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Abstract This paper presents the proof of several inequalities by using the technique
introduced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. First,
the author gives a new and simple proof of a lower bound of Berestycki, Nirenberg, and
Varadhan concerning the principal eigenvalue of an elliptic operator with bounded mea-
surable coefficients. The rest of the paper is a survey on the proofs of several isoperimetric
and Sobolev inequalities using the ABP technique. This includes new proofs of the classical
isoperimetric inequality, the Wulff isoperimetric inequality, and the Lions-Pacella isoperi-
metric inequality in convex cones. For this last inequality, the new proof was recently
found by the author, Xavier Ros-Oton, and Joaquim Serra in a work where new Sobolev
inequalities with weights came up by studying an open question raised by Haim Brezis.
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1 Introduction

In this paper, we present the proof of several inequalities by using the technique intro-
duced by Alexandroff, