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Abstract In this paper, the robustness of the orbit structure is investigated for a partially
hyperbolic endomorphism f on a compact manifold M . It is first proved that the dynamical
structure of its orbit space (the inverse limit space) Mf of f is topologically quasi-stable
under C0-small perturbations in the following sense: For any covering endomorphism g

C0-close to f , there is a continuous map ϕ from Mg to
∞∏
−∞

M such that for any {yi}i∈Z ∈
ϕ(Mg), yi+1 and f(yi) differ only by a motion along the center direction. It is then proved
that f has quasi-shadowing property in the following sense: For any pseudo-orbit {xi}i∈Z,
there is a sequence of points {yi}i∈Z tracing it, in which yi+1 is obtained from f(yi) by a
motion along the center direction.
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1 Introduction

The main aim of this paper is to study the robustness of the orbit structure of a partially
hyperbolic endomorphism. Two important properties concerning this subject, the stability
property and the shadowing property, are investigated.

It is well-known that structural stability implies that all topological properties of the orbit
structure are robust and any Anosov diffeomorphism is structurally stable (see [1]), that is, if
f is an Anosov diffeomorphism on a compact manifold M , then any diffeomorphism g C1-close
to f is topologically conjugate to f , i.e., there exists a homeomorphism ϕ on M such that

ϕ ◦ g = f ◦ ϕ. (1.1)

Moreover, f is also topologically stable (see [20]), that is, for any homeomorphism g C0-close
to f , there exists a continuous map ϕ from M onto M such that Equation (1.1) holds. Another
important property to characterize the robustness of the orbit structure of a system is the
shadowing property. It plays an important role in the investigation of the stability theory (see
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[14], for example). A well-known result is that an Anosov diffeomorphism f has the shadowing
property, that is, for any δ-pseudo-orbit ξ = {xk}+∞

−∞ for f , which satisfies

sup
k∈Z

d(f(xk), xk+1) ≤ δ,

there is a true orbit Orb(x) ε = ε(δ)-tracing (or, say, ε-shadowing) it, i.e.,

sup
k∈Z

d(fk(x), xk) ≤ ε.

For the non-invertible case, in 1969 Shub [19] showed that expanding maps are structurally
stable and share many similar properties as of Anosov diffeomorphisms. At first, people did
think that this is also true for any other non-invertible hyperbolic system, the so-called Anosov
endomorphisms. In fact, it was not the case. In the 1970s, Mañé-Pugh [12] and Przytycki
[15] found independently some quite different properties for general Anosov endomorphisms. A
remarkable result is that except for expanding maps, there is no Anosov endomorphism which
is structurally stable. The main reason that makes general Anosov endomorphisms unstable is
that the hyperbolicity may be destroyed under small C0 perturbations when the negative orbits
of some point are not unique. However, when we convert to investigate the robustness of the
orbit space (an inverse limit space) which consists of the full orbits of Anosov endomorphisms,
we can obtain many interesting results. For example, Liu [10] showed that the dynamical
structure of its orbit space is stable with respect to C1 perturbations and is semi-stable with
respect to C0 small perturbations. It is also showed (see [10, 22] for example) that the shadowing
property holds near the hyperbolic set of any endomorphism. The method of orbit spaces has
turned out to be significant in the study of non-invertible dynamical systems (see, for instance,
[17–18] for the role this method played in ergodic theory), and it even has some underlying
connections with the study of random dynamical systems (see [11]).

The partial hyperbolicity theory was first studied in the work of Brin and Pesin [4] which
emerged as an attempt to extend the notion of complete hyperbolicity. A closely related notion
of normal hyperbolicity was introduced earlier by Hirsh, Pugh and Shub [5]. The ideas and
methods in the study of partially hyperbolic dynamical systems extend those in the theory of
uniformly hyperbolic dynamical systems, parts of which go well beyond that theory in several
aspects. For the general theory of partial hyperbolicity and normal hyperbolicity, we refer to
[2–3, 5, 13].

For a partially hyperbolic diffeomorphism f , we can not expect that the stability and shad-
owing properties we state above hold because of the existence of the center direction. In [5,
13], it was shown that if f has a C1 center foliation, then there is a leaf conjugacy between f

and its small C1 perturbation g, that is, there is a homeomorphism on M which sends center
leaves of f to those of g. Recently, Hu and Zhu [6] have shown that any partially hyperbolic
diffeomorphism f is quasi-stable in the sense that for any g close to f , an equation similar to
(1.1) holds, that is,

ϕ ◦ g = τ ◦ f ◦ ϕ, (1.2)

in which τ maps points along the center direction. As an application, the continuity of entropy
is also obtained for certain partially hyperbolic diffeomorphisms. In [7], Hu, Zhou and Zhu
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show that any partially hyperbolic diffeomorphism f has the quasi-shadowing property in the
sense that for any pseudo-orbit {xk}k∈Z, there is a sequence of points {yk}k∈Z tracing it, in
which yk+1 is obtained from f(yk) by a motion τ along the center direction. As an application,
they gave a version of the spectral decomposition theorem when f has a uniformly compact
C1 center foliation. We also mention that Kryzhevich and Tikhomirov [9] gave a version of
the center shadowing property for partially hyperbolic diffeomorphisms which are dynamically
coherent.

