3.6), then

pa(Fp) = pa(Bp − 2B1) = pa(B2) +
( α∑
i=1

pa(Fqi)
)

+ β

=
(R,E2)sm + α− β − 1

2
+

( α∑
i=1

ki

)
+ β

= k, (3.7)
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where the block Fqi intersects with B2 at two points, and adds one to the arithmetic genus for
each 1 ≤ i ≤ β. Here we used the induction assumption.

If ordp(R) = 2k + 2 is even, take ψ1 : P1 → P , the blow-up at p. Let q1, · · · , qα be all the
infinitely near singularities of p on p1. Then the rest of the proof is the same as the odd case
above.

Now we can prove the identities between singularity indices (Definition 2.6) with modular
invariants δi(F ), ξj(F ) (see (1.3)–(1.5)).

Theorem 3.1 Let f : S → C be a semistable hyperelliptic fibration of genus g, and F be a
singular fiber of f , then

s2k+1(F ) = δk(F ) (k ≥ 1), s2k+2(F ) = ξk(F ) (k ≥ 0). (3.8)

Proof (1) Proof of s2k+1(F ) = δk(F ), k ≥ 1.
We define a bijective map

α2k+1 : R2k+1(F )→ N2k+1(F ) (3.9)

between sets as follows.
If p ∈ R2k+1(F ), then Ep (the exceptional curve through p) is not contained in R̃. Let

Γ̃ = Ecp + Ep, where Ep is the block of Γ̃ from p. Then the decomposition of F is F = F cp + Fp,
where pa(Fp) =

[ (R,Ep)p−1
2

]
= k, and F cp intersects with F cp at a point, say q, which is a node

of type k. We define α2k+1(p) = q ∈ N2k+1(F ), then α2k+1 is well-defined.
On the other hand, if q ∈ N2k+1(F ), then F consists of a genus k curve Fq and a genus

g − k curve F cq , and Fq meets F cq at q transversely. Then q is an isolated fixed point of the
hyperelliptic involution σ. Thus the inverse image of q in F̃ under ρ : S̃ → S is a (−1)-curve
B. Hence θ̃(B) is a (−2)-curve contained in R̃, which is from a singularity, say p, of type
(2k′ +1→ 2k′ +1) (see Lemma 2.3 and Lemma 3.1 (4)). Since θ̃∗(Ep) = ρ∗(Fq), the arithmetic
genus of the block of F from p is k′ = pa(θ̃∗(Ep)) = pa(Fq) = k. Thus p ∈ R2k+1(F ), and
α2k+1(p) = q. Hence it is clear that α2k+1 is surjective and injective.

Therefore, s2k+1(F ) = |R2k+1(F )| = |N2k+1(F )| = δk(F ).
(2) Similar proof of s2k+2(F ) = ξk(F ), k ≥ 1.
We define a bijective map

α2k+2 : R2k+2(F )→ N2k+2(F ) (3.10)

between sets as follows.
If p ∈ R2k+2(F ), then Ep is not contained in R̃, and the exceptional curve E1 of the blow-up

at p is not in R̃ either. Hence θ̃−1(p) consists of two points q and σ(q). Let Γ̃ = Ep + Ecp, then
F = Fq + F cq , pa(Fq) = k and Fq meets F cq at q and σ(q) transversely. So the nodal pair
{q, σ(q)} ∈ N2k+2(F ). Hence we are able to define α2k+1(p) = {q, σ(q)}.

On the other hand, if {q, σ(q)} ∈ N2k+2(F ), then F = Fq + F cq , where pa(Fq) = k, and
they intersect with each other at two points q and σ(q) transversely. We may assume that
F̃ = Fq + F cq , which meet at q and σ(q). Then θ̃(q) = θ̃(σ(q)), say p, is an intersection point
of two curves not in R̃. Hence we can decompose Γ̃ as Γ̃ = Ep + Ecp, where REp = 2k + 2 and
Ep meets Ecp at p only. The curve Ep is from a singularity of order ordp(R) = REq = 2k + 2.
Therefore, p is the inverse image of {q, σ(q)} under α2k+2, and α2k+2 is bijective.

So s2k+2(F ) = |R2k+2(F )| = |N2k+2(F )| = ξk(F ).
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(3) Proof of s2(F ) = ξ0(F ).
If E is a vertical components of R̂, then B = θ̃∗(E) is a multiple component of F̃ . So B is

a (−1)-curve for F is semistable, and then we know that E is a (−2)-curve in R̂. Hence R̂p is
the strict transform of R in P̂ , and |R2,−(F )| = 0.

If p ∈ R2,1(F ), then p is a smooth point of R, (R,Ep)p = 2, rp(R) = 1, and θ̃−1(p) is
an α-type node q. Conversely, each α-type node q is a singularity p of type A1 whose local
equation is t+ x2 = 0. So we get a bijective map

α2,1 : R2,1(F )→ N2,1(F ). (3.11)

If p ∈ R2,2(F ), then p is an ordinary double point, and rp(R) = 2. By the same discussion
in (2), we can obtain a bijective map

α2,2 : R2,2(F )→ N2,2(F ). (3.12)

Hence s2(F ) = |R2,1(F )|+ 2|R2,2(F )| = |N2,1(F )|+ 2|N2,2(F )| = ξ0(F ).

Proof of Theorem 1.1 It is a corollary of the above theorem.

Remark 3.2 Let f : S → C be a hyperelliptic fibration of genus g ≥ 2, and f̃ : S̃ → C̃

be a semistable model of f . Then by Corollary 2.1 and Theorem 1.1, we know that f̃ has the
lowest slope if and only if the image [f ] of f by the moduli map intersects with Ξ0 only, and f̃
has the highest slope if and only if [f ] intersects with Δ[

g
2

] only. See [7] for families with the

highest slope.

Example 3.2 (Continuation of Example 3.1) From the analysis of the blocks of F in
Example 3.1, we can easy to know that pa(Fp1) = 1, pa(Fp2 ) = 1, pa(Fp3) = 1, and the sets of
nodes are

N2,1(F ) = {q0, q23, q24}, N2,2(F ) = {(q11, q12)},
N3(F ) = {q3}, N4(F ) = {(q21, q22)}. (3.13)

Hence the numbers of nodes on F are

(ξ0(F ), ξ1(F ), ξ2(F )) = (5, 1, 0), (δ1(F ), δ2(F )) = (1, 0). (3.14)

Comparing these equations with (2.7) and (2.8), we give an example for Theorem 3.1.
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