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Abstract Let (H,β) be a Hom-bialgebra such that β2 = idH . (A, αA) is a Hom-bialgebra
in the left-left Hom-Yetter-Drinfeld category H

HYD and (B, αB) is a Hom-bialgebra in the
right-right Hom-Yetter-Drinfeld category YD

H
H . The authors define the two-sided smash

product Hom-algebra (A�H�B,αA ⊗ β ⊗ αB) and the two-sided smash coproduct Hom-
coalgebra (A � H � B, αA ⊗ β ⊗ αB). Then the necessary and sufficient conditions for
(A�H�B,αA ⊗ β ⊗ αB) and (A � H � B, αA ⊗ β ⊗ αB) to be a Hom-bialgebra (called the
double biproduct Hom-bialgebra and denoted by (A�

�H
�
�B, αA ⊗ β ⊗αB)) are derived. On

the other hand, the necessary and sufficient conditions for the smash coproduct Hom-Hopf
algebra (A � H, αA ⊗ β) to be quasitriangular are given.

Keywords Double biproduct, Hom-Yetter-Drinfeld category, Radford’s biproduct,
Hom-Yang-Baxter equation

2000 MR Subject Classification 16W30

1 Introduction

Hom-structures (Lie algebras, algebras, coalgebras and Hopf algebras) have been intensively
investigated in the literature recently (see [2, 4, 6, 9, 12–15, 21–26]). Hom-algebras are gen-
eralizations of algebras obtained by a twisting map, which were introduced for the first time
in [14] by Makhlouf and Silvestrov. The associativity is replaced by Hom-associativity, and
Hom-coassociativity for a Hom-coalgebra can be considered in a similar way.

In [21, 25], Yau introduced and characterized the concept of module Hom-algebras as a
twisted version of usual module algebras, and the dual version (i.e., comodule Hom-coalgebras)
was studied by Zhang in [27]. Based on Yau’s definition of module Hom-algebras, the first
two authors and Yang in [9] constructed the smash product Hom-Hopf algebra (A�H,α ⊗
β) generalizing the Molnar’s smash product (see [16]), gave the cobraided structure (in the
sense of Yau’s definition in [24]) on (A�H,α ⊗ β), and also considered the case of twist tensor
product Hom-Hopf algebra. Makhlouf and Panaite defined and studied a class of Yetter-Drinfeld
modules over Hom-bialgebras in [12] and derived the constructions of twistors, pseudotwistors,
twisted tensor product and smash product in the setting of Hom-case. Especially, in [6], we
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obtained the following result: Let (H,β) be a Hom-bialgebra such that β2 = idH , and (A,α) be
a left (H,β)-module Hom-algebra and a left (H,β)-comodule Hom-coalgebra. (A�

�H,α⊗β) is a
Radford’s biproduct Hom-bialgebra if and only if (A,α) is a Hom-bialgebra in the left-left Hom-
Yetter-Drinfeld category H

HYD. In [23], Yau introduced a twisted generalization of quantum
groups, called quasitriangular Hom-bialgebras. They are non-associative and non-coassociative
analogues of Drinfeld’s quasitriangular bialgebras. Each quasitriangular Hom-bialgebra comes
with a solution of the quantum Hom-Yang-Baxter equation, which is a non-associative version
of the quantum Yang-Baxter equation. Solutions of the Hom-Yang-Baxter equation can be
obtained from modules of suitable quasitriangular Hom-bialgebras.

As we all know, the Radford biproduct plays an important role in the lifting method for the
classification of finite dimensional pointed Hopf algebras (see [1]). Some related results about
Radford’s biproduct have recently been given in [3, 7–8, 10, 18]. Let H be a bialgebra. A is a
bialgebra in the left-left Yetter-Drinfeld category H

HYD and B is a bialgebra in the right-right
Yetter-Drinfeld category YDH

H . In [11], Majid gave a construction of bialgebra A#
×H

#
×B by

combining the two-sided smash product algebra A#H#B with the two-sided smash coproduct
coalgebra A×H×B, which generalizes the Radford biproduct bialgebra.

In this paper, we generalize the Majid’s double biproduct to the Hom-setting, and on the
other hand, quasitriangular smash coproduct Hom-Hopf algebras are constructed. This is dual
to the results in [9].

This article is organized as follows. In Section 2, we recall some definitions and results
which will be used later. In Section 3, we give the right version of Radford’s biproduct Hom-
bialgebra (A�

�H,αA ⊗ β) and Hom-Yetter-Drinfeld category H
HYD in [6]. We also introduce the

notions of two-sided smash product Hom-algebra (A�H�B, αA ⊗ β ⊗ αB) and two-sided smash
coproduct Hom-coalgebra (A�H �B,αA⊗β⊗αB). Then we derive the necessary and sufficient
conditions for (A�H�B, αA⊗β⊗αB) and (A�H �B,αA⊗β⊗αB) to be a Hom-bialgebra, which
is called double biproduct Hom-bialgebra and denoted by (A�

�H
�
�B,αA ⊗ β ⊗ αB), generalizing

the Majid’s double biproduct bialgebra. Note that the construction of (A�H�B, αA ⊗ β ⊗ αB)
here is different from that defined by Makhlouf and Panaite in [13]. Section 4 is devoted to
deriving the necessary and sufficient conditions for the smash coproduct Hom-Hopf algebra
(A�H,αA ⊗β) to be quasitriangular. A concrete example for quasitriangular smash coproduct
Hom-Hopf algebra is given in Section 5.

2 Preliminaries

Throughout this paper, we follow the definitions and terminologies in [9, 21, 23, 27], with
all algebraic systems assumed to be over the field K. Given a K-space M , we write idM for
the identity map on M .

We now recall some useful definitions.
Hom-algebra A Hom-algebra is a quadruple (A, μ, 1A, α) (abbr. (A,α)), where A is a

K-linear space, μ : A ⊗ A −→ A is a K-linear map, 1A ∈ A, and α is an automorphism of A,
such that

(A1) α(aa′) = α(a)α(a′), α(1A) = 1A and
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(A2) α(a)(a′a′′) = (aa′)α(a′′), a1A = 1Aa = α(a)

are satisfied for a, a′, a′′ ∈ A. Here we use the notation μ(a⊗ a′) = aa′.
Hom-coalgebra A Hom-coalgebra is a quadruple (C,Δ, εC , β) (abbr.(C, β)), where C is a

K-linear space, Δ : C −→ C ⊗C, εC : C −→ K are K-linear maps, and β is an automorphism
of C, such that

(C1) β(c)1 ⊗ β(c)2 = β(c1) ⊗ β(c2), εC ◦ β = εC and

(C2) β(c1) ⊗ c21 ⊗ c22 = c11 ⊗ c12 ⊗ β(c2), εC(c1)c2 = c1εC(c2) = β(c)

are satisfied for c ∈ A. Here we use the notation Δ(c) = c1 ⊗ c2 (summation implicitly
understood).

Hom-bialgebra A Hom-bialgebra is a sextuple (H,μ, 1H ,Δ, ε, γ) (abbr. (H, γ)), where
(H,μ, 1H , γ) is a Hom-algebra and (H,Δ, ε, γ) is a Hom-coalgebra, such that Δ and ε are
morphisms of Hom-algebras, i.e.,

Δ(hh′) = Δ(h)Δ(h′), Δ(1H) = 1H ⊗ 1H ,

ε(hh′) = ε(h)ε(h′), ε(1H) = 1.

Furthermore, if there exists a linear map S : H −→ H such that

S(h1)h2 = h1S(h2) = ε(h)1H and S(γ(h)) = γ(S(h)),

then we call (H,μ, 1H ,Δ, ε, γ, S) (abbr. (H, γ, S)) a Hom-Hopf algebra.
Let (H, γ) and (H ′, γ′) be two Hom-bialgebras. The linear map f : H −→ H ′ is called a

Hom-bialgebra map if f ◦ γ = γ′ ◦ f and at the same time f is a bialgebra map in the usual
sense.

Left Hom-module (see [21, 25]) Let (A, β) be a Hom-algebra. A left (A, β)-Hom-module
is a triple (M,�, α), where M is a linear space, � : A⊗M −→M is a linear map, and α is an
automorphism of M , such that

(LM1) α(a�m) = β(a) � α(m) and

(LM2) β(a) � (a′ �m) = (aa′) � α(m), 1A �m = α(m)

are satisfied for a, a′ ∈ A and m ∈M .

Remark 2.1 (1) It is obvious that (A, μ, β) is a left (A, β)-Hom-module.
(2) When β = idA and α = idM , a left (A, β)-Hom-module is the usual left A-module.

Right Hom-module (see [13]) Let (A, β) be a Hom-algebra. A right (A, β)-Hom-module
is a triple (M,�, α), where M is a linear space, � : M ⊗A −→M is a linear map, and α is an
automorphism of M , such that

(RM1) α(m� a) = α(m) � β(a) and

(RM2) (m� a) � β(a′) = α(m) � (aa′), m� 1A = α(m)
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are satisfied for a, a′ ∈ A and m ∈M .

Left module Hom-algebra (see [21, 25]) Let (H,β) be a Hom-bialgebra and (A,α) be a
Hom-algebra. If (A,�, α) is a left (H,β)-Hom-module and for all h ∈ H and a, a′ ∈ A,

(LMA1) β2(h) � (aa′) = (h1 � a)(h2 � a′),

(LMA2) h� 1A = εH(h)1A,

then (A,�, α) is called a left (H,β)-module Hom-algebra.

Remark 2.2 (1) When α = idA and β = idH , a left (H,β)-module Hom-algebra is the
usual left H-module algebra.

(2) In a way similar to the case of Hopf algebras, in [21, 25], Yau concluded that the
equation (LMA1) is satisfied if and only if μA is a morphism of H-modules for suitable H-
module structures on A⊗A and A, respectively.

Right module Hom-algebra (see [13]) Let (H,β) be a Hom-bialgebra and (A,α) be a
Hom-algebra. If (A,�, α) is a right (H,β)-Hom-module and for all h ∈ H and a, a′ ∈ A,

(RMA1) (aa′) � β2(h) = (a� h1)(a′ � h2),

(RMA2) 1A � h = εH(h)1A,

then (A,�, α) is called a right (H,β)-module Hom-algebra.

Left Hom-comodule (see [27]) Let (C, β) be a Hom-coalgebra. A left (C, β)-Hom-
comodule is a triple (M,ρ, α), where M is a linear space, ρ : M −→ C ⊗M (write ρ(m) =
m(−1) ⊗m(0), ∀m ∈M) is a linear map, and α is an automorphism of M , such that

(LCM1) α(m)(−1) ⊗ α(m)(0) = β(m(−1)) ⊗ α(m(0)) and

(LCM2) β(m(−1)) ⊗m(0)(−1) ⊗m(0)(0) = m(−1)1 ⊗m(−1)2 ⊗ α(m(0)),

εC(m(−1))m(0) = α(m)

are satisfied for all m ∈M .

Remark 2.3 (1) It is obvious that (C,ΔC , β) is a left (C, β)-Hom-comodule.
(2) When β = idA and α = idM , a left (C, β)-Hom-comodule is the usual left C-comodule.

Left comodule Hom-coalgebra (see [27]) Let (H,β) be a Hom-bialgebra and (C,α) be
a Hom-coalgebra. If (C, ρ, α) is a left (H,β)-Hom-comodule and for all c ∈ C,

(LCMC1) β2(c(−1)) ⊗ c(0)1 ⊗ c(0)2 = c1(−1)c2(−1) ⊗ c1(0) ⊗ c2(0),

(LCMC2) c(−1)εC(c(0)) = 1HεC(c),

then (C, ρ, α) is called a left (H,β)-comodule Hom-coalgebra.

Remark 2.4 (1) It is obvious that (H,ΔH , β) is a left (H,β)-comodule Hom-coalgebra.
(2) When α = idA and β = idH , a left (H,β)-comodule Hom-coalgebra is the usual left

H-comodule coalgebra.
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(3) In a way similar to the case of Hopf algebras, in [27], Zhang and Li concluded that the
equation (LCMC1) is satisfied if and only if ΔC is a morphism of H-comodules for suitable
H-comodule structures on C ⊗ C and C, respectively.

Left module Hom-coalgebra (see [9]) Let (H,β) be a Hom-bialgebra and (C,α) be a
Hom-coalgebra. If (C,�, α) is a left (H,β)-Hom-module and for all h ∈ H and c ∈ A,

(LMC1) (h� c)1 ⊗ (h� c)2 = (h1 � c1) ⊗ (h2 � c2),

(LMC2) εC(h� c) = εH(h)εC(c),

then (C,�, α) is called a left (H,β)-module Hom-coalgebra.

Remark 2.5 When α = idC and β = idH , a left (H,β)-module Hom-coalgebra is the usual
left H-module coalgebra.

Left comodule Hom-algebra (see [22]) Let (H,β) be a Hom-bialgebra and (A,α) be a
Hom-algebra. If (A, ρ, α) is a left (H,β)-Hom-comodule and for all a, a′ ∈ A,

(LCMA1) ρ(aa′) = a(−1)a
′
(−1) ⊗ a(0)a

′
(0),

(LCMA2) ρ(1A) = 1H ⊗ 1A,

then (A, ρ, α) is called a left (H,β)-comodule Hom-algebra.

Remark 2.6 When α = idA and β = idH , a left (H,β)-comodule Hom-algebra is the usual
left H-comodule algebra.

Left smash product Hom-algebra (see [6, 9]) Let (H,β) be a Hom-bialgebra and
(A,�, α) be a left (H,β)-module Hom-algebra. Then (A�H,α ⊗ β) (A�H = A⊗H as a linear
space) and unit 1A ⊗ 1H is a Hom-algebra with the multiplication

(a⊗ h)(a′ ⊗ h′) = a(h1 � α−1(a′)) ⊗ β−1(h2)h′,

where a, a′ ∈ A, h, h′ ∈ H , and we call it a left smash product Hom-algebra denoted by
(A�H,α ⊗ β).

Remark 2.7 (1) Here the multiplication of smash product Hom-algebra is different from
that defined by Makhlouf and Panaite in [13, Theorem 3.1].

(2) When α = idA and β = idH , we can get the usual smash product algebra A#H (see
[16–17]).

Left smash coproduct Hom-coalgebra (see [6]) Let (H,β) be a Hom-bialgebra and
(C, ρ, α) be a left (H,β)-comodule Hom-coalgebra. Then (C �H,α ⊗ β) (C �H = C ⊗H as a
linear space) and counit εC ⊗ εH is a Hom-coalgebra with the comultiplication

ΔC�H(c⊗ h) = c1 ⊗ c2−1β
−1(h1) ⊗ α−1(c20) ⊗ h2,

where c ∈ C, h ∈ H , and we call it a left smash coproduct Hom-coalgebra denoted by (C �
H,α⊗ β).



934 T. S. Ma, H. Y. Li and L. L. Liu

Left Radford biproduct (see [6]) Let (H,β) be a Hom-bialgebra, and (A,α) be a left
(H,β)-module Hom-algebra with module structure � : H⊗A −→ A and a left (H,β)-comodule
Hom-coalgebra with comodule structure ρ : A −→ H ⊗A. Then the following are equivalent:

(i) (A�
�H,μA�H , 1A ⊗ 1H ,ΔA�H , εA ⊗ εH , α ⊗ β) is a Hom-bialgebra, where A�H is a left

smash product Hom-algebra and A �H is a left smash coproduct Hom-coalgebra.
(ii) The following conditions hold (∀a, b ∈ A and h ∈ H):
(LR1) (A, ρ, α) is a left (H,β)-comodule Hom-algebra,
(LR2) (A,�, α) is a left (H,β)-module Hom-coalgebra,
(LR3) εA is a Hom-algebra map and ΔA(1A) = 1A ⊗ 1A,
(LR4) ΔA(ab) = a1(β2(a2(−1)) � α−1(b1)) ⊗ α−1(a2(0))b2, and
(LR5) h1β(a(−1)) ⊗ (β3(h2) � a(0)) = (β2(h1) � a)(−1)h2 ⊗ (β2(h1) � a)(0).

Left-left Hom-Yetter-Drinfeld module (see [6]) Let (H,β) be a Hom-bialgebra, (M,

�M , αM ) be a left (H,β)-module with action �M : H ⊗M −→ M, h ⊗ m �→ h �M m, and
(M,ρM , αM ) be a left (H,β)-comodule with coaction ρM : M −→ H ⊗ M, m �→ m(−1) ⊗
m(0). Then we call (M,�M , ρM , αM ) a left-left Hom-Yetter-Drinfeld module over (H,β) if the
following condition holds:

(LYD) h1β(m(−1)) ⊗ (β3(h2) �M m(0)) = (β2(h1) �M m)(−1)h2 ⊗ (β2(h1) �M m)(0),

where h ∈ H and m ∈M .

Left-left Hom-Yetter-Drinfeld category (see [6]) Let (H,β) be a Hom-bialgebra. Then
the left-left Hom-Yetter-Drinfeld category H

HYD is a braided tensor category (see [5]), with tensor
product (M ⊗N,αM ⊗ αN ) and associativity constraints, and the braiding is defined by

�M⊗N : H ⊗M ⊗N −→M ⊗N, h⊗m⊗ n �→ (h1 �M m) ⊗ (h2 �N n)

and
ρM⊗N : M ⊗N −→ H ⊗M ⊗N, m⊗ n �→ β−2(m−1n−1) ⊗m0 ⊗ n0,

where h ∈ H , m ∈M and n ∈ N ,

aM,N,P : (M ⊗N) ⊗ P −→M ⊗ (N ⊗ P ), (m⊗ n) ⊗ p �→ α−1
M (m) ⊗ (n⊗ αP (p))

and
cM,N : M ⊗N −→ N ⊗M, m⊗ n �→ (β2(m(−1)) �N α−1

N (n)) ⊗ α−1
M (m(0)),

respectively, as well as unit (K, idK).

Left Radford biproduct and left-left Yetter-Drinfeld category (see [6]) Let (H,β)
be a Hom-bialgebra such that β2 = idH , and (A,α) be a left (H,β)-module Hom-algebra and
a left (H,β)-comodule Hom-coalgebra. Then (A�

�H,μA�H , 1A ⊗ 1H ,ΔA�H , εA ⊗ εH , α ⊗ β) is
a left Radford biproduct Hom-bialgebra if and only if (A,α) is a Hom-bialgebra in the left-left
Hom-Yetter-Drinfeld category H

HYD.

Quasitriangular Hom-Hopf algebra (see [23]) A quasitriangular Hom-Hopf algebra is a
octuple (H,μ, 1H ,Δ, ε, S, β,R) (abbr. (H,β,R)) in which (H,μ, 1H ,Δ, ε, S, β) is a Hom-Hopf
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algebra and R = R1 ⊗R2 ∈ H ⊗H , satisfying the following axioms (for all h ∈ H and R = r):

(QT1) ε(R1)R2 = R1ε(R2) = 1,

(QT2) R1
1 ⊗R1

2 ⊗ β(R2) = β(R1) ⊗ β(r1) ⊗R2r2,

(QT3) β(R1) ⊗R2
1 ⊗R2

2 = R1r1 ⊗ β(r2) ⊗ β(R2),

(QT4) h2R
1 ⊗ h1R

2 = R1h1 ⊗R2h2,

(QT5) β(R1) ⊗ β(R2) = R1 ⊗R2.

Remark 2.8 (1) When α = idH , a quasitriangular Hom-Hopf algebra is exactly the usual
quasitriangular Hopf algebra.

(2) It is slightly different from the definition in [23]. Here we replace the Hom-bialgebra
with the Hom-Hopf algebra and also add another two conditions (QT1) and (QT5). Similar to
the Hopf algebra setting, the quasitriangular structure R is invertible.

(3) Based on Yau’s results in [23], each quasitriangular Hom-Hopf algebra comes with solu-
tions of the quantum Hom-Yang-Baxter equations.

3 Double Biproduct Hom-Bialgebra

In this section, we mainly generalize the double biproduct bialgebra to the Hom-setting.
In order to define double biproduct Hom-bialgebra, we need first the right-handed versions of
some concepts and results. The proofs are similar to the left-handed versions, so we omit them.

Definition 3.1 Let (C, β) be a Hom-coalgebra. A right (C, β)-Hom-comodule is a triple
(M, δ, α), where M is a linear space, δ : M −→M ⊗C (write δ(m) = m[0] ⊗m[1], ∀m ∈M) is
a linear map, and α is an automorphism of M , such that

(RCM1) α(m)[0] ⊗ α(m)[1] = α(m[0]) ⊗ β(m[1]) and

(RCM2) m[0][0] ⊗m[0][1] ⊗ β(m[1]) = α(m[0]) ⊗m[1]1 ⊗m[1]2, m[0]εC(m[1]) = α(m)

are satisfied for all m ∈M .

Definition 3.2 Let (H,β) be a Hom-bialgebra and (C,α) be a Hom-coalgebra. If (C, δ, α)
is a right (H,β)-Hom-comodule and for all c ∈ C,

(RCMC1) c[0]1 ⊗ c[0]2 ⊗ β2(c[1]) = c1[0] ⊗ c2[0] ⊗ c1[1]c2[1],

(RCMC2) εC(c[0])c[1] = 1HεC(c),

then (C, δ, α) is called a right (H,β)-comodule Hom-coalgebra.

Definition 3.3 Let (H,β) be a Hom-bialgebra and (C,α) be a Hom-coalgebra. If (C,�, α)
is a right (H,β)-Hom-module and for all h ∈ H and c ∈ A,

(RMC1) (c� h)1 ⊗ (c� h)2 = (c1 � h1) ⊗ (c2 � h2),

(RMC2) εC(c� h) = εH(h)εC(c),

then (C,�, α) is called a right (H,β)-module Hom-coalgebra.
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Definition 3.4 Let (H,β) be a Hom-bialgebra and (A,α) be a Hom-algebra. If (A, δ, α) is
a right (H,β)-Hom-comodule and for all a, a′ ∈ A,

(RCMA1) δ(aa′) = a[0]a
′
[0] ⊗ a[1]a

′
[1],

(RCMA2) δ(1A) = 1A ⊗ 1H ,

then (A, δ, α) is called a right (H,β)-comodule Hom-algebra.

Definition 3.5 Let (H,β) be a Hom-bialgebra and (A,�, α) be a right (H,β)-module Hom-
algebra. Then (H�A, β⊗α) (H�A = H⊗A as a linear space) and unit 1H⊗1A is a Hom-algebra
with the multiplication

(h⊗ a)(h′ ⊗ a′) = hβ−1(h′1) ⊗ (α−1(a) � h′2)a
′,

where a, a′ ∈ A, h, h′ ∈ H, and we call it a right smash product Hom-algebra denoted by
(H�A, β ⊗ α).

Proposition 3.1 Let (H,β) be a Hom-bialgebra and (C, δ, α) be a right (H,β)-comodule
Hom-coalgebra. Then (H �C, β ⊗ α) (H �C = H ⊗C as a linear space) and counit εH ⊗ εC is
a Hom-coalgebra with the comultiplication

ΔH�C(h⊗ c) = h1 ⊗ α−1(c1[0]) ⊗ β−1(h2)c1[1] ⊗ c2,

where c ∈ C, h ∈ H, and we call it a right smash coproduct Hom-coalgebra denoted by (H �
C, β ⊗ α).

Theorem 3.1 Let (H,β) be a Hom-bialgebra, and (A,α) be a right (H,β)-module Hom-
algebra with module structure � : A⊗H −→ A and a right (H,β)-comodule Hom-coalgebra with
comodule structure δ : A −→ A⊗H. Then the following are equivalent:

(i) (H�
�A, μH�A, 1H ⊗ 1A,ΔH�A, εH ⊗ εA, β ⊗ α) is a Hom-bialgebra, where H�A is a right

smash product Hom-algebra and H �A is a right smash coproduct Hom-coalgebra.
(ii) The following conditions hold (∀a, b ∈ A and h ∈ H):
(RR1) (A, δ, α) is a right (H,β)-comodule Hom-algebra,
(RR2) (A,�, α) is a right (H,β)-module Hom-coalgebra,
(RR3) εA is a Hom-algebra map and ΔA(1A) = 1A ⊗ 1A,
(RR4) ΔA(ab) = a1α

−1(b1[0]) ⊗ (α−1(a2) � β2(b1[1]))b2, and
(RR5) (a[0] � β3(h1)) ⊗ β(a[1])h2 = (a� β2(h2))[0] ⊗ h1(a� β2(h2))[1].

Definition 3.6 Let (H,β) be a Hom-bialgebra, (M,�M , αM ) be a right (H,β)-module with
action �M : M⊗H −→M, m⊗h �→ m�M h and (M, δM , αM ) be a right (H,β)-comodule with
coaction δM : M −→ M ⊗H, m �→ m[0] ⊗m[1]. Then we call (M,�M , δM , αM ) a right-right
Hom-Yetter-Drinfeld module over (H,β) if the following condition holds:

(RYD) (m[0] � β3(h1)) ⊗ β(m[1])h2 = (m� β2(h2))[0] ⊗ h1(m� β2(h2))[1],

where h ∈ H and m ∈M .
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Definition 3.7 Let (H,β) be a Hom-bialgebra. Then the right-right Hom-Yetter-Drinfeld
category YD

H
H is a braided tensor category, with tensor product (M ⊗ N,αM ⊗ αN ) and asso-

ciativity constraints, and the braiding is defined by

aM,N,P : (M ⊗N) ⊗ P −→M ⊗ (N ⊗ P ), (m⊗ n) ⊗ p �→ α−1
M (m) ⊗ (n⊗ αP (p))

and
cM,N : M ⊗N −→ N ⊗M, m⊗ n �→ α−1

N (n[0]) ⊗ (α−1
M (m) �M β2(n[1])),

respectively, as well as unit (K, idK).

Theorem 3.2 Let (H,β) be a Hom-bialgebra such that β2 = idH , and (A,α) be a right
(H,β)-module Hom-algebra and a right (H,β)-comodule Hom-coalgebra. Then (H�

�A, μH�A, 1H⊗
1A,ΔH�A, εH ⊗ εA, β ⊗α) is a right Radford biproduct Hom-bialgebra if and only if (A,α) is a
Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category YD

H
H.

Next we introduce the two-sided smash product Hom-algebra, the two-sided smash coprod-
uct Hom-coalgebra and the double biproduct Hom-bialgebra.

Proposition 3.2 Let (H,β) be a Hom-bialgebra, (A,�, αA) be a left (H,β)-module Hom-
algebra and (B,�, αB) be a right (H,β)-module Hom-algebra. Then (A�H�B, αA ⊗ β ⊗ αB)
(A�H�B = A ⊗ H ⊗ B as a linear space) and unit 1A ⊗ 1H ⊗ 1B is a Hom-algebra with the
multiplication

(a⊗ h⊗ b)(a′ ⊗ h′ ⊗ b′) = a(h1 � α−1
A (a′)) ⊗ β−1(h2h

′
1) ⊗ (α−1

B (b) � h′2)b
′,

where a, a′ ∈ A, h, h′ ∈ H, b, b′ ∈ B, and we call it a two-sided smash product Hom-algebra
denoted by (A�H�B, αA ⊗ β ⊗ αB).

Proof It is direct to prove that

(a⊗ h⊗ b)(1A ⊗ 1H ⊗ 1B) = (1A ⊗ 1H ⊗ 1B)(a⊗ h⊗ b) = αA(a) ⊗ β(h) ⊗ αB(b).

On the other hand, for all a, a′, a′′ ∈ A, h, h′, h′′ ∈ H and b, b′, b′′ ∈ B, we have

(αA(a) ⊗ β(h) ⊗ αB(b))((a′ ⊗ h′ ⊗ b′)(a′′ ⊗ h′′ ⊗ b′′))

= αA(a)(β(h)1 � α−1
A (a′(h′1 � α−1

A (a′′)))) ⊗ β−1(β(h)2β−1(h′2h
′′
1)1)

⊗ (b� β−1(h′2h
′′
1)2)((α−1

B (b′) � h′′2)b′′)
(A1)(C1)

= αA(a)(β(h1) � (α−1
A (a′)α−1

A (h′1 � α−1
A (a′′)))) ⊗ β−1(β(h2)(β−1(h′21)β

−1(h′′11)))

⊗ (b� (β−1(h′22)β
−1(h′′12)))((α

−1
B (b′) � h′′2)b′′)

(LMA1)(A2)(C2)
= αA(a)((β−1(h11) � α−1

A (a′))(β−1(h12) � α−1
A (h′1 � α−1

A (a′′))))

⊗ β−1((h2β
−1(h′21))h

′′
11) ⊗ (α−1

B (b � (β−1(h′22)β
−1(h′′12)))(α

−1
B (b′) � h′′2))αB(b′′)

(LM1)(RM2)
= αA(a)((β−1(h11) � α−1

A (a′))(β−1(h12) � (β−1(h′1) � α−2
A (a′′))))

⊗ β−1((h2β
−1(h′21))h

′′
11) ⊗ (α−1

B ((α−1
B (b) � β−1(h′22)) � h′′12)(α

−1
B (b′) � h′′2 ))αB(b′′)

(LM2)
= αA(a)((β−1(h11) � α−1

A (a′))((β−2(h12)β−1(h′1)) � α−1
A (a′′)))
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⊗ β−1((h2β
−1(h′21))h

′′
11) ⊗ (α−1

B ((α−1
B (b) � β−1(h′22)) � h′′12)(α

−1
B (b′) � h′′2 ))αB(b′′)

(C2)
= αA(a)((h1 � α−1

A (a′))((β−2(h21)β−2(h′11)) � α−1
A (a′′))) ⊗ β−1((β−1(h22)β−1(h′12))

× β(h′′1 )) ⊗ (α−1
B ((α−1

B (b) � h′2) � h′′21)(α
−1
B (b′) � β−1(h′′2 )))αB(b′′)

(RM1)
= αA(a)((h1 � α−1

A (a′))((β−2(h21)β−2(h′11)) � α−1
A (a′′))) ⊗ β−1((β−1(h22)

× β−1(h′12))β(h′′1 )) ⊗ ((α−1
B (α−1

B (b) � h′2) � β−1(h′′21))(α
−1
B (b′) � β−1(h′′2)))αB(b′′)

(RMA1)(C1)
= αA(a)((h1 � α−1

A (a′))((β−2(h21)β−2(h′11)) � α−1
A (a′′)))

⊗ β−1((β−1(h22)β−1(h′12))β(h′′1 )) ⊗ (α−1
B (α−1

B (b) � h′2)α
−1
B (b′) � β(h′′2 ))αB(b′′)

(C1)(A1)
= αA(a)((h1 � α−1

A (a′))(β−1(β−1(h2h
′
1)1) � α−1

A (a′′)))

⊗ β−1(β−1(h2h
′
1)2β(h′′)1) ⊗ (α−1

B ((α−1
B (b) � h′2)b

′) � β(h′′)2)αB(b′′)
(LM1)(A2)

= (a(h1 � α−1
A (a′)))(β−1(h2h

′
1)1 � a′′) ⊗ β−1(β−1(h2h

′
1)2β(h′′)1)

⊗ (α−1
B ((α−1

B (b) � h′2)b
′) � β(h′′)2)αB(b′′)

= ((a⊗ h⊗ b)(a′ ⊗ h′ ⊗ b′))(αA(a′′) ⊗ β(h′′) ⊗ αB(b′′)),

which finishes the proof.

Dually, we have the following proposition.

Proposition 3.3 Let (H,β) be a Hom-bialgebra, (A, ρ, αA) be a left (H,β)-comodule Hom-
coalgebra and (B, δ, αB) be a right (H,β)-comodule Hom-coalgebra. Then (A �H �B,αA ⊗ β⊗
αB) (A �H � B = A ⊗H ⊗B as a linear space) and counit εA ⊗ εH ⊗ εB is a Hom-coalgebra
with comultiplication

Δ(a⊗ h⊗ b) = a1 ⊗ a2(−1)β
−1(h1) ⊗ α−1

B (b1[0]) ⊗ α−1
A (a2(0)) ⊗ β−1(h2)b1[1] ⊗ b2,

where a ∈ A, h ∈ H, b ∈ B, and we call it a two-sided smash coproduct Hom-coalgebra denoted
by (A �H �B,αA ⊗ β ⊗ αB).

Theorem 3.3 Let (H,β) be a Hom-bialgebra such that β2 = idH , (A,αA) be a Hom-
bialgebra in the left-left Hom-Yetter-Drinfeld category H

HYD and (B,αB) be a Hom-bialgebra in
the right-right Hom-Yetter-Drinfeld category YD

H
H . Then the two-sided smash product Hom-

algebra (A�H�B, αA ⊗ β ⊗ αB) equipped with the two-sided smash coproduct Hom-coalgebra
(A �H �B,αA ⊗ β ⊗ αB) becomes a Hom-bialgebra if and only if

(DB) β(a(−1)) ⊗ b[0] ⊗ a(0) ⊗ β(b[1])

= a(−1)1 ⊗ (α−1(b[0]) � β2(a(−1)2)) ⊗ (β2(b[1]1) � α−1(a(0))) ⊗ b[1]2,

where a ∈ A and b ∈ B.
In this case, we call this Hom-bialgebra a double biproduct Hom-bialgebra and denote it by

(A�
�H

�
�B,αA ⊗ β ⊗ αB).

Proof (⇐) We only need to check that ΔA�H�B is a Hom-algebra map. For all a, a′ ∈
A, h, h′ ∈ H and b, b′ ∈ B, we have

ΔA�H�B((a⊗ h⊗ b)(a′ ⊗ h′ ⊗ b′))



Double Biproduct Hom-Bialgebra and Related Quasitriangular Structures 939

= (a(h1 � α−1
A (a′)))1 ⊗ (a(h1 � α−1

A (a′)))2(−1)β
−1(β−1(h2h

′
1)1)

⊗ α−1
B (((α−1

B (b) � h′2)b
′)1[0]) ⊗ α−1

A ((a(h1 � α−1
A (a′)))2(0))

⊗ β−1(β−1(h2h
′
1)2)((α

−1
B (b) � h′2)b

′)1[1] ⊗ ((α−1
B (b) � h′2)b

′)2
(A1)(C1)

= (a(h1 � α−1
A (a′)))1 ⊗ (a(h1 � α−1

A (a′)))2(−1)(β−2(h21)β−2(h′11))

⊗ α−1
B (((α−1

B (b) � h′2)b
′)1[0]) ⊗ α−1

A ((a(h1 � α−1
A (a′)))2(0))

⊗ (β−2(h22)β−2(h′12))((α
−1
B (b) � h′2)b

′)1[1] ⊗ ((α−1
B (b) � h′2)b

′)2
(LR4)(RR4)

= a1(β2(a2(−1)) � α−1
A ((h1 � α−1

A (a′))1)) ⊗ (α−1
A (a2(0))(h1 � α−1

A (a′))2)(−1)

× (β−2(h21)β−2(h′11)) ⊗ α−1
B (((α−1

B (b) � h′2)1α
−1
B (b′1[0]))[0]) ⊗ α−1

A ((α−1
A (a2(0))

× (h1 � α−1
A (a′))2)(0)) ⊗ (β−2(h22)β−2(h′12))((α

−1
B (b) � h′2)1α

−1
B (b′1[0]))[1]

⊗ (α−1
B ((α−1

B (b) � h′2)2) � β2(b′1[1]))b
′
2

(LCA1)(RCA1)
= a1(β2(a2(−1)) � α−1

A ((h1 � α−1
A (a′))1)) ⊗ (α−1

A (a2(0))(−1)

× (h1 � α−1
A (a′))2(−1))(β−2(h21)β−2(h′11)) ⊗ α−1

B ((α−1
B (b) � h′2)1[0]α

−1
B (b′1[0])[0])

⊗ α−1
A (α−1

A (a2(0))(0)(h1 � α−1
A (a′))2(0)) ⊗ (β−2(h22)β−2(h′12))((α

−1
B (b) � h′2)1[1]

× α−1
B (b′1[0])[1]) ⊗ (α−1

B ((α−1
B (b) � h′2)2) � β2(b′1[1]))b

′
2

(LMC1)(RMC1)
= a1(β2(a2(−1)) � α−1

A (h11 � α−1
A (a′)1)) ⊗ (α−1

A (a2(0))(−1)

× (h12 � α−1
A (a′)2)(−1))(β−2(h21)β−2(h′11)) ⊗ α−1

B ((α−1
B (b)1 � h′21)[0]α

−1
B (b′1[0])[0])

⊗ α−1
A (α−1

A (a2(0))(0)(h12 � α−1
A (a′)(2))(0)) ⊗ (β−2(h22)β−2(h′12))((α

−1
B (b)1 � h′21)[1]

× α−1
B (b′1[0])[1]) ⊗ (α−1

B (α−1
B (b)2 � h′22) � β2(b′1[1]))b

′
2

(A2)
= a1(β2(a2(−1)) � α−1

A (h11 � α−1
A (a′)1)) ⊗ (α−1

A (a2(0))(−1)β
−1((h12 � α−1

A (a′)2)(−1))

× (β−2(h21)))β−1(h′11)) ⊗ α−1
B ((α−1

B (b)1 � h′21)[0]α
−1
B (b′1[0])[0])

⊗ α−1
A (α−1

A (a2(0))(0)(h12 � α−1
A (a′)(2))(0)) ⊗ (β−2(h22)β−1(β−2(h′12)

