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Abstract Slow motion for scalar Allen-Cahn type equation is a well-known phenomenon,
precise motion law for the dynamics of fronts having been established first using the so-
called geometric approach inspired from central manifold theory (see the results of Carr
and Pego in 1989). In this paper, the authors present an alternate approach to recover
the motion law, and extend it to the case of multiple wells. This method is based on the
localized energy identity, and is therefore, at least conceptually, simpler to implement. It
also allows to handle collisions and rough initial data.
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1 Introduction

1.1 Motivation and setting

This paper is a follow-up of a previous work with Orlandi [3], where we derived an upper
bound for the motion of front for gradient systems with potentials having several minimal wells
of equal depth. Our approach there is based on the local energy inequality combined with
some appropriate parabolic estimates. Our aim in this paper is to extend the analysis in order
to derive the precise motion laws for fronts: The approach is however restricted at this stage
to scalar equations. We will take advantage in particular of the fact that in the scalar case,
stationary solutions can be completely integrated, allowing for refined energy estimates.

It is presumably needless to recall that the study of the motion of fronts for scalar reaction-
diffusion equations has already a very long history. In particular, equations of Allen-Cahn
type, that is, when the potential possesses only two distinct local minimizers which are non-
degenerate, have been extensively studied. Under suitable preparedness assumptions on the
initial datum, the precise motion law for the fronts has been derived in the seminal works of
Carr and Pego [6] (see also [10]). Their approach relies on a careful study of the linearized
problem around the stationary front, in particular from the spectral point of view. This type of
approach is also sometimes termed the geometric approach (see, e.g., [8]), since it involves ideas
related to central manifold theory. Alternate methods, usually termed energy methods relying
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on global energy estimates have later been worked out (see [5, 11, 12]). They are presumably
more direct to capture the essence of the slow-motion or metastability of pattern phenomenon,
but have been unable at this stage to yield the precise motion law. One of the aims of this
paper is therefore to fill the gap between the two methods, and raise the energy methods to the
same degree of accuracy as the geometric one.

The motivations of this paper are however manifold. First, as mentioned relying on the
results in [3], we wish to recover the precise motion law of Carr and Pego, providing therefore
an alternate approach which eludes the use of spectral theory and which also allows for a larger
class of initial data. Second, whereas most of the existing literature is devoted to Allen-Cahn
type potentials, our method can handle also potentials with several equal-depth wells. Notice
that a major difference in the later case is that, whereas only attractive forces between the
fronts are present in the case of two wells, repulsive forces may be present when there are more
than two wells, inducing important differences in the limiting ordinary differential equations.

Besides this, we are able to handle collisions and splittings, and extend the analysis past
these events: Similar issues were addressed and solved in the Allen-Cahn case1 by Chen [8],
relying crucially on a comparison principle worked out by Fife and McLeod [9]. In our opinion,
such an argument cannot be extended for potentials with more than two wells, and when
hence repulsive forces are present2. Finally, last but not least, we expect that the approach we
develop here can be extended and be used as a model in order to derive the motion law in the
case the potential wells are degenerate as well as the case of systems, with possibly additional
assumptions on the stationary solutions.

To be more specific, we consider and analyze the behavior of solutions v of one-dimensional
reaction-diffusion equations of the following form:

(PGL)ε ∂tvε − ∂xxvε = − 1
ε2

V ′(vε),

where 0 < ε < 1 denotes a (small) parameter, v denotes a scalar function of the space variable
x ∈ R and the time variable t ≥ 0, the function V , usually termed the potential, denotes
a smooth scalar function on R, and V ′ denotes its derivative. Notice that equation (PGL)ε

actually corresponds to the L2 gradient-flow of the energy functional Eε which is defined for a
function u : R �→ R by the formula

Eε(u) =
∫

R

eε(u) =
∫

R

ε
|u̇|2
2

+
V (u)

ε
. (1.1)

Our assumptions on the potential V express the fact that it possesses several minimizers which
are non-degenerate and are formulated as follows. We assume throughout that V is smooth
and satisfies the three conditions:

(H1) inf V = 0 and the set of minimizers Σ ≡ {y ∈ R, V (y) = 0}

is a finite set, with at least two distinct elements, that is

Σ = {σ1, · · · , σq}, q ≥ 2, σi < σj , ∀1 ≤ i < j ≤ q. (1.2)

1Actually, only collisions occur in the Allen-Cahn case, splittings do not.
2As a matter of fact, Proposition 3.1 in [8], which rephrases the Fife-McLeod result, simply does not hold

when there are more than two wells.
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(H2) We have that λi ≡ V ′′(σi) > 0 is positive for each point σi of Σ.
(H3) We have V (u) → +∞, as |u| → +∞.

A canonical example is given by the function

VAC(u) =
(1 − u2)2

4
, (1.3)

whose minimizers are σ1 = +1 and σ2 = −1, with λ1 = λ2 = 2 and which is a potential of
Allen-Cahn type. Another example we have in mind and we wish to handle is given by

V∞(u) = (1 + cosu), (1.4)

for which Σ = {(2k + 1)π, k ∈ Z} and λi = 1. Clearly, the potential given by (1.4) does not
satisfy conditions (H1) nor (H3), since it has infinitely many minimizers and does not converge
to +∞ at infinity. However, the analysis can be carried over for this type of potentials, as
Theorem 1.5 below will show.

As in [3], the assumption in this paper on the initial datum v0
ε(·) = vε(·, 0) is that its energy

is finite. More precisely, given an arbitrary constant M0 > 0, we assume throughout the paper
that

(H0) Eε(v0
ε) ≤ M0 < +∞.

In particular, in view of the classical energy identity

Eε(vε(·, T2)) + ε

∫ T2

T1

∫
R

∣∣∣∣∂vε

∂t

∣∣∣∣
2

(x, t)dxdt = Eε(vε(·, T1)), ∀ 0 ≤ T1 ≤ T2 , (1.5)

we have, ∀t > 0,

E (vε(·, t)) ≤ M0, (1.6)

so that for every given t ≥ 0, we have V (v(x, t)) → 0 as |x| → ∞. It is then quite straightforward
to deduce from assumptions (H0)–(H2) as well as the energy identity (1.5), that v(x, t) → σ±

as x → ±∞, where σ± ∈ Σ does not depend on t.

1.2 Regularized fronts and their evolution

The notion of regularized fronts is presumably central in this paper. It describes a situation
where, at some given time t0 ≥ 0, the solution vε to (PGL)ε is close to a chain of stationary
solutions which are well separated, and suitably glued together. This occurs, as we will see,
when the solution has already undergone a parabolic regularization. The rate of accuracy of
the regularization, is described by a parameter δ > 0, homogeneous to a length, and which is
also related to the distance between two fronts.

We recall that for i ∈ {1, · · · , q − 1}, there exists a unique (up to translations) solution ζ+
i

to the stationary equation with ε = 1,

vxx + V ′(v) = 0 on R (1.7)
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with, as conditions at infinity, v(−∞) = σi and v(+∞) = σi+1. We also set, for i ∈ {2, · · · , q},
ζ−i (·) ≡ ζi(−·), so that ζ−i is the unique, up to translations solution to (1.7) such that v(+∞) =
σi and v(−∞) = σi−1. A remarkable fact is that there are no other non-trivial solutions to
equation (1.7) than the solutions ζ±i : In particular there are no solutions connecting minimizers
which are not neighbors3. Some relevant properties of these solutions ζi will be collected in
Section 3. For i = 1, · · · , q − 1, let zi be a point in the interval (σi, σi+1) where the potential
V restricted to [σi, σi+1] achieves its maximum, and set Z = {z1, · · · , zq−1}. Since we consider
only the one-dimensional case, any solution ζi takes once and only once the value zi.

Next let t0 ≥ 0 , δ > α1ε, and r ≥ δ be given, where α1 > 0 denotes some constant which
will be specified in Subsection 3.2.

Definition 1.1 We say that vε satisfies the preparedness assumption WPε(δ, t) if it satisfies
the energy assumption (H0) and if there exists a collection of points {ak(t)}k∈J(t) in R, with
J(t) = {1, · · · , �(t)}, such that the following conditions are fulfilled:

(WP1) For each k ∈ J(t), there exist a number i(k) ∈ {1, · · · , q}, such that

vε(ak(t), t) = zi(k). (1.8)

(WP2) For each k ∈ J(t), there exists a symbol †k ∈ {+,−}, such that

∥∥∥vε(·, t) − ζ†k

i(k)

( · − ak(t)
ε

)∥∥∥
C1

ε (Ik)
≤ exp

(
− ρ1

δ

ε

)
, (1.9)

where Ik = ([ak(t) − δ, ak(t) + δ] for each k ∈ J(t).

(WP3) Set Ω(t) = R \
�(t)
∪

k=1
Ik. We have the energy estimate

∫
Ω(t)

eε(vε(·, t))dx ≤ CM0 exp
(
− ρ1

δ

ε

)
. (1.10)

In the above definition ρ1 > 0 denotes a constant which will be defined in Section 3 (see
(3.24)). Notice that, if we consider more generally, for t ≥ 0, the subset O(t) of R is defined by

O(t) = {x ∈ R, such that vε(x, t) ∈ Z}. (1.11)

If WPε(δ, t) holds, then we have for δ ≥ α1ε,

O(t) = {ak(t)}k∈J(t). (1.12)

In particular, the points ak(t) are easily shown to be unique (see Section 4), and once their
existence has been established, the main focus is then on their evolution in time. We introduce
also the quantities

d±a (t) = inf{
√

λj+(k)|ak(t) − ak+1(t)| for k ∈ 1, · · · , � − 1 such that †k = ±†k+1}, (1.13)

3The situation might be very different in the case of systems, where anyway the notion of neighbors is perhaps
meaningless.
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with the convention that the quantity is equal to +∞ in case the defining set is empty, and
where, for a given index k ∈ J(t), we define the integers j±(k) as j±(k) = i(k)± 1, if †i(k) = +,
and j±(k) = i(k) ∓ 1, otherwise. We also set

da(t) = inf{d+a (t), d−a (t)}.

Notice that if WPε(δ, t) holds, then it is a simple exercise to show that, if α1 is chosen sufficiently
large, then we have

|ak(t) − ak+1(t)| ≥ δ, (1.14)

so that δ ≤
√

λminda(t), where λmin = inf λi. Conversely, given the points {ak}, the largest
value of δ for which one may expect WPε(δ, t) to hold is precisely of the same order as da(t).

Our first result describes the situation, where the initial datum satisfies the assumption
WPε(δ, T ). We will show that the motion law for the fronts is governed by a simple first
order differential equation, which is of nearest neighbor interaction type. The strength of the
interaction of the (k + 1)-th fronts on the k-th fronts is governed by the quantity Γ+

k,ε({ai(t)})
defined, for a collection of ordered points {a1, · · · , a�}, with a1 < a2 < · · · < a� and signs
{†1, · · · , †�}, by the formula

Γ+
k,ε({ai}) = †k †k+1 B

†i(k)

i(k) B
−†i(k+1)

i(k+1) exp
(
−
√

λj+(k)

ε
|ak − ak+1|

)
(1.15)

with the convention � + 1 = +∞. The numbers B±
i entering in formula (1.15) depend only on

the properties of the stationary front ζi and will be explicitly defined in Section 3 (see (3.9)).
Let us however emphasize that B±

i > 0. It follows in particular that Γ+
k,ε({ai}) > 0 if the signs

†k and †k+1 are the same, and Γ+
k,ε({ai}) < 0 if they are opposite. Notice also that the quantity

Γ+
k,ε({ai(t)}) decays exponentially as the distance between two neighboring fronts increases.

We also set

Γ−
k,ε({ai(s)}) = −Γ+

k−1,ε({ai(s)}),

with the convention that

Γ+
0,ε({ai(s)}) = Γ−

1,ε({ai(s)}) = 0.

Our first main result shows that the evolution of regularized fronts is related to solutions of
a differential equation of the type

ε
d
ds

bk(s) = −S−1
i(k)

∑
†∈{+,−}

Γ†
k,ε({bi(s)})[1 + C†

k(s)], (1.16)

where Si denotes a positive quantity4 related to ζi and C†
k(s) stands for some error term which

will be shown to be exponentially small.

Theorem 1.1 Assume that the potential V satisfies assumptions (H1)–(H3), let ε > 0, and
let vε be a solution to (PGL)ε satisfying (H0). Let T ≥ 0 be given. There exists constants

4actually its energy
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α∗ > 0, c∗ > 0, 0 < ν∗ < 1, ρ∗ > 0, and S∗ > 0 depending only on V and M0 and a time
T = T(T ) > T satisfying

T(T ) ≥ Tref(T, da(T )) ≡ ε2

2S∗
exp
(da(T )

ε

)
+ T, (1.17)

such that, if δ ≥ α∗ε and property WPε(δ, T ) holds, then we may assert:
(i) For any time t ∈ [T,T] the points {ak(t)}k∈J(T ) satisfying (1.8) are unique and well-

defined, whereas for any t ∈ [T + c∗εδ,T], property WPε(ν∗δ, t) holds.
(ii) Property WPε(ν∗da(T ), t) holds for any t in [Ttrans ,T], where

Ttrans = T + ε2 exp
(da(T )

10ε

)
≤ T + exp

(
− da(T )

2ε

)
(Tref − T ). (1.18)

(iii) We have |da(T ) − da(T)| ≥ ρ∗da(T ).
(iv) For any time t ∈ [T,T], there exists a collection of points {bk(t)}k∈J(T ) satisfying the

differential equation (1.16) with

|C†
k(s)| ≤ exp

(
− ρ∗

δ

ε

)
, ∀s ∈ [T,T], |C†

k(s)| ≤ exp
(
− ρ∗

da(T )
ε

)
, ∀s ∈ [Ttrans,T], (1.19)

such that ⎧⎪⎨
⎪⎩
| ak(s) − bk(s)| ≤ ε exp

(
− ρ∗

δ

ε

)
for any s ∈ [T, Ttrans],

| ak(s) − bk(s)| ≤ ε exp
(
− ρ∗

da(T )
ε

)
for any s ∈ [Ttrans,T].

(1.20)

A few comments are in order. The first two statements describe how property WPε is
propagated by the equation (PGL)ε. Assertion (i) of Theorem 1.1 shows that property WPε

remains true, except possibly on an initial boundary layer of order εδ, where the collection of
points {ak}k∈J is however still well-defined, and with some smaller length5 δ′ ≡ ν∗δ. Assertion
(ii) shows, that, after a transition period [T, Ttrans], whose length is small compared to the length
of [T,T], the rate of the approximation has improved to δ′ ≡ ν∗da(T ), which as mentioned, is
the order of the best rate of approximation possible.

The approximation by the differential equation (1.16) is presented in assertion (iii). Turning
first to the differential equation (1.16), we notice that two neighboring fronts with the same
signs † repel, whereas they attract when these signs are opposite. In particular, we will show in
Section 2 that, if there exists some k ∈ {1, · · · , �} such that †k = −†k+1, then collisions have to
occur for the differential equation (1.16). Moreover, if the infimum in (1.13) is achieved at some
fronts of opposite signs6, then the maximal time of existence Tmax of the differential equation
(1.16) satisfies an estimate of the form

Tmax − T ∝ ε2 exp
(da(T )

ε

)
, (1.21)

5Recall that this parameter is supposed to describe the accuracy of the approximation by a chain of stationary
solutions glued together.

6As a matter of fact, the purely attractive case, for which †k = −†k+1, for every k, and hence all forces are
attractive, occurs for instance for the Allen-Cahn functional.



On the Motion Law of Fronts for Scalar Reaction-Diffusion Equations 89

see inequality (2.5) for a precise statement. On the other hand, if all the signs †k are identical,
then the system is purely repulsive, and is then defined for all time, i.e., Tmax = +∞. Moreover,
in that case, the system has actually diffusive properties (see Proposition 2.4 below).

Comparing property (1.21) of the differential equation with (1.17) for the partial differential
equation (PGL)ε, we observe that the time T−T is of the same order of magnitude as the one
provided in (1.21), and therefore appropriate for comparing the two equations. Moreover, in
view of assertion (ii) of Theorem 1.1, we see that a point at least as been moved by at least
a distance of order of magnitude da(T ), which is indeed the appropriate length scale. On this
length scale, it follows from assertion (iv) that the differential equation (7.8) describes, up to
some lower order terms, the motion of the front points.

1.3 Collisions of fronts

Whereas collisions in the ordinary differential equation (1.16) represent genuine singularities
for the solutions and lead to a maximal time of existence, it is not the case for the partial
differential equation (PGL)ε, which in view of its parabolic nature possesses regular solutions for
all positive time. The notion of fronts is however only well-defined, in the sense of the previous
subsection, if the fronts remain sufficiently well-separated, since their mutual distance should
be at least of order α∗ε. Our results below show that collisions in (1.16) induce an intermediate
time layer for solutions to (PGL)ε or order ε2, where annihilation of fronts takes places. This
time layer is actually described by two collisions times: The first one, T −

col corresponds to a time
where two fronts with opposite signs become α∗ε close, a distance at which the approximation
by the differential equation (1.16) no longer remains valid. The existence and properties of the
time T −

col are provided in the following result.

Theorem 1.2 Let ε > 0, T ≥ 0 and δ ≥ β∗ε be given, where β∗ ≥ 2α∗ is some constant
depending only on V and M0. Assume that WPε(δ, T ) holds and that the signs {†k}k∈J are
not all identical. Then there exists some time T −

col, such that the following hold:

(i) For any t ∈ [T, T −
col], property WPε(α∗ε, t) holds and we have d+a (t) ≥ d+a (T ) − c∗ε.

(ii) We have d−a (T −
col) ≤ 2α∗ε.

(iii) We have the upper bound T −
col − T ≤ C∗ε2 exp

(d−a (T )
ε

)
, for some constant C∗ > 0 de-

pending only on V and M0.

(iv) For any t ∈ [T, T −
col], if da(t) ≤ (1 − ρ∗

4 )d−a (T ), then property WPε(ν∗
2 da(t), t) holds.

Notice that the fact that two fronts with opposite signs become close at time T −
col is stated

in part (ii). In contrast, fronts with the same signs remain well-separated, as shown by the first
assertion.

In order to analyze the annihilation of fronts, we provide first some definitions. Assume
therefore that at some time t conditions WPε(δ, t) are satisfied, with δ ≥ α1ε. We say that a
point ak0(t) for k0 ∈ J(t) is free, if and only if

|ak0±1(t) − ak0(t)| ≥ κfε, (1.22)

where the constant κf > 0 depends only on V and M0 and will be defined in Section 9, and
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with the convention that a0(t) = −∞ and a�+1(t) = +∞. We set

Ofree(t) = {k ∈ J(t), such that ak(t) is free}.

Likewise, we say that a point ak0(t) for k0 ∈ J(t) is purely repulsive if and only if †k0 = †k0+1 =
†k0−1, with the convention that †0 = † and †�+1 = †�. We set

Orep(t) = {k ∈ J(t), such that ak(t) is purely repulsive},

and Oattr(t) = O(T ) \ Orep(T ). Notice that, if a point ak0(t) is purely repulsive, then we have
|ak0±1(t) − ak0(t)| ≥

√
λ−1

maxd
+
a (t), and hence is free if d+a (t) is sufficiently large, that is,

Orep(t) ⊂ Ofree(t), (1.23)

provided d+a (t) ≥
√

λmaxκcε. In view of assertion (i) in Theorem 1.2, this last condition is met
in particular for t ∈ [T, T −

col] provided we choose β∗ sufficiently large, what we assume from now
on. The next results provide the annihilation of at least two fronts with opposite signs, within
an additional time of order ε2.

Theorem 1.3 Let ε > 0, T ≥ 0 and δ ≥ γ∗ε be given, where γ∗ is some constant depending
only on V and M0. Assume that WPε(δ, T ) holds, and that the signs {†k}k∈J are not all
identical. There exists a time T +

col such that condition WPε(α∗ε, T +
col) holds, and such that for

some constant Υ depending only on V and M0,

0 < T +
col − T −

col ≤ Υε2. (1.24)

Moreover, the following holds:
(i) We have the inclusion O(T +

col) ⊂ O(T −
col) + [−κcε, κcε], where κc is some constant de-

pending only on V and M0.
(ii) We have 
(Ofree(T +

col)) = 
(Ofree(T −
col)), 
(Orep(T +

col)) = 
(Orep(T −
col)),

Ofree(T +
col) ⊂ Ofree(T −

col) + [−κcε, κcε] and Orep(T +
col) ⊂ Orep(T −

col) + [−κcε, κcε].

(iii) We have for some m ≥ 1,


(Oattr(T +
col)) ≤ 
(Oattr(T −

col)) − 2m.

We notice, combining assertion (ii) and assertion (iii) that the total number of front points
has decreased by 2m, that is,


(O(T +
col)) ≤ 
(O(T −

col)) − 2m, m ≥ 1,

so that the results in Theorem 1.3 do indeed describe the annihilation of at least two fronts,
annihilation which occurs on a time interval of order ε2, in view of (1.24). Moreover, in view of
assertion (ii), we have a one to one correspondence between free or repulsive points at time T −

col

and T +
col, each of these points being moved at most at a distance of order ε. The annihilation

occurs among the attractive points which are not free, among which m pairs disappear in the
process. This annihilation process can then only occur a finite number of times, after which
the system becomes purely repulsive, all fronts repelling each other.
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1.4 Relaxing the preparedness assumptions

We relax now the preparedness assumptions, and extend our analysis to the case of bounded
energy initial data. For that purpose, we make use of the framework and concept developed in
[3], and define as there for a scalar function u on R, its front set as the set D(u) defined by

D(u) ≡ {x ∈ R, dist(u(x), Σ) ≥ μ0}.

This notion which might be understood as a substitute to the notion of front points defined so
far only when assumption WPε holds. The constant μ0 > 0 which appears in this definition is
chosen so that, for i = 1, · · · , q, we have B(σi, μ0) ∩ B(σj , μ0) = ∅ for all i �= j in {1, · · · , q}
and 1

2λi ≤ V ′′(y) ≤ 2λi for all i ∈ {1, · · · , q} and y ∈ B(σi, μ0). A few elementary arguments
yield (see [3, Corollary 1]) that, if the map u satisfies the energy bound Eε(u) ≤ M0, then there
exists � points x1, · · · , x� in D(u), such that

D(u) ≡ {x ∈ R, dist(u(x), Σ) ≥ μ0} ⊂
�⋃

k=1

[xi − ε, xi + ε] (1.25)

with the bound � ≤ �0 = M0
η0

on the number of points, where η0 > 0 is some constant depending
only on the potential V . In the context of equation (PGL)ε, we set moreover D(t) = D(vε(·, t)),
so that

D(t) ⊂
�(t)⋃
k=1

Ik(t), (1.26)

where the intervals Ik(t) ≡ [a−k (t), a+
k (t)] are disjoint, with a length less than ε� and 
(J) ≤ �.

It follows from our definitions of the front set, that in the intervals [a+
k−1(t), a

−
k (t)] the function

vε(·, t) takes values near some of the minimizers, which we denote by σj−(k) = σj+(k−1). The
points a±k play a role similar to the front points ak in the definition WPε, except that they
are now only defined up to a scale of order ε, and that the function is not necessarily close to
a stationary front in their neighborhood7. As a matter of fact, we notice that, if WPε(δ, t) is
satisfied, then, in view of (WP2), we have

D(t) ⊂
⋃

k∈J(t)

{ak(t)} + [−κwε, κwε] (1.27)

for some suitable constant κw depending only on V and M0. However, the regularizing proper-
ties of equation (PGL)ε are at work, and drives the function towards a well-prepared case, as
our next result shows.