In this paper, we shall investigate the robustness of the orbit structure of a partially hy-
perbolic endomorphism f . There are two main results which can be seen as the generalization
of those in [6–7] for the diffeomorphism to the non-invertible case. The first one is that its
orbit space is topologically quasi-stable under C0-small perturbations in the following sense:

For any covering endomorphism g, there is a continuous map ϕ from Mg to
∞∏
−∞

M such that

for any {yi}i∈Z ∈ ϕ(Mg), yi+1 and f(yi) differ only by a motion τ along the center direction.
In particular, if f has a C1 center foliation, then the above motion τ can be chosen along
the center leaves. The second one is that f has the quasi-shadowing property in the following
sense: For any pseudo-orbit {xi}i∈Z, there is a sequence of points {yi}i∈Z tracing it in which
yi+1 is obtained from f(yi) by a motion τ along the center direction. Similarly, we can also
choose τ along the center leaves if f has a C1 center foliation. We can see that to obtain
the quasi-stability and quasi-shadowing properties, they used a unified method which combines
the techniques of [8, 10, 20, 22]. We also mention that it seems impossible to get a kind of
structural quasi-stability for this non-invertible case by using the method in [6], which they
used to deal with the invertible case. The main reason is that the technique in [6] depends
on the robustness of the center foliation, however, it generally does not hold for the partially
hyperbolic endomorphism.

This paper is organized as follows. The statements of results are given in Section 2. We
also define some words and notations in the section. In Section 3 we deal with topological
quasi-stability, including the proofs of Theorem A and Theorem B. Section 4 is devoted to the
quasi-shadowing property, including a sketch of the proof of Theorem C.

2 Definitions, Notations and Statements of Results

Let M be an m-dimensional C∞ compact Riemannian manifold. We denote by ‖ · ‖ and
d(·, ·) the norm on TM and the metric on M induced by the Riemannian metric, respectively.

Let M̃ =
∞∏
−∞

M be the bi-infinite product of copies of M and endow it with the metric

d(x̃, ỹ) =
+∞∑

i=−∞

d(xi, yi)
2|i|

for x̃ = {xi}i∈Z, ỹ = {yi}i∈Z ∈ M̃ , which makes M̃ a compact metric space. By

σ : M̃ −→ M̃,

we denote the left shift operator on M̃ , and

πi : M̃ −→ M, x̃ �−→ xi
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the natural i-th projection for any i ∈ Z.
Let C0(M, M) be the space of continuous maps on M endowed with the metric

d(f, g) = sup
x∈M

d(f(x), g(x))

for f, g ∈ C0(M, M). For any f ∈ C0(M, M), define

Mf = {x̃ = {xi}i∈Z : f(xi) = xi+1, i ∈ Z}

and call it the orbit space or the inverse limit space of f . It is clearly a closed subset of M̃ .

Definition 2.1 Assume that f, g ∈ C0(M, M). Let Λ and Δ be, respectively, an invariant
set of f and g, and let ϕ : Λf → Δg be a continuous map. The map ϕ is called an orbit-space
conjugacy if it is a homeomorphism and satisfies

ϕ ◦ σf = σg ◦ ϕ;

ϕ is called an orbit-space semi-conjugacy if it is surjective and satisfies the preceding equation.

A map f in C0(M, M) is called a covering endomorphism of M if it is a local homeomorphism
around every x ∈ M . By CE0(M) we denote the set of all covering endomorphisms of M .

An endomorphism f ∈ Endo1(M) ∩ CE0(M) (where Endo1(M) is the set of C1 endomor-
phisms of M) is an Anosov endomorphism (see [15]) if there exists a constant λ with 0 < λ < 1,
and an invariant decomposition TxM = Es

x ⊕ Eu
x , ∀x ∈ M , such that for any n ≥ 0,

‖dxfnv‖ ≤ Cλn‖v‖, as v ∈ Es
x,

C−1λ−n ‖v‖ ≤ ‖dxfnv‖, as v ∈ Eu
x

hold for some number C > 0.
Assume that f ∈ C1(M, M) is an Anosov endomorphism. Then there exists a neighborhood

U of f in C1(M, M) and numbers δ0 > 0, such that ∀g ∈ U has the shadowing property (see
[10]), that is, for any ε > 0, there exists 0 < δ < δ0 and any δ-pseudo-orbit of g that lies in M

can be ε-shadowed by an orbit of g.
We have known that a non-invertible endomorphism on a compact manifold is in general not

stable except when it is expanding (see [15–16, 21]). However, for an Anosov endomorphism,
the dynamical structure of its orbit space (an inverse limit space) is stable with respect to
C1-small perturbations and is semi-stable with respect to C0-small perturbations.

