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Abstract This paper contains a detailed, self contained and more streamlined proof of
the l2 decoupling theorem for hypersurfaces from the paper of Bourgain and Demeter in
2015. The authors hope this will serve as a good warm up for the readers interested in
understanding the proof of Vinogradov’s mean value theorem from the paper of Bourgain,
Demeter and Guth in 2015.
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1 The Theorem

Consider the truncated (elliptic) paraboloid in Rn,

Pn−1 := {(ξ1, · · · , ξn−1, ξ
2
1 + · · · + ξ2n−1) : 0 ≤ ξi ≤ 1}.

For each cube Q in [0, 1]n−1 and g : Q→ C, define the extension operator E(n)
Q = EQ as follows:

EQg(x) =
∫

Q

g(ξ1, · · · , ξn−1)e(ξ1x1 + · · · + ξn−1xn−1 + (ξ21 + · · · + ξ2n−1)xn)dξ,

where e(z) = e2πiz,
ξ = (ξ1, · · · , ξn−1)

and
x = (x1, · · · , xn).

This can be interpreted as the Fourier transform ĝdσ, where the measure dσ is the lift of the
Lebesgue measure from [0, 1]n−1 to the paraboloid. When Q = [0, 1]n−1, we will sometimes
write Eg for E[0,1]n−1g.

We will use the letters Q, q to denote cubes on the frequency side [0, 1]n−1. We will use
the letters B,Δ to denote cubes on the spatial side Rn. Throughout the whole paper we can
and will implicitly assume that all cubes have side length in 2Z. This in particular will place
(harmless) restrictions on various parameters such as δ, σ,R, that we will not bother to write
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down explicitly. Thanks to this assumption, we will be able to partition (rather than use finitely
overlapping covers) large cubes into smaller cubes. Given a cube Q ⊂ [0, 1]n−1 with side length
l(Q) ∈ 2−N and α ∈ 2−N smaller than l(Q), we will denote by Partα(Q) the (unique) partition
of Q by using cubes Qα of side length α. A similar notation will occasionally be used for spatial
cubes B.

We will write B = B(cB, R) for the cube in Rn centered at cB and with side length l(BR) =
R, and we will introduce the associated weight

wB(x) =
1(

1 +
|x− cB|

R

)100n
.

The exponent 100n is chosen large enough to guarantee various integrability requirements. We
will see that Theorem 1.1 remains true for any larger exponent E ≥ 100n, and the implicit
bounds will depend on E. This observation will allow us to run our induction argument, as
explained in Section 3.

For a positive weight v : Rn → [0,∞) and for f : Rn → C, we define the weighted integral

‖f‖Lp(v) =
(∫

Rn

|f(x)|pv(x)dx
) 1

p

.

For 2 ≤ p ≤ ∞ and δ ∈ 4−N, let Dec(δ, p) = Decn(δ, p) be the smallest constant, such that
the inequality

‖Eg‖Lp(wB) ≤ Dec(δ, p)
( ∑

Q∈Part
δ
1
2

([0,1]n−1)

‖EQg‖2
Lp(wB)

) 1
2

holds for every cube B ⊂ Rn with side length δ−1 and every g : [0, 1]n−1 → C.
The l2 decoupling theorem proved in [3] reads as follows. We refer the reader to [3] for a

few applications that motivate the theorem.

Theorem 1.1 We have the following sharp (up to δ−ε losses) upper bound for Decn(δ, p):

Decn(δ, p) �ε,p,n δ
−ε,

if 2 ≤ p ≤ 2(n+1)
n−1 . The implicit constant depends on ε, p, n but not on δ.

We will present a rather detailed argument for this theorem. Essentially, we rewrite our
original argument from [3] using a more streamlined approach. This approach has started to
take shape in our subsequent papers on decouplings and has gotten to this final form in the
joint work with Guth [4]. One new feature of our argument compared to [3] is that we avoid
the special interpolation from [3], that relies on wave-packet decomposition. Another one is
that we use the multilinear Kakeya inequality, rather than the multilinear restriction theorem.
The argument we describe here also clarifies various technical aspects of the theory, such as the
role of the weights wB and the (essentially) locally constant behavior of Fourier transforms of
measures supported on caps on the paraboloid.

We hope the argument will be accessible to experts outside the area of harmonic analysis.
We believe this will serve as a warm up for the readers interested in understanding the proof
of Vinogradov’s mean value theorem from [4].
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A brief summary of the argument is presented in Section 3. The most important sections
are the last two. The details from the remaining sections may be skipped at the first reading.

2 More Notation

Throughout this paper we will write A �υ B to denote the fact that A ≤ CB, for a certain
implicit constant C, that depends on the parameter υ. Typically, this parameter is either ε, ν
or K. The implicit constant will never depend on the scale δ, on the spatial cubes we integrate
over, or on the function g. It will however most of the times depend on the degree n and on the
Lebesgue index p. Since these can be thought of as being fixed parameters, we will in general
not write �p,n.

We will denote by BR an arbitrary cube in Rn of side length l(BR) = R. We use the
following two notations for averaged integrals:

�

∫
B

F =
1
|B|

∫
B

F,

‖F‖Lp
� (wB) =

( 1
|B|

∫
|F |pwB

) 1
p

.

Given a function η on Rn and a cube B = B(c, R) in Rn, we will use the rescaled version

ηB(x) = η
(x− c

R

)
.

|A| will refer to either the cardinality of A if A is finite, or to its Lebesgue measure if A has
positive measure.

We will sometimes write 〈f, g〉 for the inner product
∫
fg.

3 A Brief Description of the Argument

We use two types of mechanisms to decouple. One is the L2 decoupling (see Section 6).
This is very basic, it relies just on Hilbert space orthogonality, but it is nevertheless very
efficient. It decouples into frequency cubes whose side length is as small as permitted by the
uncertainty principle, namely equal to the reciprocal of the side length of the spatial cube. The
second mechanism is a multilinear decoupling that relies on the multilinear Kakeya inequality
(see Theorem 9.2). Combining these with multiple iterations leads to the multiscale inequality
(10.7). This inequality has a very simple form when 2 ≤ p ≤ 2n

n−1 , and a short warm up
argument is presented in the end of Section 10 to prove Theorem 1.1 in this range.

For the general case, the argument will go as follows. We will introduce a family of con-
stants Decn(δ, p, ν,m), and will show in Section 8 that they dominate Decn(δ, p). On the other
hand, in the last section, we use (10.7) to show that each Decn(δ, p, ν,m) can be controlled
by a combination of powers of δ and some power of Decn(δ, p) (see (11.10)). This inequality
represents an improvement over the trivial estimate Decn(δ, p, ν,m) � Decn(δ, p). By playing
the two bounds (see (11.10) and (8.3)) against each other, we arrive at the desired upper bound

Decn(δ, p) �ε δ
−ε.
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An unfortunate technicality is the fact that we will need to work with the family of weights
for a cube B = B(c, R) in Rn,

wB,E(x) =
1

(1 + |x−c|
R )E

.

Here E ≥ 100n. For each such exponent E, we will let, as before, Decn(δ, p, E) denote the
smallest constant that guarantees the following inequality for each g,B = Bδ−1 :

‖Eg‖Lp(wB,E) ≤ Decn(δ, p, E)
( ∑

Q∈Part
δ
1
2

([0,1]n−1)

‖EQg‖2
Lp(wB,E)

) 1
2
.

All the quantities that will depend on weights will implicitly depend on E. This includes
Decn(δ, p, ν,m), Dt(q,Br, g) and Ap(q,Br, s, g). Sometimes we will suppress the dependence
on E, and will understand implicitly that the inequality is true for all E ≥ 100n. The weight
wB,E will always be the same on both sides of a given inequality. The implicit constants will
depend on E but that is completely harmless.

We will prove Theorem 1.1 by using induction on the dimension n. We set a superficially
stronger induction hypothesis, namely, we will assume that

Decn−1(δ, p, E) �ε,E δ−ε

for each 2 ≤ p ≤ 2n
n−2 and each E ≥ 100(n− 1). We will use this to prove

Decn(δ, p, E) �ε,E δ−ε

for each 2 ≤ p ≤ 2(n+1)
n−1 and each E ≥ 100n. The reason for such a hypothesis is coming

from inequality (8.8), which essentially uses the lower dimensional constant Decn−1(δ, p, F ) to
make a statement about Decn(δ, p, E). Larger dimensions demand higher values of E due to
integrability requirements.

4 A Few Useful Inequalities

One technical challenge in the proof of Theorem 1.1 is to preserve the exponent E for the
weights wB involved in various inequalities.

A key, easy to check property of the weights wB = wB,E that will be used extensively, is
the following inequality:

1B �
∑
Δ∈B

wΔ � wB, (4.1)

valid for all cubes B with l(B) = R and all finitely overlapping covers B of B with cubes Δ of
(fixed) side length 1 ≤ R′ ≤ R. The implicit constants in (4.1) will (harmlessly) depend on E,
but crucially, they will be independent of R,R′.