Theorem 1.4 Let T ≥ 0 and α > α∗ be given and assume that (H0) holds. Then there
exists a time t ∈ [T, T + ω(α)ε2], such that WPε(αε, t) holds with ω(α) = c0

2 M0 exp(2ρ1α).
Moreover, we have ⋃

k∈J(t)

{ak(t)} ⊂ Dε(T ) + [−κ∗ε, κ∗ε].

7in contrast, the results described assuming WPε yield an accuracy of order ε log(−ρ∗ δ
ε
), hence extremely

sharp when δ is of order 1.
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A general principle might therefore be stated as follows: Up to an error term of order ε2

in time and of order ε in space, the system behaves as if it were well-prepared according to
assumption WPε. More precisely, after an initial boundary layer in time of size at most ω(α∗)ε2,
during which the front set has been moved at distance of size at most κ∗ε, the preparedness
assumption WPε(α∗ε, t) is full-filled, so that we are in position to apply Theorems 1.1–1.3,
which relate the dynamics to the ODE (1.16).

1.5 Relaxing the assumptions on V

The assumptions on the potential can be modified and in fact actually weakened to handle
also other kind of potentials, for instance periodic potentials like (1.4). For that aim, we
introduce an alternate set of assumptions on the potential V , which can be stated as follows:

(H)1bis We have that inf V = 0 and that the set of minimizers Σ is a discrete set which
contains at least two elements.

We may hence write Σ = {σi}i∈J , where J ⊂ Z, with σi < σj , if i < j. If i0 is a maximal
element (resp. minimal) in J , then we set σi0+1 = +∞ (resp. σi0−1 = −∞).

(H)2bis The potential V is of class C3 with ‖V ′‖C2(R) < ∞. Moreover, we have

λmin ≡ inf
i∈J

V ′′(σi) > 0.

(H)3bis There exists some number ν > 0 such that, if i ∈ J or i + 1 ∈ J , then we have

inf
s∈[σi,σi+1]

V (s) ≥ ν for i ∈ J.

Obviously, the potential given in (1.4) satisfies these assumptions, as well as actually any
smooth periodic potential having non-degenerate minimizers. We have the following theorem.

Theorem 1.5 The results in Theorems 1.1–1.4 hold true if we replace the assumptions (H1),
(H2) and (H3) on the potential V by assumptions (H1bis), (H2bis) and (H3bis), respectively.

The argument of the proof of Theorem 1.5 actually relies on an elementary observation.

Proposition 1.1 Assume that the potential V satisfies assumptions (H1bis), (H2bis) and
(H3bis), and let u be such that Eε(u) ≤ M0. Then the limits u(±∞) ≡ lim

x→±∞
u(x) exist and we

have, for some constant A depending only on ‖V ′‖C2(R) < ∞, ν, and λmin,

u(x) ∈ [u(+∞) − A, u(+∞) + A], ∀x ∈ R. (1.28)

Moreover, if vε is a solution to (PGL)ε satisfying (H0), then the limits u(±∞, t) ≡ lim
x→±∞

u(x, t)

do not depend on the time t and hence

u(x, t) ∈ [u0(+∞) − A, u0(+∞) + A], ∀x ∈ R, t ∈ R. (1.29)

In order to prove Theorem 1.5, we then observe that relation (1.29) shows that the solution
takes values only on a finite interval of R: We therefore may modify the potential outside of
this interval without changing the solution, so that assumptions (H1)–(H3) are fulfilled. We
may then rely on our previous results.



On the Motion Law of Fronts for Scalar Reaction-Diffusion Equations 93

1.6 Elements in the proofs

The proofs of our main results contain several distinct ingredients. The starting point is
the study of solutions to the perturbed stationary equation, which writes for a scalar function
u defined on R as

uxx = ε−2V ′(u) + f on R. (1.30)

Our main result concerning equation (1.30), which is completely elementary since it relies
essentially on Gronwall’s lemma, is given in Proposition 3.1. It states that, if the function
verifies an energy bound of the form Eε(u) ≤ M0 and if ε

3
2 ‖f‖L2(R) is sufficiently small, then the

function u is close to a chain of stationary solutions, i.e., heteroclinic solutions, as described in
property WPε(δ, t), with a parameter δ proportional to −ε log(ε

3
2 ‖f‖L2(R)). We use this result

with u ≡ vε(·, t) and f(·) ≡ ∂tvε, so that smallness of the dissipation ‖∂tvε(·, t)‖2
L2(R) at some

time t yields property WPε(δ, t), with a parameter δ large when dissipation becomes small.
Combining this property with the energy identity (1.5), which allows to control dissipation,
we show that the flow drives to well-preparedness. A similar result was already established
in [3, Theorem 3]. However, here we take advantage of an important specificity of the scalar
case, which is actually the only one which is used in this paper: Stationary solutions are
perfectly known, and can even be integrated thanks to the method of separation of variables.
In particular, assumption WPε implies a kind of quantization of the energy, which, in turn,
allows to improve bounds on the dissipation.

The next step is to introduce more dynamics in our arguments. For that purpose, as in
[3, Lemma 2], we use extensively the localized version of (1.5), a tool which turns out to be
perfectly adapted to track the evolution of fronts, and which writes, for a smooth test function
χ with compact support in R,

d
dt

∫
R

χ(x) eε(vε)dx +
∫

R×{t}
εχ(x)|∂tvε|2dx = FS(t, χ, vε), (1.31)

where the term FS is given by

FS(t, χ, vε) =
∫

R×{t}

([
ε
v̇2

ε

2
− V (vε)

ε

]
χ̈

)
dx ≡ ε−1

∫
R×{t}

ξ(v(·, t))χ̈dx. (1.32)

The first term on the right-hand side of identity (1.31) stands for local dissipation, whereas the
second is a flux. The quantity ξ is defined for a scalar function u by

ξ(u) ≡ ε2 u̇2

2
− V (u), (1.33)

sometimes referred to as the discrepancy term in the literature. It is constant for stationary
solutions on some given interval I, i.e., for solutions to

−uxx + ε−2V ′(u) = 0 on I, (1.34)

and it vanishes for finite energy solutions to (1.34) on I = R. Using (1.31) for appropriate
choices of test functions, combined with several parabolic estimates, we have shown in [3] the
following theorem.
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Theorem 1.6 Let T > 0 be given, and assume that (H0) holds. There exist constants
ρ0 > 0 and α0 > 0, depending only on the potential V and on M0, such that if r ≥ α0ε, then
for every t ≥ 0,

D(t + Δt) ⊂ D(t) + [−r, r], (1.35)

provided 0 ≤ Δt ≤ ρ2
0r

2 exp
(
ρ0

r

ε

)
.

Actually, Theorem 1.6 is established in [3] for general systems, under assumptions on the
potential V which are the higher dimensional analogs of (H1)–(H3). In particular, a rather
remarkable fact is that the result does not involve any assumption of any kind on the stationary
solutions8. A central idea in the proof is to derive appropriate upper bounds on the discrepancy
in region which are far from the front set, as well as a suitable choice of test functions χ for
(1.31): They are chosen to be affine near the front sets, so that the second derivative vanishes
there, and the flux term needs only to be estimates off the front set.

Theorem 1.6 provides a first estimate of the velocity. This estimate combined with the
results of Proposition 3.1, and the energy identity (1.5) is actually already sufficient to prove
Theorem 1.4.

In order to establish Theorem 1.1 and derive actually an efficient motion law, we need to
derive a far more precise estimate for the discrepancy. In order to sketch the argument, assume
that WPε(δ, t) holds for some δ > 0, and let ak(t) and ak+1(t) be two front points, with
k ∈ J(t). In order to estimate the interaction between these two points, we evaluation ξ(·, t)
near the middle point ak+ 1

2
(t) = 1

2 (ak(t) + ak+1(t)). To that aim, we use several observations
as follows:

(1) The behavior of vε near the points ak is described with high accuracy using the ap-
propriate heteroclinic solutions near the points ak and ak+1, say on intervals of the form
[ak(t), ak(t) + δ̃] and [ak+1(t)− δ̃, ak+1(t)], where δ̃ is of the same order as δ. We will term this
region the inner region.

(2) The heteroclinic solutions are known.
(3) The evolution of the points ak is known to be small thanks to Theorem 1.6.
(4) In the outer-region [ak(t) + δ̃, ak+1(t) − δ̃], the solution is well approximated by the

solution to the linearized equation near the minimizer σj(k)+ , which turns out to be

∂tuε − ∂2
xxuε + ε−2λj(k)+uε = 0.

The boundary conditions are deduced from the values of the heteroclinc solutions at ak(t) + δ̃

and ak+1(t) − δ̃.
(5) It relaxes very quickly to the solution to the corresponding stationary equation: This

time relaxation is described by factors involving terms of the form exp
(
− λj(k)+ t

ε2

)
.

The expression of the discrepancy ξ for the stationary solution in the outer region then
offers, after an appropriate small relaxation time, a good approximation of ξ near the point
ak+ 1

2
(t). We then use identity (1.31) with functions χ which are affine, except possibly near

8which is a far more difficult question for systems than in the scalar case
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the points ak+ 1
2
(t), so that the previous expansion can be used. We show that this yields a

good approximation of the motion of the front points, leading to the proof of Theorem 1.1.
The proof of Theorem 1.2 is based on the approximation provided by Theorem 1.1 as well as

some properties of the system of ordinary differential equations (1.16). The proof of Theorem
1.3 uses extensively, besides the results in Theorem 1.1–1.2, the quantization of the energy.

We describe now the outline of the paper. Since our arguments involve several ordinary
differential equations, in particular equations (1.7), (1.16) and (1.30), and since the properties
involved are all completely elementary, we wish to present them first. Therefore, we start in
Section 2 with some result concerning equation (1.16): These results are only used in the proof
of Theorems 1.2–1.3, the reader may therefore skip this part in a first reading of the paper.
Section 3 presents some properties of the stationary equations (1.7) and (1.30), in particular
properties of the heteroclinic orbits, which are obtained through the method of separation of
variables, as well as the statement of proof of Proposition 3.1. In Section 4, we describe several
properties related to the well-preparedness assumption WPε, in particular the quantization
of the energy, how it relates to dissipation, and its numerous implications for the dynamics.
In Section 5, we set up a toolbox, which presents various parabolic linear estimates. These
estimates are then extensively used in Section 6, where they provide estimates for (PGL)ε on
parabolic cylinders, assuming that the map takes values to one of the minimizers σi. A major
emphasis is put on the expansion of the quantity ξ, which is estimated sharply near the middle
of the cylinder. Section 7 is devoted to the proof of Theorem 1.1, based on formula (1.31)
as well as on the expansions of ξ provided in Section 6. Section 8 is devoted to the proof of
Theorem 1.2 whereas Section 9 is devoted to the proof of Theorem 1.3. Finally in Section 10,
we outline the proof of Theorem 1.5.

2 Some Remarks on the Differential Equation (1.16)

2.1 Statement of results

This section, which is independent of our previous analysis, focuses on general properties
of the ordinary differential equations (1.16), with an emphasis on estimates for the possible
collision time. Therefore, we assume that we are given an integer � ∈ N

∗, a mapping † from
J to {+,−}, where J = {1, · · · , �}, a solution t �→ b(t) = b1(t), · · · , b�(t) to the system (1.16),
where the constants Γ±

k,ε are defined according to the definition (1.15), which requires that the
value of one of the numbers i(k), for instance i(1) is also given. We consider the solution on its
maximal interval of existence, that is, [0, Tmax]. We assume moreover throughout this section
that the correction terms C†

k(s) satisfy the smallness assumption

|C†
k(s)| ≤ qmin

2qmax8�
, (2.1)

where qmin = inf{qi} and qmax = sup{qi}. In order to describe the behavior of this system, in
particular possible collisions, we are led to introduce the quantity

d b(t) = inf{
√

λj+(k)|bk(t) − bk+1(t)| for k ∈ 1, · · · , �(t0) − 1}. (2.2)

It turns out that this quantity controls the motion of the points as our next result shows.
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Proposition 2.1 Let b = (b1, · · · , b�) be a solution to (1.16) on its maximal interval of
existence [0, Tmax] and assume that (2.1) is satisfied. Let 0 ≤ t1 ≤ t2 ≤ Tmax be given. For
k = 1, · · · , �, we have the bound

|bk(t1) − bk(t2)| ≤ S0|d b(t1) − d b(t2)| + S1ε,

where we have set S0 = 16m(m + 1)−2qmaxλ
−1
minλ

1
2
maxB4

maxB−6
min and S1 = 8q−1

minB2
max log((m +

1)λ− 1
2

minB2
max).

Notice that we have also the more straightforward inequality

|d b(t1) − d b(t2)| ≤ Σ
k
|bk(t1) − bk(t2)|,

which is a simple consequence of the triangle inequality.
The proof of Proposition 2.1 will be given later. In view of the previous result, it is therefore

of importance to derive bounds for d b. In this direction, we first have the following result.

Proposition 2.2 Let b = (b1, · · · , b�) be a solution to (1.16) on its maximal interval of
existence [0, Tmax] and assume that (2.1) is satisfied. Then, we have, for any t ∈ [0, Tmax],

log
[
1 − ε−2S2t exp

(
− d b(0)

ε

)]
≤ d b(t) − d b(0)

ε
≤ log

[
1 + ε−2S2t exp

(
− d b(0)

ε

)]
,

where we have set S2 = 8ε−1
√

λmaxq
−1
minB2

max.

Proof It follows from (1.16) and (2.1) that, for any k = 1, · · · , �, we have

ε
∣∣∣ d
dt

[bk(t)]
∣∣∣ ≤ 4q−1

minB2
max exp

(
− d b(t)

ε

)
, (2.3)

and hence ε
∣∣ d
dt

√
λj+(k)[bk(t) − bk+1(t)]

∣∣ ≤ S2 exp
(
− d b(t)

ε

)
. Integrating, we obtain

ε|d b(t) − d b(0)| ≤ S2

∫ t

0

exp
(
− d b(s)

ε

)
ds,

and the assertion follows as a standard exercise.

In order to derive more refined estimates, we need to take into account the signs of the
interactions. For that purpose, we introduce the quantities

d±b (t) = inf{
√

λj+(k)|bk(t) − bk+1(t)| for k ∈ 1, · · · , � − 1 such that †k = ±†k+1},

with the convention that the quantity is equal to +∞ in case the defining set is empty, and
we also set Bmax = sup{B±

i } and Bmin = inf{B±
i }. The main results on this section can be

summarized as follows.

Proposition 2.3 Let b = (b1, · · · , b�) be a solution to (1.16) on its maximal interval of
existence [0, Tmax] and assume that (2.1) is satisfied. Then, we have, for any time t ∈ [0, Tmax],⎧⎪⎪⎨

⎪⎪⎩
d+b (t) − d+b (0)

ε
≥ log

[
S3 + S4ε

−2t exp
(
− d

+
b (0)
ε

)]
− logS5,

d−b (t) − d−b (0)
ε

≤ log
[
S′

3 − S4ε
−2t exp

(
− d

−
b (0)
ε

)]
− logS′

5,

(2.4)
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where S3 = (m + 2)λ
1
2
minB−2

max, S4 = 16−m(m + 1)2q−1
maxλmin

B4
min

B4
max

, S5 = (λ
1
2
maxB−2

min), and S′
3 =

√
λmaxB−2

min and S′
5 =
( √

λmin
(m+1)B2

max

)
. If all signs {†k}k∈J have the same value, then Tmax = +∞.

Otherwise, we have the estimate

Tmax ≤ ε2S′
3

S4
exp
(d−b (0)

ε

)
. (2.5)

Given any two times 0 ≤ t1 ≤ t2 ≤ Tmax, we have the estimate∫ t2

t1

exp
(
− db(s)

ε

)
ds ≤ 2S−1

4 λ
1
2
maxB−2

minε [db(t2) − db(t1)] + S′
1ε

2, (2.6)

where S′
1 is defined in Lemma 2.3 below. Moreover the following inequality holds, in the sense

of distributions

ε
d
dt
d−b (t) ≤ 4q−1

minB2
max exp

(
− d

−
b (t)
ε

)
on [0, Tmax]. (2.7)

Notice that the behavior of d+b and d−b are very different, the first one measuring the repulsive
forces present in the system, whereas the second measures the attractive ones.

Remark 2.1 We have stressed so far the behavior of the equation (1.16) for positive times.
The properties of the system are actually similar when time flows backwards, i.e., considering
negative times. It suffices to change the attractive forms into repulsive ones and vice-versa to
deduce the corresponding results. Notice in particular that d±b is changed into d∓b .

Proof of Proposition 2.1 (Assuming Proposition 2.3) Integrating inequality (2.3), we
obtain

|bk(t1) − bk(t2)| ≤ 4ε−1q−1
minB2

max

∫ t2

t1

exp
(
− d b(s)

ε

)
ds,

and the conclusion follows invoking (2.6).

The proof of Proposition 2.3, relies on several observations which we present next, the
completion of the proof of Proposition 2.3 being presented in a separate subsection.

Our starting point is that, since the system (1.16) involves both attractive and repulsive
forces, it is convenient to divide the collection {b1(t), b2(t), · · · , b�(t)} into repulsive and attrac-
tive chains. Consider more generally a positive integer � ∈ N

∗, set J = {1, · · · , �} and let † be a
function from J to {+,−}. We say that a subset A of J is a chain if A consists of consecutive
elements.

Definition 2.1 Let A = {k, k+1, k+2, · · · , k+m, k+m+1} be an ordered subset of m+2
consecutive elements in J , with m ≥ 0.

(i) The chain A is said to be a repulsive chain, if and only if given two elements i1 and
i2 in J , we have if †i1 = †i2 . It is said to be a maximal repulsive chain, if there does exists a
repulsive chain which contains A strictly.

(ii) The chain A is said to be an attractive chain, if and only if given two elements i1 and
i2 in J , such that |i1 − i2| = 1, we have †i1 = −†i2 . It is said to be a maximal attractive chain,
if there does exists an attractive chain which contains A strictly.
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Notice that, in view of our definition, repulsive or attractive chains contain at least two
elements. For a given map †, consider its maximal repulsive chains, ordered according to
increasing numbers A1, A2, · · · , Ap. Consider two consecutive chains Ai = {ki, ki + 1, ki +
2, · · · , ki+mi, ki+mi+1} and Ai+1 = {ki+1, ki+1+1, ki+1+2, · · · , ki+1+mi+1, ki+1+mi+1+1}.
It follows from Definition 2.1 that ki + mi + 1 < ki+1. we leave to the reader to check that the
chain

Bi = {ki + mi + 1, · · ·ki+1}

is a maximal attractive chain. In particular, we may decompose J , in increasing order, as

J = B0 ∪ A1 ∪ B1 ∪ A2 ∪ B2 ∪ · · · ∪ Bp−1 ∪ Ap ∪ Bp, (2.8)

where the chains Ai are maximal repulsive chains, the sets Bi are maximal attractive chains
for i = 1, · · · , p − 1, and the sets B0 and Bp are possibly void or maximal attractive chains.
Moreover, we have, for i = 1, · · · , p,

Ai ∩ Bi = {ki + mi + 1}, Bi ∩ Ai+1 = {ki+1}.

2.2 Maximal repulsive chains

In this subsection, we restrict ourselves to the behavior of a maximal repulsive chain A =
{j, j + 1, · · · , j + m}, m ≤ � − 2 within the general system (1.16). Without loss of generally,
we may assume that †i = + for i ∈ A. Setting uk = bk+j , we are led to study the function
U = (u0, u1, · · · , um+1). It follows from the fact that b satisfies (1.16), U is moved through a
system of m ODE’s, and two differential inequalities as follows:

ε
d
ds
uk(s) = −q−1

k

∑
†∈{+,−}

Γ†
k,ε({U(s)})[1 + C†

k(s)] (2.9)

and ⎧⎪⎨
⎪⎩

ε
d
ds
um+1(s) ≥ q−1

m+1Γ
−
m+1,ε({U(s)})(1 + C−

m(s)) ≥ 0,

ε
d
ds
u0(s) ≤ q−1

0 Γ+
0,ε({U(s)})(1 + C+

0 (s)) ≤ 0.

(2.10)

We assume that the solution is defined on I = [0, Tmax], and that at initial time, we have

u0(0) < u1(0) < · · · < um(0) < um+1(0). (2.11)

The behavior of this system is related to the function Fε defined on R
m+2 by

Fε(U) =
m∑

k=0

F
k+ 1

2
ε (U), (2.12)

where, for k = 1, · · · , m − 1 and u = (u0, · · · , um+1), we set

F
k+ 1

2
ε (U) = ελ

− 1
2

j+(k)B
+
k B−

k+1 exp
(
−
√

λj+(k)
|uk+1 − uk|

ε

)
≥ 0,
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the numbers qk > 0, Bk > 0 and λj+(k) > 0 being computed thanks to (1.15). In the case q0 <

u1 < · · · < um < qm+1, the value of Fε(u) describes a nearest neighbor repulsive interactions
between the points uk. We have, for k = 0, . . . , m,

∂F

∂uk
(U) = Γ+

k,ε(U) − Γ−
k,ε(U), (2.13)

where Γ+
m+1,ε(U) = 0, Γ−

0,ε(U) = 0, for k = 0, · · · , m, we have set

Γ+
k,ε(U) =

∂F
k+ 1

2
ε

∂uk
(U) = B+

k B−
k+1 exp

(
−
√

λj+(k)
|uk+1 − uk|

ε

)
,

for k = 1, · · · , m + 1, we have set

Γ−
k,ε(U) = −∂F

k− 1
2

ε

∂uk
(U) = −B−

k B+
k−1 exp

(
−
√

λj−(k)
|uk − uk−1|

ε

)
.

Notice in particular that Γ+
k,ε = Γ−

k+1,ε for k = 0, · · · , m. We consider

ρmin(U) = inf{
√

λ+
j(k)|uk+1 − uk|, k = 0, · · · , m} and du(t) = ρmin(u(t)).

We prove the following proposition in this subsection.

Proposition 2.4 Assume that (2.1) is satisfied and that the function U satisfies (2.9)–(2.10)
on [0, Tmax] with (2.11). Then, we have, for any t ∈ [0, Tmax],

du(t) − du(0)
ε

≥ log
[
S3 + S4ε

−2t exp
(
− du(0)

ε

)]
− logS5. (2.14)

The proof relies on several elementary observations, which we present first before completing
the proof of Proposition 2.3. We start with some specific properties of the functional F , which
are stated in the next lemma.

Lemma 2.1 Let U = (u0, · · · , um+1) be such that u0 < u1 < · · · < um < um+1. We have

λ
− 1

2
maxB2

min exp
(
− ρmin(U)

ε

)
≤ F (U)

ε
≤ (m + 1)λ− 1

2
minB2

max exp
(
− ρmin(U)

ε

)
, (2.15)

|∇F (U)| ≤ (m + 2)
√

λmax
B2

max

B2
min

ε−1F (U), (2.16)

and for every k = 0, · · · , m + 1,

|∇Fε(U)| ≥ 1
4m

|Γ±
k,εU)| ≥ B2

min

4m
exp
(
− ρmin(U)

ε

)
≥ B2

min

√
λmin

(m + 1)4mB2
max

F (U)
ε

. (2.17)

Proof Inequalities (2.15)–(2.16) are direct consequences of the definition (2.12) of F . In
view of formula (2.13), if k = 0 or k = m+1, there is nothing to prove, provided that we choose
μ0 ≤ 1. Next, let k = 1, · · · , m and consider for instance Γ+

k,ε. we distinguish the following two
cases.

Case 1 |Γ−
k,ε| ≤ 1

2 |Γ
+
k,ε|. If this case occurs, then, we have, in view of (2.13),

|Γ+
k,ε| ≤ 2

∣∣∣ ∂F

∂uk
(U)
∣∣∣ ≤ 2|∇F (U)|,
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and we are done with a choice of γ0 ≤ 1
2 .

Case 2 |Γ+
k−1,ε| = |Γ−

k,ε| ≥ 1
2 |Γ

+
k,ε|. In this case, we repeat the argument with k replaced

by k − 1. Then either
|Γ+

k−1,ε| ≤ 2|∇F (U)|,

so that |Γ+
k,ε| ≤ 4|∇F (U)|, and we are done, or |Γ+

k−2,ε| ≥ 1
2 |Γ

+
k−1,ε|, and we repeat the argu-

ment. Since we have to stop at k = 0, this leads to the desired inequality.

The next result emphasizes the gradient flow structure of (1.16).

Lemma 2.2 Let U be a solution to (2.9)–(2.10) on [0, T ], such that (2.11) and (2.1) hold.
Then, we have, for every t ∈ [0, Tmax],

ε
d
dt

F (U(t)) ≤ −q−1
max

2
|∇F (U(t))|2 ≤ −S4ε

−2F (U(t))2. (2.18)

In particular, F (u(t)) ≤ ε
[
S4ε

−2t + ε
F (u(0))

]−1 ≤ F (u(0)).

Proof Combining equations (2.9) and (2.10) with the chain rule, we are led to

ε
d
dt

Fε(U(t)) = ε

m+1∑
k=0

∂F

∂uk
(U(t))

duk
dt

(t)

≤ −q−1
max|∇Fε(U(t))|2 + 2q−1

max|∇F (U(t))|sup
k,†

|Γk,ε(U(t))|sup
k,†

|C†
k(t)|

≤ −q−1
max|∇Fε(U(t))|2 +

q−1
max

2
|∇Fε(U(t))|2 = −q−1

max

2
|∇F (U(t))|2 ,

where for the last inequality, we have invoked Lemma 2.1 and inequality (2.1). The second
inequality in (2.18) is then a direct consequence of (2.17). Finally, the last inequality of the
lemma follows by integration of the differential inequality (2.18).

Proof of Proposition 2.4 Combining the last inequality of Lemma 2.2 with inequality
(2.15), inequality (2.14) follows.

We complete this section with the following lemma.

Lemma 2.3 Let U be a solution to (2.9)–(2.10) on [0, T ], such that (2.11) and (2.1) hold.
Given any time 0 ≤ t1 ≤ t2, we have, with S′

1 = 2 log((m + 1)λ− 1
2

minB2
max),∫ t2

t1

exp
(
− du(s)

ε

)
ds ≤ S−1

4 λ
1
2
maxB−2

minε [du(t2) − du(t1)] + S′
1ε

2.

Proof We have by the chain rule and inequality (2.15),

−ε2 d
dt

[log(F (U(t)))] = − ε2

F (U(t))
d
dt

F (U(t)) ≥ S4
F (U(t))

ε
≥ S4λ

− 1
2

maxB2
min exp

(
− du(t)

ε

)
.

The conclusion follows by integration.

2.3 Maximal attractive chains

In this section, we provide a few properties of a maximal attractive chains B = {j, j +
1, · · · , j + m}, with m ≤ � − 2 within the general system (1.16): In particular, we show that it
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generates collisions in finite time, with an upper bound on the collision time. We may assume
without loss of generally that †j = +, so that †j+k = sign(−1)k. Defining U as above, the
function U still satisfies (2.9), but the inequalities (2.10) are now replaced by⎧⎪⎪⎨

⎪⎪⎩
ε

d
ds
um+1(s) ≤ qm+1Γ−

m+1,ε({U(s)})(1 + C−
m(s)) ≤ 0,

ε
d
ds
u0(s) ≥ q0Γ+

0,ε({U(s)})(1 + C+
0 (s)) ≥ 0.

(2.19)

The behavior of the chain B is now still related to the functional Fε(U), where Fε is defined
in (2.12), with B±

k = B
±sign(−1)k

i(j) and hence takes only two values, and λj+(k) = λj+ . However,
the differential inequality (2.18) is now turned into

ε
d
dt

F (U(t)) ≥ q−1
max

2
|∇F (U(t))|2 ≥ S4F (U(t))2, (2.20)

which, by integration yields F (u(t))
ε ≥

[
ε

F (u(0)) − S4ε
−2t
]−1 ≥

[
S′

3 exp
(du(0)

ε

)
− S4ε

−2t
]−1

.

Proposition 2.5 Assume that (2.1) is satisfied and that the function U satisfies the system
(2.9) and (2.19) on [0, Tmax] together with (2.11). Then, we have, for any t ∈ [0, Tmax],

du(t) − du(0)
ε

≤ log
[
S′

3 − S4ε
−2t exp

(
− du(0)

ε

)]
− logS′

5.

The argument is similar to the proof of Proposition 2.4, we therefore omit it.

Lemma 2.4 Assume that (2.1) is satisfied and that the function U satisfies the system (2.9)
and (2.19) on [0, Tmax] together with (2.11). Then, we have the estimate

∫ t2

t1

exp
(
− du(s)

ε

)
ds ≤ S−1

1 λ
1
2
maxB−2

minε[du(t2) − du(t1)] + S2ε
2.

2.4 Proof of Proposition 2.3 completed

Inequalities (2.4) and (2.6) of Proposition 2.3 follow immediately from Proposition 2.4 and
Proposition 2.5 applied to each separate maximal chain provided by the decomposition (2.8):
We leave the details of the proof to the reader. Inequality (2.5) is then a direct consequence of
(2.4). For inequality (2.7), we consider again each maximal attractive chain and notice that, if
bk is an element of such a chain which is not at the end points, then we have

ε
∣∣∣ d
dt

[bk(t)]
∣∣∣ ≤ 4q−1

minB2
max exp

(
− d

−
b (t)
ε

)
,

and a similar estimate holds for the points which are at the end of the chain. A few elementary
arguments then lead to the conclusion.

3 Remarks on Stationary Solutions

In this section, we collect a few elementary results about stationary solutions to (PGL)ε.
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3.1 Stationary solutions in R with vanishing discrepancy

Stationary solutions on R may be described by using the method of separation of variable,
a tool which cannot be extended to systems. As matter of fact, this simple fact turns out to be
crucial, and explains for a large part why the analysis of this paper remains restricted to the
scalar case.

Consider more generally an interval I of R and a solution u to (1.34). Multiplying equation
(1.34) by u, we are led to the fact that, for any solution u of (1.34), we have

d
dx

ξ(u) = 0, (3.1)

so that ξ is a constant function on I. We restrict ourselves in this section to solutions with
vanishing discrepancy, that is which verify

ξ = 0, that is,
u̇2

2
= ε−2V (u). (3.2)

Differentiating (3.2), we verify that any smooth solution to (3.2) is actually a solution to (1.34).
We finally solve equation (3.2) by separation of variables. Consider the function ζi defined on
the interval (σi, σi+1) by

γi(u) =
∫ u

zi

du√
2V (u)

, (3.3)

where zi is defined in the introduction. The map γi is one-to-one from (σi, σi+1) to R, so that
we may define its inverse map

ζ+
i (x) = γ−1

i (x) (3.4)

from R to (σi, σi+1) as well as the map ζ−i (x) = ζ−1
i (−x). We verify that ζ+

i

( ·
ε

)
as well as

ζ−i
( ·

ε

)
solve (3.2) and hence (1.34). The next result, those proof is left to the reader, shows

that we have actually obtained all solutions.

Lemma 3.1 Let u be a solution to (1.34) on some interval I, such that (3.2) holds, and
such that u(x0) ∈ (σi, σi+1) for some x0 ∈ I and some i ∈ 1, · · · , q − 1. Then

u(x) = ζ+
i

(x − a

ε

)
, ∀x ∈ I or u(x) = ζ−i

(x − a

ε

)
, ∀x ∈ I

for some a ∈ R.

Next, we provide a few simple properties of the functions ζ±i which enter directly in our
arguments. In view of the definition (3.4), we have

ζ±i (0) = zi, ζ+
i

′
(0) =

√
2V (zi) > 0, (3.5)

whereas a change of variable shows that ζi has finite energy given by the formula

Si ≡ E(ζi) =
∫ σi+1

σi

√
2V (u)du. (3.6)



On the Motion Law of Fronts for Scalar Reaction-Diffusion Equations 103

It is also straightforward to establish that there exists some constant β1 > 0, such that, if for
some s ∈ R, we have |ζ±i (s) − σi| ≥

μ0

2
, then

|s| ≤ β1. (3.7)

We introduce the constants⎧⎪⎪⎨
⎪⎪⎩

A−
i = −

∫ zi

σi

[ 1√
2V (u)

− 1√
λi(u − σi)

]
du − 1√

λi

log(zi − σi),

A+
i =

∫ σi+1

zi

[ 1√
2V (u)

− 1√
λi+1(σi+1 − u)

]
du +

1√
λi+1

log(σi+1 − zi),

so that we obtain the expansions, as u → σ+
i and as u → σ−

i+1,⎧⎪⎪⎨
⎪⎪⎩

γi(u) = A−
i +

1√
λi

log(u − σi) + O
u→σ+

i

(u − σi),

γi(u) = A+
i − 1√

λi+1

log(σi+1 − u) + O
u→σ−

i+1

(σi+1 − u).
(3.8)

It follows that as x → −∞ and as x → +∞,⎧⎨
⎩

ζ+
i (x) = σi + B−

i exp(
√

λi x) + O
x→−∞

(exp(2
√

λi x)),

ζ+
i (x) = σi+1 − B+

i exp(−
√

λi+1 x) + O
x→+∞

(exp−(2
√

λi+1 x)),
(3.9)

where B−
i = exp(−A−

i ) and B+
i = exp(−A+

i ). Similar asymptotics hold for derivatives. For
0 < ε < 1 given, and i = 1, · · · , q−1, consider the scaled function ζ±i,ε = ζ±i

( ·
ε

)
. Straighforward

computations show that⎧⎪⎪⎨
⎪⎪⎩

eε(ζi,ε)(x) =
λi

ε
B−

i exp
(2

√
λix

ε

)
+ O

u→−∞

(
exp
(√3λix

ε

))
,

eε(ζi,ε+)(x) =
λi+1

ε
B+

i exp
(2
√

λi+1x

ε

)
+ O

u→+∞

(
exp
(√3λi+1x

ε

))
,

(3.10)

so there is some constant C > 0 which does not depend on r and ε, such that

Si ≥
∫ r

−r

eε(ζ+
i,ε)dx ≥ Si − C

[
exp
(
− 2

√
λi r

ε

)
+ exp

(
− 2
√

λi+1 r

ε

)]
. (3.11)

3.2 Study of the perturbed stationary equation

This section is devoted to some properties of solutions (1.30), that is to the perturbed
differential equation uxx = ε−2V ′(u) + f on R, where the function f belongs to L2(R). The
main result of this section will be to show that, if u has bounded energy and if f is small, then
u is close to several translations of the functions ζi,ε suitably glued together. More precisely,
we assume throughout this section that

Eε(u) ≤ M0 (3.12)

and consider the number

df =
ε

ρ1
log
( 1

c0ε
3
2 ‖f‖L2(R)

)
, (3.13)
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where ρ1 and c0 are constants depending possibly on M0 and which will be determined later
(see (3.24) for ρ1 and the proof of Lemma 3.4 for c0). Hence, we have

‖f‖L2(R) =
ε−

3
2

c0
exp
(
− ρ1df

ε

)
. (3.14)

We assume throughout this subsection that

df ≥ α1ε > 0, (3.15)

where α1 > 0 is some constant depending only on V , which will be fixed in the proof of Lemma
3.4 below. This assumption implies in particular

c0ε
3
2 ‖f‖L2(R) ≤ 1. (3.16)

If I is some interval of R and g is a C1 function defined on R, it is convenient to introduce the
notation

‖g‖C1
ε(I) = sup

x∈I
|g(x)| + ε sup

x∈I
|g′(x)|. (3.17)

The main result of this section can be stated as follows.

Proposition 3.1 Let u be a solution to (1.30) satisfying assumptions (3.12) and (3.15).
Then, there exists a collection of points {ak}k∈J in R, such that the following conditions are
fulfilled:

(1) 
(J) ≤ 2M0
S0

, where S0 = inf{Si, i = {1 · · · , q}.
(2) For each k ∈ J , there exists a number i(k) ∈ {1, · · · , q}, such that

u(ak) = zi(k). (3.18)

(3) The points are well-separated, that is, we have, for k �= k′,

dist(ak, ak′) >
df

2
. (3.19)

(4) For each k ∈ J , there exists a symbol †i ∈ {+,−}, such that we have the estimate, for
Ik =

[
ak − df

2 , ak + df

2

]
, ∥∥∥u − ζ†i

i(k),ε

( · − ak

ε

)∥∥∥
C1

ε (Ik)
≤ exp

(
− ρ1df

4ε

)
. (3.20)

(5) Set Ωr(t0) = R \
J
∪

k=1
Ik. We have the energy estimate

∫
Ωr(t0)

eε(vε(·, t0))dx ≤ exp
(
− ρ1df

2ε

)
. (3.21)

The proof of Proposition 3.1 will be decomposed into several lemmas. Following the ap-
proach of [3], we recast equation (1.30) as a system of two differential equations of first order.
For that purpose, we set w = εux, so that (1.30) is equivalent to the system

ux =
1
ε
w and wx =

1
ε
V ′(u) + εf, (3.22)
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which we may write in a more condensed form as

Ux =
1
ε
G(U) + εF on R, (3.23)

where, for x in R, we have set U(x) = (u(x), w(x)) and F (x) = (0, f(x)), and where G denotes
the vector field on R

2 given by G(u1, u2) = (u2, V
′(u1)). Notice that |∇G(u1, u2)| ≤ N(|u1|),

where N ≥ 1 is some continuous non-decreasing scalar function. On the other hand, since u is
assumed to satisfy the energy bound (3.12), we have

‖u‖L∞(R) ≤ C(M0 + 1),

so that we are led to set

ρ1 = N(C(M0 + 1) + 1). (3.24)

We next compare a given global bounded solution u of (1.30) to a possible local solution u0 of
the unperturbed equation

uxx = ε−2∇V (u) (3.25)

with comparable initial condition at some point x0 ∈ R. We denote accordingly U0 =(u0, ε−1u0
x)

on its maximal interval of existence. As a consequence of Gronwall’s identity, we have the
following lemma.

Lemma 3.2 Let A = (−b, b) be an interval of R, u be a solution to (1.30) on A and u0 be
a local solution to (3.25). Assume that for some number a satisfying b ≥ a > 0, we have the
inequality

|U(0) − U0(0)| + ε
3
2

√
2ρ1

‖f‖L2([−b,b]) ≤ exp
(
− ρ1a

ε

)
. (3.26)

Then u0 is well-defined on [−a, +a], and we have

‖U − U0‖L∞([−a,+a]) ≤
(
|U(0) − U0(0)| + ε

3
2

√
2ρ1

‖f‖L2

)
exp
(ρ1a

ε

)
. (3.27)

Proof Let I be the largest interval containing 0, such that

‖u0‖L∞(I) ≤ ‖u‖∞ + 1. (3.28)

On I, since (U − U0)x = G(U) − G(U0) + εF , we obtain the inequality

|(U − U0)x| ≤
ρ1

ε
|U − U0| + ε|F |.

It follows from Gronwall’s inequality, that, for x ∈ I,

|(U − U0)(x)| ≤ exp
(ρ1|x|

ε

)
|(U − U0)(0)| +

∣∣∣ ∫ x

0

ε|F (x − y)| exp
(ρ1|x|

ε

)
dy
∣∣∣,

so that by the Cauchy-Schwarz inequality, we are led to the bound, for x ∈ I,

|(U − U0)(x)| ≤
(
|U(0) − U0(0)| + ε

3
2

√
2ρ1

‖f‖L2

)
exp
(ρ1|x|

ε

)
. (3.29)

Hence, if (3.26) is verified, then [−a, a] ⊂ I and (3.27) follows.

We will combine the previous lemma with the following lemma.
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Lemma 3.3 Let u be a solution to (1.30) on R, such that Eε(u) ≤ M0 < +∞. Then

‖ξε(u)‖L∞(R) ≤
√

2M0ε
3
2 ‖f‖L2(R).

Proof This is a direct consequence of the equality d
dxξε(u) = ε2f d

dxu, d
dxu, Cauchy-Schwarz

inequality, and the fact that it is zero at infinity since u has finite energy.

Lemma 3.4 Let u be a solution to (1.30) on R satisfying assumptions (3.12) and (3.15)
and let x0 ∈ D(u). There exists some point y0 ∈ R, some i ∈ {1, · · · , q} and some symbol
† ∈ {+,−}, such that for every 0 < a < df , we have

‖u − ζ†i,ε(· − y0)‖C1
ε ([x0−a,x0+a]) ≤ exp

(
− ρ1

ε
(df − a)

)
. (3.30)

Moreover, there exists some constant α1 > 0 depending only on the potential V , such that, if
df ≥ γ1ε, then y0 ∈ [x0 − df

32 , x0 + df

32 ] and

∣∣∣ ∫ y0+
df
2

y0−
df
2

eε(u) − eε(ζ
†
i,ε(· − y0))dx

∣∣∣ ≤ C
df

ε
exp
(
− ρ1df

4ε

)
, (3.31)

where the constant C > 0 depends only on the potential V .

Remark 3.1 (1) Since ζ†i (0) = zi, it is straightforward to deduce from (3.30) applied with
a = 7df

8 and the properties of the functions ζ†i (see (3.9)) that, if the constant α1 is choosing
sufficiently large, then there exists some point ỹ0, such that |y0 − ỹ0| ≤ df

32 and u(ỹ0) = zi.
(2) We also notice that if the constant α1 is chosen sufficiently large,

D(u) ∩
[
ỹ0 +

df

32
, ỹ0 +

3df

4

]
= ∅ and D(u) ∩

[
ỹ0 −

3df

4
, ỹ0 −

df

32

]
= ∅. (3.32)

(3) Set

ρ2 = inf
{ρ1

4
,
√

λi, i = 1, · · · , q
}
. (3.33)

Then, it follows combining (3.11) and (3.31) that

∣∣∣ ∫ y0+
df
2

y0−
df
2

eε(u)dx − Si

∣∣∣ ≤ C
df

ε
exp
(
− ρ2df

ε

)
, (3.34)

since the function s �→ s exp(−s) is decreasing for large values of s > 0 choosing the constant
α1 sufficiently large, and if we assume df ≥ α1ε, we are led to

∫ y0+
df
2

y0−
df
2

eε(u)dx ≥ S0

2
, (3.35)

where S0 = inf{Si, i = 1, · · · , q − 1} > 0.

Proof Going back to Lemma 3.2, we consider as solution u0 to the unperturbed equation
(3.25), the solution obtained choosing as initial conditions u0(x0) = u(x0) and the derivative
u0

x(x0) in such a way that ξε(u0)(x0) = 0. Obviously, it suffices therefore to choose

(u0
x(x0))2 =

V (uε(x0))
ε2

.
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We impose moreover the sign of u0
x(x0) to be the same as the sign of ux(x0), which does not

vanish, so that u0 is uniquely defined. Since by construction ξε(u0) = 0, it follows from Lemma
3.1 that

u0(·) = ζ†i,ε(· − y0)

for some point y0 ∈ R, some i ∈ {1, · · · , q} and some † ∈ {+,−}. Notice that, since x0 ∈ D(u),
there exists a constant c0 > 0 (depending only on the choice of μ0 and on the numbers λi,
hence on the properties of the potential V ), such that

ε|ux(x0)|2
2

=
V (u(x0))

ε
+ ε−1ξε(u)(x0) ≥

c0

ε
+ ε−1ξε(u)(x0),

so that by Lemma 3.3,
ε|ux(x0)|2

2
≥ c0

ε
−
√

2M0ε‖f‖L2(R).

Since by assumption (3.15), we have c0ε
3
2 ‖f‖L2(R) < 1 and deduce

ε|ux(x0)|2
2

≥ c0

ε
−

√
2M0c0

−1

ε
.

We next impose as first condition on c0 that c0
2 ≥ 2

√
2M0, so that we obtain, since 0 < ε ≤ 1,

ε|ux(x0)| ≥
√

c0. (3.36)

Combining the identity ε2(|ux(x0)|2 − |u0
x(x0)|2) = 2ξε(u)(x0), the bound (3.36) and Lemma

3.3, that are led to

|ε(ux − u0
x)(x0)| ≤

2
√

2M0√
c0

ε
3
2 ‖f‖L2(R).

Since u(x0) = u0(x0), we deduce

∣∣U(x0) − U0(x0)
∣∣ ≤ 2

√
2M0√
c0

ε
3
2 ‖|f‖L2(R). (3.37)

In view of Lemma 3.2, we estimate

|U(0) − U0(0)| + ε
3
2

√
2ρ1

‖f‖L2(R) ≤
(2

√
2M0√
c0

+
1
2

)
ε

3
2 ‖|f‖L2(R).

Imposing the additional condition c0 ≥ 2
√

2 M0√
c0

+ 1
2 , we completely determine c0. In view of

the definition definition of df , we are hence led to

|U(0) − U0(0)| + ε
3
2

√
2ρ1

‖f‖L2(R) ≤ exp
(
− ρ1df

ε

)
.

The inequality (3.30) then follows from Lemma 3.2. For the second assertion, we specify
inequality (3.30) for the point x = x0 with a = df

2 , so that

|ζ†i,ε(x0 − y0) − u(x0)| ≤ exp
(
− ρ1df

2ε

)
≤ exp

(
− ρ1γ1

2

)
≤ μ0

2
,
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provided, for the last inequality that α1 is chosen sufficiently large. Since x0 ∈ D(u), we have
either |u(x0) − σi| ≥ μ0 or |u(x0) − σi+1| ≥ μ0, and hence

|ζ†i,ε(x0 − y0) − σi| ≥ μ0 or |ζ†i,ε(x0 − y0) − σi+1| ≥ μ0.

Invoking (3.7), we are led to

|x0 − y0| ≤ β1ε.

Choosing α1 possibly even larger so that α1 ≥ 16β1, we are led to y0 ∈ [x0 − df

16 , x0 + df

16 ], that
is the second assertion follows. We finally turn to the proof of (3.31). For that purpose, we
choose a = 3df

4 , so that [y0 − df

2 , y0 + df

2 ] ⊂ [x0 − a, x0 + a], and hence, by inequality (3.30), we
may decompose u as u = ζ†i,ε(· − y0) + w, where

‖w‖
C1

ε([y0−
df
2 ,y0+

df
2 ])

≤ exp
(
− ρ1df

4ε

)
. (3.38)

Expending accordingly the energy, we derive estimate (3.31).

Remark 3.2 The conclusion (3.30) of Lemma 3.4 remains essentially unchanged, if instead
of a solution u defined on the whole real line R, we consider a solution on a bounded interval
A. In that case, however, we have to replace in our computation the quantity ‖f‖L2(R) by the
quantity ‖f‖L2(A) + ξε(u(z))√

2M0
, where z is some arbitrary point, which lead, in the conclusion, to

changing the constant df by the constant

d̃ ≡ − ε

ρ1
log
(
c0ε

3
2 [‖f‖L2(A) +

ξε(u(z))√
2M0

]
)
, (3.39)

Conditions (3.15)–(3.16) also have been changed accordingly.

Proof of Proposition 3.1 (Completed) We distinguish two cases.
Case 1 D(u) = ∅. In this case, we take J = ∅, and the only thing to be established in this

case is estimate (3.21). Since D(u) = ∅, there exists some i ∈ {1, · · · , q}, such that |u−σi| ≤ μ0.
Multiplying equation (1.30) by u − σi, we are led to∫

R

u2
x + ε−2λ0(u − σi)2dx ≤

∫
R

u2
x + ε−2V ′(u)(u − σi)dx

=
∫

R

f.(u − σi)dx

≤ ‖f‖L2(R)‖u − σi‖L2(R) (3.40)

and hence, by Cauchy-Schwarz, −
∫

R
εu2

x + ε−1λ0(u − σi)2dx ≤ λ−1
0 ε3‖f‖2

L2(R). In view of (3.14)
and the fact that 0 < ε < 1, this yields to (3.21).

Case 2 D(u) �= ∅. we construct the points ai by an inductive argument, which stops in a
finite numbers of steps. Let first x0 be an arbitrary point in D(u). Applying Lemma 3.4 to x0 as
well as Remark 3.1, we deduce the existence of a point ỹ0, such that u(ỹ0) = zi, |y0 − x0| ≤ df

16 ,

D(u) ∩
[
ỹ0 +

df

32
, ỹ0 +

3df

4

]
= ∅ and D(u) ∩

[
ỹ0 −

3df

4
, ỹ0 −

df

32

]
= ∅. (3.41)
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Applying (3.30) with a = 3df

4 , we are led to

‖u − ζ†i,ε(· − ỹ0)‖
C1

ε ([ỹ0−
df
2 ,ỹ0+

df
2 ])

≤ exp
(
− ρ1

4ε
df

)
. (3.42)

We set a1 = ỹ0, so that (3.18) as well as (3.20) are satisfied for k = 1. Moreover, it follows from
(3.35) that ∫

R\[a1−
df
2 ,a1+

df
2 ]

eε(u)dx ≤ M0 −
S0

2
. (3.43)

We iterative the process considering next Ω1 = D(u) \ [a1 − df

2 , a1 + df

2 ]. If this set is empty,
then we take J = {1}, i(1) = i and †1 = †, and we stop. Otherwise, we choose some x1 ∈ Ω1,
and argue as we did above, now with x1 instead of x0: This yields a point ỹ1, some number
i(2) ∈ {1, · · · , q}, some sign †2 ∈ {+,−}, such that |ỹ2 − x1| ≤ df

16 ,

‖u − ζ†2i(2),ε(· − ỹ1)‖
C1

ε ([ỹ1−
df
2 ,ỹ1+

df
2 ])

≤ exp
(
− ρ1

4ε
df

)
, (3.44)

D(u) ∩
[
ỹ0 +

df

32
, ỹ1 +

3df

4

]
= ∅, D(u) ∩

[
ỹ1 −

3df

4
, ỹ1 −

df

32

]
= ∅. (3.45)

Setting a2 = ỹ1, and invoking (3.35) again, we are led to∫
R\

2⋃
k=1

[ak−
df
2 ,ak+

df
2 ]

eε(u)dx ≤ M0 − S0. (3.46)

Notice also that, by construction, |a1 − a2| ≥ df

2 .

We construct the set {ak}k∈J repeating the previous construction inductively. Since in each
iteration the energy in estimates (3.46) decreases by at least an amount of S0

2 , we stop in at most
2M0
S0

number of steps, and all assertions, except (3.21) have been verified. In order to establish
(3.21), we argue as in case one. We have, integrating by parts in (1.30) for k = 1, · · · , q − 1

∫ ai+1−
df
2

ai+
df
2

(u2
x + ε−2V ′(u)(u − σi))dx

=
∫ ai+1−

df
2

ai+
df
2

(f(u − σi) + u′(ai+1)u(ai+1) − u′(ai)u(ai))dx

≤ ‖f‖L2(R)‖u − σi‖
L2([ai+

df
2 ,ai+1−

df
2 )

+ ε−1 exp
(
− ρ1df

2ε

)
, (3.47)

so that

ε

∫ ai+1−
df
2

ai+
df
2

(u2
x + ε−2λ0(u − σi))dx ≤ C exp

(
− 3ρ1df

4ε

)
.

By summation, we obtain (3.21), and the proof of Proposition3.1 is complete.

As a by-product of the Proposition 3.1, we may also derive a global estimate.

Lemma 3.5 Let u be a solution to (1.30) satisfying assumptions (3.12) and (3.15). then,
we have ∣∣∣Eε(u) −

∑
k∈J

Si(k)

∣∣∣ ≤ CM0
df

ε
exp
(
− ρ2df

ε

)
.

Proof It suffices to combine (3.34) and (3.21).
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4 Regularized Fronts

4.1 First properties

In this section, we provide some properties of the solution vε to (PGL)ε on time slices on
which it has already undergone a parabolic regularization, that is when fronts become close to
the stationary ones, and are well separated. Such a situation is described in Definition 1.1.

Lemma 4.1 If WPε(δ, t0) holds, then WPε(δ′, t0) holds for any α1ε ≤ δ′ ≤ δ.

We leave the proof to the reader. Next, we consider for k ∈ J(t0) the function w±
k,ε =

vε − σj±(k).

Lemma 4.2 Let t0 ≥ 0, δ > α1ε be given, and assume that vε satisfies condition WPε(δ, t0).
Then, we have, for any 0 < δ′ ≤ δ,

∣∣∣(w±
ε (ak ± δ′, t0) − B±

k exp
(
−
√

λj±(k)

ε
δ′
)∣∣∣ ≤ K

[
exp
(
−

2
√

λj±(k)

ε
δ′
)

+ exp
(
− ρ1

δ

ε

)]
,

where we have set B+
k = −†kB†k

i(k) and B−
k = †kB−†k

i(k) , with the numbers B±
i > 0 having been

introduced in (3.9).

Proof We have, in view of the definition of condition WPε(δ, t0),∣∣∣vε(ak ± δ′, t0) − ζ†i

i(k)

(
± δ′

ε

)∣∣∣ ≤ exp
(
− ρ1

δ

ε

)
, (4.1)

whereas by (3.9), we have

∣∣∣ζ†i

i(k)

(
± δ′

ε

)
−
(
σj±(k) − B†k

i(k) exp
(
−
√

λj±(k)

ε
δ′
))∣∣∣ ≤ K exp

(
−

2
√

λj±(k)

ε
δ′
)
. (4.2)

In several place, we will assume additionally that δ′ ≤ ρ1

2
√

λmax
δ, where λmax = sup{λi}.

Then we obtain under the assumption of Lemma 4.2

∣∣∣(w±
ε (ak ± δ′, t0) − B±

k exp
(
−
√

λj±(k)

ε
δ′
)∣∣∣ ≤ K

[
exp
(
−

2
√

λj±(k)

ε
δ′
)]

. (4.3)

For the outer region, we have the following lemma.

Lemma 4.3 Let t0 ≥ 0, δ ≥ α1ε be given, and assume that vε satisfies condition WPε(δ, t0).
Then, we have, for x ∈ [ak + δ, ak+1 − δ] (resp. x ∈ [ak−1 + δ, ak − δ]),

|w+
k,ε(x, t0)| ≤ C exp

(
− ρ1

δ

2ε

) (
resp. |w±

k,ε(x, t)| ≤ C exp
(
− ρ1

δ

2ε

))
.

Proof We write | d
dx(w+

k,ε)
2| = 2|ε− 1

2 w+
k,εε

1
2 d

dx(w+
k,ε)| ≤ 2eε(w+

k,ε), so that

|w+
k,ε(x, t0) − w+

k,ε(ak(t0) + δ)| ≤ 2
∫ x

ak(t0)+δ

eε(w+
k,ε)(x, s)ds.

The conclusion then follows from Lemma (4.1) and assumption WP3.

We complete the subsection with energy estimates.
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Lemma 4.4 Let t0 ≥ 0, δ ≥ α1ε be given, and assume that vε satisfies condition WPε(δ, t0).
Then, we have

|Eε(vε(·, t0)) − E(t0)| ≤ M0
δ

ε
exp
(
− ρ2δ

ε

)
, (4.4)

where ρ2 is defined in (3.33) and where the front energy E(t0) is defined by E(t0) =
∑

k∈J(t0)

Si(k).

The proof is similar to the proof of Lemma 3.5, and we omit it.
Notice that the front energy E(t0) may take only a finite number of values, and is hence

quantized. We emphasize also that, at this stage, the front energy E(t0) is only defined assuming
that condition WPε(δ, t0) holds. However, we leave to the reader to check that the value of
E(t0) does not depend on δ, provided of course that δ ≥ α1ε, so that it suffices ultimately, in
order to define E(t0), to check that condition WPε(α1ε, t0) is full-filled.

Choosing possibly a larger value for the constant α1, an immediate consequence of Lemma
4.4 as well as the fact that E(t0) may take only a finite number of values is as follows.

Lemma 4.5 Let T1 ≥ T ≥ 0 be given, and assume that conditions WPε(α1ε, T ) and
WPε(α1ε, T1) hold. Then, we have E(T1) ≤ E(T ). Moreover, there exists a positive constant
μ1 > 0, such that, if E(T1) < E(T ), then we have E(T1) ≤ E(T ) + μ1.

We next discuss the case of equality E(T1) = E(T ), in particular with respect to the L2

norm of the dissipation, which is central in several of our arguments. For that purpose consider
two times T and T1, such that T1 ≥ T ≥ 0, and set

dissip [T, T1] = ε

∫
R×[T,T1]

∣∣∣∂vε

∂t

∣∣∣2dxdt = Eε (vε(·, T )) − Eε (vε(·, T1)) . (4.5)

As a direct consequence of Lemma 4.4 and the global energy identity (1.5), we have the following
corollary.

Corollary 4.1 Assume δ > α1ε, and let T1 ≥ T ≥ 0 be such that both WPε(δ, T ) and
WPε(δ, T1) hold and that E(T ) = E(T1). Then, we have

dissip [T, T1] ≤ 2M0
δ

ε
exp
(
− ρ2δ

ε

)
.

4.2 Finding regularized fronts

Occurrences of well-prepared time slices may be found thanks to Proposition 3.1 and a rough
mean-value argument. In many places, we rely on the following observation.

Lemma 4.6 Let T ≥ 0, ΔT > 0 and δ ≥ α1ε be given. If

ΔT ≥ c0
2ε2 dissip [T, T + ΔT ] exp

(
2ρ1

δ

ε

)
, (4.6)

then, there exists some time t0 ∈ [T, T + ΔT ], such that WPε(δ, t0) holds.

Proof By the mean-value argument, there exists some time t0 ∈ [T, T + ΔT ], such that

‖∂t(·, t0)‖2
L2(R) ≤ ε−1 dissip [T, T + ΔT ]

ΔT
≤ ε−3

c0
2

exp
(
− 2ρ1

δ

ε

)
.
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Consider next the map u = vε(·, t0), so that u is now a solution to (1.30), with source term f =
∂t(·, t0). Hence f satisfies (3.14) with df = 2δ. The conclusion then follows from Proposition
3.1.

As a matter of fact, one may initiate the search of regularized fronts using (1.5), that is

dissip [T, T1] ≤ M0. (4.7)

Therefore, it follows from Lemma 4.6 that it suffices to impose

ΔT ≥ c0
2ε2 M0 exp

(
2ρ1

δ

ε

)
(4.8)

to deduce the existence of a time t0 ∈ [T, T + ΔT ], such that WPε(δ, t0) holds. In particular,
taking δ of the form δ = αε with α ≥ α1, we see that given any T ≥ 0, there exists a time
t ∈ [T, T + ω(α)ε2], such that WPε(αε, t) holds with

ω(α) = c0
2 M0 exp (2ρ1α) . (4.9)

Since we assume α ≥ α1 the front energy E(t) is then well-defined. In other words, on each
time interval of size ω(α1)ε2, there exists some time for which the front energy is well-defined.
On the other hand, this energy is non-increasing takes only a finite number of values, so that
we may expect to find large time intervals, where it remains constant. This is the situation we
analyze in the next subsection.

4.3 Propagating regularized fronts

We assume throughout this subsection, that we are given δ > α1ε and two time T1 ≥ T ≥ 0,
such that {

WPε(δ, T ) and WPε(δ, T1) hold,
E(T ) = E(T1).

(4.10)

Under that assumption, our first result shows that vε remains regularized on almost the whole
time interval [T, T1], with a smaller δ though.

Proposition 4.1 Assume that assumption (4.10) holds with δ ≥ α2ε, where α2 ≥ α1 is
some constant depending only on the potential V and the constant M0. There exists some
constant 0 < ν1 < 1, such that given any time t ∈ [T + c1εδ, T1], property WPε(ν1δ, t) holds,
where c1 = 2M0c2

0.

The proof of Proposition 4.1 involves the next result, of possible independent interest.

Lemma 4.7 Assume that assumption (4.10) holds with δ ≥ α1ε. We have the estimate, for
t ∈ [T + ε2, T1],

|∂tvε(x, t)| ≤ CM0ε
−2

√
δ

ε
exp
(
− ρ2

δ

2ε

)
.

Proof Differentiating equation (PGLε) with respect to time, we are led to

|∂t(∂tvε) − ∂xx(∂tvε)| ≤
C

ε2
|∂tvε|. (4.11)
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It follows from standard parabolic estimates, working on the cylinder Λε = [x−ε, x+ε]×[t−ε2, t]
that

|∂tvε(x, t)| ≤ Cε−
3
2 ‖∂tvε‖L2(Λε) ≤ CM0ε

−2

√
δ

ε
exp
(
− ρ2

δ

2ε

)
,

where the last inequality follows from Corollary 4.1, and which yields the conclusion.

Proof of Proposition 4.1 We divide the proof into several steps.
Step 1 Given any time t ∈ [T + c1εδ, T1], we may find some time t̃ ∈ [t − c1εδ, t], such

that WPε(ν2δ, t̃) holds, where 0 < ν2 < 1 is some positive constant.
Proof of Step 1 In view of Corollary 4.1, we have dissip [t − c2

1εδ, t] ≤ 2M0
δ
ε exp

(
− ρ2δ

ε

)
.

The conclusion follows directly from Lemma 4.6, applied with T = t− c1εδ and ΔT = c1εδ, the
definition (3.33) of ρ2, and the choice ν2 = ρ2

4ρ1
. Concerning the constant ν1, our choice will be

ν1 =
1
2

inf
{
ρ1ν3,

ρ1ρ2

5
, ν2

}
with ν3 = inf

{ ρ2

4ρ1
, ν2

}
. (4.12)

Step 2 Set U0
k = [ak(t) +ν1δ, ak+1(t)−ν1δ] and U1

k = [ak(t) + ν2δ, ak+1(t)−ν2δ]. Then,
we have, for any s ∈ [t̃, t], i = 0, 1 and provided that α2 is chosen sufficiently large,

∑
k

∫
Ui

k

eε((vε(x, s))dx ≤ exp
(
− νiρ1

δ

ε

)
.

Proof of Step 2 Since ν1 ≤ ν2 and in view of property WPε(ν2δ, t̃) inequality (1.10), we
have for i = 0, 1, ∑

k

∫
Ui

k

eε((vε(x, t̃))dx ≤ CM0 exp
(
− νiρ1

δ

ε

)
.

Consider the cylinder Λk = [ak(t) + ν1δ
2 , ak(t) + ν1δ

2 ] × [t̃, t], and set θbd = Max{θ0
bd, θ

1
bd},

where, for i = 0, 1, we have defined

θi
bd = Max

{∣∣∣vε

(
ak+i(t) +

ν1δ

2
, t̃
)
− vε

(
ak+i(t) +

ν1δ

2
, s
)∣∣∣, s ∈ [t̃, t]

}
.

It follows from Lemma 4.7 that |θbd| ≤ CM0

(
δ
ε

) 3
2 exp

(
− ρ2

δ
2ε

)
. The conclusion that follows

from the estimates provided in Proposition 6.1.
Step 3 There exists some point z ∈ [ak(t) + δ, ak(t) + 2δ], such that

|ξε(z, t)| ≤ ε

δ
exp
(
− ν2ρ1

δ

ε

)
.

Proof of Step 3 It is a direct consequence of the inequality ε−1|ξε| ≤ eε(vε), Step 2 for
i = 1 and a mean-value argument.

Step 4 (Proof of Proposition 4.1 Completed) To prove that WPε(ν1δ, t) holds, we have
to establish that conditions WP3(ν1δ) and WP4(ν1δ) hold at time t. Condition WP3(ν1δ)
is actually an immediate consequence of Step 1. For WP2(ν1δ), we apply Remark 3.2 to the
map vε(·, t) on the interval A = [ak(t) − 2δ, ak(t) + 2δ] with f = ∂vε(., t), so that, in view of
Lemma 4.7, we derive ε

3
2 ‖f‖L2(A) ≤ CM0δ exp

(
− ρ2

δ
2ε

)
. Computing d̃ according to (3.39) we

find, thanks to the definition of ν2,
d̃ ≥ ρ2

5ε
δ,
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provided that α2 is chosen sufficiently large. This yields

‖u − ζ†k

i(k),ε(· − y0)‖C1
ε ([x0−a,x0+a]) ≤ exp

(
− ρ1

2ε
d̃f

)
≤ exp

(
− ρ1ρ2

10ε
δ
)
,

which establishes WPε3(ν1δ) at time t for our choice (4.12) of the constant ν1.

We complete this subsection deriving a simple consequence of Corollary 4.1, which will be
used in several places. Consider an arbitrary point a ∈ R, numbers d > 0, r > 0 and set

θ±(a,t)(d, r) = Max{|vε(a ± d, t) − vε(a ± d, s)|, s ∈ [t − εr, t + εr] ∩ [T, T1]}. (4.13)

Lemma 4.8 Assume that assumption (4.10) holds with δ ≥ α2ε. Let t ∈ [T, T1], a ∈ R,
d > 0 and r > 0 be given. There exists some d̃ ∈ [d

2 , d], such that

θ±(a,t)(d̃, r) ≤ 2

√
M0

δr

εd
exp
(
− ρ2

δ

2ε

)
.

Proof Set t1 = inf{t − εr, T }. It follows from Corollary 4.1, the definition of dissip and a
standard mean-value argument that, for some d̃ ∈ [d

2 , d], we have the inequality∫ t+εr

t1

(|∂tvε(a + d̃, s)|2 + |∂tvε(a − d̃, s)|2)ds ≤ 4M0δ

ε2d
exp
(
− ρ2

δ

ε

)
. (4.14)

The results follows by integration and invoking Cauchy-Schwarz inequality.

4.4 First properties of trajectories

In this subsection, we discuss a few elementary properties of the subset O(t) of R, defined
in (1.11) in particular in connection with the property WPε(δ, t). As a matter of fact, this is
the true for all positive times, as a consequence of a general result of Angenent on parabolic
scalar equations9 (see [2]): Moreover, the number of elements in WPε(δ, t) can only decrease.
Going back to Proposition 4.1, we see that if (4.10) holds with δ ≥ α2ε, then the number of
points in O(t) is constant on the interval [T, T1], and therefore, we may write, for t ∈ [T, T1],

O(t) = {ak(t)}k∈J(T ). (4.15)

Concerning the motion of the individual points ak(·), we have the following proposition.

Proposition 4.2 Let 0 ≤ T ≤ T1 and δ be given, and assume that condition (4.10) holds
with δ ≥ α3ε, where α3 ≥ α2 is some constant. Then given any times t and t′ ∈ [T, T1], we
have

|ak(t) − ak(t′)| ≤
( |t − t′|

ε
+ c1δ

)
exp
(
− ρ3

δ

ε

)
. (4.16)

Proof We divide the proof into steps.
Step 1 Given any times t and t′ ∈ [T, T1], such that |t − t′| ≤ c1εδ and WPε(ν1δ, t′), we

have

|ak(t) − ak(t′)| ≤ ε2

2δ
exp
(
− 2ρ3

δ

ε

)
. (4.17)

9This is the second place where we invoke the fact that the equation is scalar: However, this observation is
not crucial in the proof.
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Proof of Step 1 We apply Lemma 4.8 with r = c1δ, a = ak(t) and choose d of the form

d =
ε2

δ
exp
(
− �

δ

ε

)
,

where the parameter � is determined by � = inf
{

ρ3
4 , ν1ρ1

4

}
. Since we impose that 4� ≤ ρ3,

there exists, in view of Lemma 4.8, some d̃ ∈ [d
2 , d], such that

θ±(a,t)(d̃, c0δ) ≤ 2

√
c1M0

δ3

ε3
exp
(
− [ρ3 − 2�]δ

4ε

)
≤ 2

√
c1M0

δ3

ε3
exp
(
− ρ3δ

8ε

)
≤ exp

(
− ρ3δ

10ε

)
. (4.18)

Since the assumption 0 < ε < 1 holds, the last inequality holds if δ ≥ α3ε, provided that
α3 ≥ α2 > 0 is chosen sufficiently large. On the other hand, since WPε(ν1δ, t′) holds, we have
for any −ν1δ ≤ l ≤ ν1δ,∣∣∣vε(ak(t′) + l, t′) − ζ†i

i(k)

( l

ε

)∣∣∣ ≤ exp
(
− ρ1

ν1δ

ε

)
, (4.19)

while we have that for any l ∈ R the estimate
∣∣ζ†i

i(k)

(
l
ε

)
− zi(k)

∣∣ ≥ K inf
{

l
ε , 1
}
, where K is

some constant. We deduce that for any −ν1δ ≤ l ≤ ν1δ, we have

|vε(ak(t′) + l, t′) − zi(k)| ≥ K inf
{ l

ε
, 1
}
− exp

(
− ρ1

ν1δ

ε

)
. (4.20)

Next assume by contradiction that

ak(t′) − ak(t) ≥ 4
ε2

δ
exp
(
− �

δ

2ε

)
. (4.21)

If (4.21) holds, then we have

ak(t′) − [ak(t) + d̃] ≥ 3ε2

δ
exp
(
− �

δ

2ε

)
.

Using (4.20) with l = ak(t′) − [ak(t) + d], we are led to

|vε(ak(t) ± d̃, t′) − zi(k)| ≥ K
ε

δ
exp
(
− �

δ

2ε

)
− exp

(
− ν1ρ1

δ

ε

)
≥ exp

(
− �

δ

4ε

)
, (4.22)

where the last inequality holds since we impose 0 < � ≤ ν1ρ1
4 , provided δ ≥ α3ε and that α3 is

chosen sufficiently large. Combining this inequality with (4.18), we are led to

|vε(ak(t) ± d̃, t) − zi(k)| ≥ K
ε

δ
exp
(
− �δ

4ε

)
− exp

(
− ρ3δ

10ε

)
≥ exp

(
− �δ

8ε

)
, (4.23)

provided δ ≥ α3ε and that α3 is chosen sufficiently large. Since |v̇ε| ≤ Kε−1, we deduce, setting
Minbd = inf{|vε(ak(t) + l, t) − zi(k)|, l ∈ [−d̃, d̃]},

Minbd ≥ exp
(
− �δ

8ε

)
− Kd

ε
≥ exp

(
− �δ

8ε

)
− Kε

δ
exp
(
− �δ

ε

)
≥ exp

(
− �δ

2ε

)
> 0, (4.24)

provided δ ≥ α3ε and that α3 is chosen sufficiently large. On the other hand, it follows from
the definition of ak(t) that |vε(ak(t), t) − zi(k)| = 0, so that Minbd = 0, a contradiction, and so
that (4.21) does not hold, if δ ≥ α3ε. Similarily, one shows

ak(t) − ak(t′) ≤ 4
ε2

δ
exp
(
− �

δ

2ε

)
,
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which leads to the conclusion (4.17) with ρ3 = �
4 by choosing α4 sufficiently large.

Step 2 Given any times t and t′ ∈ [T, T1], such that |t − t′| ≤ c1εδ, we have

|ak(t) − ak(t′)| ≤ ε2

δ
exp
(
− 2ρ3

δ

ε

)
. (4.25)

Proof of Step 2 Without loss of generality, we may assume that T ≤ t ≤ t′ ≤ T1. This
is an immediate consequence of Step 1 and Proposition 4.1. Indeed, if t′ > T + c1εδ, then it
satisfies, in view of Proposition 4.1, WPε(ν1δ, t′), and the conclusion then follows directly from
Step 1. Otherwise, we have t′−T ≤ c1εδ. Since assumptions WPε(δ, T ) holds, we deduce from
Step 1 that

|ak(t) − ak(T )| ≤ ε2

2δ
exp
(
− ρ3

δ

ε

)
,

and the same inequality with t replaced by t′. Combining these two inequalities, the conclusion
follows.

Step 3 (Proof of Proposition 4.2 Completed) We introduce the intermediate times tn =
t + kc1εδ for n ∈ {0, 1, · · · , nf}, where nf is the largest integer less than |t−t′|

c1εδ with tkf +1 = t′.
In view of Step 2, we have for n = 0, · · · , nf ,

|ak(tn+1) − ak(tn)| ≤ ε2

δ
exp
(
− 2ρ3

δ

ε

)
,

so that adding these inequalities, we are led to

|ak(t) − ak(t′)| ≤ (nf + 1)
ε2

δ
exp
(
− ρ4

δ

ε

)
≤
( |t − t′|

ε
+ δ
)ε2

δ2
exp
(
− 2ρ3

δ

ε

)
,

and the conclusion follows for a suitable choice of the constant α3.

If follows from Propositions 4.1–4.2 that if assumption (4.10) is satisfied for some δ ≥ α4ε,
then the number of front points ak(t) does not change on the time interval [T, T1], the front
points ak(t) are perfectly labelled, continuous in time. Likewise the numbers i(k) and the signs
†i(k) do not depend on t. Moreover, an elementary, yet important observation is:

Lemma 4.9 Let 0 ≤ T ≤ T1 and δ be given, and assume that condition (4.10) holds with
δ ≥ α3ε. Then, given any k1 �= k2 ∈ J(T ) and t ∈ [T, T1], we have

|ak1(t) − ak2(t)| ≥ ν1δ.

Proof If t ≥ T +c1εδ, then the conclusion follows immediately from the fact that property
WPε(ν1δ, t) holds. If T ≤ t ≤ T + c1εδ, then we have for j = 1, 2,

|akj (t) − akj (T )| ≤ 2c1δ exp
(
− ρ3

δ

ε

)
≤ (1 − ν1)δ

4
,

provided that α3 is chosen sufficiently large. On the other hand, it follows from property
WPε(δ, T ) that |ak1(T ) − ak2(T )| ≥ δ, and the conclusion follows combining the previous in-
equalities.
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4.5 The stopping time Tsim(δ, T )

Whereas the two previous subsections discussed some consequences of condition (4.10), we
provide here a situation where such a condition is met. For that purpose, we will invoke for the
first time so far the upper bound on the speed of the front set provided in Theorem 1.6. Given
a time T ≥ 0 and δ > 0, we assume throughout this subsection that WPε(T, δ) holds. We then
set

Tsim(δ, T ) = inf
{

s ≥ T, ∃k �= k′ ∈ J(T ), such that |ak(s) − ak′(s)| ≤ δ

2

}
, (4.26)

in the case that the set on the right-hand side is not void, and Tsim(T, δ) = +∞ otherwise. We
have the following proposition.

Proposition 4.3 Assume that WPε(T, δ) holds with δ ≥ α4ε for some constant α4 ≥ α3.
Then condition C(ν4δ, T, Tsim(δ, T )) is met, where 0 < ν4 < 1 is some constant. Moreover, we
have

Tsim(T, δ) − T ≥ 2c1ε
2 exp

(
ρ0

δ

8ε

)
. (4.27)

Proof We first establish inequality (4.27). In view of (1.27), we have D(T ) ⊂
J(T )
∪

k=1
{ak(T )}+

[−α1ε, α1ε], so that, combining with Theorem 1.6, for r ≥ α0ε, we are led to the inclusion

D(T + ΔT ) ⊂
J(T )⋃
k=1

{ak(T )} + [−α1ε − r, α1ε + r] ≡⊂
J(T )⋃
k=1

Ik,r , (4.28)

provided
0 ≤ ΔT ≤ (ΔT )0 = ρ2

0r
2 exp

(
ρ0

r

ε

)
,

where the sets Ik,r denote the intervals Ik,r = [ak(T ) − α1ε − r, ak(T ) + α1ε + r]. Choosing

r =
δ

4
− α1ε ≥ δ

8
,

we deduce that

dis(Ik, Ik′ ) ≥ δ

2
+ 2α1ε and (ΔT )0 ≥ ρ2

0α
2
2ε

2

16
exp
(
ρ0

r
ε

)
≥ 4c0

2ε2 M0 exp
(
ρ0

δ

8ε

)
,

where we assume that the constant α2 is chosen sufficiently large. This proves (4.27).
For the first statement, we notice that, thanks to (4.8) there exists some time T1 ∈ [Tsim −

(ΔT )0
2 , Tsim] such that WPε(ν̃4δ, T1) holds, where we set

ν̃4 = inf
{ ρ2

8ρ1
,
1
4

}
.

Next consider the time Tsim(T1, ν̃4δ). Using a similar argument, we may find some time T2 ∈
[Tsim(T, δ), Tsim(T1, ν̃4δ)], such that WPε(ν̃2

4δ, T2) holds. It follows that C(ν2
4δ, T, T2) holds,

hence C(ν2
4δ, T, Tsim(δ, T )) holds. Choosing ν4 = ν̃2

4, the proof is complete.

Combining the previous result with Proposition 4.1, inequality (4.16) of Proposition 4.2 as
well as the identity (4.15), we are immediately led to the following statement.
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Proposition 4.4 Assume that WPε(T, δ) holds with δ ≥ α4ε. Then for any t ∈ [T,

Tsim(T, δ)], the points {ak(t)}k∈J(T ) satisfying (1.8) are well-defined. Moreover, assumption
WPε(ν0δ, t) holds for any t ∈ [T +c2εδ, Tsim(T, δ)], where ν0 = ν1ν4 and c2 = c1ν4. Moreover,
we have

|ak(t) − ak(T )| ≤ ε exp
(
− ρ3

δ

2ε

)
for any t ∈ [t, T + ε2], k ∈ J(T ), (4.29)

provided that the constant α4 is chosen sufficiently large.

Inequality (4.29) will be used to handle small initial time boundary layers of size ε2, which
are related to the parabolic estimates provided in the next section.

5 Linear Parabolic Estimates

In this section, we single out a few linear and mostly elementary parabolic estimates, which
will be used directly in the study of the nonlinear equation (PGL)ε. We consider in this section
0 < ε < 1 a small parameter, the standard space-time cylinder10

Λ =
[
− 1

2
,
1
2

]
× [0, 1], (5.1)

a smooth function c defined on Λ, such that for all (x, t) ∈ Λ , we have

c(x, t) ≥ λ, (5.2)

where λ > 0 is a given positive number, and linear parabolic equation

∂tuε − ∂2
xxuε + ε−2c(x, t)uε = 0 on Λ. (5.3)

as well as its special case,

∂tuε − ∂2
xxuε + ε−2λuε = 0 on Λ. (5.4)

Notice that it follows from the maximum principle and (5.2) that we have the inequality

|uε| ≤ uε, (5.5)

where uε is the solution to (5.4) satisfying uε = |uε| on Π, where

Π ≡ Π0 ∪ Π− ∪ Π+ (5.6)

with Π0 = [− 1
2 , 1

2 ] × {t}, Π− = {− 1
2} × [0, 1] and Π+ = { 1

2} × [0, 1]. In several places, we will
be led to assuming that the function c satisfies the additional condition

|c(x, t)| ≤ C for (x, t) ∈ Λ. (5.7)

The main estimate of this section will be given in Proposition 5.1. It involves also the difference

ς(x, t) = c(x, t) − λ ≥ 0. (5.8)

We start with a few preliminary results.
10More general cylinders and solutions may be handled by using translations and scalings.
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5.1 Basic estimates

Lemma 5.1 Let uε be a solution to (5.3), such that uε = 0 on Π− ∪ Π+. We have

|uε(x, t)| ≤ exp
(
− λt

ε2

)
‖uε(·, 0)‖L∞[− 1

2 , 1
2 ] (5.9)

for any (x, t) ∈ Λ. Moreover, if c satisfies (5.7) then, we have for ε2 ≤ t ≤ 1 and − 1
2 + ε ≤

x ≤ 1
2 − ε,

|∂xuε(x, t)| ≤ C

ε
exp
(
− λt

ε2

)
‖uε(·, 0)‖L∞[− 1

2 , 12 ]. (5.10)

Proof For the first statement, we notice that the function h defined by

h(x, t) = exp
(
− λt

ε2

)
‖uε(·, 0)‖L∞[− 1

2 , 1
2 ]

is a solution to (5.4), and hence, by the maximum principle, we have uε ≤ h(x, t). Invoking
(5.5), the conclusion (5.9) hence follows.

For the second statement, that is estimate (5.10), we invoke the regularization properties
of the heat equation together with a scaling argument. Let (x0, t0) ∈ Λ be given, such that
ε2 ≤ t0 ≤ 1 and − 1

2 + ε ≤ x0 ≤ 1
2 − ε. We perform the change of variable x → x−x0

ε and
t → t−t0

ε + 1, so that (x0, t0) corresponds in the new variables (x, t) to the point (0, 1). We
consider the scaled map

u(x, t) = uε(x0 + εx, t0 + ε2(t − 1)), (5.11)

which satisfies the parabolic equation

∂tu − ∂2
xxu + c(x, t)u = 0, (5.12)

on the large cylinder Λ̃ε = [− 1
2ε −

1
εx0

, 1
2ε −

1
εx0

]× [− t0
ε2 +1, 1] and where the function c is defined

as

c(x, t) = cε(x0 + εx, t0 + ε2(t − 1)). (5.13)

It follows from assumption (5.7) for any given |c(x, t)| ≤ C. To conclude, we evoke the following
standard parabolic estimate.

Lemma 5.2 Let u be a smooth real-valued function on Λ and assume

|∂tu − ∂xxu| ≤ b on Λ and |u| ≤ d on Λ. (5.14)

Then, if Λ 1
2

denotes the cylinder
[
− 1

2 , 1
2

]
×
[

3
4 , 1
]
, there exists a universal constant C > 0,

such that

‖∂xu‖L∞(Λ 1
2
) ≤ C(b + d).

For a proof, we refer to [4, Lemma A.7], where closely related estimates are established.
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Proof of Lemma 5.1 (Completed) We apply (5.14) to the equation (5.12), restricted to
Λ ⊂ Λ̃ε with d = ‖c(x, t)uε‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]) and c = ‖uε‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]). We
are hence led to the inequality, using (5.7),

|∂xu(0, 1)| ≤ C‖u‖L∞(Λ) = C ‖uε‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]).

Invoking (5.9), and going back to the original variables, the conclusion (5.10) follows.

Lemma 5.3 Let uε be a solution to (5.3) such that uε = 0 on Π0. There exists a constant
C > 0 which does not depend on ε nor on λ, such that for all (x, t) ∈ Λ,

|uε(x, t)| ≤ C‖uε‖L∞(Π−∪Π+)

[
exp
(√λ

ε

(
|x| − 1

2

))]
. (5.15)

Moreover, if the function c satisfies condition (5.7), then, we have

|∂xuε(x, t)| ≤ C

ε
‖uε‖L∞(Π−∪Π+)

[
exp
(√λ

ε

(
|x| − 1

2

))]
. (5.16)

Proof It follows from the maximum principle that for all (x, t) ∈ Λ,

|u(x, t)| ≤ ‖uε‖L∞(Π−∪Π+)Ψε, (5.17)

where Ψε is the stationary solution to (5.4) given by Ψε(x, t) = Ψ0,ε, where Ψ0,ε is the solution
to the stationary problem (5.29) with boundary conditions

Ψ0,ε

(
− 1

2

)
= 1 and Ψ0,ε

(
− 1

2

)
= 1, (5.18)

so that

Ψ0,ε(x) = cosh
(√λx

ε

)[
cosh

(√λ

2ε

)]−1

, (5.19)

and in particular,

0 ≤ Ψ0,ε(x) ≤ 2 exp
(√λ

ε

(
|x| − 1

2

))
. (5.20)

Combining (5.20) and (5.17), we derive (5.15). The proof of (5.16) follows the same arguments
as the proof of inequality (5.10) of Lemma 5.1. Therefore, we omit it.

5.2 Equations with source terms

Next, we let f ∈ C2(Λ), we consider the equation with source term

∂tuε − ∂2
xxuε + ε−2c(x, t)uε = f on Λ (5.21)

with boundary condition

uε = 0 on Π. (5.22)
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Lemma 5.4 Let uε be a solution to (5.21)–(5.22). We have the estimate

|uε(x, t)| ≤ ε

2
√

λ

∫ 1
2

− 1
2

exp
(
−

√
λ|x − y|

ε

)
sup

0≤s≤t
|f(y, s)|dy. (5.23)

Moreover, if c satisfies (5.7) then, we have

|∂xuε(x, t)| ≤ C

2
√

λ

∫ 1
2

− 1
2

exp
(
−

√
λ|x − y|

ε

)
sup

0≤s≤t
|f(y, s)|dy.

+ Cε‖f‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]).

(5.24)

Proof By the maximum principle, it suffices to consider the case f ≥ 0, what we assume
throughout the rest of the proof. Invoking the maximum principle once more in that case, we
conclude that 0 ≤ uε ≤ uε, where uε is the solution to

∂tuε − ∂2
xxuε + ε−2λuε = f on Λ (5.25)

with boundary condition uε = 0 on Π. We are led therefore to establish the bound (5.23) for the
solution uε only. We extend the function f to the whole of R× [0, 1] setting f(x, s) = 0, if x �∈
[− 1

2 , 1
2 ]. Given t > 0, we consider also the function f̃t(x) of the scalar variable x defined by

f̃ t(x) = sup
0≤s≤t

f(x, s), (5.26)

and the solution ũt of the differential equation

− d2

dx2
ũt(x) +

λ

ε2
ũt = f t on R, (5.27)

given by convolution with the corresponding kernel, namely

ũt(x) =
ε

2
√

λ

∫ 1
2

− 1
2

exp
(
−

√
λ|x − y|

ε

)
f̃ t(y)dy. (5.28)

Next, we consider the function ũ defined on R
+ × [0, 1] by ũt(x, s) = ũt(x), so that we imme-

diately derive that

∂tu
t − ∂xxũt +

λ

ε
ũt = f̃ t ≥ f on [0, t] ×

[
− 1

2
,
1
2

]
.

Invoking once more the maximum principle, we deduce that ũt ≥ uε on [0, t] ×
[
− 1

2 , 1
2

]
and

the conclusion (5.23) follows.
Next, we turn to the proof of (5.24). We argue as in the proof of (5.10), and consider

the change of variables and the scaled map given by (5.11), which satisfies in our setting the
parabolic equation ∂tu − ∂2

xxu + c(x, t)u = f, where the function f is defined by f(x, t) = ε2fε(x0

+εx, t0 + ε2(t − 1)). Invoking Lemma 5.2 once more, we deduce that

|∂xu(0, 1)| ≤ C ‖uε‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]) + ε2‖f‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]),

which yields the conclusion (5.24).
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5.3 Stationary solution to the linearized problem

In this subsection, we consider the interval I = [− 1
2 , 1

2 ] and the solution Uε to the stationary
problem for a given parameter λ > 0⎧⎨

⎩− d2

dx2
Uε + λε−2Uε = 0 for x ∈ [−1

2
,
1
2
],

Uε(− 1
2 ) = γ−

ε and Uε(1
2 ) = γ+

ε ,
(5.29)

where γ−
ε and γ+

ε are given. The solution to (5.29) is easily integrated as

Uε(x) = Aε sinh
(√λx

ε

)
+ Bε cosh

(√λx

ε

)
, (5.30)

where the constants Aε and Bε are deduced from the values of γ−
ε and γ+

ε by

Aε = (γ+
ε − γ−

ε )
[
2 sinh

(√λ

2ε

)]−1

and Bε = (γ+
ε + γ−

ε )
[
2 cosh

(√λ

2ε

)]−1

.

We introduce a quadratic form related to the discrepancy defined for a scalar function u by

Qλ(u) =
1
2
[ε2u2

x − λu2]. (5.31)

Lemma 5.5 The function Q(Uε) is constant on [− 1
2 , 1

2 ] with value

Q(Uε) =
λ

2
(A2

ε − B2
ε) =

λ

2
[
sinh
(√

λ
ε

)]2 [− 2γ+
ε γ−

ε cosh
(√λ

ε

)
+ ((γ+

ε )2 + (γ−
ε )2)
]
.

The proof is a straightforward computation, which is left to the reader. Similarly, we also
have, concerning the energy, for any x ∈ [− 1

2 , + 1
2 ],

Dλ(Uε)(x) ≡ ε2
(dUε

dx

)2

(x) + λU2
ε (x) ≤ Cλ[(γ+

ε )2 + (γ−
ε )2] exp

(√λ

ε

(
x − 1

2

))
. (5.32)

In view of our subsequence analysis of the nonlinear problem (PGL)ε, we are led to introduce
various additional assumptions on γ±

ε and the function c. First, we consider the case, where
γ+

ε and γ−
ε are of the same order of magnitude, that satisfies an inequality of the type

∣∣∣γ+
ε

γ−
ε

∣∣∣+ ∣∣∣γ−
ε

γ+
ε

∣∣∣ ≤ K0, (5.33)

where K0 is some given positive constant. In that case, we have the expansion

Q(Uε) = −γ+
ε γ−

ε exp
(
−

√
λ

ε

)
[1 + R0,ε], (5.34)

where the error term R0,ε satisfies, for every 0 < ε < 1, the bound

|R0,ε| ≤ C(K2
0 + 1) exp

(
−

√
λ

ε

)
. (5.35)
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5.4 Comparison with the stationary solution to (5.4)

Next, we set

γ−
ε = uε

(
− 1

2
, 0
)

and γ+
ε = uε

(
+

1
2
, 0
)
,

and consider the solution Uε to (5.29) with corresponding boundary conditions. Our next results
describes the possible relaxation of a given solution uε to (5.3) to the stationary solution Uε. In
order to state our result, we introduce appropriate notions of oscillations for the various parts
of the boundary Π, namely first

θ0 = ‖Uε − uε(·, 0)‖L∞[− 1
2 , 1

2 ] (5.36)

and

θbd = sup
(
{|γ−

ε − uε(x, t)|, (x, t) ∈ Π−} ∪ {|γ+
ε − uε(x, t)|, (x, t) ∈ Π+}

)
. (5.37)

Proposition 5.1 With the notation above, we have the estimate, for (x, t) ∈ Λ,

|uε(x, t) − Uε(x)| ≤ θ0 exp
(
− λt

ε2

)
+ Cθbd

[
exp
(√λ

ε

(
|x| − 1

2

))]
+
( ε√

λ
+

ε2

4λ

)
‖ς‖L∞(Λ)(|γ+

ε | + |γ−
ε |) exp

(√λ

ε

(
|x| − 1

2

))
. (5.38)

Moreover, if c satisfies (5.7), then, we have, for t ≥ ε2,

|∂x(uε(x, t) − Uε(x))| ≤ C

ε
θ0 exp

(
− λt

ε2

)
+

C

ε
θbd

[
exp
(√λ

ε

(
|x| − 1

2

))]
+
( 1√

λ
+

ε

4λ

)
‖ς‖L∞(Λ)(|γ+

ε | + |γ−
ε |) exp

(√λ

ε

(
|x| − 1

2

))
. (5.39)

Proof We may decompose uε as

uε(x, t) = Uε(x) + Ũε(x, t) + u1,ε(x, t) + u2,ε(x, t), (5.40)

where Ũε is the solution to (5.3) defined on Λ, such that

Ũε(x, 0) = uε(x, 0) − Uε(x) on Π0 and Ũε = 0 on Π− ∪ Π+,

where the function u1,ε is the solution to (5.3) defined on Λ, such that

u1,ε = 0 on Π0 and uε(x, t) = uε(x, t) − Uε(x, t) for (x, t) ∈ Π− ∪ Π+,

and finally u2,ε is the solution to (5.21) with boundary condition u2,ε = 0 on Π and source term
f given by

f(x, t) = ς(x, t)Uε(x). (5.41)

The function u0,ε is estimated thanks to Lemma 5.1, which yields

|Ũε(x, t)| ≤ θ0 exp
(
− λt

ε2

)
, (5.42)
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whereas the function u1,ε is estimated thanks to Lemma 5.3, which yields

|u1,ε(x, t)| ≤ C‖uε − w0,ε‖L∞(Π−∪Π+)

[
exp
(√λ

ε

(
|x| − 1

2

))]
. (5.43)

In order to estimate the function u2,ε, we will invoke Lemma 5.4, and for that purpose, we need
first to bound the source term f given by (5.41). We have

sup
t∈[0,1]

|f(y, t)| ≤ ‖ς(·, ·)‖L∞(Λ)(|γ+
ε | + |γ−

ε |)χ0,ε(y) (5.44)

≤ 2‖ς(·, ·)‖L∞(Λ)(|γ+
ε | + |γ−

ε |) exp
(√λ

ε

(
|y| − 1

2

))
. (5.45)

In view of Lemma 5.4, we are therefore led to estimate the integral

I(x) =
∫ 1

2

− 1
2

exp
(
−

√
λ|x − y|

ε

)
exp
(√λ

ε

(
|y| − 1

2

))
dy.

We leave it as an exercise to the reader to verify that

0 ≤ I(x) ≤
(
2 +

ε

2
√

λ

)
exp
(√λ

ε

(
|x| − 1

2

))
, (5.46)

so that

|u2,ε(x, t)| ≤ Cε√
λ

(
2 +

ε

2
√

λ

)
exp
(√λ

ε

(
|x| − 1

2

))
. (5.47)

Combining (5.42)–(5.43) and (5.47), we derive (5.38). For (5.39), we use the corresponding
estimates, observing that

‖f‖L∞([x0−ε,x0+ε]×[t0−ε2,t0]) ≤ C‖ς‖L∞(Λ)(|γ+
ε | + |γ−

ε |) exp
(√λ

ε

(
|x| − 1

2

))
.

5.5 Estimates for the quadratic part of the discrepancy

In this subsection, we wish to derive some estimates for Qλ(uε), there Qλ is defined in (5.31).
Furthermore, we restrict ourselves to the case that there exists some given constant � > 0, such
that

θbd + ‖ς‖L∞(Λ) ≤ exp
(
− �

ε

)
, (5.48)

and we finally also assume that

|γ+
ε | + |γ−

ε | + θ0 ≤ K0. (5.49)

Lemma 5.6 Assume that uε is a solution to (5.3), and that assumptions (5.33) and (5.48)–
(5.49) are full-filled. Then, we have, for (x, t) ∈ Λ,

Q(uε)(x, t) = −γ+
ε γ−

ε exp
(
−

√
λ

ε

)
[1 + R0,ε(x, t)] + C0,ε(x, t), (5.50)



On the Motion Law of Fronts for Scalar Reaction-Diffusion Equations 125

where the error term satisfies the estimate, for every 0 < ε < 1 and t ≥ 0,

|R0,ε(x, t)| ≤ C(K2
0 + 1)

[
exp
(1

ε
(2
√

λ|x| − 2�)
)

+ exp
(
−

√
λ

ε

)]
(5.51)

and

|C0,ε(x, t)| ≤ Cθ2
0

[
exp
(
− 2λt

ε2

)]
. (5.52)

For the proof of Lemma 5.6, we expand uε = Uε + rε, where rε = (uε − Uε), so that by
Cauchy-Schwarz inequality,

|Q(uε)(x, t) − Q(Uε)| ≤ Dλ(rε) + [Dλ(rε)Dλ(Uε)]
1
2 ≤ 3

2
Dλ(rε) +

1
2
Dλ(Uε).

We then estimate the right-hand side of this inequality thanks to the estimates for rε provided
in Proposition 5.1, inequality (5.32) for Dλ(Uε) as well as the expansions (5.34) and (5.35). We
omit the details.

In the asymptotic limit ε → 0, the bound (5.51) shows the term R0,ε(x, t) is indeed an error
term only in the case x is small. In particular, if |x| ≤ �

2
√

λ
and 0 < ε < 1, then, we have

|R0,ε(x, t)| ≤ C(K2
0 + 1)

[
exp
(
− �

ε

)
+ exp

(
−

√
λ

ε

)]
. (5.53)

6 Relaxation to the Stationary Equation off the Front Set

The purpose of this section is to obtain a precise expansion of the discrepancy function
ξ( , t), when computed far from the front set. For that purpose, we are led to analyze in details
a typical situation we present next. Let (x0, t0) be a given arbitrary point in R×R

+. For r > 0,
we consider the space-time cylinder

Λr(x0, t0) = {x0, t0)} + Λr =
[
x0 −

r

2
, x0 +

r

2

]
× [t0, r2 + t0],

where Λr = Λr(0, 0) =
[
− r

2 , + r
2

]
× [0, r2], and a solution vε to (PGL)ε. We assume throughout

this section that the front set of vε does not intersect Λr(x0, t0), that is, we assume that there
exists some i ∈ {1, · · · , q}, such that, ∀(x, t) ∈ Λr(x0, t0),

|vε(x, t) − σi| ≤ η0.

Following the notation introduced in Section 5, we set γ−
ε = vε

(
x0 − r

2 , t0
)
− σi, γ+

ε = vε

(
x0+ r

2 ,

t0
)
− σi, and define Uε,r as the solution to

− d2

dx2
Uε,r + λiε

−2Uε,r = 0 for x ∈
[
− r

2
,
r

2

]
,

Uε(−
r

2
) = γ−

ε and Uε(
r

2
) = γ+

ε .

(6.1)

Set Π ≡ Π0∪Π−∪Π+ with Π0 = [− r
2 , r

2 ]×{t0}, Π− = {− 1
2}×[t0, t0+r2], Π+ = { r

2}×[t0, t0+r2],

θbd(r, x0, t0)(vε) = sup{θ+
bd, θ

−
bd} and θ0,r = ‖Uε,r − vε(x, 0)‖L∞[− r

2 , r
2
], (6.2)
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where θ±bd = sup{|γ±
ε − wε(x, t)|, (x, t) ∈ Π±(r, x0, t0)}. We assume in this section that θbd

satisfies the following smallness assumption: For some fixed constant � > 0,

θbd(r, x0, t0)(uε) ≤ exp
(
− �r

ε

)
. (6.3)

We assume similarly that

|γ−
ε | + |γ+

ε | ≤ exp
(
− �r

2ε

)
. (6.4)

Notice in particular that, if (6.3)–(6.4) are satisfied, then we have

|vε − σi| ≤ exp
(
− �r

2ε

)
on Λr(x0, t0). (6.5)

The main result of this section is as follows.

Proposition 6.1 Let (x0, t0) be in R × R
+, let r ≥ ε be given, and let vε be a solution to

(PGL)ε, such that (6.3)–(6.4), (5.33) and (H0) hold. Then, we have for (x, t) ∈ Λr(x0, t0),

|vε(x, t) − Uε,r(x)|

≤ Cθ0,r exp
(
− λi(t − t0)

ε2

)
+ C
[
exp
(√λi

ε

(
|x − x0| −

�r√
λi

− r

2

))]
(6.6)

and, if t ≥ ε2,

|∂x(uε(x, t) − Uε(x))|

≤ C

ε
θ0,r exp

(
− λi(t − t0)

ε2

)
+

C

ε

[
exp
(√λi

ε

(
|x − x0| −

�r√
λi

− r

2

))]
. (6.7)

Moreover, we have for every 0 < ε < 1,

ξ(vε)(x, t) = −γ+
ε γ−

ε exp
(
−

√
λir

ε

)
[1 + R1,ε(x, t)] + C1,ε(x, t), (6.8)

where the error terms satisfies the estimate

|R1,ε(x, t)| ≤ C(K2
0 + 1)

[
|γ+

ε γ−
ε |−1 exp

(2
ε
(
√

λi|x − x0| − �r)
)

+ exp
(
−

√
λir

ε

)]
(6.9)

and

|C1,ε(x, t)| ≤ Cθ2
0,r exp

(
− λ(t − t0)

ε2

)
. (6.10)

Proof In view of the scale and translation invariance of the equation (PGL)ε, we are led
to introduce the new parameter ε = ε

r , which satisfies assumption 0 < ε < 1, to perform the
change of variables x → x = x−x0

r and t → t = t−t0
r2 , and finally to set

vε(x, t) = vε(rx + x0, r
2t + t0),

so that vε is now a solution to (PGL)ε, and the original domain of interest Λr(x0, t0) is changed
into the standard cylinder Λ. On the other hand, since σi is a minimizer for the potential V

which is assumed to be smooth, we may expend the potential V as

V (u) =
λi

2
(u − σi)2 + Φ(u)(u − σi)4, (6.11)
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and its derivative V ′ near σi as

V ′(u) = λi(u − σi) + ϕ(u)(u − σi)3, (6.12)

where Φ and ϕ are some smooth functions. Setting wε = vε − σi on Λ we are led to rewrite the
equation (PGL)ε as

∂twε − ∂2
xxwε + ε−2ci(x, t)wε = 0 on Λ, (6.13)

where the function ci is defined on the cylinder Λ as c(x, t) = λi − ςε(x, t) with

ςε(x, t) = ϕ (vε(x, t)) [vε(x, t) − σi]2 for (x, t) ∈ Λ.

It satisfies therefore, in view of assumption (6.4), the estimate

|ςε(x, t)|| ≤ C exp
(
−�r

ε

)
. (6.14)

We are hence in position to apply Proposition 5.1 to the equation (6.13): Estimates (5.38)–
(5.39) combined with the inequalities (6.3) and (6.14), then lead directly to (6.6). Turning to
(6.9), we write

ξ(vε)(x, t) = Qλi(wε(x, t)) + Φ(wε + σi)w4
ε(x, t),

so that (6.9) is a direct consequence of Lemma 5.6 together with the smallness assumptions
(6.3)–(6.4), which lead to (6.5) and allow to bound suitably the term Φ(wε + σi)w4

ε(x, t).
Finally, we end the section with a crude estimate, which will also be used in some places.

Lemma 6.1 Let (x0, t0) be in R×R
+, let r ≥ ε be given, and let vε be a solution to (PGL)ε,

such that (6.3)–(6.4), (5.33) and (H0) hold. Then, we have for (x, t) ∈ Λr(x0, t0),

eε(vε(x, t)) ≤ Cr2

ε
M0 exp

(
− 2λi(t − t0)

ε2

)
+

Cr2

ε

[
exp
(2

√
λi

ε

(
|x − x0| −

�r√
λi

− r

2

))]
.

The proof is a direct consequence of Proposition 6.1 and inequality (5.32).

6.1 Expansions and bounds for ξ assuming WPε(δ, T )

Appropriate expansion for ξ are the central tool in order to derivate the motion law of
the fronts. Throughout this section, given δ > 0, we assume that WPε(δ, T ) holds for some
time T ≥ 0 and given some δ > 0. For times t ∈ [T, Tsim(δ, T )], we consider the intervals
[ak(t), ak+1(t)]. Our purpose is to provide some accurate estimates for the discrepancy ξ on
these intervals. It turns out actually that our estimates are essentially relevant only for points
near the center

ak+ 1
2

=
ak(t) + ak+1(t)

2
of the interval, provided that the length dk(t) = |ak+1(t)− ak(t)| of the interval is not too large
compared to δ. For that purpose, we will use in some places the condition

dk(t)
ε

≤ L(δ)
ε

≡
√

λminν5 exp
(
ρ4

δ

8ε

)
≤
√

λminν5 exp
(
ρ3

δ

8ε

)
, (6.15)
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with the last inequality being a consequence of the inequality ρ4 ≤ ρ3, where we set

ν5 =
2
3

inf
{
ν1,

ρ3

8
√

λmax

}
. (6.16)

Our next result is central in the derivation of the motion law.

Proposition 6.2 Let T ≥ 0 be given, and assume that WPε(δ, T ) holds for some δ ≥ α5ε,
for some constant α5 ≥ α4. Given any time T + ε2 ≤ t ≤ Tsim(δ, T ) and k ∈ J(T ), such that
WSk(t) holds, we have, for x ∈ [ak(t), ak+1(t)],

ξ(vε)(x, t) = Γ+
k,ε({ai(t)})[1 + R2,ε(x, t)] + C2,ε(x, t), (6.17)

where Γ+
k,ε({ai(t)} is defined in (1.15) and the error terms satisfy the estimate, for positive

constants K1 > 0 and �6,

|R2,ε(x, t)| ≤ K1

[
exp
(2
√

λj+(k)|x − ak+ 1
2
(t)| − �6δ

ε

)
+ exp

(
−
√

λj+(k)dk(t)
ε

)]
(6.18)

and

|C2,ε(x, t)| ≤ K1M0 exp
(
−

λj+(k)(t − T )
ε2

− ρ1
δ

ε

)
. (6.19)

Notice that the previous result yields a precise expansion of the discrepancy provided that
the following conditions are met:

(i) The distance between the points ak(t) and ak+1(t) can be compared to the length δ, i.e.,
condition WSk(t) is met.

(ii) The point x is close to the center ak+ 1
2
(t).

(iii) The time t is not too close to the initial time T .
More precisely, a direct consequence of Proposition 6.2 is as follows. If WSk(t) is satisfied

and
|x − ak+ 1

2
(t)| ≤ ρ6δ

2
√

λmax

, t ≥ T +
dk(t)

2
√

λmin

ε,

then, we have

ξ(vε)(x, t) = Γ+
k,ε({ai(t)})[1 + R3,ε(x, t)], (6.20)

where

|R3,ε(x, t)| ≤ exp
(
− ρ6

2
δ

ε

)
. (6.21)

Proof of Propostion 6.2 We first describe the general outline of the proof. We will work
on a cylinder of the form

Λ−
k (t) = [ak(t), ak+1(t)] × [t − εr, t],

where the parameter r > 0 homogeneous to a length is defined by

r = inf
{ dk(t)√

λj+(k)

,
t − T

ε

}
≤ ε exp

(
ρ3

δ

8ε

)
. (6.22)
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We then divide this cylinder Λ−
k (t) into a region close to the front sets near ak(t) and ak+1(t),

termed here the “inner region”, and the rest of the cylinder, termed the “outer” region. In
the inner region, we will show that the solution remains close to an optimal profile, whereas in
the outer region, we are in position to apply Proposition 6.1, with the main point in the proof
being somehow to glue together the inner and the out region.

In order to define the outer region, we argue as in Lemma 4.8, so that we may find some
number δ̌ ∈ [ν5

2 δ, ν5δ], where ν5 is defined in (6.16), such that

θ+
(ak(t),t)(δ̌, r) + θ−(ak+1(t),t)

(δ̌, r) ≤ 4
√
r

ν5ε
exp
(
− ρ3

δ

2ε

)
≤ exp

(
− ρ3

δ

4ε

)
. (6.23)

We then define the outer region as

Λout(t) = [ak(t) + δ̌, ak+1(t) − δ̌] × [t − εr, t].

Adapting the notation of Section 6 to the present framework, we are led to set wε = vε−σj+(k),

Π− = {ak(t) + δ̌} × [t − εr, t], Π+ = {ak+1(t) + δ̌} × [t − εr, t],

γ−
ε = wε(ak(t − εr) + δ̃, t − εr), γ+

ε = wε(ak+1(t − εr)) − δ̃, t − εr),

θbd = sup{θ+
bd, θ

−
bd}, where θ±bd = sup{|γ±

ε − wε(x, t)|, (x, t) ∈ Π±},

and θ0 accordingly (see (6.2)). Finally, we notice that there exist some time T ≤ t′ < t, such
that |t − t′| ≤ c0εδ and WPε(ν1δ, t′) holds. Indeed, if t − T ≥ c2εδ, then the existence of t′

follows directly from Corollary 4.4. On the other hand, if t−T ≤ c2εδ, we simply choose t′ = T ,
so that the same conclusion holds. Notice also that we have the inequality

|ak(t) − ak(t′)| + |ak+1(t) − ak+1(t′)| ≤
2ε2

δ
exp
(
− ρ4

δ

ε

)
. (6.24)

In order to apply Proposition 6.1 to Λout(t), we need to deduce several estimates for γ−
ε , γ+

ε ,
θbd · · · , which are mainly derived from estimates on the inner region. We divide the remainder
of the proof into several steps.

Step 1 Estimates for γ−
ε and γ+

ε .
Set B+ = −†kB†k

i(k) and B− = †k+1B
−†k+1
i(k+1). If δ

ε is sufficiently large, we have

∣∣∣γ±
ε − B± exp

(
−
√

λj+(k)

ε
δ̌
)∣∣∣ ≤ exp

(
− ρ4

δ

4ε

)
(6.25)

and

1
2
|B±| exp

(
−
√

λj+(k)

ε
δ̌
)
≤ |γ±

ε | ≤ 2|B±| exp
(
−
√

λj+(k)

ε
δ̌
)
. (6.26)

Proof It follows from condition WPε(ν1δ, t
′) that for the time t′ defined above and for any

0 ≤ δ′ ≤ 3
2 δ̌, we have

∣∣∣wε(ak(t′) ± δ′, t′) − B± exp
(
−
√

λj+(k)

ε
δ′
)∣∣∣ ≤ K exp

(
−

2
√

λj+(k)

ε
δ′
)
. (6.27)
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Indeed, in view of the definition (6.16) of ν5 and since ρ3 ≤ ρ1, we have

δ′ ≤ 3
2
δ̌ ≤ 3

2
ν5δ ≤ ρ3

8
√

λmax

δ ≤ ρ1

2
√

λmax

δ,

so that Lemma 4.2 and the previous remark apply. We turn first to the estimate for γ+
ε . We

choose δ′ = δ̌ + ak(t) − ak(t′), so that ak(t′) + δ′ = ak(t) + δ̌, whereas

exp
(
−
√

λj+(k)

ε
δ′
)

= exp
(
−
√

λj+(k)

ε
δ̌
)

exp
(
−
√

λj+(k)

ε
(ak(t) − ak(t′))

)
.

Hence, inequality (6.24) yields

∣∣∣ exp
(
−
√

λj+(k)

ε
δ′
)
− exp

(
−
√

λj+(k)

ε
δ̌
)∣∣∣ ≤ Kε

δ
exp
(
−
(√λj+(k)

ε
δ̌ + ρ4

δ

ε

))
. (6.28)

Combining (6.27) with (6.28), we deduce that provided δ ≥ ε,

∣∣∣wε(ak(t) + δ̌, t′) − B+
k exp

(
−
√

λj+(k)

ε
δ̌
)∣∣∣ ≤ K

[
exp
(
−
(2
√

λj+(k)

ε
δ̌ + ρ4

δ

ε

))]
. (6.29)

On the other hand, it follows from the definition of θ±(a,t)(δ̌, r) that∣∣wε(ak(t) + δ̌, t) − wε(ak(t) + δ̌, t′)
∣∣ ≤ θ+

(ak(t),t)(δ̌, r). (6.30)

Combining (6.27), (6.29)–(6.30), (6.23) and the fact that ρ4 ≤ ρ3, we derive (6.25) for γε. We
derive the corresponding estimate for γ−

ε using the same argument. For the proof of (6.26), we
observe that, as a consequence of our construction of δ̌ and the definition (6.16) of ν5, we have√

λj+(k)δ̌ ≤ ρ4δ

8
,

so that, if δ
ε is sufficiently large, then B±

2 exp
(
−

√
λj+(k)

ε δ̌
)
≥ exp

(
− ρ4

δ
4ε

)
, from which we

deduce the conclusion.
Step 2 Estimates for θbd and θ0.
We have

θbd ≤ exp
(
− ρ4

δ

4ε

)
≤ exp

(
− 2

√
λj+(k)

ε
δ̌
)
, θ0 ≤ C exp

(
− ρ1

δ

2ε

)
.

Proof of Step 2 The estimate for θbd is a direct consequence of (6.23) together with the
inequality ρ4 ≤ ρ3, whereas the estimate for θ0 follows directly from Lemma 4.3.

Step 3 Proof of Proposition 6.2 completed.
We are now in position to apply Proposition 6.1 on the cylinder Λout(t) with

r = dk(t) − 2δ̌, �r =
31
16

√
λj+(k)δ̌,

so that assumptions (6.3)–(6.4) and (5.33) are satisfied, with a constant K0 depending only
on the numbers B±, and provided that the ratio δ

ε is sufficiently large. We have therefore, for
every 0 < ε < 1 and every s ∈ [t − εr, t],

ξ(vε)(x, s) = −γ+
ε γ−

ε exp
(
−

√
λ+

j(k)(dk(t) − 2δ̃)

ε

)
[1 + R̃2,ε(x, s)] + C2,ε(x, s), (6.31)
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where the error term satisfies the estimates

|R̃2,ε(x, s)|

≤ C(K2
0 + 1)

[
|γ+

ε γ−
ε |−1 exp

(2
ε

√
λj |x − ak+ 1

2
(t)| − �r

)
+ exp

(
−
√

λj+(k)dk(t)
ε

)]
(6.32)

and

|C2,ε(x, s)| ≤ C exp
(
−

λ+
j(k)((t − εr) − s)

ε2
− ρ1

δ

ε

)
. (6.33)

We next use formula (6.31) at time s = t, and distinguish two cases. If t− T > ε dk(t)√
λj+(k)

, then

r = dk(t)√
λj+(k)

, so that

|C2,ε(x, t)| ≤ C exp
(
−

√
λ+

j (k)dk(t)

ε

)
,

and then, we absorb this term in the second term on the right-hand side of (6.32) at the cost of
a larger constant C. Otherwise, that is, if r = T−t

ε , then C2,ε(x, t) has exactly the form provided
in (6.19), and we are done for this part of the error terms. It remain to check that the other
error terms have the announced behavior. For that purpose, we first notice that it follows from
Step 1 that

γ+
ε γ−

ε = B+B− exp
(
− 2

√
λj+(k)

ε
δ̌
)
[1 + R3], (6.34)

where R3 ≤ K exp
(
−ρ4

δ
4ε

)
, and that

|γ+
ε γ−

ε |−1 exp(−2�r) ≤ exp
(
−

31
√

λj+(k)δ̌

16ε

)
≤ exp

(
− 15

√
λminν5

16
δ

ε

)
. (6.35)

Combining (6.31) and (6.34)–(6.35), we obtain the desired result by choosing

ρ6 = inf
{

ρ5,
ρ4

4
,
15

√
λminν5

32

}
.

We also need to handle the case, where the assumption WSk(t) is not met. In that direction,
we are not able to provide an expansion, but only an upper bound, which turns out to be
sufficient for our further analysis.

Proposition 6.3 Let T ≥ 0 be given, and assume that WPε(δ, T ) holds for some δ ≥ α6ε.
Given any time t ∈ [T, Tsim(δ, T )], such that inequality WSk(t) does not hold, we have for
k = 1, · · · , �(t) − 1 and x ∈

[
ak(t) + L(δ)

2 , ak+ 1
2
(t) + dk(t)

2

]
,

|ξ(vε)(x, t)| ≤ K
[
exp
(
−

λj+(k)(t − T )
ε2

− ρ1
δ

ε

)
+ exp

(
−
√

λj+(k)L(δ)
4ε

)]
,

with L(δ) =
√

λminν5ε exp(−ρ4
δ
8ε ).

The proof is essentially the same as the proof of Proposition 6.2, with the main point being
to replace the definition of r given in (6.22) by the new choice r = inf

{
L(δ), t−T

ε

}
. We leave

the details to the reader. Finally, in some place, we will need another estimate somewhat in
the same spirit as Proposition 6.3 provided by the following lemma.



132 F. Bethuel and D. Smets

Lemma 6.2 Let T ≥ 0 be given, and assume that WPε(δ, T ) holds for some δ ≥ α6ε. Given
any time t ∈ [T, Tsim(δ, T )], such that t ≥ ε2, given k ∈ 1, · · · , �(t) − 1 and x ∈ [ak(t), ak+1(t)],
we have

|ξε(x, t)| ≤ K
[
exp
(
−

λj+(k)(t − T )
ε2

− ρ1
δ

ε

)
+ exp

(
−
√

λj+(k)γ(x, t)
4ε

)]
,

where γ(x, t) = inf{|x − ak(t)|, |x − ak+1(t)}.

The proof is a rather direct consequence of inequality (5.32), therefore we omit it.

7 Motion Law for Fronts

The purpose of this section is to provide the proofs of Theorems 1.1–1.2. To that aim, we
will combine the result of the previous section with the motion law for the local energy (1.31)
by making use of test function of a special type, which we describe in this section.

7.1 Approximating the points ak(t) using the energy density

Let t ≥ 0 and let k ∈ J(t) be given. Since the expansion for the discrepancy ξ is only
accurate near the points ak± 1

2
, we are led to introduce intervals Ik(t) of the following form:

Ik(t) = [a−
k (t, δ), a+

k (t, δ)] ≡
[
ãk− 1

2
(t) − ρ6δ

4
√

λmax

, ãk+ 1
2
(t) +

ρ6δ

4
√

λmax

]
, (7.1)

where, for the construction of the points ãk± 1
2
(t), we distinguish several cases.

Case 1 None of the conditions WSk(t) and WSk−1(t) holds. In that case, we set

ãk± 1
2
(t) = ak(t) ± �(δ)

2
.

Case 2 At least, one of the conditions WSk(t) or WSk−1(t) holds. Without loss of generally,
we may assume that WSk holds, with the other case being handled in a similar way. Then, we
distinguish once more two subcases. If

d+
k (t) ≤ 4

√
λmin

λmax
d−k (t) with d−k (t) = dk−1(t), (7.2)

then we set
ãk+ 1

2
(t) = ak+ 1

2
(t), ãk− 1

2
(t) = ak(t) − 2d+

k (t).

