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Abstract The authors investigate the global existence and asymptotic behavior of clas-
sical solutions to the 3D non-isentropic compressible Euler equations with damping on
a bounded domain with slip boundary condition. The global existence and uniqueness of
classical solutions are obtained when the initial data are near an equilibrium. Furthermore,
the exponential convergence rates of the pressure and velocity are also proved by delicate
energy methods.
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1 Introduction

With damping, the three-dimensional compressible Euler equations for non-isentropic flows
have the following form: ⎧⎨

⎩
∂tρ + ∇ · (ρu) = 0,
(ρu)t + ∇ · (ρu ⊗ u) + ∇P = −αρu,
(ρE)t + ∇ · (ρuE + uP ) = −αρu2.

(1.1)

Such a system occurs in the mathematical modeling of compressible flow through a porous
medium. Here ρ, u = (u1, u2, u3)t and P represent the density, the velocity and the pressure
respectively. The total energy E = |u|2

2 + e, where e is the internal energy. The constant α > 0
models friction. In this paper, we will consider only polytropic fluids, so that the equations of
state for the fluid are given by

P = Rρθ, e =
R

γ − 1
θ, (1.2)

where θ is the absolute temperature. The constants R > 0 and γ > 1 denote the gas constant
and the adiabatic exponent, respectively.

For the isentropic flow, namely S =const., (1.1) takes the form{
∂tρ + ∇ · (ρu) = 0,
∂t(ρu) + ∇ · (ρu ⊗ u) + ∇P = −αρu.

(1.3)
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The 1D version of (1.3) with various initial and initial-boundary conditions has been studied
intensively during the past decades, both classical and weak solutions have been constructed,
and the long time behaviors of different solutions have been investigated. There are exten-
sive literatures for both the Cauchy problem and the initial-boundary value problem, and the
readers are referred to [2, 8–10, 13, 15-24, 26–27, 36, 39, 41–42] and references therein. For
the multi-dimension problem to the isentropic system (1.3), Wang and Yang [34] proved the
global existence and asymptotic behavior to the Cauchy problem for the isentropic system (1.3)
by the Green function method. Sideris, Thomases and Wang [31] showed that the damping
term prevented the development of singularities for small amplitude classical solutions in three-
dimensional space, using an equivalent reformulation of the Cauchy problem to obtain effective
energy estimates. Pan and Zhao [29] investigated the global existence and asymptotic behavior
to the initial boundary value problem for the isentropic system (1.3) by energy method. Fang
and Xu [7] studied the existence and asymptotic behavior of C1 solutions on the framework of
Besov space. The optimal convergence rates were recently obtained by Tan and Wu [32].

For the adiabatic flow, namely S �= const., much less is known even for the one-dimensional
case. The global existence of smooth solution to the Cauchy problem for 1D version of (1.1)
has been proved in [14, 40] for small initial data. The large time behavior of these solutions
is known only for some particular initial data (see [11, 25]). For the initial boundary value
problem, the readers are referred for instance to [12, 28] and references therein.

From the physical point of view, the 3D model (1.1) describes more realistic phenomena.
Also the 3D compressible non-isentropic Euler equations carry some unique features, such as
the effect of vorticity, which are totally absent in the 1D case and make the problem more
challenging in mathematics. The system (1.1) and the time-asymptotic behavior of the solution
are of great importance and are much less understood than its 1D companion. Recently, the
authors in [35, 37] studied the global existence and asymptotic behavior of classic solutions to
the Cauchy problem and the period boundary problem to the system (1.1) respectively. To
our knowledge, there is no work on the global existence and asymptotic behavior of classical
solution for the initial boundary value problem to the system (1.1). The main motivation of
this article is to give a positive answer to this problem.

To begin with, we note the fact that all thermodynamics variables ρ, θ, e, P as well as the
entropy S can be represented by functions of any two of them. To overcome the difficulties
arising from non-isentropic, we rewrite the system (1.1). We take the two variables to be P

and S, then the equation of state is replaced by

ρ = aP
1
γ exp

{
− (γ − 1)S

γR

}
, (1.4)

where a > 0 is a constant. Under the aforementioned assumptions, we can rewrite the system
(1.1) in terms of (P, u, S) as follows:

⎧⎪⎪⎨
⎪⎪⎩

∂tP + γP∇ · u + u · ∇P = 0,

∂tu + (u · ∇)u +
∇P

ρ
= −αu,

∂tS + (u · ∇)S = 0,

(1.5)

where ρ = ρ(P, S) is given by (1.4). It should be mentioned that (1.5) is a hyperbolic system,
while the dissipation property comes from the damping term. In this paper, we consider the
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initial boundary value problem for (1.5) with the following initial and boundary conditions:⎧⎪⎪⎨
⎪⎪⎩

(P, u, S)(x, 0) = (P0, u0, S0)(x), x ∈ Ω,
u · n|∂Ω = 0, t ≥ 0,( 1
|Ω|

∫
Ω

P
1
γ

0 dx
)γ

= P > 0,

(1.6)