We will find extremely useful the following simple result.

Lemma 4.1 Let W be the collection of all weights, that is, positive, integrable functions on
Rn. Fix R > 0. Fix E. Let O1, O2 : W → [0,∞] have the following four properties:
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(W1) O1(1B) � O2(wB,E) for all cubes B ⊂ Rn of side length R.
(W2) O1(αu + βv) ≤ αO1(u) + βO1(v) for each u, v ∈ W and α, β > 0.
(W3) O2(αu + βv) ≥ αO2(u) + βO2(v) for each u, v ∈ W and α, β > 0.
(W4) If u ≤ v, then Oi(u) ≤ Oi(v).
Then

O1(wB,E) � O2(wB,E)

for each cube B with side length R. The implicit constant is independent of R,B and only
depends on the implicit constant from (W1), on E and n.

We will sometimes be able to check a stronger assumption than (W1), where O2(wB) is
replaced with O2(ηB) for some rapidly decreasing function η.

Proof Let B be a finitely overlapping cover of Rn with cubes B′ = B′(cB′ , R). It suffices
to note that

wB(x) �
∑

B′∈B
1B′(x)wB(cB′)

and ∑
B′∈B

wB′(x)wB(cB′) � wB(x).

Remark 4.1 It is rather immediate that for each f ,

O1(v) := ‖f‖p
Lp(v)

satisfies (W2) and (W4). Also, for fixed p ≥ 2 and fi, Minkowski’s inequality in l 2
p

shows that

O2(v) :=
( ∑

i

‖fi‖2
Lp(v)

) p
2

satisfies (W3) and (W4). Most applications of Lemma 4.1 will use this type of operators.

We complete this section with the following reverse Hölder inequality.

Corollary 4.1 For each q ≥ p ≥ 1, each cube Q ⊂ [0, 1]n−1 with l(Q) = 1
R and each cube

B in Rn with l(B) = R, we have

‖EQg‖Lq
�(wB,E) � ‖EQg‖Lp

� (w
B,

Ep
q

) (4.2)

with the implicit constant independent of R, Q, B and g.

Proof Let η be a positive smooth function on Rn satisfying 1B(0,1) ≤ ηB(0,1), such that the
Fourier transform of η

1
p is supported on the cube B(0, 1). We can thus write

‖EQg‖Lq(B) ≤ ‖EQg‖
Lq(η

q
p
B )

= ‖η
1
p

BEQg‖Lq(Rn).

Let θ be a Schwartz function which equals to 1 on the cube B(0, 10). Since the Fourier transform

of η
1
p

BEQg is supported in the cube 3Q (having the same center as Q and side length three times
as large), we have

η
1
p

BEQg = (η
1
p

BEQg) ∗ θ̂Q,
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and thus, by Young’s inequality, we can write

‖η
1
p

BEQg‖Lq(Rn) ≤ ‖η
1
p

BEQg‖Lp(Rn)‖θ̂Q‖Lr(Rn) � R− n
r′ ‖EQg‖Lp(ηB).

Here
1
q

=
1
p

+
1
r
− 1 =

1
p
− 1
r′
.

Now, following the notation and ideas from the proof of Lemma 4.1, we may use the previous
inequalities to write∫

|EQg|qwB,E �
∑

B′∈B
wB,E(cB′)

∫
B′

|EQg|q

� R−nq

r′
∑

B′∈B
wB,E(cB′)‖EQg‖q

Lp(ηB′)

� R−nq

r′
( ∑

B′∈B
[wB,E(cB′)]

p
q ‖EQg‖p

Lp(ηB′ )

) q
p

� R−nq

r′
( ∫

|EQg|pwB, Ep
q

) q
p

.

Remark 4.2 Note that there is a loss in regularity in (4.2), as the weight exponent is Ep
q

on the right-hand side. A simple example shows that this exponent is optimal. This will later
cause some minor technicalities. In particular, it will force us to use the smaller weight wΔ,10E

(as opposed to wΔ,E) in (8.1). This will in turn allow us to go from (11.8) to (11.9) by using
(4.2) for indices p and 2.

5 An Equivalent Formulation

For δ < 1 and Q ⊂ [0, 1]n−1, define the δ-neighborhood of Pn−1 above Q to be

Nδ(Q) = {(ξ1, · · · , ξn−1, ξ
2
1 + · · · + ξ2n−1 + t) : ξi ∈ Q and 0 ≤ t ≤ δ}.

For each f : Rn → C and R ⊂ Rn, denote by fR the Fourier restriction of f to R

fR(x) =
∫

R

f̂(ξ)e(x · ξ)dξ.

In this section, we will make repeated use of the following inequalities, where BR will refer to
the cube centered at the origin in Rn,

wBR,E ∗
( 1

(R′)n
wBR′ ,E

)
� wBR,E , R′ ≤ R (5.1)

and, when n = 2,

wBR,E(x1, x2) ≤
( 1

1 + |x1|
R

)E1( 1

1 + |x2|
R

)E2

, E1 + E2 ≤ E. (5.2)

We will need the following alternate form of decoupling, when we will derive inequality (8.8).
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Theorem 5.1 For each E ≥ 100n, the following statement is true for each F ≥ Γn(E),
where Γn(E) is a large enough constant depending on E and n. For p ≥ 2, each f : Rn → C

with Fourier transform supported in N 1
R

([0, 1]n−1) and for each cube BR ⊂ Rn, we have

‖f‖Lp(wBR,E) � Decn(R−1, p, F )
( ∑

Q∈Part
R

− 1
2

([0,1]n−1)

‖fN 1
R

(Q)‖2
Lp(wBR,E)

) 1
2
.

Proof To simplify notation, we will show the computations when n = 2. In this case,
Γ2(E) = 2E + 2 will suffice.

Using Remark 4.1, it will suffice to prove

‖f‖Lp(BR) � Dec2(R−1, p, F )
( ∑

Q∈Part
R

− 1
2

([0,1])

‖fN 1
R

(Q)‖2
Lp(wBR,E)

) 1
2
.

Due to translation/modulation invariance, we may assume BR to be centered at the origin.
A change of variables allows us to write

f(x1, x2) =
∫

N 1
R

([0,1])

f̂(ξ)e(ξ · x)dξ

=
∑

Q∈Part
R

− 1
2

([0,1])

∫
Q×[0, 1

R ]

f̂(s, s2 + t)e(sx1 + s2x2)e(tx2)dsdt.

Next, combining this with the Taylor expansion

e(tx2) =
∑
j≥0

(2π)j

j!

(2ix2

R

)j(Rt
2

)j

,

we can write for x ∈ BR,

|f(x)| ≤
∑
j≥0

(4π)j

j!

∣∣∣ ∑
Q∈Part

R
− 1

2
([0,1])

EQgj(x)
∣∣∣, (5.3)

where

gj(s) =
∫ R−1

0

f̂(s, s2 + t)
(Rt

2

)j

dt.

Obviously, (5.3) leads to the following inequality:

‖f‖Lp(BR) ≤ Dec2(R−1, p, F )
∑
j≥0

(4π)j

j!

( ∑
Q∈Part

R
− 1

2
([0,1])

‖EQgj‖2
Lp(wBR,F )

) 1
2
.

It remains to prove that (note that we have F on the left-hand side and E on the right-hand
side)

‖EQgj‖Lp(wBR,F ) � ‖fN1/R(Q)‖Lp(wBR,E),

uniformly over j ≥ 0.
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An easy computation allows us to assume Q = [0, R− 1
2 ]. Indeed, translating [u, u + R− 1

2 ]
to [0, R− 1

2 ] on the frequency side will replace (x1, x2) with (x1 + 2ux2, x2) on the spatial side.
Note that when 0 ≤ u ≤ 1, these shear transformations affect the weights wB only negligibly.

We start by writing

‖EQgj‖p
Lp(wBR,F ) ∼

∫
‖EQgj‖p

Lp
�
(B(y,R))

wBR,F (y)dy.

Recall that

EQgj(x) =
∫

N 1
R

(Q)

f̂(ξ)
(R(ξ2 − ξ21)

2

)j

e((ξ21 − ξ2)x2)e(ξ · x)dξ.

For x ∈ B(y,R), we write

e((ξ21 − ξ2)x2) = e((ξ21 − ξ2)y2)e((ξ21 − ξ2)(x2 − y2)),

and apply another Taylor expansion for e((ξ21 − ξ2)(x2 − y2)) to arrive at

|EQgj(x)| ≤
∑
k≥0

(4π)k

k!

∣∣∣ ∫
N 1

R
(Q)

f̂(ξ)
(R(ξ2 − ξ21)

2

)j+k

e((ξ21 − ξ2)y2)e(ξ · x)dξ
∣∣∣.

It now remains to prove∫ ∥∥∥ ∫
N 1

R
(Q)

f̂(ξ)
(R(ξ2 − ξ21)

2

)j

e((ξ21 − ξ2)y2)e(ξ · x)dξ
∥∥∥p

Lp
� (B(y,R))

wBR,F (y)dy

� ‖fN 1
R

(Q)‖p
Lp(wBR,E),

uniformly over j ≥ 0.

We write∫
N 1

R
(Q)

f̂(ξ)
(R(ξ2 − ξ21)

2

)j

e((ξ21 − ξ2)y2)e(ξ · x)dξ =
∫
F̂ (ξ)mj(ξ)e(ξ1x1 + ξ2(x2 − y2))dξ,

where

mj(ξ) = mj,y2(ξ) = e(ξ21y2)
(R(ξ2 − ξ21)

2

)j

1[0, 12 ]

(R(ξ2 − ξ21)
2

)
η(R

1
2 ξ1)η(Rξ2),

η is a Schwartz function equal to 1 on [−2, 2] and supported in [−3, 3], and

F = fN 1
R

(Q).

Let Mj(t) be a compactly supported Schwartz function which agrees with tj on [0, 1
2 ] and

satisfies the derivative bound ∥∥∥ dk

dtk
Mj

∥∥∥
L∞(R)

�k 1, (5.4)

uniformly over j ≥ 0 for each k ≥ 0.
Note that we can also write∫
N 1

R
(Q)

f̂(ξ)
(R(ξ2 − ξ21)

2

)j

e((ξ21 − ξ2)y2)e(ξ · x)dξ =
∫
F̂ (ξ)m̃j(ξ)e(ξ1x1 + ξ2(x2 − y2))dξ,
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where

m̃j,y2(ξ) = m̃j(ξ) = e(ξ21y2)Mj

(R(ξ2 − ξ21)
2

)
η(R

1
2 ξ1)η(Rξ2).

Applying Hölder’s inequality, we arrive at∫ ∥∥∥ ∫
F̂ (ξ)m̃j(ξ)e(ξ1x1 + ξ2(x2 − y2))dξ

∥∥∥p

Lp
�
(B(y,R))

wBR,F (y)dy

�
∫∫

|F |p ∗ |̂̃mj |(x)R−21BR(x1 − y1, x2)wBR,F (y)dxdy

=
∫

|F |p(x′)
[ ∫∫

|̂̃mj |(x− x′)R−21BR(x1 − y1, x2)wBR,F (y)dxdy
]
dx′.

It remains to show that∫
|̂̃mj | ∗ (R−21BR)(y1 − x1,−x2)wBR,F (y)dy � wBR,E(x).

In fact, we will prove a slightly stronger inequality∫
|̂̃mj | ∗ (R−21BR)(y1 − x1,−x2)wBR,F (y)dy �

(
1 +

|x1|
R

)−E(
1 +

|x2|
R

)−E

. (5.5)

An easy computation using (5.4) shows that for each s1, s2 ≥ 0,

‖∂s1
ξ1
∂s2

ξ2
m̃j‖L∞ �s1,s2

(
R

1
2 +

|y2|
R

1
2

)s1

Rs2 .

Combining this with the fact that m̃j is compactly supported in [−R− 1
2 , R− 1

2 ] × [−R−1, R−1]
leads, via repeated integration by parts, to the following estimate for the Fourier transform:

|̂̃mj(x1, x2)| ≤ φ1(x1)φ2(x2),

where

φ1(x1) �s1

1
R

1
2

( 1

1 + |x1|
R

1
2 +R− 1

2 |y2|

)s1

(5.6)

and

φ2(x2) �s2

1
R

( 1

1 + |x2|
R

)s2

. (5.7)

Let IR =
[ − R

2 ,
R
2

]
and recall that BR = IR × IR. Using (5.7) and (5.1) (n = 1), we may now

write ∫
(|̂̃mj | ∗ (R−21BR))(y1 − x1,−x2)wBR,F (y)dy

≤
(
φ2 ∗

( 1
R

1IR

))
(−x2)

∫ (
φ1 ∗

( 1
R
IR

))
(y1 − x1)wBR,F (y)dy

� 1
R

(
1 +

|x2|
R

)−E
∫ (

φ1 ∗
( 1
R
IR

))
(y1 − x1)wBR,F (y)dy.
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Recalling (5.5), we are left with proving that

∫ (
φ1 ∗

( 1
R
IR

))
(y1 − x1)wBR,F (y)dy � R

(
1 +

|x1|
R

)−E

. (5.8)

We split the analysis into three cases. We will need F ≥ 2E + 2.

(a) |y2| ≤ R. In this case,

φ1(x1) � 1
R

1
2

(
1 +

|x1|
R

1
2

)−E

.

Using (5.1) with n = 1 twice (first R′ = R
1
2 then R′ = R) and (5.2) with E1 = E, E2 = 2, we

get

∫
|y2|�R

(
φ1 ∗

( 1
R
IR

))
(y1 − x1)wBR,F (y)dy

�
∫

1
R

(
1 +

|x1 − y1|
R

)−E(
1 +

|y1|
R

)−E

dy1
∫ (

1 +
|y2|
R

)−2

dy2

� R
(
1 +

|x1|
R

)−E

,

as needed.

(b) |y2| ∼ KR, with K ∈ [1, R
1
2 ] ∩ 2N. In this case,

φ1(x1) � 1
R

1
2

(
1 +

|x1|
KR

1
2

)−E

.

Using (5.1) twice (first R′ = KR
1
2 then R′ = R), and (5.2) with E1 = E, E2 = 3, we write

∫
|y2|∼KR

(
φ1 ∗

( 1
R
IR

))
(y1 − x1)wBR,F (y)dy

� K

∫
1
R

(
1 +

|x1 − y1|
R

)−E(
1 +

|y1|
R

)−E

dy1
∫
|y2|∼KR

(
1 +

|y2|
R

)−3

dy2

� K
(
1 +

|x1|
R

)−EKR

K3
=
R

K

(
1 +

|x1|
R

)−E

.

Note that summing over K ∈ [1, R
1
2 ] ∩ 2N leads to the desired estimate (5.8).

(c) |y2| ∼ KR
3
2 with K ∈ [1,∞) ∩ 2N. In this case,

φ1(x1) � 1
R

1
2

(
1 +

|x1|
KR

)−E

,

and so, by (5.1), we have

(
φ1 ∗

( 1
R
IR

))
(y1 − x1) � 1

R
1
2

(
1 +

|y1 − x1|
KR

)−E

.
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Next, combining this with (5.2) (E1 = E, E2 = E + 2) and then with (5.1), we get

∫
|y2|∼KR

3
2

(
φ1 ∗

( 1
R
IR

))
(y1 − x1)wBR,F (y)dy

� R
1
2

∫ (
1 +

|y1 − x1|
KR

)−E 1
R

(
1 +

|y1|
R

)−E

dy1
∫
|y2|∼KR

3
2

(
1 +

|y2|
R

)−E−2

dy2

� R
1
2

(
1 +

|x1|
KR

)−E KR
3
2

(KR
1
2 )E+2

� R
1
2

(
1 +

|x1|
KR

)−E KR
3
2

KE+2R

≤ R

K

(
1 +

|x1|
R

)−E

.

Note that summing over K ∈ [1,∞) ∩ 2N leads to the desired estimate (5.8).

6 L2 Decoupling

We will use Lemma 4.1 to prove a very simple but efficient decoupling. This exploits L2

orthogonality and will allow us to decouple to the smallest possible scale, equal to the inverse
of the radius of the cube. This process is illustrated by the following simple result.

Proposition 6.1 (L2 Decoupling) Let Q be a cube with l(Q) ≥ R−1. Then for each cube
BR ⊂ Rn with side length R we have

‖EQg‖L2(wBR
) �

( ∑
q∈Part 1

R
(Q)

‖Eqg‖2
L2(wBR

)

) 1
2
.

Proof We will prove that

‖EQg‖2
L2(wBR

) �
∑

q∈Part 1
R

(Q)

‖Eqg‖2
L2(wBR

). (6.1)

Fix a positive Schwartz function η, such that the Fourier transform of
√
η is supported in a

small neighborhood of the origin, and such that η ≥ 1 on B(0, 1). By invoking Lemma 4.1, we
see that inequality (6.1) will follow once we check that

‖EQg‖2
L2(B′) �

∑
q∈Part 1

R
(Q)

‖Eqg‖2
L2(ηB′ ) (6.2)

holds true for each cube B′ with l(B′) = R.

Note that the Fourier transform of
√
ηB′Eqg will be supported inside the R−1-neighborhood

of the paraboloid above q, and that these neighborhoods are pairwise disjoint for two non-
adjacent q. Since

‖EQg‖2
L2(B′) � ‖EQg‖2

L2(ηB′ ) = ‖√ηB′EQg‖2
L2(Rn),

(6.2) will now immediately follow from the L2 orthogonality of the functions
√
ηB′Eqg.
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7 Parabolic Rescaling

A nice property of the paraboloid Pn−1 is the fact that each square-like cap on it can be
stretched to the whole Pn−1 via an affine transformation. Affine transformations interact well
with the Fourier transform, and this facilitates a natural passage from the operator EQ to
E[0,1]n−1 .