Otherwise, we set ãk± 1
2
(t) = ak± 1

2
(t).

Notice that, if condition (7.2) is met, then
√

λj+(k)d
+
k (t) ≤ 4

√
λj−(k)d

−
k (t). We then con-

struct a test function χ ≡ χk,t having the following properties:⎧⎪⎨
⎪⎩

χ has compact support in Ik(t),
χ(x) = x − ak(t) on the interval [ãk− 1

2
(t), ãk+ 1

2
(t)],

|χ̈| ≤ 48λmaxρ
−2
6 δ−1.

(7.3)

One may check that the set of functions verifying these three conditions is not void. Notice
that χ̈ = 0 on the interval [ak− 1

2
(t), ak+ 1

2
(t)], and hence χ̈ has support on Vk(t) = Ik(t) \
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(ak− 1
2
(t), ak+ 1

2
(t)). In view of Proposition 6.2, we introduce that the stopping time Tk(δ, t) is

defined by

Tk(δ, t) = inf
{
Tsim(δ, t) ≥ s ≥ t, such that |aj(s) − aj(t)| ≤

ρ6δ

4
√

λmax

for j = k − 1, k, k + 1
}
. (7.4)

We consider the energy density bk,t(s) =
∫

R
χ(k,t)eε(vε(·, s))dx, as well as the related quantity

bk,t(s) = q−1
k [bk,t(s) + dissip (t, s, χ(k,t)) − β0

k] + ak(t),

where qk = Si(k),

dissip (t, s, χ) = ε

∫ s

t

∫
R

χ
∣∣∣∂vε

∂t

∣∣∣2(x, u)dxdu, β0
k =
∫

R

xeε

(
ζ†k

i(k)

(x

ε

))
dx. (7.5)

We claim that bk,t(s) offers a good approximation of ak(s).

Lemma 7.1 Let T ≥ 0 be given, and assume that WPε(δ, T ) holds for some δ ≥ α6ε. We
have, for any k ∈ J(T ) and s ∈ [T + c2εδ, Tk(δ, T )],

|ak(s) − bk,t(s)| ≤ KDk(t) exp
(
− ρ3

δ

2ε

)
≤ Kε exp

(
− ρ3

δ

4ε

)
,

where we have set Dk(T ) = inf{L(δ), d+
k (T ), d−k (T )} and for the last inequality at the cost of a

possible larger choice of the constant α6.

Proof Since in view of Proposition 4.4, property WPε(ν0δ, s) holds for s ∈ [T + c2εδTk(δ,

T )], we deduce from (1.9)–(1.10) that

∣∣∣bk,t(s) −
∫

R

(x − ak(t))eε

(
ζ†k

i(k)

( · − ak(s)
ε

))
dx
∣∣∣ ≤ KM0Dk(t) exp

(
− ρ1ν0

δ

ε

)
,

where K > 0 is some constant. On the other hand, we have, going back to (7.5),∫
R

(x − ak(t))eε

(
ζ†k

i(k)

( · − ak(s)
ε

))
dx = (ak(s) − ak(t))Si(k) + β0

k.

Finally, by Corollary 4.1, we also have |dissip (t, s, χ)| ≤ CDk(t)δ
ε exp

(
− ρ3

δ
ε

)
, so that the

conclusion follows combining the previous inequalities, and imposing additionally that ρ3 ≤
ρ1ν0.

7.2 A first motion law for the points ak(s)

Our previous estimates lead to us directly to the following result, which is the building block
in the proof of Theorem 1.1.

Proposition 7.1 Let T ≥ 0 be given, and assume that WPε(δ, T ) holds for some δ ≥ α6ε.
Let t ∈ [T, Tsim(δ, T )] and consider k ∈ J(T ). If t ≥ ε2, it holds for s ∈ [t, Tsim(δ, T )], that

∣∣∣ε d
ds

bk,t(s)
∣∣∣ ≤ K1

[
exp
(
− λmin(t − T )

ε2
− ρ1

δ

ε

)
+ exp

(
−

√
λminDk(t)

4ε

)]
, (7.6)
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where Dk(t) ≡ inf{d+
k (t), d−k (t), L(δ)}, with L(δ) defined in Proposition 6.3. Moreover, if one

of the conditions WSk(t) or WSk−1(t) holds, and

t ≥ T +
k = T +

k (T ) ≡ T +
inf{d+

k (t), d−k (t)}
2
√

λmin

ε, (7.7)

then, we have for s ∈ [t, Tk(t, δ)], where Tk is defined in (7.4), the differential equation

ε
d
ds

bk,t(s) = −q−1
k

∑
†∈{+,−}

Γ†
k,ε({bi,t(s)})[1 + C†

k(s)], (7.8)

where the error term satisfies the estimate |C†
k(s)| ≤ K exp

(
− ρ6

2
δ
ε

)
.

Proof Inequality (7.6) is a rather direct consequence of Proposition 6.3, the definition of
our test function, and the motion law for the local energy (1.31), which yields

ε
d
ds

bk,t(s) =
∫
V−

k (t)∪V+
k t)

FS(s, χ, vε)dx = ε−1

∫
R×{t}

ξ(v(·, t))χ̈dx. (7.9)

where V±
k (t) =

[
ak± 1

2
(t), ak± 1

2
(t) + ρ6δ

4
√

λmax

]
⊂
[
ak± 1

2
(s) − ρ6δ

2
√

λmax
, ak± 1

2
(s) + ρ6δ

2
√

λmax

]
, with the

inclusion being a consequence of the definition (7.4) of the stopping time Tk.
Turning to (7.8) we may assume that, for instance WSk(t)(δ) holds, that is, we are either

in Case 1 or Case 2 of the definition (7.1) of Ik. We have for s ∈ [t, Tk(ρ, t)],

∫ +∞

ak(t)

FS(s, χ, vε)dx = Γ+
k,ε({ai(s)})

∫
V+

k (t)

χ̈[1 + R3,ε(x, s)]dx. (7.10)

Next we remark that, in view of the properties of the χ, we have∫
V+

k (t)

χ̈[1 + R3,ε(x, s)]dx = −χ̇(ak+ 1
2
(t)) +

∫
V+

k (t)

χ̈(x)R3,ε(x, s)dx.

Moreover, in view of the construction of χ, we have χ̇(ak+ 1
2
(t)) = 1. Since we assume that

WSk(t) holds, we may invoke on the interval V+
k (t), the bound (6.21), so that finally our

computation yields

∫ +∞

ak(t)

FS(s, χ, vε)dx = Γ+
k,ε({ai(s)})[1 + C(0,k)k

+(s)]

with the estimate |C+
(0,k)(s)| ≤ K exp

(
− ρ6

2
δ
ε

)
. In view of Lemma 7.1, we may write

Γ+
k,ε({ai(s)})[1 + C(0,k)k

+(s)] = Γ+
k,ε({bi,t(s)})[1 + C+

0,k(s)]

with the estimate |C+
k (s)| ≤ K exp

(
− ρ6

2
δ
ε

)
. Similar estimates hold for the integral

∫ ak(t)

−∞ FSdx,
if WSk−1 holds, which lead to equation (7.8) in that case. Otherwise, we are in Case 2
of the definition (7.1) of Ik, and then

∫ ak(t)

−∞ FSdx turns out to be lower order compared to∫ +∞
ak(t)

FS(s, χ, vε)dx, so that (7.8) holds likewise.

We complete this section with a lower bound for T(t, δ).
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Lemma 7.2 Under the assumptions of Proposition 7.1, we have the lower bound

T(t, δ) ≡ inf
k∈J(t)

Tk(t, δ) ≥ Tref(t, da(t)) ≡ ε2

2S2
exp
(da(t)

ε

)
+ t,

where the constant S2 is defined in Proposition 2.2.

Proof We first observe, combining the definition (7.4) of T(t, δ) and the result of Lemma
7.1, that for some k0 ∈ J(t),

|bk0(T(t, δ)) − bk0(t)| ≥
ρ6δ

6
√

λmax

.

We then invoke several properties of the differential equation (1.16) presented in Section 211.
First, in view of Proposition 2.1, we have, for any k ∈ J(t),

|bk0(T(t, δ)) − bk0(t)| ≤ S0|d b(T(t, δ)) − d b(t)| + S1ε,

so that, if α6 is chosen sufficiently large, we obtain, combining the two previous inequalities,

|d b(T(t, δ)) − d b(t)| ≥
ρ6δ

8S0

√
λmax

.

We finally invoke Proposition 2.2 to deduce that

− log
[
1 − ε−2S2[T(t, δ) − t] exp

(
− da(t)

ε

)]
≥ ρ6δ

8S0ε
√

λmax

≥ ρ6α6

8S0

√
λmax

,

and the conclusion follows, choosing possibly α6 sufficiently large.

We deduce from the previous result.

Corollary 7.1 Let T ≥ 0 be given, and assume that WPε(δ, T ) holds for some δ ≥ α7ε,
where α7 ≥ α6 is some constant. Then, we have for any times inf{ε2, t} ≤ s1 ≤ s2 ≤ T(t, δ),

|bk,t(s1) − bk,t(s2)| ≤ K
[
ε exp

(
− ρ1

δ

ε

)
+

|s2 − s1|
ε

exp
(
−

√
λminDk(t)

4ε

)]
. (7.11)

If moreover we have inf{ε2, t} ≤ s1 ≤ s2 ≤ t + ε2 exp
(da(T )

9ε

)
, then we have that for a constant

0 < ρ7 < ρ1, the following holds:⎧⎪⎨
⎪⎩
|bk,t(s1) − bk,t(s2)| ≤ ε exp

(
− ρ7

δ

ε

)
,

|ak(s1) − ak(s2)| ≤ ε exp
(
− ρ7

δ

ε

)
.

(7.12)

If Dk(t) = L(δ), then (7.11) holds for all inf{ε2, t} ≤ s1 ≤ s2 ≤ T(t, δ).

Proof Inequality (7.11) is derived integrating inequality (7.6) in time. The first inequality
in (7.12) is then derived immediately, noticing that da(T ) ≤ 2da(t) ≤ 2

√
λminDk(t). Finally,

the second inequality of (7.12) follows combining estimate (4.29) of Proposition 4.4, Lemma
7.1 and (7.12) with possibly a judicious tuning of the constants α7 and ρ7. The last statement
is proven similarly.

11which are actually independent of the present discussion.
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7.3 Proof of Theorem 1.1

Step 1 Defining the time T(T ), proofs of (1.17) and assertions (i)–(ii).
We first consider the stopping time T(T, δ) defined in Lemma 7.2. We then choose the

constant S∗, such that S∗ = S2, so that we are immediately led to the inequality

T(T, δ) ≥ Tref(T, da(T )), (7.13)

where Tref is defined in (1.17). On the other hand, in view of definitions (4.26) and (7.4),
we also have the inequality T(T, δ) ≤ Tsim(T, δ). Imposing furthermore that the constant α∗

in the statement of Theorem 1.1 satisfies the condition α∗ ≥ α4, we are in position to apply
Proposition 4.4, which yields that WPε(ν0δ, t) holds for any t ∈ [T + c2εδ, T(T, δ)] and that
the points {ak(t)}k∈J(T ) are well-defined for t ∈ [T, T + c2εδ], where the constants c2 and ν0

are defined in Proposition 4.4.
We next introduce a new length scale δ̃ defined by

δ̃ = δ if
da(T )
22ρ1

≤ 2δ and δ̃ =
da(T )
22ρ1

otherwise. (7.14)

In order to define T, we distinguish two cases.
Case 1 δ̃ = δ.
In this case, we set

T(T ) = T(T, δ).

With this choice, (1.17) follows from (7.13), whereas as already mentioned, Proposition 4.4
shows that WPε(ν0δ, t) holds for any t ∈ [T + c2εδ,T]. Since in the case considered here, we
have da(T ) ≤ 44ρ1δ, it follows that property WPε(ν∗da(T ), t) holds for any t ∈ [T + c2εδ,T],
provided that the constant ν∗ satisfies the conditions ν∗ ≤ ν0

44ρ1
and α∗ ≥ 44ρ1α4. We impose

also c∗ = c2, and we verify that (1.17) as well as assertions (i)–(ii) have been established in the
case considered here.

Case 2 δ̃ = da(T )
22ρ1

≥ 2δ.

We introduce first ΔT and T̃trans defined by

ΔT ≡ c0
2ε2M0 exp

(da(T )
11ε

)
, T̃trans = T +

ε2

2
exp
(da(T )

10ε

)
< Ttrans.

It follows from Lemma 4.6 and (4.8) that there exists some time Treg ∈ [T, T + ΔT ], such that
WPε(Treg, δ̃) holds. We define T as

T(T ) = T(Treg, δ̃) = T
(
Treg,

da(T )
22ρ1

)
≥ T(T, δ). (7.15)

First notice that ΔT + c2εδ̃ ≤ T − T̃trans = ε2

2 exp
(da(T )

10ε

)
, provided δ ≥ α8ε, where α8 is some

positive constant. Hence, imposing the additional condition α∗ ≥ α7, we are led to T+ΔT+c2εδ̃

∈ [T, T̃trans], and hence Treg ∈ [T, T̃trans]. We claim that

T(T ) ≥ T(T, δ). (7.16)
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Indeed, in the case considered here, we have δ̃ ≥ 2δ, so that T = T(Treg, δ̃) ≥ T(Treg, 2δ). On
the other hand, by Corollary 7.1 and (7.12), we have, for any k ∈ J(T ),

|ak(t) − ak(T̃trans)| ≤ ε exp
(
− ρ7

δ

ε

)
≤ ε exp(−α8).

Hence, in view of the definition of T, we deduce T(Treg, 2δ) ≥ T(T, δ), provided that α8 is
chosen sufficiently large, and the claim (7.16) follows. Then this establishes inequality (1.17)
in Case 2.

In order to establish assertion (ii), we invoke again Proposition 4.4. It yields that for
any t ∈ [Treg + c2εδ̃,T], and hence any t ∈ [T̃trans,T], property WPε(t, ν0δ̃), i.e., property
WPε(t, ν0

22ρ1
da(T )) holds. Hence, property WPε(t, ν∗da(T )) holds for any t ∈ [Ttrans,T], pro-

vided that ν∗ is chosen so that ν∗ ≤ ν0
22ρ1

. This establishes assertion (ii) whereas assertion (i)
follows from the fact that Ttrans ≤ T(T, δ). In view of the previous discussion, we are now in
position to fix the value of the constant ν∗ as

ν∗ =
ν0

44ρ1
. (7.17)

Notice that a number of our other constants have been determined so far, namely, besides ν∗

also S∗ and c∗. We however still have left open the choice for α∗ and ρ∗.
Step 2 Defining the points bk(t), proof of assertion (iv).
In order to define the points {bk(t)}k∈J(T ), we distinguish two cases.
Case 1 Dk(T ) < L(δ).
In this case, one, at least of the conditions WSk(t) or WSk−1(t) holds. We then set

bk(t) = bk,T̃trans
(t) for t ∈ [Ttrans,T], (7.18)

and define the family {bk}k∈J(T ) on [T, Ttrans] as the unique solution to the system of ordinary
differential equations (1.16), with initial datum at time Ttrans given by

bk(Ttrans) = bk,T̃trans
(Ttrans) (7.19)

with the coefficients C±
k taken as C±

k (t) = Ck ± (Ttrans) for any t ∈ [T, Ttrans]. Since the two
definitions and the desired estimates are somewhat different, we handle the intervals [T, Ttrans]
and [Ttrans,T] separately.

For the interval [Ttrans,T], in view of the choice (7.18) of the function bk, the statement
of assertion (iv) on the time interval [Ttrans,T] is essentially a consequence of Proposition 7.1
and Lemma 7.1. Indeed, condition (7.7) is clearly satisfied for t ≥ Ttrans, since, in view of
our constructions, we have for any k ∈ J(T ), Ttrans ≥ T +

k (T̃trans), provided δ ≥ α∗ε, and that
the constant α∗ is chosen sufficiently large. On the other hand, we know, thanks to assertion
(ii) that WPε(2ν∗da(T ), T̃trans) is satisfied. It follows that the functions bk are solutions to
a system of the form (1.16) on the interval [Ttrans,T], and that estimate (1.19) holds for the
whole interval [t,T], provided that we choose

ρ∗ ≤ ρ6ν∗
2

. (7.20)
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Turning to (1.20) for the interval [Ttrans,T], we invoke Lemma 7.1 at time T̃trans, since, as
mentioned WPε(ν∗da(T ), T̃trans) holds, where ν∗ is fixed in (7.17). It yields for s ∈ [T̃trans +
c2εda(T ),T] that

|ak(s) − bk,T̃trans
(t)| ≤ Kε exp

(
− ρ3ν∗

da(T )
ε

)
≤ ε exp

(
− ρ∗

da(T )
ε

)
, (7.21)

where the last inequality holds, if we impose additionally

ρ∗ ≤ ν3ν∗, (7.22)

and provided that α∗ is chosen sufficiently large. Since T̃trans + c2εda(T ) ≤ Ttrans, provided
δ ≥ α8ε, inequality (7.21) holds in particular for s ∈ [Ttrans,T]. Hence inequality (7.21)
combined with the choice (7.18) of the functions bk leads directly to (1.20) for the interval
[Ttrans,T], and establishes assertion (iv) on the interval [Ttrans,T].

Turning to the interval [T, Ttrans], we notice that it follows directly from our definition (7.19)
that the function bk is a solution to a differential equation of the desired form with the desired
estimate (1.19) for the coefficients. It remains to establish (1.20) for the interval [T, Ttrans].
For that purpose, we relay on several distinct observations. First, it follows from Corollary 7.1,
inequality (7.12) that

|ak(t) − ak(Ttrans)| ≤ ε exp
(
− ρ7

δ

ε

)
for t ∈ [T, Ttrans], (7.23)

so that d b(Ttrans) = da(Ttrans) ≤ 9da(T )
10 , provided that α∗ is choose sufficiently large.

Next, in view of the equation (1.16) for {bk}k∈J(T ), we may apply Lemma 2.2 and Remark
2.1 to assert that

|d b(Ttrans) − d b(t)| ≤ Kε exp
(
− da(Ttrans)

ε
+
da(T )
10ε

)
≤ ε exp

(
− da(T )

5ε

)
for t ∈ [T, Ttrans],

so that
d b(t) ≥

4da(T )
5ε

for t ∈ [T, Ttrans],

provided that α∗ is chosen sufficiently large. Hence we deduce integrating inequality (2.3)
between T and Ttrans, we are led to

|bk(s) − bk(Ttrans)| ≤ ε exp
(
− 3da(T )

5ε

)
, t ∈ [T, Ttrans]. (7.24)

Combining (7.23)–(7.24) and (7.21) for t = Ttrans, we derive (1.20) on the interval [T, Ttrans], if
we impose, besides (7.20) and (7.22) the conditions ρ∗ ≤ ρ7 and ρ∗ ≤ 3

5 .

Case 2 Dk(T ) ≥ L(δ)
In this case, define the family {bk}k∈J(T ) on [T,T] as the unique solution to the system of

ordinary differential equations (1.16), with initial datum at time Ttrans given

bk(Ttrans) = ak(Ttrans) (7.25)

and with the coefficients C±
k taken as C±

k (t) = C±
k (Ttrans) for any t ∈ [T,T].

One verifies with the same argument as above that with this choice of function bk inequalities
(1.19) are automatically satisfied. For inequality (1.20), we apply the last statement in Corollary
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7.1 and inequality (4.29) in Proposition 4.4: Since properties WPε(δ, T ) and WPε(ν∗da(T ))
hold, ⎧⎪⎨

⎪⎩
|ak(t) − ak(T )| ≤ ε exp

(
− ρ7

δ

ε

)
for t ∈ [t, Ttrans],

|ak(t) − ak(Ttrans)| ≤ ε exp
(
− ρ7ν∗

da(T )
ε

)
for t ∈ [Ttrans,T].

(7.26)

Using the same arguments as for (7.24) but now on the whole interval [t,T], we obtain

|bk(s) − bk(Ttrans)| ≤ ε exp
(
− da(T )

ε

)
, t ∈ [T,T]. (7.27)

Combining (7.26), (7.27) and the definition (7.25), we derive the desired conclusion (1.20) in
the case considered.

Step 3 Proof of assertion (iii).
The stopping time T is defined in Step 1, where we distinguish two cases. We provide here

a proof in the second case, the proof in the first case being readily the same (and even possibly
a little simpler). In view of (7.23), we first observe that, we have, for any k ∈ J(T ), and if
δ ≥ α∗,

|ak(T ) − ak(Treg)| ≤ 2ε exp
(
− ρ7

δ

ε

)
≤ 2

α∗
exp(−ρ7α∗). (7.28)

On the other hand, in view of the definition (7.15) of T, there exists some k0 ∈ J(T ), such that

|ak0(T) − ak0(Treg)| ≥
ρ6

88ρ1

√
λmax

da(T ). (7.29)

Combining (7.28) with (7.29), we are hence led to

|ak0(T) − ak0(T )| ≥ ρ6

89ρ1

√
λmax

da(T ),

provide that the constant α∗ is chosen sufficiently large. Combining this inequality with (1.20),
we deduce that

|bk0(T) − bk0(T )| ≥ ρ6

90ρ1

√
λmax

da(T ),

provided once more that the constant α∗ is chosen sufficiently large. Since {bk}k∈J(T ) is a
solution to the differential equation (1.16), we may invoke Proposition 2.1 to assert that

|d b(T) − d b(T )| ≥ ρ6

90ρ1S0

√
λmax

da(T ) − S1

S0
ε ≥ ρ6

91ρ1S0

√
λmax

da(T ), (7.30)

provided again that the constant α∗ is chosen sufficiently large. Invoking once more (1.20), we
finally deduce

|da(T) − da(T )| ≥ ρ6

92ρ1S0

√
λmax

da(T ),

which yields the desired result, provided that ρ∗ is chosen sufficiently small.

8 Collisions

The proof of Theorem 1.2 relies the results in Theorem 1.1, combined with various properties
of solutions to the differential equation (1.16). We present next the other main observations
which lead to the proof of Theorem 1.2 as separate subsections.
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8.1 Comparing with the differential equation (1.16)

We first notice that, under the assumptions of Theorem 1.1, a rather direct consequence of
inequality (1.20) is that, for any T ≤ t ≤ T(T ) (resp. Ttrans ≤ T ≤ T(T )),

|d±a (t) − d±b (t)| ≤ ε exp
(
− ρ∗

δ

ε

) [
resp. |d±a (t) − d±b (t)| ≤ ε exp

(
− ρ∗

da(T )
ε

)]
, (8.1)

where the subscript b refers to the solution {bk}k∈J(T ) to (1.16) described in Theorem 1.1.
Hence, we may use the properties of the differential equation (1.16) presented in Section 2 to
derive related results for the partial differential equation. For instance, applying Proposition
2.3 to {bk}k∈J(T ), we are led, for t ∈ [T,T)] and δ ≥ α∗ε, to the estimates⎧⎪⎨

⎪⎩
d+a (t) − d+a (T )

ε
≥ log

[
1 + Λ0ε

−2(t − T ) exp
(
− d

+
a (T )
ε

)]
− Λ1,

d−a (t) − d−a (T )
ε

≤ log
[
1 − Λ0ε

−2(t − T ) exp
(
− d

−
a (T )
ε

)]
+ Λ1,

(8.2)

where Λ0 > 0 and Λ1 > 0 are two constant depending only on the constants in Proposition 2.3.
As an immediate consequence of (8.2), we obtain for t ∈ [T,T)],

d+a (t) ≥ d+a (T ) − γε, d−a (t) ≤ d−a (T ) + γε, (8.3)

where γ > 0 is some constant. We next present a few observations and constructions which
enter into the proof.