Let f be an Anosov endomorphism on M , then f is weakly structurally stable (the dynamical
structure of its orbit space is stable with respect to C1-small perturbations) in the following
sense: There is ε0 > 0 and for any 0 < ε < ε0, one can find a neighborhood U of f in C1(M, M)
such that for any g ∈ U , there is a unique orbit-space conjugacy ϕ : Mg → Mf satisfying
d(x̃, ϕ(x̃)) < ε for all x̃ ∈ Mg (see [10] for example).

Let f be an Anosov endomorphism on M , then f is weakly topologically stable (the dy-
namical structure of its orbit space is semi-stable with respect to C0-small perturbations) in
the following sense: Given ε > 0, one can find a neighborhood U of f in CE0(M) such that for
any g ∈ U there is an orbit-space semi-conjugacy ϕ : Mg → Mf satisfying d(x̃, ϕ(x̃)) < ε for
all x̃ ∈ Mg (see [10] for example).
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As is mentioned in the introduction, for any partially hyperbolic system, we cannot expect
that the shadowing property holds in general since in this case a center direction is allowed
in addition to the hyperbolic directions. Therefore, how to find an analogous property is
interesting.

Now, we introduce the definition of partially hyperbolic endomorphisms.

Definition 2.2 An endomorphism f ∈ Endor(M) ∩ CE0(M) (where Endor(M) is the set
of Cr endomorphisms of M , 1 ≤ r ≤ ∞) is said to be (uniformly) partially hyperbolic if there
exist numbers λ, λ′, μ and μ′ with 0 < λ < 1 < μ and λ < λ′ ≤ μ′ < μ, and an invariant
decomposition TxM = Es

x ⊕ Ec
x ⊕ Eu

x , ∀x ∈ M , such that for any n ≥ 0,

‖dxfnv‖ ≤ Cλn‖v‖, as v ∈ Es
x,

C−1(λ′)n‖v‖ ≤ ‖dxfnv‖ ≤ C(μ′)n‖v‖, as v ∈ Ec
x,

C−1μn ‖v‖ ≤ ‖dxfnv‖, as v ∈ Eu
x

hold for some number C > 0.

Es
x, Ec

x and Eu
x are called stable, center and unstable subspaces, respectively. Via a change

of the Riemannian metric, we always assume that C = 1. Moreover, for simplicity of notation,

we assume that λ =
1
μ

.

In the following, we always assume that f is a partially hyperbolic endomorphism as men-
tioned above and g is a covering endomorphism C0-close to f .

Denote by Ẽ (resp. Ẽt, t = s, c, u) the restriction of the pull-back bundle π∗
0(TM) (resp.

π∗
0(Et), t = s, c, u) via the projection π0 : M̃ −→ M to the orbit space Mg of g. We will identify

Ẽx̃ (resp. Ẽt
x̃, t = s, c, u) with Tπ0(x̃)M (resp. Et

π0(x̃), t = s, c, u) via the obvious isomorphism.

Let Γ = Γ(Mg) be the Banach space of all continuous sections of Ẽ with the norm

‖ω‖ = sup
x̃∈Mg

‖ω(x̃)‖, w ∈ Γ.

Similarly, we denote by Γs, Γc and Γu the spaces of continuous sections of Ẽs, Ẽc and Ẽu

respectively. Also, we denote Γus = Γu ⊕ Γs. Let Πs
x̃ : Ẽx̃ → Ẽs

x̃ be the projection onto Ẽs
x̃

along Ẽc
x̃ ⊕ Ẽu

x̃ . It is obvious that Πs
x̃ is actually the projection Πs

π0(x̃) : Tπ0(x̃)M → Es
π0(x̃). Πc

x̃

and Πu
x̃ are defined in a similar way.

Since M is compact and f is locally homeomorphic, we can take the constant ρ0 > 0 such
that for any x ∈ M , the standard exponential mapping expx : {v ∈ TxM : ‖v‖ < ρ0} → M

and the restriction of f to B(x, ρ0) are all diffeomorphisms to the image. Clearly, we have
d(x, expx v) = ‖v‖ for v ∈ TxM with ‖v‖ < ρ0. Take ρ = ρf ∈ (

0, ρ0
2

)
such that for any

x, y ∈ M , any z ∈ f−1(x) with d(z, y) ≤ ρ, v ∈ TyM with ‖v‖ ≤ ρ,

d(x, f ◦ expy v) ≤ ρ0

2
.