Proposition 7.1 Let 0 < δ ≤ σ < 1 and p ≥ 2. For each cube Q ⊂ [0, 1]n−1 with l(Q) = σ
1
2

and each cube B ⊂ Rn with l(B) ≥ δ−1, we have

‖EQg‖Lp(wB) � Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖Eqg‖2
Lp(wB)

) 1
2
.

The implicit constant is independent of δ, σ,Q,B.

Proof Let us first assume l(B) = δ−1. We will apply Lemma 4.1 to

O1(v) = ‖EQg‖p
Lp(v),

O2(v) =
( ∑

q∈Part
δ
1
2

(Q)

‖Eqg‖2
Lp(v)

) p
2

(see Remark 4.1). It thus suffices to prove that

‖EQg‖Lp(B) � Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖Eqg‖2
Lp(wB)

) 1
2
.

Assume Q = a+ [0, σ
1
2 ]n−1 with a = (a1, · · · , an−1). We will perform a parabolic rescaling via

the affine transformation L = LQ,

LQ(ξ1, · · · , ξn−1) = (ξ′1, · · · , ξ′n−1) =
(ξ1 − a1

σ
1
2

, · · · , ξn−1 − an−1

σ
1
2

)
.

A simple computation shows that for each cube Q̃, we have

|EQ̃g(x1, · · · , xn−1, xn)| = σ
n−1

2 |EQ̃L
gL((x1 + 2a1xn)σ

1
2 , · · · , (xn−1 + 2an−1xn)σ

1
2 , xnσ)|,

where Q̃L = L(Q̃), gL = g ◦ L. The image S of B under the affine transformation T = TQ

TQ(x1, · · · , xn−1, xn) = ((x1 + 2a1xn)σ
1
2 , · · · , (xn−1 + 2an−1xn)σ

1
2 , xnσ)

can be covered with a family F of pairwise disjoint cubes Δ with side length δ−1σ, such that
we have the following double inequality, in the same spirit as (4.1):

1S(x) �
∑

B′∈F
wB′(x) � wB(T−1x). (7.1)
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The second inequality is very easy to guarantee for a proper covering, as l(B′) ≤ l(B). After a
change of variables on the spatial side, we get (since QL = [0, 1]n−1)

‖EQg‖Lp(B) = σ
n−1

2 σ−n+1
2p ‖EgL‖Lp(S)

� σ
n−1

2 −n+1
2p

( ∑
B′∈F

‖EgL‖p
Lp(wB′)

) 1
p

≤ σ
n−1

2 −n+1
2p Decp

( δ
σ

)[ ∑
B′∈F

( ∑
q′∈Part

( δ
σ

)
1
2

([0,1]n−1)

‖Eq′gL‖2
Lp(wB′)

) p
2
] 1

p

= σ
n−1

2 −n+1
2p Decp

( δ
σ

)[ ∑
B′∈F

( ∑
q∈Part

δ
1
2

(Q)

‖EqLgL‖2
Lp(wB′)

) p
2
] 1

p

.

Using Minkowski’s inequality followed by (7.1), this is dominated by

σ
n−1

2 −n+1
2p Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖EqLgL‖2
Lp(

∑
wB′ )

) 1
2

� σ
n−1

2 −n+1
2p Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖EqLgL‖2
Lp(wB◦T−1)

) 1
2
.

By changing back to the original variables, this is easily seen to be the same as

Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖Eqg‖2
Lp(wB)

) 1
2
.

This finishes the proof in the case l(B) = δ−1.

Let us next assume l(B) ≥ δ−1. By invoking again Lemma 4.1 (see Remark 4.1), it suffices
to prove

‖EQg‖Lp(B) � Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖Eqg‖2
Lp(wB)

) 1
2
.

Using (4.1) and Minkowski’s inequality, we may complete the argument as follows:

‖EQg‖Lp(B) �
( ∑

Δ∈Partδ−1 (B)

‖EQg‖p
Lp(wΔ)

) 1
p

� Decp

( δ
σ

)( ∑
Δ∈Partδ−1 (B)

( ∑
q∈Part

δ
1
2

(Q)

‖Eqg‖2
Lp(wΔ)

) p
2
) 1

p

.

� Decp

( δ
σ

)( ∑
q∈Part

δ
1
2

(Q)

‖Eqg‖2
Lp(wB)

) 1
2
.

8 Linear Versus Multilinear Decoupling

Let π : Pn−1 → [0, 1]n−1 be the projection map.
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Definition 8.1 We say that the cubes Q1, · · · , Qn ⊂ [0, 1]n−1 are ν-transverse if the volume
of the parallelepiped spanned by unit normals n(Pi) is greater than ν, for each choice of Pi ∈
Pn−1 with π(Pi) ∈ Qi.

For E ≥ 100n, 2 ≤ p ≤ ∞, m ∈ N and 0 < ν < 1, we let Dec(δ, p, ν,m,E) = Decn(δ, p, ν,m,
E) be the smallest constant, such that the inequality

[ ∑
Δ∈Partμ−1(B)

( n∏
i=1

‖EQig‖p
Lp(wΔ,10E)

) 1
n
] 1

p

≤ Dec(δ, p, ν,m,E)
[ n∏

i=1

∑
qi∈Part

δ
1
2

(Qi)

‖Eqig‖2
Lp(wB,E)

] 1
2n

(8.1)

holds for each cube B ⊂ Rn with l(B) = δ−1, each g : [0, 1]n−1 → C and each ν-transverse
cubes Qi with equal side lengths μ satisfying μ ≥ δ2

−m

. Recall that Partμ−1(B) is the partition
of B by using cubes Δ with l(Δ) = μ−1. The lower bound which we impose on the size of μ is
a bit more severe than the minimal lower bound μ ≥ δ

1
2 needed in order to make sense of the

quantity Part
δ

1
2
(Qi). This restriction can be ignored now and should only be paid attention to

in the final argument from the last section, when we dominate (11.7) by (11.8).

Note that we use wΔ,10E rather than wΔ,E in (8.1). This is done for purely technical reasons,
as explained in Remark 4.2.

Since |EQig| can be thought of as being essentially constant on each Δ, the quantity

[ ∑
Δ∈Partμ−1(B)

( n∏
i=1

‖EQig‖p
Lp(wΔ,10E)

) 1
n
] 1

p

can be viewed as being comparable to

∥∥∥∣∣∣ n∏
i=1

EQig
∣∣∣ 1

n
∥∥∥

Lp(wB,10E)
.

The former will be a preferred substitute for the latter due to purely technical reasons.

Several applications of Hölder’s inequality combined with (4.1) show that for each ν, m,

Dec(δ, p, ν,m,E) � Dec(δ, p, E). (8.2)

This inequality is too basic and will never be used. We will instead derive a stronger form of it
in the last section (see (11.10)), which dominates Dec(δ, p, ν,m,E) by using a combination of
powers of δ and some power of Dec(δ, p).

We will now prove and later use the following approximate reverse inequality. Recall the
definition of Γn(E) from Theorem 5.1.

Theorem 8.1 Let E ≥ 100n. Assume that one of the following holds:

(i) n = 2.

(ii) n ≥ 3 and Decn−1(δ, p,Γn−1(10E)) �ε,E δ−ε.
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Then for each 0 < ν ≤ 1, there is ε(ν) = ε(ν, p, E) with lim
ν→0

ε(ν) = 0 and Cν,m, such that
for each m ≥ 1, we have

Decn(R−1, p, E) ≤ Cν,mR
ε(ν)

(
1 + sup

1≤R′≤R
Decn(R′−1

, p, ν,m,E)
)

(8.3)

for each R �ν,m 1.

We next prove the case n = 3 of the theorem and will then indicate the modifications needed
for n ≥ 4. The argument will also show how to deal with the case n = 2.

Remark 8.1 If P1, P2, P3 ∈ P2, the volume of the parallelepiped spanned by the unit
normals n(Pi) is comparable to the area of the triangle with vertices π(Pi).

The key step in the proof of Theorem 8.1 for n = 3 is the following result.

Proposition 8.1 Assume Dec2(δ, p,Γ2(10E)) �ε δ
−ε. Then there are constants C,Cε, such

that for each m ≥ 1 and each R ≥ K2m

,

‖Eg‖Lp(wBR,E) ≤ CεK
ε
[( ∑

α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR,E)

) 1
2

+
( ∑

β∈Part
K

− 1
2

([0,1]2)

‖Eβg‖2
Lp(wBR,E)

) 1
2
]

+KCDec3(R−1, p,K−2,m,E)
( ∑

Δ∈Part
R

− 1
2

([0,1]2)

‖EΔg‖2
Lp(wBR,E)

) 1
2
.