× (α−1
B (b)1 � h′21)[1]))β(α−1

B (b′1[0])[1]) ⊗ (α−1
B (α−1

B (b)2 � h′22) � β2(b′1[1]))b
′
2

(C2)
= a1(β2(a2(−1)) � α−1

A (β(h1) � α−1
A (a′)1)) ⊗ (α−1

A (a2(0))(−1)

× β−1((β−1(h211) � α−1
A (a′)2)(−1))(β−3(h212)))h′1 ⊗ α−1

B ((α−1
B (b)1 � β−1(h′212))[0]

× α−1
B (b′1[0])[0]) ⊗ α−1

A (α−1
A (a2(0))(0)(β−1(h211) � α−1

A (a′)(2))(0))

⊗ (β−2(h22)β−1(β−3(h′211)(α
−1
B (b)1 � β−1(h′212))[1]))β(α−1

B (b′1[0])[1])

⊗ (α−1
B (α−1

B (b)2 � h′22) � β2(b′1[1]))b
′
2

(C1)
= a1(β2(a2(−1)) � α−1

A (β(h1) � α−1
A (a′)1)) ⊗ (α−1

A (a2(0))(−1)

× β−1((β2(β−3(h21)1) � α−1
A (a′)2)(−1))(β−3(h21)2))h′1

⊗ α−1
B ((α−1

B (b)1 � β2(β−3(h′21)2))[0]α
−1
B (b′1[0])[0])

⊗ α−1
A (α−1

A (a2(0))(0)(β−3(h21)1 � α−1
A (a′)(2))(0))

⊗ (β−2(h22)β−1(β−3(h′21)1(α
−1
B (b)1 � β2(β−3(h′21)2)))[1]))β(α−1

B (b′1[0])[1])

⊗ (α−1
B (α−1

B (b)2 � h′22) � β2(b′1[1]))b
′
2
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(LR5)(RR5)
= a1(β2(a2(−1)) � α−1

A (β(h1) � α−1
A (a′)1)) ⊗ (α−1

A (a2(0))(−1)β
−1(β−3(h21)1

× β(α−1
A (a′)2(−1))))h′1 ⊗ α−1

B ((α−1
B (b)1[0] � β3(β−3(h′21)1))α

−1
B (b′1[0])[0])

⊗ α−1
A (α−1

A (a2(0))(0)(β3(β−3(h21)2) � α−1
A (a′)(2)(0))

⊗ (β−2(h22)β−1(β(α−1
B (b)1[1])β−3(h′21)2))β(α−1

B (b′1[0])[1])

⊗ (α−1
B (α−1

B (b)2 � h′22) � β2(b′1[1]))b
′
2

(LCM1)(RCM1)(C1)
= a1(β2(a2(−1)) � α−1

A (β(h1) � α−1
A (a′1)))

⊗ (α−1
A (a2(0)(−1))β−1(β−3(h211)a′2(−1)))h

′
1 ⊗ α−1

B ((α−1
B (b1[0]) � h′211)α

−1
B (b′1[0][0]))

⊗ α−1
A (α−1

A (a2(0)(0))(h212 � α−1
A (a′(2)(0)))) ⊗ (β−2(h22)β−1(b1[1]β−3(h′212)))b

′
1[0][1]

⊗ (α−1
B (α−1

B (b2) � h′22) � β2(b′1[1]))b
′
2

(LCM2)(RCM2)
= a1(β(a2(−1)1) � α−1

A (β(h1) � α−1
A (a′1)))

⊗ (β−1(a2(−1)2)β−1(β−3(h211)a′2(−1)))h
′
1 ⊗ α−1

B ((α−1
B (b1[0]) � h′211)b

′
1[0]

⊗ α−1
A (a2(0)(h212 � α−1

A (a′(2)(0)))) ⊗ (β−2(h22)β−1(b1[1]β−3(h′212)))b
′
1[1]1

⊗ (α−1
B (α−1

B (b2) � h′22) � β(b′1[1]2))b
′
2

(A2)
= a1(β(a2(−1)1) � α−1

A (β(h1) � α−1
A (a′1)))

⊗ (β−1(a2(−1)2)β−3(h211))(a′2(−1)β
−1(h′1) ⊗ α−1

B ((α−1
B (b1[0]) � h′211)b

′
1[0]

⊗ α−1
A (a2(0)(h212 � α−1

A (a′(2)(0)))) ⊗ (β−2(h22)b1[1])(β−3(h′212)β
−1(b′1[1]1))

⊗ (α−1
B (α−1

B (b2) � h′22) � β(b′1[1]2))b
′
2

(C2)
= a1(β(a2(−1)1) � α−1

A (h11 � α−1
A (a′1))) ⊗ (β−1(a2(−1)2)β−2(h12))(a′2(−1)β

−2(h′11)

⊗ α−1
B ((α−1

B (b1[0]) � β(h′12))b
′
1[0] ⊗ α−1

A (a2(0)(β(h21) � α−1
A (a′(2)(0))))

⊗ (β−2(h22)b1[1])(β−2(h′21)β
−1(b′1[1]1)) ⊗ (α−1

B (α−1
B (b2) � h′22) � β(b′1[1]2))b

′
2

(LM1)(RM1)
= a1(β(a2(−1)1) � (β−1(h11) � α−2

A (a′1)))

⊗ (β−1(a2(−1)2)β−2(h12))(a′2(−1)β
−2(h′11) ⊗ (α−2

B (b1[0]) � h′12)α
−1
B (b′1[0])

⊗ α−1
A (a2(0))(h21 � α−2

A (a′(2)(0))) ⊗ (β−2(h22)b1[1])(β−2(h′21)β
−1(b′1[1]1))

⊗ ((α−2
B (b2) � β−1(h′22)) � β(b′1[1]2))b

′
2

(LM2)(RM2)
= a1((a2(−1)1β

−1(h11)) � α−1
A (a′1))

⊗ (β−1(a2(−1)2)β−2(h12))(a′2(−1)β
−2(h′11) ⊗ (α−2

B (b1[0]) � h′12)α
−1
B (b′1[0])

⊗ α−1
A (a2(0))(h21 � α−2

A (a′(2)(0))) ⊗ (β−2(h22)b1[1])(β−2(h′21)β
−1(b′1[1]1))

⊗ (α−1
B (b2) � (β−1(h′22)b

′
1[1]2))b

′
2

(C1)(A1)
= a1((a2(−1)β

−1(h1))1 � α−1
A (a′1)) ⊗ β−1((a2(−1)β

−1(h1))2)(a′2(−1)β
−2(h′11)

⊗ (α−2
B (b1[0]) � h′12)α

−1
B (b′1[0]) ⊗ α−1

A (a2(0))(h21 � α−2
A (a′(2)(0)))

⊗ (β−2(h22)b1[1])β−1((β−1(h′2)b
′
1[1])1) ⊗ (α−1

B (b2) � (β−1(h′2)b
′
1[1])2)b

′
2

= a1((a2(−1)β
−1(h1))1 � α−1

A (a′1)) ⊗ β−1((a2(−1)β
−1(h1))2)(a′2(−1)β

−2(h′11)

⊗ (α−2
B (b1[0]) � h′12)α

−1
B (b′1[0]) ⊗ α−1

A (a2(0))(h21 � α−2
A (a′(2)(0)))
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⊗ β−1((β−1(h22)β(b1[1]))(β−1(h′2)b
′
1[1])1) ⊗ (α−1

B (b2) � (β−1(h′2)b
′
1[1])2)b

′
2

(DB)
= a1((a2(−1)β

−1(h1))1 � α−1
A (a′1)) ⊗ β−1((a2(−1)β

−1(h1))2)(β−1(a′2(−1)1)β
−2(h′11)

⊗ ((α−3
B (b1[0]) � a′2(−1)2) � h′12)α

−1
B (b′1[0]) ⊗ α−1

A (a2(0))

× (h21 � (b1[1]1 � α−3
A (a′(2)(0)))) ⊗ β−1((β−1(h22)b1[1]2)(β−1(h′2)b

′
1[1])1)

⊗ (α−1
B (b2) � (β−1(h′2)b

′
1[1])2)b

′
2

(LM2)(RM2)
= a1((a2(−1)β

−1(h1))1 � α−1
A (a′1)) ⊗ β−1((a2(−1)β

−1(h1))2)

× (β−1(a′2(−1)1)β
−2(h′11)) ⊗ (α−2

B (b1[0]) � (a′2(−1)2β
−1(h′12)))α

−1
B (b′1[0])

⊗ α−1
A (a2(0))((β−1(h21)b1[1]1) � α−2

A (a′(2)(0)))

⊗ β−1((β−1(h22)b1[1]2)(β−1(h′2)b
′
1[1])1) ⊗ (α−1

B (b2) � (β−1(h′2)b
′
1[1])2)b

′
2

(A1)(C1)
= a1((a2(−1)β

−1(h1))1 � α−1
A (a′1)) ⊗ β−1((a2(−1)β

−1(h1))2(a′2(−1)β
−1(h′1))1)

⊗ (α−2
B (b1[0]) � (a′2(−1)β

−1(h′1))2)α
−1
B (b′1[0]) ⊗ α−1

A (a2(0))

× ((β−1(h2)b1[1])1 � α−2
A (a′(2)(0))) ⊗ β−1((β−1(h2)b1[1])2(β−1(h′2)b

′
1[1])1)

⊗ (α−1
B (b2) � (β−1(h′2)b

′
1[1])2)b

′
2

= ΔA�H�B(a⊗ h⊗ b)ΔA�H�B(a′ ⊗ h′ ⊗ b′),

and Δ(1A ⊗ 1H ⊗ 1B) = 1A ⊗ 1H ⊗ 1B ⊗ 1A ⊗ 1H ⊗ 1B is easy.