Decrease ρ if necessary, such that both sides of equations (3.3) and (3.17), in the proofs of
Theorem A and Theorem B respectively, are contained in the set {v ∈ TxM : ‖v‖ < ρ0}.

For any given continuous center section u ∈ Γc with ‖u‖ < ρ and x̃ ∈ Mg, we define a family
of smooth maps τ

(1)
x̃ = τ

(1)
x̃ (·, u) on B(π0(x̃), ρ) by

τ
(1)
x̃ (y) = expπ0(x̃)(u(x̃) + exp−1

π0(x̃) y).
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Theorem A Let f be a partially hyperbolic endomorphism. Then f is topological quasi-
stable in the following sense: For any ε ∈ (0, ρ), there exists δ > 0 such that for any g ∈
CE0(M) with d(f, g) < δ, there exists a continuous center section u ∈ Γc and a continuous
map ϕ : Mg → M̃ such that for any x̃ ∈ Mg,

ϕ ◦ σ(x̃) = σ ◦ ϕ(x̃) (2.1)

in which

πi ◦ ϕ(x̃) = τ
(1)

σi(x̃) ◦ f ◦ πi−1 ◦ ϕ(x̃) (2.2)

for any i ∈ Z.
Moreover, u and ϕ can be chosen uniquely so as to satisfy the following conditions:

d(ϕ, id
M̃
|Mg ) < ε,

exp−1
πi(x̃)(πi(ϕ(x̃))) ∈ Ẽs

σi(x̃) ⊕ Ẽu
σi(x̃) for i ∈ Z.

(2.3)

It is well-known that if f is a partially hyperbolic diffeomorphism, then there always exist
stable and unstable foliations, but the existence of center foliation is a rather delicate matter
and is known under several rather stringent assumptions (see Chapter 5 of [13] for the details).
When f is a partially hyperbolic endomorphism, the existence of these invariant foliations is
more subtle since the invariant manifolds rely on the whole orbits of the system but the negative
orbits of a point are not uniquely determined under the endomorphism. However, we can see
that for the systems in the following example, these invariant foliations exist, in particular, the
center foliation is even smooth.

Example 2.1 Let N be a smooth closed Riemannian manifold, h : N −→ N an Anosov
endomorphism. Then

f1 = h × idS1 : N × S1 −→ N × S1

and

f2 = h × R : N × S1 −→ N × S1

are all partially hyperbolic endomorphisms, where R is a rotation on the unit circle S1.

If f has C1 center foliation Wc
f , then we can require τ in Theorem A to move along the

center foliation. In this case, for any ε > 0 and x̃ ∈ Mg, we denote Σε(x̃) = expπ0(x̃)(Hx̃(ε)),
where Hx̃(ε) is the ε-ball in Ẽs

x̃ ⊕ Ẽu
x̃ . Obviously, Σε(x̃) is a smooth disk transversal to Ec

x̃ at
x̃. Since the center foliation Wc

f is C1, we can conclude that if y is close enough to π0(x̃), then

there is a locally defined map τ
(2)
x̃ on some neighborhood U(π0(x̃)) of π0(x̃) and a constant

K1 > 1 which is independent of x̃ such that for any y ∈ U(π0(x̃)), we have

τ
(2)
x̃ (y) ∈ Σε(x̃) ∩Wc

f (y) (2.4)

and

d(τ (2)
x̃ (y), π0(x̃)) < K1d(y, π0(x̃)). (2.5)
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Theorem B Let f be a partially hyperbolic endomorphism with a C1 center foliation Wc
f .

Then f is topological quasi-stable in the following sense: For any ε ∈ (0, ρ), there exists δ > 0
such that for any g ∈ CE0(M) with d(f, g) < δ, there exists a continuous map ϕ : Mg → M̃

such that for any x̃ ∈ Mg,

ϕ ◦ σ(x̃) = σ ◦ ϕ(x̃) (2.6)

in which

πi ◦ ϕ(x̃) = τ
(2)
σi(x̃) ◦ f ◦ πi−1 ◦ ϕ(x̃) (2.7)

for any i ∈ Z.
Moreover, ϕ can be chosen uniquely so as to satisfy the conditions in (2.3).

In the following, we will apply the unified method we used in Theorem A and Theorem B to
study the so-called quasi-shadowing property for a partially hyperbolic endomorphism f . For
a sequence of points {xk}k∈Z and a sequence of vectors {uk ∈ Ec

xk
}k∈Z with ‖uk‖ < ρ for any

k ∈ Z, we define a family of smooth maps τ
(1)
xk = τ

(1)
xk (·, uk) on B(xk, ρ), k ∈ Z, by

τ (1)
xk

(y) = expxk
(uk + exp−1

xk
y).