Proof Using Lemma 4.1 (see Remark 4.1), it suffices to prove the inequality with the
unweighted quantity ‖Eg‖Lp(BR) on the left-hand side. Cover BR with a family PartK(BR) of
cubes BK ⊂ R3 with side length K.

Let ψ : R3 → C be a Schwartz function with Fourier transform equal to 1 on B(0, 10). For
each α ∈ PartK−1([0, 1]2), define

cα(BK) =
( 1
|BK |

∫
|Eαg|pwBK ,10E

) 1
p

.

Note that since Eαg = (Eαg) ∗ ψK for an appropriate modulation/dilation ψK of ψ, we have

sup
x∈BK

|Eαg(x)| � cα(BK).

This is a manifestation of the uncertainty principle that asserts that |Eαg| is essentially
constant at scale K. Let α∗ = α∗(K) ∈ PartK−1([0, 1]2) be a square that maximizes cα(BK).
Define also

Sbig = {α : cα(BK) ≥ K−Ccα∗(BK)}.
The number C will change its value from one line to the next one, but crucially, it will always
be independent of K.

We will show that for each BK ∈ PartK(BR) there exists a line L = L(BK) in the (ξ1, ξ2)
plane, such that if

SL =
{

(ξ1, ξ2) : dist((ξ1, ξ2), L) ≤ C

K

}
,
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then for x ∈ BK ,

|Eg(x)|

≤ Ccα∗(BK) (8.4)

+K4 max
α1,α2,α3

K−2−transverse

( 3∏
i=1

cαi(BK)
) 1

3
(8.5)

+
∣∣∣ ∑

α⊂SL

Eαg(x)
∣∣∣. (8.6)

To see this, we distinguish three scenarios. First, if there is no α ∈ Sbig with dist(α, α∗) ≥ 10
K ,

then (8.4) suffices as
|Eg(x)| ≤

∑
α

cα(BK) ≤ Ccα∗(BK).

Otherwise, there is α∗∗ ∈ Sbig with dist(α∗∗, α∗) ≥ 10
K . The line L is determined by the centers

of α1, α2, which are chosen to be furthest apart among all possible pairs in Sbig. Note that the
distance between these centers is at least 10

K .
Second, if there is α3 ∈ Sbig, such that α3 intersects the complement of SL, then (8.5)

suffices. To see this, note first that α3 is forced to intersect the strip between α1 and α2

perpendicular to L. Thus, a triangle determined by any three points in αi has area � K−2.
Combining this with Remark 8.1 shows that α1, α2, α3 are K−2 transverse for C large enough.

Third, if all α ∈ Sbig are inside SL, the sum of (8.4) and (8.6) will obviously suffice.
We now claim that (8.4)–(8.6) imply the following:

‖Eg‖Lp(BK)

≤ CεK
ε
[( ∑

α∈PartK−1([0,1]2)

‖Eαg‖2
Lp(wBK ,10E)

) 1
2

+
( ∑

β∈Part
K

− 1
2

([0,1]2)

‖Eβg‖2
Lp(wBK,10E)

) 1
2
]

+KC max
α1,α2,α3

K−2−transverse

( 3∏
i=1

‖Eαig‖Lp(wBK,10E)

) 1
3
. (8.7)

Only the third scenario above needs an explanation. Cover SL by pairwise disjoint rectangles
U of dimensions K−1 and K− 1

2 , with the long side parallel to L. To simplify notation, assume
the equation of L is η = 1 and that BK = [0,K]3. For each fixed y the Fourier transform of
(x, z) �→ ESLg(x, y, z) is supported in the O(K−1) neighborhood of the parabola η = ξ2 + 1.
Using Theorem 5.1 and our hypothesis Dec2(K−1, p,Γ2(10E)) �ε K

ε, we can write

‖ESLg(x, y, z)‖Lp
x,z([0,K]2) � Dec2(K−1, p, 10E)

(∑
U

‖EUg(x, y, z)‖2
Lp

x,z(w[0,K]2,10E)

) 1
2

�ε δ
−ε

(∑
U

‖EUg(x, y, z)‖2
Lp

x,z(w[0,K]2,10E)

) 1
2
. (8.8)

Next raise this inequality to the power p, integrate over y ∈ [0,K] and use

w[0,K]2,10E(x, z)1[0,K](y) � wBK ,10E(x, y, z) (8.9)
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and Minkowski’s inequality to write

∥∥∥ ∑
α:α⊂SL

Eαg
∥∥∥

Lp(BK)
�ε K

ε
(∑

U

‖EUg‖2
Lp(wBK,10E)

) 1
2
.

Note however that since we are dealing with the third scenario, the contribution of E[0,1]2\SL
g

is small

‖E[0,1]2\SL
g‖Lp(wBK,10E) ≤

∑
α�∈Sbig

‖Eαg‖Lp(wBK,10E) ≤ Ccα∗(BK)|BK | 1p .

Using the triangle inequality, we get

( ∑
U

‖EUg‖2
Lp(wBK ,10E)

) 1
2 ≤

( ∑
β∈Part

K
− 1

2
([0,1]2)

‖Eβg‖2
Lp(wBK,10E)

) 1
2

+ C‖Eα∗g‖Lp(wBK,10E).

We conclude that (8.7) holds under the third scenario. The first two scenarios are quite imme-
diate.

Using wBK ,10E ≤ wBK ,E , (8.7) further implies that

‖Eg‖Lp(BK)

≤ CεK
ε
[( ∑

α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBK,E)

) 1
2

+
( ∑

β∈Part
K

− 1
2

([0,1]2)

‖Eβg‖2
Lp(wBK,E)

) 1
2
]

+KC max
α1,α2,α3

K−2−transverse

( 3∏
i=1

‖Eαig‖Lp(wBK,10E)

) 1
3
. (8.10)

Finally, we raise (8.10) to the power p and sum over all BK ∈ PartK(BR), by invoking
Minkowski’s inequality and (4.1), to get

‖Eg‖Lp(BR)

≤ CεK
ε
[( ∑

α∈PartK−1 ([0,1]2)

‖Eαg‖2
Lp(wBR,E)

) 1
2

+
( ∑

β∈Part
K

− 1
2

([0,1]2)

‖Eβg‖2
Lp(wBR,E)

) 1
2
]

+KCDec3(R−1, p,K−2,m,E)
( ∑

Δ∈Part
R

− 1
2

([0,1]2)

‖EΔg‖2
Lp(wBR,E)

) 1
2
.

An application of Lemma 4.1 finishes the proof.

Parabolic rescaling as in the proof of Proposition 7.1 leads to the following. The details are
left to the reader.

Proposition 8.2 Let τ ⊂ [0, 1]2 be a square with side length δ ≥ R− 1
2K2m−1

. Assume

Dec2(δ′, p,Γ2(10E)) �ε δ
′−ε
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for all δ′ < 1. Then if R ≥ K2m

, we have

‖Eτg‖Lp(wBR,E) ≤ CεK
ε
[( ∑

α∈PartδK−1 (τ)

‖Eαg‖2
Lp(wBR,E)

) 1
2

+
( ∑

β∈Part
δK

− 1
2

(τ)

‖Eβg‖2
Lp(wBR,E)

) 1
2
]

+KCDec3((Rδ2)−1, p,K−2,m,E)
( ∑

Δ∈Part
R

− 1
2

(τ)

‖EΔg‖2
Lp(wBR,E)

) 1
2
.

The constants Cε, C are independent of δ,R, τ,K.

We are now ready to prove Theorem 8.1 for n = 3. Let K = ν−
1
2 . Let also R ≥ K2m

=
ν−2m−1

. Iterate Proposition 8.2 starting with scale δ = 1, until we reach scale δ = R− 1
2K2m−1

.
Each iteration lowers the scale of the square from δ to at least δ

K
1
2
. Thus we have to iterate

O(logK R) times. We use the following immediate consequence of Hölder’s inequality:( ∑
β∈Part

R
− 1

2 K2m−1
([0,1]2)

‖Eβg‖2
Lp(wBR,E)

) 1
2

� KO(1)
( ∑

Δ∈Part
R

− 1
2

([0,1]2)

‖EΔg‖2
Lp(wBR,E)

) 1
2
. (8.11)

Since
Dec3((δ2R)−1, p, ν,m,E) ≤ sup

1≤R′≤R
Dec3(R′−1

, p, ν,m,E),

we get

‖E[0,1]2g‖Lp(wBR,E)

≤ (CCεK
ε)O(logK R)KO(1)

(
1 + sup

1≤R′≤R
Dec3(R′−1

, p, ν,m,E)
)

·
( ∑

Δ∈Part
R

− 1
2

([0,1]2)

‖EΔg‖2
Lp(wBR,E)

) 1
2

= R−O(1) logν(CCε)+εν−O(1)
(
1 + sup

1≤R′≤R
Dec3(R′−1

, p, ν,m,E)
)

·
( ∑

Δ∈Part
R

− 1
2

([0,1]2)

‖EΔg‖2
Lp(wBR,E)

) 1
2
.

The result in Theorem 8.1 now follows since C,Cε do not depend on ν.

To summarize, the proof of Theorem 8.1 for n = 3 relied on the hypothesis that the contri-
bution coming from squares β living near a line is controlled by the negligible lower dimensional
quantity Dec2(δ, p) = O(δ−ε). When n ≥ 4, the contribution from the cubes near a hyperplane
H in [0, 1]n−1 will be similarly controlled by Decn−1(δ, p). That is because π−1(H) is a lower
dimensional elliptic paraboloid whose principal curvatures are ∼ 1, uniformly over H . This
paraboloid is an affine image of Pn−2, and can be analyzed by using parabolic rescaling. When
n = 2, there is no such lower dimensional contribution.
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9 From Multilinear Kakeya to Multilinear Decouplings

We start by recalling the following multilinear Kakeya inequality due to Bennett, Carbery
and Tao [1]. We refer the reader to [6] for a short proof.

Theorem 9.1 Let 0 < ν < 1. Consider n families Pj consisting of tiles (rectangular boxes)
P in Rn having the following properties:

(i) Each P has n− 1 side lengths equal to R
1
2 and one side length equal to R which points

in the direction of the unit vector vP .
(ii) vP1 ∧ · · · ∧ vPn ≥ ν for each Pi ∈ Pi.
(iii) All tiles are subsets of a fixed cube B4R with side length 4R.
Then we have the following inequality:

�

∫
B4R

∣∣∣ n∏
j=1

Fj

∣∣∣ 1
n−1 �ε,ν R

ε
n∏

j=1

∣∣∣ �

∫
B4R

Fj

∣∣∣ 1
n−1

(9.1)

for all functions Fj of the form

Fj =
∑

P∈Pj

cP 1P .

The implicit constant will not depend on R, cP ,Pj.

We use this to prove the following key result.

Theorem 9.2 Let p ≥ 2n
n−1 and δ < 1. Consider n ν-transverse cubes Q1, · · · , Qn ⊂

[0, 1]n−1. Let B be an arbitrary cube in Rn with side length δ−2, and let B be the (unique)
partition of B into cubes Δ of side length δ−1. Then for each g : [0, 1] → C we have

1
|B|

∑
Δ∈B

[ n∏
i=1

( ∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2

L
p(n−1)

n
� (wΔ)

) 1
2
] p

n

(9.2)

�ε,ν δ
−ε

[ n∏
i=1

( ∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2

L
p(n−1)

n
� (wB)

) 1
2
] p

n

. (9.3)

Moreover, the implicit constant is independent of g, δ, B.

Remark 9.1 This result is part of a two-stage process. Note that, strictly speaking, this
inequality is not a decoupling, since the size on the frequency cubes Qi,1 remains unchanged.
However, the size of the spatial cube increases from δ−1 to δ−2, which will facilitate a subsequent
decoupling, as we shall later see in Proposition 10.1.

Proof Since we can afford logarithmic losses in δ, it suffices to prove the inequality with
the summation on both sides restricted to families of Qi,1 for which ‖EQi,1g‖

L
p(n−1)

n
� (wB)

have

comparable size (within a multiplicative factor of 2) for each i. Indeed, the cubes Q′
i,1 satisfying

(for some large enough C = O(1))

‖EQ′
i,1
g‖

L
p(n−1)

n
� (wB)

≤ δC max
Qi,1∈Partδ(Qi)

‖EQi,1g‖
L

p(n−1)
n

� (wB)
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can be easily dealt with by using the triangle inequality, since we automatically have

max
Δ∈B

‖EQ′
i,1
g‖

L
p(n−1)

n
� (wΔ)

≤ δC max
Qi,1∈Partδ(Qi)

‖EQi,1g‖
L

p(n−1)
n

� (wB)
.

This leaves only log2(δ−O(1)) sizes to consider.

Let us now assume that we have Ni cubes Qi,1, with ‖EQi,1g‖
L

p(n−1)
n

� (wB)
of comparable

size. Since p ≥ 2n
n−1 , by Hölder’s inequality, (9.2) is at most

( n∏
i=1

N
1
2− n

p(n−1)
i

) p
n 1
|B|

∑
Δ∈B

[ n∏
i=1

( ∑
Qi,1

‖EQi,1g‖
p(n−1)

n

L
p(n−1)

n
� (wΔ)

)] 1
n−1

. (9.4)

For each cube Q = Qi,1 centered at cQ, we cover B with a family FQ of pairwise disjoint,
mutually parallel tiles TQ. They have n−1 short sides of length δ−1 and one longer side of length
δ−2, pointing in the direction of the normal N(cQ) to the paraboloid Pn−1 at cQ. Moreover,
we can assume these tiles to be inside the cube 4B. We let TQ(x) be the tile containing x, and
we let 2TQ be the dilation of TQ by a factor of 2 around its center.

Let us use q to abbreviate p(n−1)
n . Our goal is to control the expression

1
|B|

∑
Δ∈B

∏
i

( ∑
Qi,1

‖EQi,1g‖q
Lq

�(wΔ)

) 1
n−1

.

We now define FQ for x ∈ ∪TQ∈FQTQ by

FQ(x) := sup
y∈2TQ(x)

‖EQg‖Lq
�(wB(y,δ−1))

.

For any point x ∈ Δ, we have Δ ⊂ 2TQ(x), and so we also have

‖EQg‖Lq
�(wΔ) ≤ FQ(x).

Therefore,

1
|B|

∑
Δ∈B

∏
i

( ∑
Qi,1

‖EQi,1g‖q
Lq

�(wΔ)

) 1
n−1 � �

∫
4B

∏
i

( ∑
Qi,1

F q
Qi,1

) 1
n−1

.

Moreover, the function F q
Q is constant on each tile TQ ∈ FQ. Applying Theorem 9.1, we get

the bound

�

∫
4B

∏
i

( ∑
Qi,1

F q
Qi,1

) 1
n−1 �ε,ν δ

−ε
∏

i

( ∑
Qi,1

�

∫
4B

F q
Qi,1

) 1
n−1

.

It remains to check that for each Q = Qi,1,

‖FQ‖Lq
�(4B) � ‖EQg‖Lq

�(wB). (9.5)

Once this is established, it follows that (9.4) is dominated by

δ−ε
( n∏

i=1

N
1
2− n

p(n−1)
i

) p
n

n∏
i=1

( ∑
Qi,1

‖EQi,1g‖
p(n−1)

n

L
p(n−1)

n
�

(wB)

) 1
n−1

. (9.6)
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Recalling the restriction, we have made on Qi,1, (9.6) is comparable to

δ−ε
[ n∏

i=1

( ∑
Qi,1

‖EQi,1g‖2

L
p(n−1)

n
� (wB)

) 1
2
] p

n

,

as desired.

To prove (9.5), we may assume Q =
[ − δ

2 ,
δ
2

]n−1, and thus ÊQg will be supported in
[−δ, δ]n−1 × [−δ2, δ2]. Fix x = (x1, · · · , xn) with TQ(x) ∈ FQ and let y ∈ 2TQ(x). Note that
TQ(x) has sides parallel to the coordinate axes. In particular, y = x + y′ with |y′j | < 4δ−1 for
1 ≤ j ≤ n− 1 and |y′n| < 4δ−2. Then

‖EQg‖q
Lq(wB(y,δ−1))

�
∫

|EQg(x1 + u1, · · · , xn−1 + un−1, xn + un + y′n)|qwB(0,δ−1)(u)du. (9.7)

Now, using Taylor series, we can write

|EQg(x1 + u1, · · · , xn−1 + un−1, xn + un + y′n)|
=

∣∣∣ ∫
ÊQg(λ)e(λ · (x + u))e(λny

′
n)dλ

∣∣∣
≤

∞∑
sn=0

1000sn

sn!

∣∣∣ ∫ ÊQg(λ)e(λ · (x+ u))
( λn

2δ2
)sn

dλ
∣∣∣

=
∞∑

sn=0

1000sn

sn!
|Msn(EQg)(x+ u)|.

Here Msn is the operator with Fourier multiplier 1Rn−1(λ1, · · · , λn−1)msn( λn

2δ2 ), where

msn(λn) = (λn)sn1[− 1
2 , 12 ](λn).

We are able to insert the cutoff because of our initial restriction on the Fourier support of EQg.
Plugging this estimate into (9.7), we obtain

‖EQg‖q
Lq

�(wB(y,δ−1))
�

∞∑
sn=0

1000sn

sn!
‖Msn(EQg)‖q

Lq
�(wB(x,δ−1))

.