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω, n is the unit outward normal

vector on the boundary Ω and the last condition is imposed to avoid the trivial case, ρ ≡ 0.
Before stating the main results, let us introduce some notations for the use throughout

this paper. C denotes some positive constant. The norms in the Sobolev spaces Hm(Ω) and
Wm,q(Ω) are denoted respectively by ‖ · ‖m and ‖ · ‖m,q for m ≥ 0 and q ≥ 1. In particular,
for m = 0 we will simply use ‖ · ‖ and ‖ · ‖Lq . ‖(a, b, c)‖m denotes ‖a‖m + ‖b‖m + ‖c‖m. The
energy space under consideration is

Xk([0, T ], Ω) ≡ {F : Ω × [0, T ] → R (or R
3) | ∂tF ∈ L∞([0, T ]; H3−l(Ω)), l = 0, 1, · · · , k},

equipped with norm

‖|F (·, t)|‖k ≡
[ k∑

l=0

‖∂l
tF (·, s)‖2

k−l

] 1
2

for any F ∈ Xk([0, T ], Ω) and t ∈ [0, T ]. Moreover, we use 〈·, ·〉 to denote the inner product in
L2(Ω). Finally,

∇ = (∂1, ∂2, ∂3), ∂i = ∂xi , i = 1, 2, 3,

and for any integer l ≥ 0, ∇lf denotes all derivatives of order l of the function f . And for
multi-indices α and β

α = (α1, α2, α3), β = (β1, β2, β3),

we use

∂α
x = ∂α1

x1
∂α2

x2
∂α3

x3
, |α| =

3∑
i=1

αi,

and Cβ
α = α!

β!(α−β)! , where β ≤ α.

Now, we are ready to state the main results.

Theorem 1.1 Assume that the initial data satisfy the compatibility condition, i.e., ∂l
tu(0) ·

n|Ω = 0, 0 ≤ l ≤ 3, where ∂l
tu(0) · n|Ω = 0 is the l-th time derivative at t = 0 of any solution

of (1.5)–(1.6), as calculated from (1.5) to yield an expression in terms of P0, u0 and S0, and

‖(P
1
γ

0 − P
1
γ , u0, S0 − S)‖3 is sufficiently small. Then the initial boundary value problem (1.5)–

(1.6) admits a unique solution (P, u, S) globally in time with P > 0, satisfying

P
1
γ − P

1
γ , u, S − S ∈ C0([0,∞), H3(Ω)) ∩ C1([0,∞), H2(Ω)) ∩ X3([0,∞), Ω).

Moreover, there exist positive constants C0 and η0, which are independent of t, such that for
any t ≥ 0, it holds

‖|(P 1
γ − P

1
γ )(·, t)|‖3 + ‖|u(·, t)|‖3 ≤ C0‖(P

1
γ

0 − P
1
γ , u0)‖3 exp{−η0t}, (1.7)

‖(S − S)(·, t)‖ ≤ C0‖(P
1
γ

0 − P
1
γ , u0, S0 − S)‖3 exp{C0‖(P

1
γ

0 − P
1
γ , u0)‖3}, (1.8)

‖|∂tS(·, t)|‖2 ≤ C0‖(P
1
γ

0 − P
1
γ , u0, S0 − S)‖3 exp{−η0t}. (1.9)
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Remark 1.1 The methods of this paper can be applied to study the global existence
and asymptotic behavior for the initial boundary value problem to the 3D compressible non-
isentropic Navier-Stokes equations without heat conductivity (see [3]) and the 3D viscous liquid-
gas two phase flow model (see [38]).

Remark 1.2 By applying the similar idea of [38], we can also prove that Theorem 1.1 still
holds under only the smallness assumption on H2-norm of the initial data.

Now, we sketch the main idea of the proof and explain some of the main difficulties and
techniques involved in the process. First, due to non-isentropic, we can not use the methods of
[29, 30–32, 34] where the isentropic system (1.2) has been studied. To overcome the difficulties
for the appearance of the non-isentropic term, as in [3, 38], we first rewrite the system (1.1) into
(1.5). However, we can not work directly on the system of the variables (P, u, S) as in [3, 38].

Indeed, on one hand, the integral
∫

Ω

(P (x, t)−P0(x))dx is in general not zero since the variable

P is not conservative. On the other hand, by noting the dissipation structure of (1.5), it is
clear that there is no dissipation estimate for L2-norm of the variable P . Therefore, it seems
impossible to get the exponential decay estimate on ‖P‖ by the Poincaré inequality and the
Gronwall’s inequality as in [29]. The key idea here is that instead of the variables (P, u, S), we

study the system of the variables (ω, u, S) with w = P
γ−1
2γ − P

γ−1
2γ (see (2.2)–(2.3) for details).

One of main observations in this article is that the dissipative variables ω and u satisfy the
first and second equations of (2.2) whose linear parts possess the same structure as that of the
compressible isentropic Euler equations with damping (1.2), while the non-dissipative variable
S satisfies the homogeneous transport equation the third equation of (2.2). Then, in order to
obtain a priori estimates of solutions to (2.2)–(2.3), we can apply the similar energy method as
in [3–5, 29, 33, 37–38] to the first two equations of (2.2) to obtain the uniform bound of (ω, u)
under the assumption that ‖(ω, u, S)‖3 is sufficiently small, see Lemmas 3.1–3.2 in Section 3.
With these in hand, the variables (w, u) can be shown to converge exponentially to zero from
the Poincaré inequality and Gronwall’s inequality. It is worth mentioning that the crucial part
of the proof is to obtain a Lyapunov-type energy inequality (see (3.37)). Then, the bound of
S will be derived by the exponential decay estimates on (w, u) and the Gronwall’s inequality.
Second, due to the slip boundary condition, the classical energy estimates can not be applied
directly to spatial derivatives. As in [29], the main idea is to get the key estimates of ∇u by
∇× u and ∇ · u, see Lemma 3.2 below. Using the special structure of (2.2) together with an
induction on the number of spatial derivatives, the estimate of total energy is reduced to those
for the vorticity and temporal derivatives. And the proof is completed by showing that (1.7) is
true for the vorticity and temporal derivatives.

The plan of the rest of this paper is as follows. In Section 2, we reformulate the original
system to get a quasi-linear symmetric hyperbolic system and give some basic facts that will
be used in this paper together with the local existence result. In Section 3, we prove Theorem
1.1 by delicate energy estimates.

2 Reformulation and Local Existence

In this section, we are going to reformulate the initial-boundary value problem (1.5)–(1.6).
First we reformulate (1.5) to get a symmetric hyperbolic system. Introducing the nonlinear
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transformation ω̃ = P
γ−1
2γ , we get from the original system (1.5) that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω̃t + u · ∇ω̃ + γ−1
2 ω̃∇ · u = 0,

a(γ − 1)2

4γ
exp

{
− (γ − 1)S

γR

}
ut +

γ − 1
2

ω̃∇ω̃ +
a(γ − 1)2

4γ
exp

{
− (γ − 1)S

γR

}
u · ∇u

= −αa
(γ − 1)2

4γ
exp

{
− (γ − 1)S

γR

}
u,

St + u · ∇S = 0.

(2.1)

Denoting ω = 1
κ (ω̃ − ω) with κ = γ−1

2 , ω = P
γ−1
2γ , s =

a exp

{
− (γ−1)S

γR

}
γ , we get the desired

symmetric system for the perturbation (w, u, s)⎧⎨
⎩

ωt + u · ∇ω + κω∇ · u + ω∇ · u = 0,
sut + κω∇ω + ω∇ω + su · ∇u = −αsu,
st + u · ∇s = 0.

(2.2)

The initial and boundary conditions become{
(ω, u, s)(x, 0) = (ω0, u0, s0),
u · n|∂Ω = 0, t ≥ 0,

(2.3)

with

ω0 =
1
κ

(P
γ−1
2γ

0 − P
γ−1
2γ ), s0 =

a exp{e− (γ−1)S0
γR }

γ
.

Before giving the proof of Theorem 1.1, we state the local existence result for the system
(2.2)–(2.3), which can be established using the arguments in [3, 26–27].

Proposition 2.1 (Local Existence) Let s =
a exp{− (γ−1)S

γR }
γ > 0 be fixed and suppose that

(ω0, u0, s0 − s) ∈ H3(Ω) are such that inf
x∈Ω

{P0(x) + P} > 0, and satisfy the compatibility

condition, i.e., ∂l
tu(0) · n|Ω = 0, 0 ≤ l ≤ 3. Then there exists a positive constant ε0 such

that if ‖(ω0, u0, s0 − s)‖3 ≤ ε0, then there exists a positive constant T0 depending on ε0 such
that the initial-boundary value problem (2.2)–(2.3) admits a unique solution (ω, u, s − u) ∈
C1(Ω × [0, T0]) ∩ X3([0, T0], Ω) which satisfies

inf
x∈Ω

0≤t≤T0

{P (x, t) + P} > 0

and
sup

0≤t≤T0

‖(ω, u, s− s)(·, t)‖3 ≤ 2‖(ω0, u0, s0 − s)‖3.

To prove global existence of a smooth solution with small initial data, it suffices to establish
global a priori estimate of the solution.

Proposition 2.2 (A Priori Estimate) Let (ω0, u0, s0 − s) ∈ H3(Ω) and suppose that
the initial-boundary value problem (2.2)–(2.3) has a solution (ω, u, s − s) ∈ C1(Ω × [0, T ]) ∩
X3([0, T ], Ω) for given T > 0. Then there exist a small positive constant ε1(≤ ε0) and two
positive constants C1 and η1, which are independent of T , such that if

sup
0≤t≤T

‖(ω, u, s− s)(·, t)‖3 ≤ ε1, (2.4)
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then for any t ∈ [0, T ], it holds that

‖|(ω(·, t)|‖3 + ‖|u(·, t)|‖3 ≤ C1‖(ω0, u0)‖3 exp{−η1t}, (2.5)

‖(s − s)(·, t)‖ ≤ C1‖s0 − s‖ exp{C1‖(ω0, u0)‖3}, (2.6)

‖|∂ts(·, t)|‖2 ≤ C1‖(ω0, u0, s0 − s)‖3 exp{−η1t}. (2.7)

Proof of Theorem 1.1 Choose ε2, C1 and η1 such that ε2 = min{1, ε1
2 , ε1

2C1
exp{C1}},

C1 = C0 and η1 = η0. Then the local solution of (2.2)–(2.3) can be continued globally in time,
provided that the smallness condition ‖(ω0, u0, s0 − s)‖3 ≤ ε2 is satisfied. In fact, we have
‖(ω0, u0, s0 − s)‖3 ≤ ε2 ≤ ε1. Therefore, by Proposition 2.1, there is a positive constant T1 =
T1(ε1) such that a solution exists on [0, T1] and satisfies ‖(ω, u, s − s)(·, t)‖3 ≤ 2‖(ω0, u0, s0 −
s)‖3 ≤ ε1 for t ∈ [0, T1]. Hence we can apply Proposition 2.2 with T = T1 to get ‖(ω, u, s −
s)(·, T1)‖3 ≤ C1 exp{C1}ε2 ≤ ε1

2 ≤ ε1. Therefore, we can apply Proposition 2.1 by taking
t = T1 as the new initial time. Then we have a solution on [T1, 2T1] with the estimate ‖(ω, u, s−
s)(·, t)‖3 ≤ 2‖(ω, u, s − s)(·, T1)‖3 ≤ ε1 for t ∈ [T1, 2T1]. Therefore ‖(ω, u, s − s)(·, t)‖3 ≤ ε1

holds on [0, 2T1]. Hence Proposition 2.2 again gives the estimates (2.5)–(2.7) for t ∈ [0, 2T1]. In
the same way we can extend the solution to the interval [0, nT1] successively, n = 1, 2, · · · , and
get a global solution. The estimates (1.7)–(1.9) is a consequence of (2.5)–(2.7). This completes
the proof of Theorem 1.1.

The proof of Proposition 2.2 is based on several steps of careful energy estimates which are
stated as a sequence of lemmas in Section 3.

3 Global Existence and Large Time Behavior

In this section, we devote ourselves to prove Proposition 2.2. For convenience, we let

W1(t) ≡ ‖|ω(·, t)|‖2
3 + ‖|u(·, t)|‖2

3 =
3∑

l=0

(‖∂l
tω(·, t)‖2

3−l + ‖∂l
tu(·, t)‖2

3−l), (3.1)

W2(t) ≡ W1(t) + ‖|s(·, t) − s|‖2
3

=
3∑

l=0

(‖∂l
tω(·, t)‖2

3−l + ‖∂l
tu(·, t)‖2

3−l + ‖∂l
t(s(·, t) − s)‖2

3−l). (3.2)

Throughout this section, we suppose that the initial-boundary value problem (2.2)–(2.3) has
a solution (ω, u, s − s) in the space C1(Ω × [0, T ]) ∩ X3([0, T ], Ω) with some T ∈ (0, +∞], and
the inequality (2.4) holds. We also omit the variable t of all functions in the proof of different
lemmas in this section for simplicity.

In what follows, a series of lemmas on the energy estimates are given. First we recall some
inequalities of Sobolev type (see [6]).

Lemma 3.1 Let Ω be any bounded domain in R
3 with smooth boundary. Then it holds:

(i) ‖f‖L∞(Ω) ≤ C‖f‖H2(Ω),
(ii) ‖f‖Lq(Ω) ≤ C‖f‖H1(Ω), 2 ≤ q ≤ 6

for some constant C > 0 depending only on Ω.

As in [29], the following lemma (see [1]) plays an important role in our proofs, which gives
the estimate of ∇u by ∇ · u and ∇× u.



The 3D Non-isentropic Euler Equations with Damping 921

Lemma 3.2 Let u ∈ Hk(Ω) be a vector-valued function satisfying u · n|Ω = 0, where n is
the unit outer normal of ∂Ω. Then

‖u‖k ≤ C(‖∇ · u‖k−1 + ‖∇× u‖k−1 + ‖u‖k−1) (3.3)

for k ≥ 1, where constant C depends only on k and Ω.

The next lemma is an application of Lemma 3.2, which is crucial to complete the proof
of Proposition 2.2. Indeed, the lemma states that the bounds of spatial derivatives can be
controlled by those of the temporal derivatives and the vorticity. Let υ = ∇× u and define

U(t) ≡
3∑

l=0

(‖∂l
tω‖2 + ‖∂l

tu‖2), V (t) ≡
2∑

l=0

‖∂l
tυ‖2. (3.4)

Lemma 3.3 Under the assumptions of Proposition 2.2, there exists a constant C2 > 0
which is independent of ε such that

W1(t) ≤ C2(U(t) + V (t)). (3.5)

Proof From the equation (2.2)2, we have

∇ω = − 1
κω + ω

(αsu + sut + su · ∇u). (3.6)

Using the smallness of W2(t), Lemma 3.1 and Cauchy-Schwarz inequality, we easily get

‖∇ω‖2 ≤
∥∥∥ 1

κω + ω
(αsu + sut + su · ∇u)

∥∥∥2

≤ C
∥∥∥ 1

κω + ω

∥∥∥2

L∞
‖s‖2

L∞(‖u‖2 + ‖ut‖2 + ‖u‖2
L∞‖∇u‖2)

≤ C(‖u‖2 + ‖ut‖2) + CW 2
1 (t) (3.7)

and

‖∇ωt‖2 ≤
∥∥∥∂t

[ 1
κω + ω

(αsu + sut + su · ∇u)
]∥∥∥2

≤ C(‖ωtu‖2 + ‖ωtut‖2 + ‖ωtu · ∇u‖2 + ‖stu‖2 + ‖stut‖2 + ‖stu · ∇u‖2

+ ‖ut‖2 + ‖utt‖2 + ‖ut · ∇u‖2 + ‖u · ∇ut‖2)

≤ C(‖u‖2
L∞‖ωt‖2 + ‖ωt‖2

L4‖ut‖2
L4 + ‖ωt‖2

L4‖u‖2
L∞‖∇u‖2

L4

+ ‖u‖2
L∞‖st‖2 + ‖st‖2

L4‖ut‖2
L4 + ‖st‖2

L4‖u‖2
L∞‖∇u‖2

L4

+ ‖ut‖2 + ‖utt‖2 + ‖∇u‖2
L∞‖ut‖2 + ‖∇u‖2

L∞‖∇ut‖2)

≤ C(‖ut‖2 + ‖utt‖2) + CW1(t)W2(t). (3.8)

Taking time derivatives of (3.6) twice, after a tedious but direct computation, we also have

‖∇ωtt‖2 ≤ C(‖utt‖2 + ‖uttt‖2) + CW1(t)W2(t). (3.9)

By using the first equation of (2.2), we have

∇ · u = − 1
κω + ω

(ωt + u · ∇ω). (3.10)
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So, we can easily get

‖∇ · u‖2 ≤ C(‖ωt‖2 + W 2
1 (t)). (3.11)

Using Lemma 3.2 with k = 1 and (3.11), we obtain

‖u‖2
1 ≤ C(‖∇ · u‖2 + ‖υ‖2 + ‖u‖2)

≤ C(‖ωt‖2 + ‖υ‖2 + ‖u‖2) + CW 2
1 (t). (3.12)

Next, we take time derivatives of (3.10). It is easy to see that every time derivative up to order
two of ∇ · u can be bounded by U(t) + W1(t)W2(t). Furthermore, together with an induction
on the number of spatial derivatives, the same is true for any derivative up to order two of ∇·ω
and ∇ · u. By applying Lemma 3.2 with k = 1, 2, 3 respectively, we can deduce that

3∑
l=0

(‖∂l
tω(·, t)‖2

3−l + ‖∂l
tu(·, t)‖2

3−l)

≤ C

3∑
l=0

(‖∂l
tω‖2 + ‖∂l

tu‖2) + C

2∑
l=0

‖∂l
tυ‖2 + CW2(t)W1(t). (3.13)

Since W2(t) is small, we prove (3.5). Therefore, the proof of Lemma 3.3 is completed.

Lemma 3.3 reduces the estimate of W (t) to those for U(t) and V (t). In the following, we
will devote ourselves to deduce the estimates of U(t) and V (t).

Lemma 3.4 Under the assumptions of Proposition 2.2, there exists a constant C3 > 0
which is independent of ε such that

d
dt

3∑
l=0

‖∂tω‖2 + s
d
dt

3∑
l=0

‖∂tu‖2 + 2αs
3∑

l=0

‖∂l
tu‖2 ≤ C3W

1
2
2 (t)W1(t). (3.14)

Proof In the following, we will prove Lemma 3.4 by five steps.
Step 1 Zero order estimate Multiplying the first and second equations of (2.2) by ω, u

respectively and then integrating them over Ω, using the boundary condition u · n|∂Ω = 0, we
have

1
2

d
dt

‖ω‖2 +
s

2
d
dt

‖u‖2 + αs‖u‖2 = −〈u · ∇ω + κω∇ · u, ω〉 − 〈κω∇ω + su · ∇u, u〉. (3.15)

From Lemma 3.1, Hölder’s inequality and Cauchy-Schwarz inequality, we have

1
2

d
dt

‖ω‖2 +
s

2
d
dt

‖u‖2 + αs‖u‖2 ≤ C(‖∇ω‖L∞ + ‖∇u‖L∞)(‖ω‖2 + ‖u‖2) ≤ CW
3
2
1 (t). (3.16)

Step 2 First order estimate Differentiating the first and second equations of (2.2) with
respect to t once, multiplying the resultant equations by ωt, ut respectively, integrating over Ω
and using the boundary conditions ∂l

tu · n|∂Ω = 0 with l = 0, 1, we have

1
2

d
dt

‖ωt‖2 +
s

2
d
dt

‖ut‖2 + s‖ut‖2

= −〈(u · ∇ω + κω∇ · u)t, ωt〉 − 〈(κω∇ω + su · ∇u)t, ut〉 − 〈st(ut + au), ut〉
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= −〈ut · ∇ω, ωt〉 +
1
2
〈∇ · u, |ω2

t |〉 − κ〈ωt∇ · u, ωt〉 + κ〈utωt,∇ω〉 − κ〈ωt∇ω, ut〉

− 〈stu · ∇u, ut〉 − 〈sut · ∇u, ut〉 +
1
2
〈∇su + s∇ · u, |ut|2〉 − 〈st(ut + au), ut〉

≤ C(‖∇ω‖L∞ + ‖∇u‖L∞ + ‖st‖L∞‖∇u‖L∞ + ‖∇s‖L∞‖u‖L∞ + ‖st‖L∞)

× (‖ωt‖2 + ‖u‖2 + ‖ut‖2) (3.17)

for some constant C > 0. From Lemma 3.1, Hölder inequality and Cauchy-Schwarz inequality,
we deduce that

1
2

d
dt

‖ωt‖2 +
s

2
d
dt

‖ut‖2 + s‖ut‖2 ≤ CW
1
2
2 (t)W1(t). (3.18)

Step 3 Second order estimate Repeating the above procedure again for 2nd order time
derivatives, we can get

1
2

d
dt

‖ωtt‖2 +
s

2
d
dt

‖utt‖2 + αs‖utt‖2

= −〈(u · ∇ω + κω∇ · u)tt, ωtt〉 − 〈(κω∇ω + su · ∇u)tt, utt〉
− 〈stt(ut + au), utt〉 − 〈st(utt + aut), utt〉

= −〈utt · ∇ω + 2ut · ∇ωt, ωtt〉 +
1
2
〈∇ · u, |ω2

tt|〉 − κ〈ωtt∇ · u + 2ωt∇ · ut, ωtt〉
+ κ〈uttωtt,∇ω〉 − κ〈ωtt∇ω + ωt∇ωt, utt〉 − 〈(sttu + 2stut + sutt) · ∇u, utt〉
− 2〈(stu + sut) · ∇ut, utt〉 +

1
2
〈∇su + s∇ · u, |utt|2〉 − 〈stt(ut + au), utt〉

− 2〈st(utt + aut), utt〉
≤ C(‖∇(ω, u)‖L∞ + ‖(ωt, ut)‖L∞)(‖∇(ωt, ut)‖2 + ‖(ωtt, utt)‖2)

+ C(‖u‖L∞‖∇u‖L∞ + ‖st,∇s‖L∞‖(u,∇u)‖∞)(‖stt‖2 + ‖ut‖2 + ‖utt‖2)

+ C‖stt‖L3‖ut‖L3‖utt‖L3 + C‖stt‖L3‖u‖L3‖utt‖L3 + ‖st‖L∞‖(ut, utt)‖2 (3.19)

for some constant C > 0. By virtue of Lemma 3.1, Hölder inequality and Cauchy-Schwarz
inequality, we have

1
2

d
dt

‖ωtt‖2 +
s

2
d
dt

‖utt‖2 + s‖utt‖2 ≤ CW
1
2
2 (t)W1(t). (3.20)

Step 4 Third order estimate Repeating the above procedure again for 3rd order time
derivatives, we get the following

1
2

d
dt

‖ωttt‖2 +
s

2
d
dt

‖uttt‖2 + as‖uttt‖2

= −〈(u · ∇ω + κω∇ · u)ttt, ωttt〉 − 〈(κω∇ω + su · ∇u)ttt, uttt〉
− 〈sttt(ut + au), uttt〉 − 3〈stt(utt + aut), uttt〉 − 3〈st(uttt + autt), uttt〉

= −〈uttt · ∇ω + 3utt · ∇ωt + 3ut · ∇ωtt, ωttt〉 +
1
2
〈∇ · u, |ω2

ttt|〉
− κ〈ωttt∇ · u + 3ωtt∇ · ut + 3ωt∇ · utt, ωttt〉 + κ〈utttωttt,∇ω〉
− κ〈ωttt∇ω + 3ωtt∇ωt + 3ωt∇ωtt, uttt〉
− 〈(stttu + 3sttut + 3stutt + suttt) · ∇u, uttt〉
− 3〈(sttu + 2stu + 2sut + sutt) · ∇ut + (stu + sut) · ∇utt, uttt〉
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+
1
2
〈∇su + s∇ · u, |uttt|2〉 − 〈sttt(ut + au), uttt〉