Theorem C Let f be a partially hyperbolic endomorphism. Then f has the quasi-shadowing
property in the following sense: For any ε ∈ (0, ρ), there exists δ > 0 such that for any δ-pseudo-
orbit {xk}k∈Z of f , there exists {yk}k∈Z and a sequence of vectors {uk ∈ Ec

xk
}k∈Z such that

d(xk, yk) < ε, (2.8)

where

yk = τ (1)
xk

(f(yk−1)). (2.9)

Moreover, {yk}k∈Z and {uk}k∈Z can be chosen uniquely so as to satisfy

yk ∈ expxk
(Es

xk
⊕ Eu

xk
). (2.10)

If f has C1 center foliation Wc
f , then we can require τ in Theorem C to move along the

center foliation. In this case, for any ε > 0, we denote Σε(x) = expx(Hx(ε)), where Hx(ε) is
the ε-ball in Es

x ⊕ Eu
x , and τ

(2)
x is the locally defined map on some neighborhood U(x) of x

satisfying that for any y ∈ U(x),

τ (2)
x (y) ∈ Σε(x) ∩Wc

f (y) (2.11)

and

d(τ (2)
x (y), x) < K1d(y, x) (2.12)

for the constant K1 > 1.
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Theorem D Let f be a partially hyperbolic endomorphism with C1 center foliation Wc
f .

Then f has the quasi-shadowing property in the following sense: For any ε ∈ (0, ρ), there exists
δ > 0 such that for any δ-pseudo-orbit {xk}k∈Z of f , there exists a sequence of points {yk}k∈Z

such that

d(xk, yk) < ε, (2.13)

where

yk = τ (2)
xk

(f(yk−1)). (2.14)

Moreover, {yk}k∈Z can be chosen uniquely so as to satisfy (2.10).

3 Topological Quasi-stability

Recall that ‖ · ‖ is the norm on TM . We define the norm ‖ · ‖1 on TM by ‖w‖1 = ‖u‖+ ‖v‖
if w = u + v ∈ TxM with u ∈ Ec

x and v ∈ Eu
x ⊕ Es

x. Similarly, if w = u + v ∈ Γ with u ∈ Γc

and v ∈ Γus, we also define ‖w‖1 = ‖u‖+ ‖v‖. By the triangle inequality and the fact that the
angles between Ec and Eu ⊕ Es are uniformly bounded away from zero, we know that there
exists a constant L such that

‖w‖ ≤ ‖w‖1 ≤ L‖w‖. (3.1)

For any ε > 0, we denote

B(ε) = {w ∈ Γ : ‖w‖ ≤ ε},
Bus(ε) = {w ∈ Γus : ‖w‖ ≤ ε},
B1(ε) = {w ∈ Γ : ‖w‖1 ≤ ε}.

3.1 The general case

Proof of Theorem A To find a continuous center section u ∈ Γc and a continuous map
ϕ : Mg → M̃ satisfying (2.1) and the conditions in (2.2)–(2.3) of this theorem, we shall first
try to solve the equation

ϕ ◦ σ = σ ◦ ϕ (3.2)

which satisfies (2.2)–(2.3) for unknown u and ϕ.
Let x̃ = {xi}i∈Z ∈ Mg. Putting πi ◦ ϕ(x̃) = expxi

(v(σi(x̃))) for v ∈ Bus(ρ) and i ∈ Z, we
see that (3.2) is equivalent to

v(σi(x̃)) = exp−1
xi

◦τ (1)
σi(x̃) ◦ f ◦ expxi−1

(v(σi−1(x̃))) (3.3)

for any i ∈ Z.
By the definition of τ

(1)
σi(x̃), we have

exp−1
xi

◦τ (1)
σi(x̃) ◦ f ◦ expxi−1

(v(σi−1(x̃))) = u(σi(x̃)) + exp−1
xi

◦f ◦ expxi−1
(v(σi−1(x̃))).
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Define an operator β : B(ρ) → Γ and a linear operator F : Γ → Γ by

β(w)(x̃) = exp−1
x0

◦f ◦ expx−1
((w(σ−1(x̃)))),

(Fw)(x̃) =
∑

t=s,c,u

Πt
x0

◦ d0(exp−1
x0

◦f ◦ expx−1
) ◦ Πt

x−1
w(σ−1(x̃)), (3.4)

respectively.
Let

η(w)(x̃) = β(w)(x̃) − (Fw)(x̃). (3.5)

Therefore, by (3.4)–(3.5), (3.3) is equivalent to

v = Fv + u + η(v),

and is further equivalent to
−u + (idΓus − F )v = η(v).

Define a linear operator P from a neighborhood of 0 ∈ Γ to Γ by

Pω = −u + (idΓus − F )v (3.6)

for ω = u + v ∈ Γ, where u ∈ Γc and v ∈ Γus.
Define an operator Φ from a neighborhood of 0 ∈ Γ to Γ by

Φ(u + v) = P−1η(v).

Hence, Equation (3.2) is equivalent to

Φ(u + v) = u + v, (3.7)

namely, u + v is a fixed point of Φ.
We will prove that for any ε ∈ (0, ρ), there exists δ = δ(ε) such that for any g ∈ CE(M)

with d(f, g) ≤ δ, Φ : B1(ε) → B1(ε) is a contracting map, and therefore has a fixed point in
B1(ε). Hence, (3.2) has a unique solution.

Recall that λ is the hyperbolic constant of the partially hyperbolic endomorphism f on M .
Let λ̃ ∈ (λ, 1) be given. We can find

ε1 ∈
(
0,

ρ0

2 max
x∈M

|dxf |
)
,

such that for any ε ∈ (0, ε1), there exists

0 < δ < min
{ρ0

2
,
1 − λ̃

2L
ε
}
,

which ensures that for any d(f(y), x) < δ, the following claims hold.
(1) The map

exp−1
x ◦f ◦ expy : Bx(ε) → By(ρ0)
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(here Bx(ε) = {v ∈ TxM : |v| ≤ ε} and By(ρ0) = {v ∈ TyM : |v| ≤ ρ0}) is well defined, since
for any v in Bx(ε),

d(f ◦ expx(v), y) ≤ d(f ◦ expx(v), f(x)) + d(f(x), y)

≤ max
x∈M

|dxf | · |v| + δ

≤ ρ0

2
+

ρ0

2
= ρ0.

(2)

‖Πs
x ◦ d0(exp−1

x ◦f ◦ expy)|Es
y
‖ ≤ λ̃, (3.8)

‖[Πu
x ◦ d0(exp−1

x ◦f ◦ expy)|Eu
y

]−1‖ ≤ λ̃, (3.9)

∑
i,j=s,c,u

i�=j

‖Πi
x ◦ d0(exp−1

x ◦f ◦ expy)|Ej
y
‖ ≤ 1 − λ̃

4L
, (3.10)

and for any v′, v′′ ∈ Hx(ε) and any t ∈ [0, 1],

‖dv′′+t(v′−v′′)(exp−1
x ◦f ◦ expy) − d0(exp−1

x ◦f ◦ expy)‖ ≤ 1 − λ̃

4L
. (3.11)

We will prove that Φ : B1(ε) → B1(ε) is a contracting map in the following steps.
Step 1 For δ > 0 satisfying (3.8)–(3.11) and for any v, v′ ∈ Bus(ε),

‖η(v′) − η(v)‖ ≤ 1 − λ̃

2L
(‖v′ − v‖).

By the definition of η, we can write it in a neighborhood of 0 ∈ Γus:

η = η(1) + η(2),

where
η(1)(v)(x̃) = exp−1

x0
◦f ◦ expx−1

(v(x̃)) − d0(exp−1
x0

◦f ◦ expx−1
)v(σ−1(x̃))

and
η(2)(v)(x̃) =

∑
t=s,c,u
l=s,u
t�=l

Πt
x0

◦ d0(exp−1
x0

◦f ◦ expx−1
) ◦ Πl

x−1
v(σ−1(x̃))

for x̃ = {xi}i∈Z ∈ Mg. Note that for v′, v′′ ∈ Bus(ε), we have

‖η(1)(v′)(x̃) − η(1)(v′′)(x̃)‖

=
∥∥∥ ∫ 1

0

[dv′′(σ−1(x̃))+t(v′(σ−1(x̃))−v′′(σ−1(x̃)))(exp−1
x0

◦f ◦ expx−1
)

− d0(exp−1
x0

◦f ◦ expx−1
)](v′(σ−1(x̃)) − v′′(σ−1(x̃)))dt

∥∥∥
≤ sup

t∈[0,1]

‖dv′′(σ−1(x̃))+t(v′(σ−1(x̃))−v′′(σ−1(x̃)))(exp−1
x0

◦f ◦ expx−1
)

− d0(exp−1
x0

◦f ◦ expx−1
)‖‖v′(σ−1(x̃)) − v′′(σ−1(x̃))‖.
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Therefore, from (3.11) we have

‖η(1)(v′) − η(1)(v′′)‖ ≤ 1 − λ̃

4L
‖v′ − v′′‖. (3.12)

By (3.10), we have, for v′, v′′ ∈ Bus(ε),

‖η(2)(v′) − η(2)(v′′)‖ ≤ 1 − λ̃

4L
‖v′ − v′′‖. (3.13)

Combining (3.12)–(3.13), for v′, v′′ ∈ Bus(ε), we have

‖η(v′) − η(v′′)‖ ≤ 1 − λ̃

2L
‖v′ − v′′‖. (3.14)

Hence, we can get the result we need immediately.
Step 2 For any δ > 0 satisfying (3.8)–(3.11) and any g ∈ CE(M) with d(f, g) ≤ δ, the

operator P defined as (3.6) is invertible and

‖P−1‖1 ≤ 1

1 − λ̃
.