(⇒) Set a = 1A, h = h′ = 1H , and b′ = 1B in

ΔA�H�B((a⊗ h⊗ b)(a′ ⊗ h′ ⊗ b′)) = ΔA�H�B(a⊗ h⊗ b)ΔA�H�B(a′ ⊗ h′ ⊗ b′),

and we have

αA(a′)1 ⊗ β(αA(a′)2(−1)) ⊗ α−1
B (αB(b)1[0]) ⊗ α−1

A (αA(a′)2[0]) ⊗ β(αB(b)1[1]) ⊗ αB(b)2

= αA(a′1) ⊗ β(a′2(−1))1 ⊗ αB(α−2
B (b1[0]) � β(a′2(−1))2)

⊗ αA(β(b1[1])1 � α−2
A (a′2(0))) ⊗ β(b1[1])2 ⊗ αB(b2).

Then, applying εA ⊗ idH ⊗ idB ⊗ idA ⊗ idH ⊗ εB to the above equation, by (C1), we obtain the
condition (DB).

Remark 3.1 (1) When αA = idA, β = idH , and αB = idB, we get Majid’s double biproduct
bialgebra in [11].

(2) Let B = K, and we obtain the left Radford’s biproduct Hom-bialgebra. Let A = K,
and we obtain the following right Radford’s biproduct Hom-bialgebra H�

�A.

Corollary 3.1 Let (H,β) be a Hom-bialgebra, and (A,α) be a right (H,β)-module Hom-
algebra with module structure � : A⊗H −→ A and a right (H,β)-comodule Hom-coalgebra with
comodule structure δ : A −→ A⊗H. Then the following are equivalent:

(i) (H�
�A, μH�A, 1H ⊗ 1A,ΔH�A, εH ⊗ εA, β ⊗ α) is a Hom-bialgebra, where H�A is a right

smash product Hom-algebra and H �A is a right smash coproduct Hom-coalgebra.
(ii) The following conditions hold (∀a, b ∈ A and h ∈ H):
(RR1) (A, δ, α) is a right (H,β)-comodule Hom-algebra,
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(RR2) (A,�, α) is a right (H,β)-module Hom-coalgebra,
(RR3) εA is a Hom-algebra map and ΔA(1A) = 1A ⊗ 1A,
(RR4) ΔA(ab) = a1α

−1(b1[0]) ⊗ (α−1(a2) � β2(b1[1]))b2, and
(RR5) (a[0] � β3(h1)) ⊗ β(a[1])h2 = (a� β2(h2))[0] ⊗ h1(a� β2(h2))[1].

Also, we have the following corollary.

Corollary 3.2 Let (H,β) be a Hom-bialgebra such that β2 = idH , and (A,α) be a right
(H,β)-module Hom-algebra and a right (H,β)-comodule Hom-coalgebra. Then (H�

�A, μH�A, 1H⊗
1A,ΔH�A, εH ⊗ εA, β ⊗ α) is a right Radford biproduct Hom-bialgebra if and only if (A,α) is a
Hom-bialgebra in the right-right Hom-Yetter-Drinfeld category YD

H
H.

4 Quasitriangular Smash Coproduct Hom-Hopf Algebras

In this section, we introduce a class of new Hom-Hopf algebras: The T -smash coproduct
C �T H , generalizing the T -smash coproduct studied in [3, 14]. The Hom-smash coproduct
Hom-Hopf algebra is a special case. Necessary and sufficient conditions for the smash coproduct
Hom-Hopf algebra to be quasitriangular are given.

In a way dual to [9, Theorem 3.1], we have the following proposition.

Proposition 4.1 Let (C,ΔC , εC , α) and (H,ΔH , εH , β) be two Hom-coalgebras, and T :
C ⊗H −→ H ⊗ C (write T (c⊗ h) = hT ⊗ cT , ∀c ∈ C, h ∈ H) be a linear map such that for
all c ∈ C and h ∈ H,

(T) α(c)T ⊗ β(h)T = α(cT ) ⊗ β(hT ).

Then (C �T H,α ⊗ β) (C �T H = C ⊗ H as a linear space) and counit εC ⊗ εH with the
comultiplication

ΔC�T H(c⊗ h) = c1 ⊗ β−1(h1)T ⊗ α−1(c2T ) ⊗ h2

becomes a Hom-coalgebra if and only if the following conditions hold:

(TS1) εH(hT )cT = εH(h)α(c); hT εC(cT ) = β(h)εC(c),

(TS2) hT1 ⊗ hT2 ⊗ α(cT ) = β(β−1(h1)T ) ⊗ h2t ⊗ cTt,

(TS3) β(hT ) ⊗ α(c)T1 ⊗ α(c)T2 = hTt ⊗ α(c1)t ⊗ α(c2T ),

where c ∈ C, h ∈ H and t is a copy of T .
We call this a Hom-coalgebra T -smash coproduct Hom-coalgebra and denote it by (C �T

H,α⊗ β).

Remark 4.1 (1) Let T (c⊗h) = c−1h⊗ c0 in C �T H , and we can get the smash coproduct
Hom-coalgebra C �H .

(2) When α = idC and β = idH , we can get the usual T -smash coproduct coalgebra (see
[3, 10]).

Theorem 4.1 Let (C,α, SC) and (H,β, SH) be two Hom-Hopf algebras, and T : C⊗H −→
H ⊗ C be a linear map. Then the T -smash coproduct Hom-coalgebra (C �T H,α⊗ β) equipped
with the tensor product Hom-algebra structure becomes a Hom-bialgebra if and only if T is a
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Hom-algebra map. Furthermore, the T -smash coproduct Hom-bialgebra (C �T H,α ⊗ β) is a
Hom-Hopf algebra with antipode S defined by

S(c⊗ h) = SC(α−1(cT )) ⊗ SH(β−1(h)T ).

Proof We only prove that S is an antipode of (C �T H,α⊗ β). The rest is straightforward
by direct computation. For all c ∈ C and h ∈ H ,

(S ∗ idC�T H)(c⊗ h) = SC(α−1(c1t))α−1(c2T ) ⊗ SH(β−1(β−1(h1)T )t)h2

(T)
= SC(α−1(c1t))α−1(c2)T ⊗ SH(β−2(h1)Tt)h2

(TS3)
= SC(α−1(cT1))α−1(cT2) ⊗ SH(β(β−2(h1)T ))h2

= α−1(SC(cT1))α−1(cT2) ⊗ SH(β(β−2(h1)T ))h2

(A1)
= α−1(SC(cT1)cT2) ⊗ SH(β(β−2(h1)T ))h2

(A1)
= 1CεC(cT ) ⊗ SH(β(β−2(h1)T ))h2

(TS1)
= 1CεC(c) ⊗ SH(β2(β−2(h1)))h2

= 1CεC(c) ⊗ SH(h1)h2

= 1C ⊗ 1Hε(c⊗ h)

and

(idC�T H ∗ S)(c⊗ h) = c1SC(α−1(α−1(c2T )t)) ⊗ β−1(h1)TSH(β−1(h2)t)
(T)
= c1SC(α−2(c2Tt)) ⊗ β−1(h1)TSH(β−1(h2t))

(TS2)
= c1SC(α−2(c2T )) ⊗ β−1(hT1)SH(β−1(hT2))

(A1)
= c1SC(α−2(c2T )) ⊗ β−1(hT1SH(hT2))

= c1SC(α−2(c2T )) ⊗ β−1(1H)εH(hT )
(TS1)
= c1SC(c2) ⊗ 1HεH(h)

= 1C ⊗ 1Hε(c⊗ h),

while

S(α(c) ⊗ β(h)) = SC(α−1(α(c)T )) ⊗ SH(hT )
(T)
= SC(α−1(α(cT ))) ⊗ SH(β(β−1(h)T ))

= SC(α(α−1(cT ))) ⊗ β(SH(β−1(h)T ))

= α(SC(α−1(cT ))) ⊗ β(SH(β−1(h)T ))

= (α⊗ β)(S(c⊗ h)),

which finishes the proof.

Theorem 4.2 Let (C,α, SC) and (H,β, SH) be two Hom-Hopf algebras, and (C, ρ, α) be a
left (H,β)-comodule Hom-coalgebra. Then the smash coproduct Hom-coalgebra (C �H,α ⊗ β)
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endowed with the tensor product Hom-algebra structure becomes a Hom-bialgebra if and only if
(C, ρ, α) is a left (H,β)-comodule Hom-algebra and the following condition holds:

c(−1)h⊗ c(0) = hc(−1) ⊗ c(0).

Moreover, the smash coproduct Hom-bialgebra (C �H,α ⊗ β) is a Hom-Hopf algebra with the
antipode

SC�H(c⊗ h) = SC(α−1(c(0))) ⊗ SH(c(−1)β
−1(h)).

Proof Let T (c⊗ h) = c(−1)h⊗ c(0), ∀c ∈ C, h ∈ H in Theorem 4.1.

Next, we generalize the concept of compatibility Hopf algebra pairs (see [10]) to the Hom-
setting.

Definition 4.1 Let (C,α, SC) and (H,β, SH) be two Hom-Hopf algebras, and ϑ = ϑ1⊗ϑ2 ∈
C ⊗H. A Hom-compatibility Hopf algebra triple is a triple (C,H, ϑ) such that (ϑ = ϑ)

(CT1) εC(ϑ1)ϑ2 = 1H , ϑ1εH(ϑ2) = 1C ,

(CT2) ϑ1
1 ⊗ ϑ1

2 ⊗ β(ϑ2) = α(ϑ1) ⊗ α(ϑ
1
) ⊗ ϑ2ϑ

2
,

(CT3) α(ϑ1) ⊗ ϑ2
1 ⊗ ϑ2

2 = ϑ1ϑ
1 ⊗ β(ϑ

2
) ⊗ β(ϑ2),

(CT4) α(ϑ1) ⊗ β(ϑ2) = ϑ1 ⊗ ϑ2.

Remark 4.2 (1) When α = idC and β = idH , we can get the compatibility Hopf algebra
pairs.

(2) If (H,β,R) is a quasitriangular Hom-Hopf algebra, then (H,H,R) is a Hom-compatibility
Hopf algebra triple.

(3) ϑ is (convolution) invertible with ϑ−1 = SC(ϑ1) ⊗ ϑ2.

Proposition 4.2 Let (C �T H,α⊗ β) be a T -smash coproduct Hom-Hopf algebra. Define

ψ : C �T H −→ C, ψ(c⊗ h) = cεH(h), ϕ : C �T H −→ H, ϕ(c⊗ h) = εC(c)h

for all c ∈ C and h ∈ H. Then ψ and ϕ are both Hom-bialgebra maps.

Proof Straightforward.

Let (C �T H,α⊗β) be a T -smash coproduct Hom-Hopf algebra, and R ∈ C �T H ⊗C �T H .
Define

P = (ψ ⊗ ψ)(R) ∈ C ⊗ C, Q = (ϕ⊗ ϕ)(R) ∈ H ⊗H,

U = (ψ ⊗ ϕ)(R) ∈ C ⊗H, V = (ϕ⊗ ψ)(R) ∈ H ⊗ C.

The following two lemmas are obvious.

Lemma 4.1 Let (C �T H,α⊗ β) be a T -smash coproduct Hom-Hopf algebra. If R satisfies
(QT1), then

εC(P 1)P 2 = P 1vC(P 2) = 1C ,
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εH(Q1)Q2 = Q1vH(Q2) = 1H ,

εC(U1)U2 = 1H , U1εH(U2) = 1C ,

εH(V 1)V 2 = 1C , V 1vC(V 2) = 1H .

Lemma 4.2 Let (C �T H,α⊗ β) be a T -smash coproduct Hom-Hopf algebra. If R satisfies
(QT5) for α⊗ β, then

(α⊗ α)(P ) = P, (β ⊗ β)(Q) = Q, (α⊗ β)(U) = U, (β ⊗ α)(V ) = V.

Lemma 4.3 Let (C �T H,α ⊗ β,R) be a quasitriangular T -smash coproduct Hom-Hopf
algebra. Then, we have

(QS) (α⊗ β ⊗ α⊗ β)(R) = U1P 1 ⊗Q1V 1 ⊗ P 2V 2 ⊗ U2Q2.

Proof By (QT2) and (QT3), we have

R1
1 ⊗ β−1(R2

1)T ⊗ α−1(R1
2T ) ⊗R2

2 ⊗R3
1 ⊗ β−1(R4

2)t ⊗ α−1(R3
2t) ⊗R4

2

= R1R
1 ⊗R2R

2 ⊗ r1r1 ⊗ r2r2 ⊗R
3
r3 ⊗R

4
r4 ⊗R3r3 ⊗R4r4.

Applying ψ ⊗ ϕ⊗ ψ ⊗ ϕ to the above equation, we can get (QS).

Lemma 4.4 Let (C �T H,α ⊗ β,R) be a quasitriangular T -smash coproduct Hom-Hopf
algebra. Then, for all c ∈ C, and h ∈ H, we have

(D1) β−1(V 1)T ⊗ P 1
T ⊗ P 2V 2 = V 1 ⊗ α(P 1) ⊗ V 2P 2,

(D2) β−1(Q1)T ⊗ U1
T ⊗ U2Q2 = Q1 ⊗ α(U1) ⊗Q2U2,

(D3) Q1V 1 ⊗ β−1(Q2)T ⊗ V 2
T = V 1Q1 ⊗Q2 ⊗ α(V 2),

(D4) U1P 1 ⊗ β−1(U2)T ⊗ P 2
T = P 1U1 ⊗ U2 ⊗ α(P 2),

(D5) β(h)V 1 ⊗ α(c)V 2 = V 1hT ⊗ V 2α−1(α(c)T ),

(D6) α−1(α(c)T )U1 ⊗ hTU
2 = U1α(c) ⊗ U2β(h).

Proof By (QT2), we can obtain

R1
1 ⊗ β−1(R2

1)T ⊗ α−1(R1
2T ) ⊗R2

2 ⊗ α(R3) ⊗ β(R4)

= α(R1) ⊗ β(R2) ⊗ α(r1) ⊗ β(r2) ⊗R3r3 ⊗R4r4. (4.1)

Applying ϕ ⊗ ψ ⊗ ψ to (4.1), we have that (D1) holds by (QS) and (T). Similarly, applying
ϕ⊗ ψ ⊗ ϕ to (4.1), we can get (D2) by (QS) and (T).

By (QT3), we have

α(R1) ⊗ β(R2) ⊗R3
1 ⊗ β−1(R4

2)T ⊗ α−1(R3
2T ) ⊗R4

2

= R1r1 ⊗R2r2 ⊗ α(r3) ⊗ β(r4) ⊗ α(R3) ⊗ β(R4). (4.2)

(D3) can be obtained by applying ϕ⊗ ϕ⊗ ψ to (4.2) and by (QS) and (T). Likewise, one gets
(D4) by using ψ ⊗ ϕ⊗ ψ to (4.2) and by (QS) and (T).
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By (QT4), for all c ∈ C and h ∈ H , we have

α−1(c2T )R1 ⊗ h2R
2 ⊗ c1R

3 ⊗ β−1(h1)TR
4

= R1c1 ⊗R2β−1(h1)T ⊗R3α−1(c2T ) ⊗R4h2. (4.3)

Apply ϕ⊗ ψ to (4.3), we get (D5). (D6) is derived by applying ψ ⊗ ϕ to (4.3).

Lemma 4.5 Given a quasitriangular structure R on a T -smash coproduct Hom-Hopf al-
gebra (C �T H,α⊗ β), consider the induced elements P, Q, U and V . Then

(1) (C,α, P ) and (H,β,Q) are quasitriangular Hom-Hopf algebras, and
(2) (C,H,U) and (H,C, V ) are Hom-compatibility Hopf algebra triples.

Proof (1) Applying ϕ ⊗ ϕ ⊗ ϕ to (4.1) and (4.2), we can get (QT2) and (QT3) for P ,
respectively. (QT4) can be derived by applying ϕ ⊗ ϕ to (4.3). Then by Lemmas 4.1–4.2,
(C,α, P ) is a quasitriangular Hom-Hopf algebra. Similarly, we can prove that (H,β,Q) is a
quasitriangular Hom-Hopf algebra.

(2) Apply ψ⊗ψ⊗ϕ to (4.1), and ψ⊗ϕ⊗ϕ to (4.2). (CT2) and (CT3) can be obtained for
U , respectively. Then (C,H,U) is a Hom-compatibility Hopf algebra triple by Lemmas 4.1–4.2.
The rest of (4.2) can be similarly demonstrated.

Lemma 4.6 Let (C �T H,α⊗ β) be a T -smash coproduct Hom-Hopf algebra. If there exist
elements P ∈ C ⊗ C, Q ∈ H ⊗H, U ∈ C ⊗H and V ∈ H ⊗ C such that

(1) (C,α, P ) and (H,β,Q) are quasitriangular Hom-Hopf algebras,
(2) (C,H,U) and (H,C, V ) are Hom-compatibility Hopf algebra triples, and
(3) the conditions (D1)–(D6) in Lemma 4.4 hold,

then (C �T H,α⊗β,R) is a quasitriangular Hom-Hopf algebra with the quasitriangular structure
given by

(α⊗ β ⊗ α⊗ β)(R) = U1P 1 ⊗Q1V 1 ⊗ P 2V 2 ⊗ U2Q2.

Proof It is obvious that R satisfies (QT1) and (QT5).
Next, we show that (QT3) holds for R:

LHS = U1P 1 ⊗Q1V 1 ⊗ α−1(P 2)1α−1(V 2)1 ⊗ β−1(β−1(U2)1β−1(Q2)1)T

⊗ α−1((α−1(P 2)2α−1(V 2)2)T ) ⊗ β−1(U2)2β−1(Q2)2
(C1)
= U1P 1 ⊗Q1V 1 ⊗ α−1(P 2

1)α−1(V 2
1) ⊗ β−1(β−1(U2

1)β−1(Q2
1))T

⊗ α−1((α−1(P 2
2)α−1(V 2

2))T ) ⊗ β−1(U2
2)β−1(Q2

2)
(QT3)(CT3)

= α−1((U1u1)(P 1p1)) ⊗ β−1((Q1q1)(V 1v1)) ⊗ p2v2 ⊗ β−1(u2q2)T

⊗ α−1((P 2V 2)T ) ⊗ U2Q2

(A2)
= α−1((U1α−1(u1P 1))α(p1)) ⊗ β−1((Q1β−1(q1V 1))β(v1)) ⊗ p2v2 ⊗ β−1(u2q2)T

⊗ α−1((P 2V 2)T ) ⊗ U2Q2

(D4)(D3)
= α−1((U1α−1(P 1u1))α(p1)) ⊗ β−1((Q1β−1(V 1q1))β(v1)) ⊗ p2v2 ⊗ u2q2

⊗ P 2V 2 ⊗ U2Q2

(A2)
= α−1((U1P 1)(u1p1)) ⊗ β−1((Q1V 1)(q1v1)) ⊗ p2v2 ⊗ u2q2 ⊗ P 2V 2 ⊗ U2Q2
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= RHS.

(QT2) for R can be proved by the similar method. And we check (QT4) as follows:

LHS = α−1(c2T )R1 ⊗ h2R
2 ⊗ c1R

3 ⊗ β−1(h1)TR
4

= α−1(c2T )α−1(U1P 1) ⊗ h2β
−1(Q1V 1) ⊗ c1α

−1(P 2V 2) ⊗ β−1(h1)Tβ
−1(U2Q2)

(A1)
= α−1(c2T (U1P 1)) ⊗ β−1(β(h2)(Q1V 1)) ⊗ α−1(α(c1)(P 2V 2))

⊗ β−1(β(β−1(h1)T )(U2Q2))
(A2)
= α−1((α−1(c2T )U1)α(P 1)) ⊗ β−1((h2Q

1)β(V 1)) ⊗ α−1((c1P 2)α(V 2))

⊗ β−1((β−1(h1)TU
2)β(Q2))

(D6)
= α−1((U1c2)α(P 1)) ⊗ β−1((h2Q

1)β(V 1)) ⊗ α−1((c1P 2)α(V 2))

⊗ β−1((U2h1)β(Q2))
(A2)
= α−1(α(U1)(c2P 1)) ⊗ β−1((h2Q

1)β(V 1)) ⊗ α−1((c1P 2)α(V 2))

⊗ β−1(β(U2)(h1Q
2))

(QT4)
= α−1(α(U1)(P 1c1)) ⊗ β−1((Q1h1)β(V 1)) ⊗ α−1((P 2c2)α(V 2))

⊗ β−1(β(U2)(Q2h2))
(A1)(A2)

= α−1(U1P 1)c1 ⊗ β−1(β(Q1)(h1V
1)) ⊗ α−1(α(P 2)(c2V 2)) ⊗ β−1(U2Q2)h2

(D5)
= α−1(U1P 1)c1 ⊗ β−1(β(Q1)(V 1β−1(h1)T )) ⊗ α−1(α(P 2)(V 2α−1(c2T )))

⊗ β−1(U2Q2)h2

(A1)(A2)
= α−1(U1P 1)c1 ⊗ β−1(Q1V 1)β−1(h1)T ⊗ α−1(P 2V 2)α−1(c2T ) ⊗ β−1(U2Q2)h2

= R1c1 ⊗R2β−1(h1)T ⊗R3α−1(c2T ) ⊗R4h2

= RHS.

Therefore, (C �T H,α⊗ β,R) is a quasitriangular Hom-Hopf algebra.

Thus it follows from Lemmas 4.1–4.6 that we have the following theorems.

Theorem 4.3 The T -smash coproduct Hom-Hopf algebra (C �T H,α⊗β) is quasitriangular
if and only if there exist elements P ∈ C ⊗ C, Q ∈ H ⊗H, U ∈ C ⊗H and V ∈ H ⊗ C such
that (C,α, P ) and (H,β,Q) are quasitriangular Hom-Hopf algebras, (C,H,U) and (H,C, V )
are Hom-compatibility Hopf algebra triples, and the conditions (D1)–(D6) in Lemma 4.4 hold.
Moreover, the quasitriangular structure R on (C �T H,α⊗ β) has a decomposition

(α⊗ β ⊗ α⊗ β)(R) = U1P 1 ⊗Q1V 1 ⊗ P 2V 2 ⊗ U2Q2.

Theorem 4.4 The smash coproduct Hom-Hopf algebra (C � H,α ⊗ β) is quasitriangular
if and only if there exist elements P ∈ C ⊗ C, Q ∈ H ⊗H, U ∈ C ⊗H and V ∈ H ⊗ C such
that (C,α, P ) and (H,β,Q) are quasitriangular Hom-Hopf algebras, (C,H,U) and (H,C, V )
are Hom-compatibility Hopf algebra triples, and the conditions (E1)–(E6) below hold:

(E1) P 1
(−1)β

−1(V 1) ⊗ P 1
(0) ⊗ P 2V 2 = V 1 ⊗ α(P 1) ⊗ V 2P 2,
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(E2) U1
(−1)β

−1(Q1) ⊗ U1
(0) ⊗ U2Q2 = Q1 ⊗ α(U1) ⊗Q2U2,

(E3) Q1V 1 ⊗ V 2
(−1)β

−1(Q2) ⊗ V 2
(0) = V 1Q1 ⊗Q2 ⊗ α(V 2),

(E4) U1P 1 ⊗ P 2
(−1)β

−1(U2) ⊗ P 2
(0) = P 1U1 ⊗ U2 ⊗ α(P 2),

(E5) β(h)V 1 ⊗ α(c)V 2 = V 1α(c)(−1)h⊗ V 2α−1(α(c)(0)),

(E6) α−1(α(c)(0))U1 ⊗ α(c)(−1)hU
2 = U1α(c) ⊗ U2β(h).

Moreover, the quasitriangular structure R on (C �H,α⊗ β) has a decomposition

(α⊗ β ⊗ α⊗ β)(R) = U1P 1 ⊗Q1V 1 ⊗ P 2V 2 ⊗ U2Q2.

Proof Let T (c⊗ h) = c(−1)h⊗ c(0), ∀a ∈ A, h ∈ H in Theorem 4.3.

5 Applications

In this section, we extend the applications of the main results in Section 4 to a concrete
example.

The following result is clear.

Lemma 5.1 Let KZ2 = K{1, a} be a Hopf group algebra (see [19]). Then (KZ2, idKZ2 , Q)
is a quasitriangular Hom-Hopf algebra, where Q = 1

2 (1 ⊗ 1 + a⊗ 1 + 1 ⊗ a− a⊗ a).
Let T2,−1 = K{1, g, x, gx | g2 = 1, x2 = 0, xg = −gx} be Taft’s Hopf algebra (see [20]), and

its coalgebra structure and antipode are given by

Δ(g) = g ⊗ g, Δ(x) = x⊗ g + 1 ⊗ x, Δ(gx) = gx⊗ 1 + g ⊗ gx,

ε(g) = 1, ε(x) = 0, ε(gx) = 0

and
S(g) = g, S(x) = gx, S(gx) = −x.

Define a linear map α: T2,−1 −→ T2,−1 by

α(1) = 1, α(g) = g, α(x) = kx, α(gx) = kgx,

where 0 �= k ∈ K. Then α is an automorphism of Hopf algebras.

So we can get a Hom-Hopf algebra Hα = (T2,−1, α ◦ μT2,−1 , 1T2,−1 ,ΔT2,−1 ◦ α, εT2,−1 , α) (see
[15]).

Lemma 5.2 Let Hα be the Hom-Hopf algebra defined as above. Then (Hα, α, P ) is a
quasitriangular Hom-Hopf algebra, where P = 1

2 (1 ⊗ 1 + g ⊗ 1 + 1 ⊗ g − g ⊗ g).

Proof It is straightforward by a tedious computation.

Theorem 5.1 Let KZ2 be the Hopf group algebra and Hα be the Hom-Hopf algebra defined
as above. Define the comodule action ρ : Hα −→ KZ2 ⊗Hα by

ρ : Hα −→ KZ2 ⊗Hα,

1Hα �→ 1KZ2 ⊗ 1Hα ,
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g �→ 1KZ2 ⊗ g,

x �→ ka⊗ x,

gx �→ ka⊗ gx.

Then by a routine computation we can get that (Hα, ρ, α) is a left KZ2-comodule Hom-coalgebra.
Therefore, (Hα�KZ2, α⊗ idKZ2) is a smash coproduct Hom-coalgebra.

Furthermore, (Hα�KZ2, α ⊗ idKZ2) with the tensor product Hom-algebra becomes a Hom-
Hopf algebra, where the antipode S is given by

S(1Hα ⊗ 1KZ2) = 1Hα ⊗ 1KZ2, S(1Hα ⊗ a) = 1Hα ⊗ a,

S(g ⊗ 1KZ2) = g ⊗ 1KZ2, S(g ⊗ a) = g ⊗ a,

S(x⊗ 1KZ2) = gx⊗ a, S(x⊗ a) = gx⊗ 1KZ2,

S(gx⊗ 1KZ2) = −x⊗ a, S(gx⊗ a) = −x⊗ 1KZ2 .

Lemma 5.3 Let KZ2 be the Hopf group algebra and Hα be the Hom-Hopf algebra defined
as above. Define

U =
1
2
(1 ⊗ 1 + 1 ⊗ a+ g ⊗ 1 − g ⊗ a) ∈ Hα ⊗KZ2,

V =
1
2
(1 ⊗ 1 + a⊗ 1 + 1 ⊗ g − a⊗ g) ∈ KZ2 ⊗Hα.

Then (Hα,KZ2, U) and (KZ2, Hα, V ) are two Hom-compatibility Hopf algebra triples.

Proof Straightforward.

Theorem 5.2 With the notations as above, the smash coproduct Hom-Hopf algebra

(Hα�KZ2, α⊗ idKZ2 , R)

is a quasitriangular Hom-Hopf algebra, where

R =
1
2
(1 ⊗ 1 ⊗ 1 ⊗ 1 + g ⊗ a⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ g ⊗ a− g ⊗ a⊗ g ⊗ a).

Proof It is easy to prove that the conditions (E1)–(E6) hold. And by Lemmas 5.1–5.3 and
Theorem 4.4, we can finish the proof.
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