8.2 The stopping time T1

We introduce a new stopping time T1 defined by

T1(T ) = inf
{
s ∈ [T,T(T )], s.t. |da(s) − da(T )| ≥ ρ∗

4
da(T )

}
, (8.4)

so that T1(T ) < T(T ). Since the comparison between the partial differential equation and the
ordinary differential equations holds only on a bounded interval of time, we are led to introduce
an iterative construction in order to track more accurately the solution. More precisely, we
construct inductively and whenever this as a meaning for j ∈ N ,

Tj+1(T ) = T1(Tj(T )) = Tj(T1(T )) (8.5)

with the convention T0(T ) = T . Upper bounds for T1, expressed in terms of da(T ) will be
needed for our proofs. A first one is derived from (8.2), which yields

T1(T ) < T(T ) ≤ T−ref(T ) ≡ Λ−1
0 ε2 exp

(
− d

−
a (T )
ε

)
+ T. (8.6)

Lemma 8.1 Assume that property WPε(δ, T ) holds, and that δ ≥ β2ε, where β2 ≥ β1 is
some constant. Assume that d+a (T ) ≤ d−a (T ). Then we have

T1(T ) ≤ T+
ref(T ) ≡ Λ2 exp(−Λ1))Λ−1

0 ε2 exp
(
− d

+
a (T )
ε

(
1 +

ρ∗
4

))
+ T, (8.7)

where Λ2 = exp(−Λ1)Λ−1
0 . If furthermore,

d+a (T )
(
1 +

3ρ∗
8

)
≤ d−a (T ), (8.8)

then, we have the identities da(T1(T )) = d+a (T1(T )) = d+a (T )
(
1 + ρ∗

4

)
.
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Proof By the assumption, the inequality d+a (T ) ≤ d−a (T ) holds, so that we have, on one
hand, da(T ) = d+a (T ), whereas on the other hand, we have by the definition of T1, the inequality
da(s) ≤ d+a (T )(1 + ρ∗

4 ) for s ∈ [T,T1]. Going back to (8.2), we check that, if T+
ref(T ) ≤ T(T ),

then d+a (T+
ref(T )) > d+a (T )(1+ ρ∗

4 ), and the first assertion follows. We leave the second assertion
to the reader.

Our previous discussion leads us to distinguish whether condition (8.8) is met or not.

8.3 The iterative construction (8.5) when condition (8.8) holds

When condition (8.8) holds, we introduce the integer nf defined as

nf = inf
{
j ∈ N, d−a (Tj) >

(
1 +

3ρ∗
8

)
d+a (Tj)

}
,

where the time Tj is defined by Tj = Tj(T ) for j = 0, · · · , nf . We denote by bj = {bj
k}k∈J(T )

the solution to the ordinary differential equation (1.16) defined on Ij = [Tj , Tj+1] obtained
invoking Theorem 1.1. We describe first some elementary properties.

Lemma 8.2 Assume that (8.8) and WPε(δ, T ) hold with δ ≥ β2ε. For k = 0, · · · , nf , we
have

da(Tj) = d+a (Tj) = d+a (T )
(
1 +

ρ∗
4

)j

, |d+a (Tnf
) − d−a (Tnf

)| ≤ ρ∗
2
da(Tnf

) (8.9)

and

0 < Tj+1 − Tj ≤ Λ2ε
2 exp

(d+a (Tj+1)
ε

)
. (8.10)

For any j = 1, · · · , nf and every s ∈ [Tj , Tj+1], property WPε(ν∗d
+
a (Tj−1), s) holds, and we

have

|ak(t) − bj
k(t)| ≤ ε exp

(
− ρ∗

(
1 +

ρ∗
4

)j−1 d+a (T )
ε

)
. (8.11)

Proof The identities (8.9) and (8.10) follow directly from Lemma 8.1, whereas the last
assertions are a direct consequence of Theorem 1.1 assertion (ii).

Remark 8.1 As rather direct consequence of inequality (8.10) we deduce that for some
constant Λ3 > 0, and provided that β2 is chosen sufficiently large,

0 < Tj − T ≤ Λ3ε
2 exp

(d+a (Tj)
ε

)
. (8.12)

The main result in this subsection are summarized in the following proposition.

Proposition 8.1 Assume that (8.8) and WPε(δ, T ) hold with δ ≥ β2ε. Then, we have the
inequality d−a (s) ≤ d−a (T ) + ε for every s ∈ [T, Tnf

] and

Tnf
≤ Λ4ε

2 exp
((

1 − ρ∗
8

)d−a (T )
ε

)
+ T. (8.13)
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Proof we introduce the stopping time s1 defined by

s1 = inf{s ∈ [t, Tnf
], s.t. d−a (s1) = d−a (T ) + ε},

if the set on the right-hand side is not empty, and s1 = Tnf
otherwise. Let j1 ∈ N be such that

s1 ∈ (Tj1 , Tj1+1]. Since d−a (s) ≤ d−a (T ) + ε on [T, s1], we deduce, combining with inequality
(8.3) applied for the time Tj1 , that d−a (s) ≤ d−a (T )+ (γ + 1)ε on [T, Tj1+1]. It then follows from
the definition of nf that

d−a (T ) + (γ + 1)ε ≥ d−a (Tj1+1) ≥
(
1 +

ρ∗
2

)
d+a (Tj1+1).

Hence, if we choose the constant β2 sufficiently large, then we have
(
1 + ρ∗

4

)
d+a (Tj1+1) ≤ d−a (T ).

It follows, invoking inequality (8.12) that

(Tj1+1 − T ) exp
(
− d

−
a (T )
ε

)
≤ ε2Λ3 exp

(
− ρ∗

d−a (T )
8ε

)
. (8.14)

In view of inequality (2.7) of Proposition 2.3, we have

ε
d
dt
d−bj (s) ≤ 4q−1

minB2
max exp

(
−
d−bj (s)

ε

)
≤ 8q−1

minB2
max exp

(
− d

−
a (s)
ε

)
,

where the last inequality is a consequence of (8.11), provided that we choose the constant β2

sufficiently large. We then deduce that for s ∈ [s0, s1], we have

ε
d
dt
d−bj (s) ≤ 8q−1

minB2
max exp

(
− d

−
a (T )
ε

)
.

Integrating this inequality and using again (8.11), we are led to

d−a (s1) − d−a (T ) ≤ 8ε−1(s1 − T )q−1
minB2

max exp
(
− d

−
a (T )
ε

)

+ ε

nf∑
k=1

exp
(
− ρ∗

(
1 +

ρ∗
4

)j−1 d+a (T )
ε

)

≤ εΛ4

[
exp
(
− ρ∗

d−a (T )
8ε

)
+ exp

(
− ρ∗

d+a (T )
8ε

)]
, (8.15)

where Λ4 > 0 is some constant. If β2 is chosen sufficiently large, then we deduce from (8.14)
that d−a (s1) − d−a (T ) ≤ ε

4 . Hence, s1 = Tnf
which establishes the first assertion in Proposition

8.1. Inequality (8.13) follows going back to (8.14).

8.4 The iterative construction (8.5) when condition (8.8) fails

We begin this subsection with a preliminary results, which is somewhat a counterpart to
Lemma 8.1.

Lemma 8.3 Assume that property WPε(δ, T ) holds with δ ≥ β2ε, and assume that (8.8)
does not hold. Then we have da(T1(T )) = d−a (T1(T )) =

(
1 − ρ∗

4

)
d−a (T ).

Proof In view of our assumption and since 0 < ρ∗ ≤ 1, we have d−a (T ) ≥ da(T ) ≥ 8
11d

−
a (T ).

It follows on the other hand from (8.3) that da(T1(T )) ≤ d−a (T ) + γε. In view of the definition
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of T1, we have |da(T1(T )) − da(T )| = ρ∗
4 da(T ), so that either da(T1(T )) = (1 + ρ∗

4 )da(T ) or
da(T1(T )) = (1 − ρ∗

4 )da(T ). The first equality is excluded: Indeed, if it were true, then we
would have, combining with our previous inequality,(

1 +
ρ∗
4

)
da(T ) ≤ d−a (T ) + γε,

a contradiction with the fact that (8.8) does not hold, if we choose the constant β2 sufficiently
large. Hence we conclude that da(T1(T )) =

(
1 − ρ∗

4

)
da(T ), which, combined once more with

(8.3), leads to the conclusion.

When condition (8.8) fails, a new stopping time is introduced, related to the integer mf

defined by

mf = inf{j ∈ N, s.t. d−a (Tj) ≤ 2α∗ε}. (8.16)

Proposition 8.2 Assume that property WPε(δ, T ) holds with δ ≥ β2ε, and assume that
(8.8) does not hold. We have for j = 1, · · · , nf ,

da(Tj) = d−a (Tj) = d−a (T )
(
1 − ρ∗

4

)j

. (8.17)

For every s ∈ [Tj, Tj+1], property WPε(ν∗d
−
a (Tj−1), s) holds and d+a (s) ≥ d+a (T )−γε. Moreover,

Tmf
− T ≤ Λ3ε

2 exp
(d−a (T )

ε

)
, d−a (Tmf

) ≤ 2α∗ε. (8.18)

Proof The proof is very similar to the proof of Proposition 8.1 and relies both on Theorem
1.1 and Lemma 8.3. We therefore omit the details.

8.5 Proof of Theorem 1.2 completed

We choose throughout β∗ = β2. We distinguish two cases.
Case A Inequality (8.8) does not hold.
In this case, we are in position to apply the results of Proposition 8.2 in Subsection 8.4. As

a matter of fact, we choose
T −

col = Tmf
,

where the value of mf is provided by (8.16). For this choice, imposing C∗ ≥ λ3 and c∗ ≥ λ, all
the statements provided in Theorem 1.2 are provided by the results of Proposition 8.2.

Case B Inequality (8.8) holds.
Here, we are in position to apply first the results of Subsection 8.3. We introduce the

time T0 = Tnf
, where Tnf

is provided by Proposition 8.1. Hence, we obtain the bounds
d−a (T0) ≤ d−a (T ) + ε, d−a (T0) >

(
1 + 3ρ∗

8

)
d+a (T0) and

T0 − T ≤ Λ4ε
2 exp

((
1 − ρ∗

8

)d−a (T )
ε

)
+ T. (8.19)

It follows that inequality (8.8) holds for the time T0, and we may therefore then argue as in the
first step, setting

T −
col = Tmf

(T0),
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It follows from inequality (8.18) of Proposition 8.2 that

T −
col − T0 ≤ Λ3ε

2 exp
(d−a (T0)

ε

)
≤ eΛ3ε

2 exp
(d−a (T )

ε

)
, (8.20)

where the last inequality follows from the bound d−a (T0) ≤ d−a (T ) + ε. Moreover, we have
d−a (Tmf

) ≤ 2α∗ε. The conclusion then follows combining (8.19)–(8.20) and an appropriate choice
of the constants.

9 Annihilations

The purpose of this section is to provide the proof of Theorem 1.3.

9.1 Dissipation of energy

Proposition 9.1 Let 0 ≤ T1 < T2 be given and assume that WPε(δ, Ti) holds for i = 1, 2
with δ ≥ β3ε, where β3 = sup{β2, 4ν−1

1 α∗}, and ν1 is the constant introduced in Lemma 4.9.
Assume moreover that the signs {†k}k∈J(T1) are not all identical. Then, it holds

E(T1) ≥ E(T2) + μ1, (9.1)

provided T2 − T1 ≥ C∗ε
2 exp

(d−a (T1)
ε

)
, where the constant μ1 is introduced in Lemma 4.5.

Proof Assume by contradiction that inequality (9.1) does not hold. In view of Lemma
4.5, we then necessarily have E(T1) = E(T2), and we are in position to apply Lemma 4.9, which
yields in particular,

d−a (t) ≥ ν1δ ≥ 4α∗ε for any t ∈ [T1, T2]. (9.2)

In view of our assumption on T2 − T1, we deduce that T −
col defined in Theorem 1.2 belongs to

[T1, T2]. From the very definition of T −
col, we obtain d−a (T −

col) ≤ 2α∗ε, which contradicts (9.2)
and hence completes the proof.

We notice that, under the assumptions of Theorem 1.2 that E(s) = E(T ) for any s ∈ [T, T −
col].

We next define the time T +
col > T −

col for which a dissipation has undergone.

Proposition 9.2 Let T ≥ 0 and δ > 0 be given, suppose that the assumptions of Theorem
1.2 are full-filled and that moreover δ ≥ β4ε, where β4 ≥ β3 is some constant depending
only on V and M0. Then there exists some time T +

col > T −
col, such that WPε(α∗ε, T +

col) holds,
E(T +

col) ≤ E(T )+μ1, and moreover (1.24) holds, for some constant Υ depending only on V and
M0.

Proof We impose first that β4 ≥ 2ν−1
∗ β3. Turning to Theorem 1.2, by continuity of the

function δ−(·), we may assert that there exists some time T1 ∈ [T, T −
col], such that

δ−(T1) = 2ν−1
∗ β3 ≤ β4,

and, in view of assertion (iii), that property WPε(β3ε, T1) holds. On the other hand, assuming
that the constant β4 is given, it follows from Lemma 4.6 and relation (4.9) that there exists some
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time T1 ∈ [T −
col +ω(β4)ε2, T −

col +2ω(β4)ε2], such that condition WPε(β4ε, T2) holds. Moreover,
by definition, we have

ω(β4)ε2 ≤ T2 − T −
col ≤ 2ω(β4)ε2. (9.3)

We choose next the constant β4 sufficiently large, such that it satisfies the additional condition

ω(β4) ≥ C∗ exp(ν−1
∗ β3),

so that T2 − T1 ≥ T2 − T −
col ≥ ω(β4)ε2 ≥ C∗ε

2 exp d
−
a (T1)

ε . It follows hence from Proposition 9.1
that E(T1) ≥ E(T2) + μ1. Setting T +

col = T2 the conclusion follows with Υ = 2ω(β4).

9.2 The fate of fronts between T −
col and T +

col

Proposition 9.3 Let T ≥ 0 and δ > 0 be given, suppose that the assumptions of Theorem
1.2 are full-filled and that moreover δ ≥ β4ε. There exists a constant κc > 0, such that⋃

k∈J(T +
col)

{ak(T +
col)} ⊂

⋃
k∈J(T +

col)

{ak(T −
col)} + [−κcε, κcε]. (9.4)

If for some k0 ∈ J(T +
col), ak0(T −

col) is well separated from the other fronts in the sense of (1.22),
then we have

|am0(T +
col) − akf (T −

col)| ≤
κf

10
ε, |am′(T +

col) − am0(T +
col)| ≥

9κf

10
ε for m′ �= m0.

Proof Recall that in view of Theorem 1.3, we have T +
col − T −

col ≤ Υε2, so that, in view of
Theorem 1.6, we have, for some constant κ1 > 0, such that, for any s ∈ [T −

col, T
+
col],

D(s) ⊂ D(T −
col) + [−κ1ε, κ1ε]. (9.5)

On the other hand, by (1.27), we have D(T ±
col) ⊂ ∪

k∈J(T ±
col)

{ak(T ±
col)} + [κwε, κwε], which yields

(9.4), choosing κc ≥ 2κw + 2κ1, the inclusion (9.4).
Assume next that (1.22) holds for some k0 ∈ J(T +

col), with a constant κf > 0 yet to be
determined. We set

Jk0(T +
col) =

{
m ∈ J(T +

col), am(T +
col) ∈

[
ak0(T −

col) −
κf

2
ε, ak0(T −

col) +
κf

2
ε
]}

and Ok0(T +
col) = {am(T +

col), m ∈ Jk0(T +
col)}. If we impose the condition κf > 10κc, then the

second assertion of Proposition 9.3 essentially reduces to prove that these sets are singletons.
Imposing also that κf > 4κ1, we see in view of (9.5) that |vε(·, T +

col) − σj(k0)− | ≤ μ0 on the
interval [ak0−1(T −

col) + κ1ε, ak0(T −
col)− κ1ε], which is not empty in view of our constraint on κf ,

and similarily that |vε(·, T +
col)−σj(k0)+ | ≤ μ0 on the interval [ak0(T −

col)+κ1ε, ak0+1(T −
col)−κ1ε].

Hence, vε(·, T +
col) needs to connect between the points ak0(T −

col) − κ1ε and ak0(T −
col) + κ1ε the

values σj(k)− to σj(k)+ , and hence we deduce that

Ok0(T +
col) = O(T +

col) ∩ [ak0(T −
col) − κ1ε, ak0(T −

col) + κ1ε] �= ∅.
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To complete the proof, it remains finally to show that Ok0(T +
col) reduces to a single point. For

that purpose, we invoke once more the localized energy inequality (1.31), with a test function
χ such that 0 ≤ χ ≤ 1 and⎧⎪⎨

⎪⎩
χ = 1 on [ak0(T −

col) −
κf
4 ε, ak0(T −

col) + κf
4 ε],

χ = 0 on R \ [ak0(T −
col) −

κf
2 ε, ak0(T −

col) + κf
2 ε],

|χ̈| ≤ 16κ−2
f ε−2.

Writing (1.31) for this choice of test function, we are led to

∣∣∣ ∫ χeε(vε(·, T −
col)) −

∫
χeε(vε(·, T +

col))
∣∣∣ ≤ 16M0κ

−2
f . (9.6)

On the other hand, in view of the energy quantization property expressed in Lemma 4.4 which
can easily be localized, we deduce that

∣∣∣ ∑
m∈Jk0(T +

col)

Si(m) − Si(k0)

∣∣∣ ≤ 16M0κ
−2
f + M0

δ

ε
exp
(
− ρ2δ

ε

)
.

Since vε(·, T +
col) needs to connect between the points ak0(T −

col) − κ1ε and ak0(T −
col) + κmfε the

values σj(k)− to σj(k)+ , there exits some m0 ∈ Jk0(T +
col), such that Si(m) = Si(k0), and the

previous inequality becomes

∑
m∈Jk0(T +

col)\{m0}

Si(m) ≤ 16M0κ
−2
f + M0

δ

ε
exp
(
− ρ2δ

ε

)
. (9.7)

The right-hand side of this inequality can be made arbitrarily small, choosing κf and possibly
also β4 sufficiently large, whereas the right-hand side is either zero or bounded below by a
positive constant. Hence for a suitable choice of the constants, we are led to Jk0(T +

col)\{m0} = ∅,
yielding hence the desired conclusion.

9.3 Proof of Theorem 1.3 completed

First notice that the time T +
col has been defined in Proposition 9.2, and the estimate (1.24)

as well as the condition WPε(α∗ε, T +
col) have been established there. It remains hence to prove

assertions (i)–(iii). Assertion (i) rephrases the inclusion (9.4) of Proposition 9.3. Assertion (ii)
follows from the second assertion in Proposition 9.3, as well, for the part concerning repulsive
points, inclusion (1.23) and the discussion thereafter.

The proof of Assertion (iii) requires some additional discussion. Arguing as for (9.7), we
deduce that ∑

ak(T +
col)∈Orep(T +

col)

Si(k) =
∑

ak(T −
col)∈Orep(T −

col)

Si(k),

so that, in view of the inequality E(T +
col) ≤ E(T ) + μ1, we are led to the inequality

∑
ak(T +

col)∈Oattr(T +
col)

Si(k) ≤
∑

ak(T −
col)∈Oattr(T −

col)

Si(k) + μ1. (9.8)
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We next invoke several observations. The first one is that the set Oattr(T −
col) can be decomposed

as Oattr(T −
col) =

p
∪

m=1
A−

m where all of the sets A−
m are maximal attractive chains. We notice that

a maximal attractive chain involves only one heteroclinic orbit denoted here ξm, so that

∑
ak(T −

col)∈A−
m

Si(k) = 
(A−
m)Sm.

In view of the continuity of the front sets properties described in Subsection 9.2, each maximal
attractive chain A−

m gives rise to a corresponding maximal attractive chain A+
m for Oattr(T +

col),

so that Oattr(T +
col) =

p
∪

m=1
A+

m the number of elements in A+
m is odd if the number of elements in

A−
m is odd, even but possibly zero if the number of elements in A−

m is even. Moreover, invoking
the localized energy identity (1.31) with appropriate test functions as for the proof of (7.16),
we obtain


(A+
m) ≤ 
(A−

m).

On the other hand, inequality (9.8) is turned into

p∑
m=1


(A+
m)Sm ≤

p∑
m=1


(A−
m)Sm + μ1.

Hence, combining the two last inequalities, we deduce that there exists some m0, such that

(A+

m0
) < 
(A−

m0
). The conclusion follows, taking into account that the numbers involved are

positive integers with the same parity.

10 Relaxing the Assumptions on the Potential

In this section, we outline the main points of the arguments of the proofs of Proposition
1.1 and Theorem 1.5. An important step is to check that the result stated in [3, Lemma 1]
remains valid under assumptions on the potential we consider here. More precisely, we have
the following lemma.

Lemma 10.1 Assume that the potential V satisfies assumptions (H1)–(H3). Let u be such
that Eε(u) < +∞. There exist constants η0 > 0 and N > 0 depending only on ‖V ′‖C2(R), ν and
λmin, such that, if, for a ∈ R, we have∫

[a,a+1]

eε(u(x))dx ≤ η0,

then there exists some σi ∈ Σ, such that

|u(x) − σi| ≤ N(‖V ‖C2(R), ν, λmin)
( ∫

[a,a+1]

eε(u(x))dx
) 1

2
, ∀x ∈ [a, a + 1]. (10.1)

The proof is parallel to the proof of Lemma 1 in [3] and is left to the reader. We notice also
that (1.25) remains also valid with � ≤ �0, where the constant �0 depends only on ‖V ′‖C2(R), ν

and λmin.
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10.1 Sketch of the proof of Proposition 1.1

Since
∫
[a,a+1] eε(u(x))dx → 0 as a → ±∞, so that, in view of (10.1), we deduce that there

exists some σ+ ∈ Σ (resp. σ− ∈ Σ), such that |u(x)−σ+| → 0 as x → +∞ (resp. as x → −∞).
In view of (1.25), we have

u(R) ⊂
�⋃

k=1

u([xi − ε, xi + ε]) + [−μ0, μ0].

On the other hand, by embedding, we have

|u([xi − ε, xi + ε])| ≤
√

2ε‖u̇‖L2(R) ≤ 2M0,

so that |u(R)| ≤ �0M0, and (1.28) follows. Finally, we leave the last assertion to the reader.

10.2 Sketch of the proof of Theorem 1.5

In view of Proposition 1.1 and relation (1.29), we know that vε takes values in some interval
of the form [σ+ − A, σ+ + A], with A depending only on ‖V ′‖C2(R), ν and λmin. We may then
construct a potential Ṽ , such that Ṽ = V on the set [σ+−2A, σ++2A] which full-fills conditions
(H1)–(H3). It follows that the function vε is also a solution to (PGL)ε for the potential Ṽ , and
we are hence in position to apply the results in Theorems 1.1–1.4, which leads to the desired
conclusion. One may also check that the extension Ṽ might be constructed in such a way that
all constants involved in the theorems depend only on ‖V ′‖C2(R), ν and λmin.
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