− 3〈stt(utt + aut), uttt〉 − 3〈st(uttt + autt), uttt〉

=
11∑

i=1

Ii. (3.21)

By virtue of Lemma 3.1, Hölder’s inequality and Cauchy-Schwarz inequality, we have

|I1| ≤ ‖(∇ω, ut)‖L∞‖(uttt,∇ωtt)‖‖ωttt‖ + ‖utt‖L4‖∇ωt‖L4‖ωttt‖
≤ CW

1
2
2 (t)W1(t).

Bounds for the other terms are obtained in a similar way, we finally deduce

11∑
i=1

|Ii| ≤ CW
1
2
2 (t)W1(t) + CW2(t)W1(t).

Since W2(t) is small, substituting the above two inequalities into (3.21), we finally obtain

1
2

d
dt

‖ωttt‖2 +
s

2
d
dt

‖uttt‖2 + as‖uttt‖2 ≤ CW
1
2
2 (t)W1(t). (3.22)

Step 5 Proof of Lemma 3.4 Putting (3.16), (3.18), (3.20) and (3.22) together gives (3.14).
This completes the proof of Lemma 3.4.

Lemma 3.4 contains only the dissipation in velocity. In the next lemma, we will deduce the
dissipation in pressure due to nonlinearity.

Lemma 3.5 Under the assumptions of Proposition 2.2, there exist two positive constants
C4, C5 which are independent of ε such that

d
dt

( 3∑
l=1

∫
Ω

(−∂l−1
t ω∂l

tω)dx
)

+
3∑

l=0

‖∂l
tω‖2 ≤ C4W

1
2
2 (t)W1(t) + C5

3∑
l=0

‖∂l
tu‖2. (3.23)

Proof First of all, we notice that P
1
γ satisfies the continuity equation, i.e., ∂tP

1
γ +

div(P
1
γ u) = 0, which yields

∫
Ω

(P
1
γ (t) − P

1
γ )dx = 0. This together with Poincaré’s inequality

implies that ‖P 1
γ (t)−P

1
γ ‖ ≤ C‖∇P

1
γ ‖. Since W2(t) is small, we can deduce that ‖P 1

γ (t)−P
1
γ ‖

is equivalent to ‖ω‖ and ‖∇P
1
γ ‖ is equivalent to ‖∇ω‖, thus we have ‖ω‖ ≤ C‖∇ω‖. By using

(3.7), we have

‖ω‖2 ≤ C(‖u‖2 + ‖ut‖2) + CW 2
1 (t). (3.24)

Differentiating the first equation of (2.2) with respect to t, we get

ωtt = −(u · ∇ω)t − [κω(∇ · u)]t − ω∇ · ut. (3.25)

Multiplying (3.25) by ω and integrating the resultant equation over Ω, we obtain

− d
dt

( ∫
Ω

ωωtdx
)

+ ‖ωt‖2 = 〈(u · ∇ω)t, ω〉 + 〈[(κω + ω)(∇ · u)]t, ω〉. (3.26)
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From the second equation of (2.2), we have

(κω + ω)∇ω = − (ut + u · ∇u + au)
s

. (3.27)

Substituting (3.27) into (3.26), using the boundary conditions ∂l
tu · n|∂Ω = 0 with l = 0, 1 and

integrating by part, we have

− d
dt

(∫
Ω

ωωtdx
)

+ ‖ωt‖2

= 〈ut · ∇ω, ω〉 + 〈u · ∇ωt, ω〉 + κ〈ωt∇ · u, ω〉+ 〈(κω + ω)∇ · ut, ω〉
= 〈ut · ∇ω, ω〉 − 〈ω∇ · u + u · ∇ω, ωt〉 + κ〈ωt∇ · u, ω〉
− 〈κ∇ωut, ω〉 − 〈ut, (κω + ω)∇ω〉

= 〈ut · ∇ω, ω〉 − 〈ω∇ · u + u · ∇ω, ωt〉 + κ〈ωt∇ · u, ω〉

− 〈κ∇ωut, ω〉 +
〈
ut,

(ut + u · ∇u + au)
s

〉
. (3.28)

Using the same idea in proof of Lemma 3.4, we have

− d
dt

(∫
Ω

ωωtdx
)

+ ‖ωt‖2 ≤ C(W
1
2
1 (t)W2(t) + ‖u(t)‖2 + ‖ut(t)‖2). (3.29)

Repeating the above procedure again for 2nd and 3rd order time derivatives of (3.25), we have

− d
dt

( ∫
Ω

ωtωttdx
)

+ ‖ωtt‖2 ≤ C(W
1
2
1 (t)W2(t) + ‖ut(t)‖2 + ‖utt(t)‖2),

− d
dt

( ∫
Ω

ωttωtttdx
)

+ ‖ωttt‖2 ≤ C(W
1
2
1 (t)W2(t) + ‖utt(t)‖2 + ‖uttt(t)‖2),

which together with (3.24) and (3.29) implies (3.23). This completes the proof of Lemma 3.5.

Now, we are ready to combine Lemma 3.4 and Lemma 3.5 to deduce the total dissipation.
To do this, we let D1 > 0 be a suitably large positive constant, and define

H(t) ≡ D1

[ 3∑
l=0

(‖∂l
tω‖2 + s‖∂l

tu‖2)
]
−

3∑
l=1

∫
Ω

(∂l−1
t ω∂l

tω)dx. (3.30)

Since D1 > 0 is large enough and ‖s(·, t)−s‖3 is sufficiently small, the function H(t) is equivalent
to U(t).

Lemma 3.6 Under the assumptions of Proposition 2.2, there exist two positive constants
C6, C7 which are independent of ε such that

d
dt

H(t) + C6H(t) ≤ C7W
1
2
2 (t)W1(t). (3.31)

Proof D1 × (3.14) + (3.23) yields

d
dt

H(t) + (2D1αs − C5)
3∑

l=0

‖∂l
tu‖2 +

3∑
l=0

‖∂l
tω‖2 ≤ CW

1
2
2 (t)W1(t). (3.32)

Since D1 > 0 is large and ‖s(·, t) − s‖3 is small, we deduce (3.31) directly from (3.32). This
completes the proof of lemma.

The last lemma is concerned with the dissipation in V (t) defined in (3.4).
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Lemma 3.7 Under the assumptions of Proposition 2.2, there exists a positive constant C8

which is independent of ε such that

d
dt

V (t) + 2αV (t) ≤ C8W
1
2
2 (t)W1(t). (3.33)

Proof Taking the curl of the second equation of (2.2), we get

υt(t) + aυ(t) = −∇×
(κω∇ω + ω∇ω

s

)
− u · ∇υ + υ · ∇u + υ(∇ · u). (3.34)

Taking any mixed derivative of the above equation, we obtain

∂α1
t ∂α2

x υt(t) + α∂α1
t ∂α2

x υ(t)

= ∂α1
t ∂α2

x

[
−∇×

(κω∇ω + ω∇ω

s

)
− u · ∇υ + υ · ∇u + υ(∇ · u)

]
, (3.35)

where α1, α2 satisfy |α1| + |α2| ≤ 2. Noticing that ∇ × (κω∇ω + ω∇ω) = 0, multiplying the
above equation by ∂α1

t ∂α2
x υ(t) and integrating the resulting equation by using the boundary

condition, together with the standard energy estimate used in deriving Lemmas 3.4–3.5, we
deduce (3.33). This completes the proof of lemma.

Now we are in a position to prove Proposition 2.2.

Proof of Proposition 2.2 If we define

H1(t) = H(t) + V (t), (3.36)

then from Lemmas 3.6–3.7, there exist two positive constants C9, C10 which are independent of
ε such that

d
dt

H1(t) + C9H1(t) ≤ C10W
1
2
2 (t)W1(t). (3.37)

Moreover, since H1(t) is equivalent to U(t) + V (t), we have from Lemma 3.3 that

W1(t) ≤ CH1(t). (3.38)

Since ε > 0 is small, combining (3.37) and (3.38), we have that there exists a constant C11 > 0
such that

d
dt

H1(t) + C11H1(t) ≤ 0, (3.39)

which yields the exponential decaying of H1(t). Since H1(t) is equivalent to U(t) + V (t), (2.5)
follows from Lemma 3.3 immediately. Next, we prove (2.6). To do this, by multiplying the third
equation of (2.2) by s − s and integrating over Ω, using the boundary condition u · n|∂Ω = 0,
we have

d
dt

‖s − s‖2 ≤ C‖∇u‖L∞‖s − s‖2,

which yields (2.6). Finally, by symmetry, boundary conditions and some tedious but straight-
forward calculation, we have the energy estimates on the entropy:

d
dt

‖s − s‖2
3 ≤ C‖u‖3‖s − s‖2

3,
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thus we have ‖s(·, x)− s‖3 ≤ C‖s0 − s‖3 exp{C‖(ω0, u0)‖3}. Taking the derivatives of the third
equation of (2.2), we have

‖∂α2
t ∂α1

x st‖ ≤ C‖|u|‖3‖s − s‖3 ≤ C‖(ω0, u0, s0 − s)‖3 exp{−ηt}, (3.40)

where |α1| + |α2| ≤ 2. In fact, we first take |α1| = 0, then we can easily prove that (3.40) is
right. Taking an induction on α, we finally deduce (3.40) which gives (2.7). This completes the
proof of Proposition 2.2.
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