By the definition of P , we have P |Γc = idΓc and P |Γt = idΓt − F t, t = s, u, where the
operators F t : Γ → Γ, t = s, u, are defined by

(F tv)(x̃) = Πt
x0

◦ d0(exp−1
x0

◦f ◦ expx−1
) ◦ Πt

x−1
v(σ−1(x̃))

for v ∈ Γsu. So P (Γt) = Γi, t = u, s, c.
By (3.8)–(3.9), ‖F s‖.‖(Fu)−1‖ ≤ λ̃ < 1. Hence, both P |Γs and P |Γu are invertible and

(P |Γs)−1 = (idΓs − F s)−1 =
∞∑

k=0

(F s)k,

(P |Γu)−1 = (idΓu − Fu)−1 = −
∞∑

k=1

(Fu)−k.

It follows that

‖(P |Γus)−1‖ ≤ max{‖(P |Γs)−1‖, ‖(P |Γu)−1‖} ≤ 1

1 − λ̃
.

It is obvious that

‖(P |Γc)−1‖ = 1.

So we obtain that

‖P−1‖1 ≤ max{‖(P |Γus)−1‖, ‖(P |Γc)−1‖} ≤ 1

1 − λ̃
.

This is what we need.
Step 3 For any ε ∈ (0, ε1), there exists δ = δ(ε) > 0 such that for any g ∈ CE(M) with

d(f, g) ≤ δ, Φ(B1(ε)) ⊂ B1(ε) and for any ω, ω′ ∈ B1(ε),

‖Φ(ω) − Φ(ω′)‖1 ≤ 1
2
‖ω − ω′‖1.
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For any ε ∈ (0, ε1), take δ ∈ (0, min{ ρ0
2 , 1−λ̃

2L ε}) such that (3.8)–(3.11) hold.
By step 2 above, we have

‖P−1‖1 ≤ 1

1 − λ̃
. (3.15)

Take w = u + v ∈ B1(ε) with u ∈ Γc and v ∈ Γus. By (3.15) and the step 1, we can get

‖Φ(w)‖1 ≤ ‖P−1‖1 · ‖η(v)‖1

≤ 1

1 − λ̃
· L‖η(v)‖

≤ L

1 − λ̃
(‖η(v) − η(0)‖ + ‖η(0)‖)

≤ L

1 − λ̃

(1 − λ̃

2L
‖v‖1 + δ

)

<
1
2
‖w‖1 +

1
2
ε ≤ ε,

which implies that Φ(B1(ε)) ⊂ B1(ε).
Similarly, for two elements w = u + v, w′ = u′ + v′ ∈ B1(ε) with u, u′ ∈ Γc and v, v′ ∈ Γus,

we have

‖Φ(w) − Φ(w′)‖1 ≤ 1

1 − λ̃
(‖η(v) − η(v′)‖1)

≤ L

1 − λ̃
(‖η(v) − η(v′)‖)

≤ L

1 − λ̃

(1 − λ̃

2L
‖w − w′‖1

)

≤ 1
2
‖w − w′‖1.

This proves that Φ : B1(ε) → B1(ε) is a contracting map.

3.2 The center foliation Wc
f is C1

Proof of Theorem B The proof is similar to that of Theorem A.
To find a continuous map ϕ : Mg → M̃ satisfying (2.1) and the conditions in (2.7) and (2.3)

of this theorem, we shall first try to solve the equation

ϕ ◦ σ = σ ◦ ϕ (3.16)

which satisfies (2.3) and (2.7) for unknown ϕ.
Let x̃ = {xi}i∈Z ∈ Mg. Putting πi ◦ ϕ(x̃) = expxi

(v(σi(x̃))) for v ∈ Bus(ρ) and i ∈ Z, we
see that (3.16) is equivalent to

v(σi(x̃)) = exp−1
xi

◦τ (2)
σi(x̃) ◦ f ◦ expxi−1

(v(σi−1(x̃))) (3.17)

for any i ∈ Z.
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Define an operator β : Bus(ρ) → Γus and a linear operator F : Γus → Γus by

β(v)(x̃) = exp−1
x0

◦τ (2)
σi(x̃) ◦ f ◦ expx−1

((v(σ−1(x̃)))),

(Fv)(x̃) =
∑

t=s,u

Πt
x0

◦ d0(exp−1
x0

◦τ (2)
σi(x̃) ◦ f ◦ expx−1

) ◦ Πt
x−1

v(σ−1(x̃)). (3.18)

Let

η(v)(x̃) = β(v)(x̃) − (Fv)(x̃). (3.19)

Therefore, by (3.18)–(3.19), (3.17) is equivalent to

v = Fv + η(v),

and is further equivalent to
(idΓus − F )v = η(v).

Define a linear operator P from a neighborhood of 0 ∈ Γus to Γus by

Pv = (idΓus − F )v (3.20)

for v ∈ Γus.
Define an operator Φ from a neighborhood of 0 ∈ Γus to Γus by

Φ(v) = P−1η(v).

Hence, the equation (3.2) is equivalent to

Φ(v) = v, (3.21)

namely, v is a fixed point of Φ.
The remaining work is to show that for any ε ∈ (0, ρ), there exists δ = δ(ε) such that for

any g ∈ CE0(M) with d(g, f) ≤ δ, Φ : Bus(ε) → Bus(ε) is a contracting map, and therefore
has a fixed point in Bus(ε). Hence, (3.16) has a unique solution. To this end, we only need to
slightly modify the proof of Theorem A.

4 Quasi-shadowing Property

As we mentioned above, the proofs of Theorem C and Theorem D follow essentially the
ideas presented in the proofs of Theorem A and Theorem B, respectively. Instead of applying
the contraction principle for the operator built on the space of continuous sections of the bundle
on the whole orbit spaces, we now only need to do the similar work for the operator built on
the space of continuous sections of the bundle on a single pseudo-orbit. So we will only modify
the notations to the new settings and give a sketch of the proof of Theorem C.

For any sequence {xk}k∈Z, denote

X = {w = {wk}k∈Z : wk ∈ Txk
M, k ∈ Z},

Xc = {u = {uk}k∈Z : uk ∈ Ec
xk

, k ∈ Z}
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and
Xus = {v = {vk}k∈Z : vk ∈ Eu

xk
⊕ Es

xk
, k ∈ Z}.

For any
w = u + v ∈ X,

where u ∈ Xc and v ∈ Xus, we also define

‖w‖ = sup
k∈Z

‖wk‖

and
‖w‖1 = ‖u‖ + ‖v‖.

For any ε > 0, we denote

C(ε) = {w ∈ X : ‖w‖ ≤ ε},
Cus(ε) = {w ∈ Xus : ‖w‖ ≤ ε},
C1(ε) = {w ∈ X : ‖w‖1 ≤ ε}.

A sketch of the proof of Theorem C Given a δ-pseudo-orbit {xk}k∈Z of f , to find a
sequence of points {yk}k∈Z and a sequence of vectors {uk ∈ Ec

xk
}k∈Z satisfying (2.8)–(2.10), we

shall try to solve the equation

yk = τ (1)
xk

(f(yk−1)) (4.1)

for unknown {yk}k∈Z and {uk ∈ Ec
xk
}k∈Z. Putting

vk = exp−1
xk

yk, k ∈ Z,

then the equation (4.1) is equivalent to

vk+1 = τ (1)
xk+1

(f ◦ expxk
vk), k ∈ Z,

i.e,

vk+1 = uk+1 + exp−1
xk+1

◦f ◦ expxk
vk, k ∈ Z. (4.2)

Define an operator β : Cus(ρ) → X and a linear operator A : Cus(ρ) → Xus by

(β(v))k = exp−1
xk

◦f ◦ expxk−1
vk−1, (4.3)

(Av)k = ((As + Au)v)k = (As
k−1 + Au

k−1)vk−1, (4.4)

where
As

k−1 = Πs
xk

◦ d0(exp−1
xk

◦f ◦ expxk−1
) ◦ Πs

xk−1

and
Au

k−1 = Πu
xk

◦ d0(exp−1
xk

◦f ◦ expxk−1
) ◦ Πu

xk−1
.

Let the operator
η = β − A,
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and then by (4.3)–(4.4), (4.2) is equivalent to

v = u + Av + η(v),

and is further equivalent to
−u + v − Av = η(v).

Define a linear operator P from a neighborhood of 0 ∈ X to X by

Pw = −u + (idXus − A)v (4.5)

for w = u + v ∈ X, where u ∈ Xc and v ∈ Xus.
Define an operator Φ from a neighborhood of 0 ∈ X to X by

Φ(w) = P−1η(v)

for w = u + v in a neighborhood of 0 ∈ X, where u ∈ Xc and v ∈ Xus. Hence, Equation (4.2) is
equivalent to

Φ(w) = w, (4.6)

namely, w is a fixed point of Φ.
The remaining work is to show that for any ε ∈ (0, ρ), there exists δ = δ(ε) such that for

a δ-pseudo-orbit {xk}k∈Z of f , Φ : Cus(ε) → Cus(ε) is a contracting map, and therefore has a
fixed point in Cus(ε). It is almost a verbatim proof of Theorem A.

Acknowledgement I would like to thank Professor Zhu Yujun for the helpful discussion
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