Recalling the definition of FQ and the fact that

δn

∫
4B

wB(x,δ−1)(z)dx � wB(z), z ∈ Rn,

we conclude that

‖FQ‖q
Lq

�(4B)
�

∞∑
sn=0

1000sn

sn!
‖Msn(EQg)‖q

Lq
�(wB)

. (9.8)

Note that t �→ tsn1[− 1
2 , 1

2 ](t) agrees on [− 1
2 ,

1
2 ] with a compactly supported smooth function

m∗
sn

defined on R, with derivatives of any given order uniformly bounded over sn. It follows
that

|m̂∗
sn

(xn)| � ξ(xn)
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with implicit constant independent of sn, where

ξ(xn) �M (1 + |xn|)−M

for all M > 0. Let M∗
sn

denote the operator with multiplier 1Rn−1(λ1, · · · , λn−1)m∗
sn

( λn

2δ2 ). We
can now write

|Msn(EQg)(x)| = |M∗
sn

(EQg)(x)| � |EQg| � ξδ2(x),

where � denotes the convolution with respect to the last variable xn, and

ξδ2 (xn) = δ2ξ(δ2xn).

Using this, one can easily check that

‖Msn(EQg)‖q
Lq(wB) � 〈|EQg|q � ξδ2 , wB〉 = 〈|EQg|q, ξδ2 � wB〉 � 〈|EQg|q, wB〉.

Combining this with (9.8) leads to the proof of (9.5)

‖FQ‖q
Lq

�(4B)
�

∞∑
sn=0

1000sn

sn!
‖EQg‖q

Lq
�(wB)

� ‖EQg‖q
Lq

�(wB)
.

The argument is now complete.

10 The Iteration Scheme

Let 0 < ν < 1. Throughout this section, we fix some 0 < δ < 1 and also n ν-transverse
cubes Q1, · · · , Qn ⊂ [0, 1]n−1 with side length at least δ.

For a positive integer s, Bs will refer to cubes in Rn with side length l(Bs) = δ−s and
arbitrary centers. We will only encounter cubes B ⊂ Rn with side length l(B) ∈ 2N. This will
allow us to perform decompositions by using cubes of smaller size in 2N.

The implicit constants will be independent of δ, g and the spatial cubes Qi.
Let t, p ≥ 1 and consider the positive integers q ≤ s ≤ r. We define

Dt(q,Br, g) =
[ n∏

i=1

( ∑
Qi,q∈Partδq (Qi)

‖EQi,qg‖2
Lt

�(wBr )

) 1
2
] 1

n

.

To simplify notation, we will denote by Bs(Br) = Partδ−s(Br) the (unique) cover of Br

with cubes Bs of side length δ−s. Define

Ap(q,Br, s, g) =
( 1
|Bs(Br)|

∑
Bs∈Bs(Br)

D2(q,Bs, g)p
) 1

p

.

The letter A will remind us that we have an average. Note that when r = s,

Ap(q,Br, r, g) = D2(q,Br, g).

For 2n
n−1 ≤ p, let 0 ≤ κp ≤ 1 satisfy

n

p(n− 1)
=

1 − κp

2
+
κp

p
.
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In other words,

κp =
pn− p− 2n

(p− 2)(n− 1)
.

Set also κp = 0 for 2 ≤ p ≤ 2n
n−1 .

The next proposition will combine our main two decoupling devices, Theorem 9.2 and the
L2 decoupling. The result is a partial decoupling. Indeed, note that the term Ap(1, B2, 1, g)
in (10.1) involves frequency cubes of size δ, while the term Ap(2, B2, 2, g) involves frequency
cubes of smaller size δ2. Inequality (10.1) is only a partial decoupling in the range p > 2n

n−1 ,
since the weight κp of the term Dp(1, B2, g) is nonzero. But this weight is zero when p ≤ 2n

n−1 .
For these values of p, inequality (10.1) has the very simple form

Ap(1, B2, 1, g) �ε,ν δ
−εAp(2, B2, 2, g).

This can be easily iterated and leads to a simpler proof of Theorem 1.1 in the range 2 ≤ p ≤ 2n
n−1 .

See the discussion at the end of this section.

Proposition 10.1 We have for each B2 and p ≥ 2,

Ap(1, B2, 1, g) �ε,ν δ
−εAp(2, B2, 2, g)1−κpDp(1, B2, g)κp . (10.1)

Proof Assume first that p ≥ 2n
n−1 . By Hölder’s inequality,

‖EQi,1g‖L2
�(wB1 ) � ‖EQi,1g‖

L
p(n−1)

n
� (wB1)

.

Using this and Theorem 9.2, we can write

Ap(1, B2, 1, g) �ε,ν δ
−ε

( n∏
i=1

∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2

L
p(n−1)

n
� (wB2 )

) 1
2n

. (10.2)

Using Hölder’s inequality, we can dominate this by

≤
( n∏

i=1

∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2
L2

�(wB2 )

) 1−κp
2n

( n∏
i=1

∑
Qi,1∈Partδ(Qi)

‖EQi,1g‖2
Lp

� (wB2)

) κp
2n

. (10.3)

It suffices now to apply L2 decoupling (Proposition 6.1) to the first term in (10.3).
We have “interpolated” between L2 and Lp. We have used L2 because (as explained in

Section 6) this space facilitates the most efficient decoupling. Indeed, note that the term
Ap(2, B2, 2, g) on the right-hand side of (10.1) has cubes of side length δ2, which is as small as
one can hope, given the size of the spatial cube B2.

If p < 2n
n−1 , using (10.1) with p = 2n

n−1 , we can write

Ap(1, B2, 1, g) ≤ A 2n
n−1

(1, B2, 1, g) �ε,ν δ
−εA 2n

n−1
(2, B2, 2, g) = δ−εAp(2, B2, 2, g).

Inequality (10.1) is easily seen to be true with κp replaced with 1, by simply invoking (4.1)
and the fact that D2 � Dp. Consequently, it will be true for each exponent in the interval
[κp, 1]. The example g = 1Q with l(Q) = δ shows that one can not consider exponents smaller
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than κp. The relevant thing about κp that will be used in the final section is the fact that
κp <

1
2 precisely in the subcritical range p < 2(n+1)

n−1 .
The following sequence of propositions will allow us to rewrite (10.1) in a form that is more

suitable for iteration.

Proposition 10.2 We have for each cube BM with M ≥ 2 and p ≥ 2,

Ap(1, BM , 1, g) �ε,ν δ
−εAp(2, BM , 2, g)1−κpDp(1, BM , g)κp . (10.4)

The implicit constant is independent of M .

Proof Raising (10.1) to the power p, summing over all cubes B2 ∈ B2(BM ) and using
Hölder’s inequality, we have

‖(ajbj)j‖l1 ≤ ‖(aj)j‖
l

1
1−κp

‖(bj)j‖
l

1
κp
.

The only thing that needs to be verified is the inequality∑
B2∈B2(BM )

Dp(1, B2, g)p � Dp(1, BM , g)p. (10.5)

This however immediately follows from Minkowski’s inequality (recall p ≥ 2) and the fact that∑
B2∈B2(BM )

wB2 � wBM .

Proposition 10.3 Let l,m ∈ N with l + 1 ≤ m. We have for each cube B2m

and p ≥ 2,

Ap(2l, B2m

, 2l, g) �ε,ν δ
−2lεAp(2l+1, B2m

, 2l+1, g)1−κpDp(2l, B2m

, g)κp . (10.6)

The implicit constant is independent of l,m.

Proof Apply (10.4) with δ replaced by δ2
l

and M = 2m−l.

We can now iterate Proposition 10.3 to get the following immediate conclusion.

Proposition 10.4 If m ≥ 1 and p ≥ 2,

Ap(1, B2m

, 1, g)

�ε,ν,m δ−εAp(2m−1, B2m

, 2m−1, g)(1−κp)m−1
m−2∏
l=0

Dp(2l, B2m

, g)κp(1−κp)l

. (10.7)

The implicit constant is now allowed to depend on m, but this dependence will prove to be
completely harmless.

We complete this section with a quick proof of

Decn(δ, p) �ε δ
−ε

for 2 ≤ p ≤ 2n
n−1 . This fact was first proved in [2]. In this range κp = 0 and (10.7) becomes a

very satisfactory inequality

Ap(1, B2m

, 1, g) �ε,ν,m δ−εAp(2m−1, B2m

, 2m−1, g).
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Combining this with (11.5), we may write

∥∥∥ n∏
i=1

[ ∑
Qi,1∈Partδ(Qi)

|EQi,1g|2
] 1

2 n∥∥∥
Lp(B2m )

�ε,ν,m δ−εDp(2m−1, B2m

).

By invoking Cauchy–Schwarz, we can afford a rather trivial decoupling

∥∥∥∣∣∣ n∏
i=1

EQig

∣∣∣ 1
n
∥∥∥

Lp(B2m )
≤ δ−

n−1
2

∥∥∥ n∏
i=1

[ ∑
Qi,1∈Partδ(Qi)

|EQi,1g|2
] 1

2 n∥∥∥
Lp(B2m )

.

Combining these two and substituting δ2
m �→ δ we can write

∥∥∥∣∣∣ n∏
i=1

EQig

∣∣∣ 1
n
∥∥∥

Lp(B1)
�ε,ν,m δ−εδ−(n−1)2−m−1

Dp

(1
2
, B1

)
.

Now choose m as large as desired to argue that

Decn(δ, p, ν) �ε,ν δ
−ε.

Finally, combine this with Theorem 8.1 by using induction on n to argue that

Decn(δ, p) �ε δ
−ε.

Now back to the case p > 2n
n−1 . As mentioned earlier, (10.7) is only a partial decoupling

in this range. The argument for this case presented in the next section will go as follows.
Assume the linear decoupling constant satisfies Decn(δ, p) ∼ δ−ηp . We will first apply parabolic
rescaling to majorize the terms Dp in (10.7) by some powers of δ−ηp . Then we will combine
(10.7) with a trivial decoupling (Cauchy–Schwarz) to derive an upper bound on the multilinear
constant Decn(δ, p, ν) in terms of δ−ηp . We play this against Theorem 8.1, which produced a
lower bound for Decn(δ, p, ν) involving δ−ηp . These will force ηp to be zero.

11 The Final Argument

In this section, we present the details for the proof of Theorem 1.1. Let E ≥ 100n. By
combining the triangle and Cauchy-Schwarz inequalities, we find that Decn(δ, p, E) � δ−Cp for
some Cp large enough. For p ≥ 2, let ηp,n,E = ηp,E ≥ 0 be the unique (finite) number, such
that

lim
δ→0

Decn(δ, p, E)δηp,E+σ = 0 for each σ > 0 (11.1)

and

lim sup
δ→0

Decn(δ, p, E)δηp,E−σ = ∞ for each σ > 0. (11.2)

We will use induction on n, as described at the end of Section 3. Assume either n = 2 or
n ≥ 3, and in addition, assume that we have

Decn−1(δ, p, E) �ε δ
−ε
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for E ≥ 100(n − 1) and 2 ≤ p ≤ 2n
n−2 . We need to prove ηp,n,E = 0 for E ≥ 100n and

2 ≤ p ≤ 2(n+1)
n−1 . Note that for such p, we automatically have that p is smaller than 2n

n−2 ,
the critical index for decouplings in Rn−1. In particular, if n ≥ 3, our induction hypothesis
guarantees that

Decn−1(δ, p, E) �ε δ
−ε (11.3)

for each E ≥ 100n and 2 ≤ p ≤ 2(n+1)
n−1 .

Fix 2 ≤ p < 2(n+1)
n−1 for the rest of the proof (so in particular we have p ≤ 20). Fix also

E ≥ 100n. All quantities Ap and Dp will be implicitly assumed to be relative to this E. The
case p = 2(n+1)

n−1 will follow via a standard limiting argument explained in the end of the section.
Note that for 2 ≤ p < 2(n+1)

n−1 , we have

2(1 − κp) > 1. (11.4)

We start with the following rather immediate consequence of Proposition 10.4.

Theorem 11.1 Consider n ν-transverse cubes Q1, · · · , Qn ⊂ [0, 1]n−1 with side length at
least δ. Then for m ≥ 1 and p ≥ 2, we have

Ap(1, B2m

, 1, g) �ε,ν,m δ
−(ηp+ε)

(
2m− 2κp

2κp−1+
(2(1−κp))m

2κp−1

)
Dp(2m−1, B2m

, g)

with the implicit constant independent of Qi.

Proof This will follow from Proposition 10.4, once we make a few observations.
First,

Ap(2m−1, B2m

, 2m−1, g) � Dp(2m−1, B2m

, g). (11.5)

This is a consequence of Hölder’s inequality, Minkowski’s inequality in l
p
2 and (4.1) (like (10.5)

very much).
Second, an application of Proposition 7.1 shows that

Dp(2l, B2m

, g) � Decn(δ2
m−2l+1

, p)Dp(2m−1, B2m

, g).

Finally, combine these with (11.1) and Proposition 10.4.

By replacing δ2
m

with δ, we prefer to write the inequality in Theorem 11.1 as follows:

Ap(2−m, B1, 2−m, g) �ε,ν,m δ
−(ηp+ε)

(
1−2−m 2κp

2κp−1 +
(1−κp)m

2κp−1

)
Dp

(1
2
, B1, g

)
(11.6)

with the implicit constant independent of the cubes Qi. Here the assumption is l(Qi) ≥ δ2
−m

.
Let B = B1 be a cube in Rn with l(B) = δ−1. Consider n ν-transverse cubes Q1, · · · , Qn ⊂

[0, 1]n−1 with side length μ ≥ δ2
−m

. Let, as before, Partμ−1(B) denote the partition of B by
using cubes Δ with l(Δ) = μ−1. Denote also by Bm(B) the partition of B by using cubes Δm

with l(Δm) = δ−2−m

.
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We may write, first by combining Cauchy–Schwarz and (4.1),

[ 1
|Bμ−1(B)|

∑
Δ∈Partμ−1(B)

( n∏
i=1

‖EQig‖p
Lp

� (wΔ,10E)

) 1
n
] 1

p

(11.7)

� δ−(n−1)2−m−1
[ 1
|Bm(B)|

∑
Δm∈Bm(B)

( n∏
i=1

∥∥∥( ∑
qi∈Part

δ2−m (Qi)

|Eqig|2
) 1

2
∥∥∥p

Lp
� (wΔm,10E)

) 1
n
] 1

p

, (11.8)

and then by using Minkowski’s inequality and (4.2) (recall that p ≤ 20), we have

≤ δ−(n−1)2−m−1
[ 1
|Bm(B)|

∑
Δm∈Bm(B)

( n∏
i=1

∑
qi∈Part

δ2−m (Qi)

‖Eqig‖2
Lp

� (wΔm,10E)

) p
2n

] 1
p

(11.9)

≤ δ−(n−1)2−m−1
[ 1
|Bm(B)|

∑
Δm∈Bm(B)

( n∏
i=1

∑
qi∈Part

δ2−m (Qi)

‖Eqig‖2
L2

�(wΔm,E)

) p
2n

] 1
p

= Ap(2−m, B1, 2−m, g).

Invoking (11.6) and removing the normalization, we conclude that

[ ∑
Δ∈Partμ−1(B)

( n∏
i=1

‖EQig‖p
Lp(wΔ,10E)

) 1
n
] 1

p

�ε,ν,m δ
−(ηp+ε)

(
1−2−m 2κp

2κp−1 +
(1−κp)m

2κp−1

)
δ−(n−1)2−m−1

[ n∏
i=1

∑
qi∈Part

δ
1
2

(Qi)

‖Eqig‖2
Lp(wB,E)

] 1
2n

.

By taking a supremum over all Qi, B, g as above, we deduce the following inequality, which
is a stronger substitute for (8.2):

Decn(δ, p, ν,m,E) �ε,ν,m δ
−(ηp+ε)

(
1−2−m 2κp

2κp−1+
(1−κp)m

2κp−1

)
δ−(n−1)2−m−1

. (11.10)

Combining this with Theorem 8.1 (use (11.3)) and (11.2), we may now write

δ
−ηp+ε+ε(ν)
l �ε,ν,m δ

−(ηp+ε)
(
1−2−m 2κp

2κp−1 +
(1−κp)m

2κp−1

)
l δ

−(n−1)2−m−1

l

for some sequence δl converging to zero. This in turn forces

−ηp + ε+ ε(ν) ≥ −(ηp + ε)
(
1 − 2−m 2κp

2κp − 1
+

(1 − κp)m

2κp − 1

)
− (n− 1)2−m−1

for each ε, ν > 0. Thus, letting ε, ν → 0, we get

−ηp ≥ −ηp

(
1 − 2−m 2κp

2κp − 1
+

(1 − κp)m

2κp − 1

)
− (n− 1)2−m−1,

and by rearranging terms, we have

(n− 1)2−1 ≥ ηp
[2(1 − κp)]m − 2κp

1 − 2κp
. (11.11)
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As this holds for each m ≥ 1, (11.4) will immediately force ηp = 0.

Let us now show that ηpn = 0 for pn = 2(n+1)
n−1 . Let B ⊂ Rn be a cube with l(B) = δ−1.

Using inequality (4.2), for p < pn, we can write

‖E[0,1]n−1g‖Lpn(B) � ‖E[0,1]n−1g‖Lp(wB).

Combining this with Hölder’s inequality, we get

‖E[0,1]n−1g‖Lpn(B) � Decn(δ, p)
( ∑

Q∈Part
δ
1
2

([0,1]n−1)

‖EQg‖2
Lp(wB)

) 1
2

�ε δ
−ε‖1‖

L
q

q−1 (wB)

( ∑
Q∈Part

δ
1
2

([0,1]n−1)

‖EQg‖2
Lpn(wB)

) 1
2
.

It suffices to note that q → 1 as p→ pn.
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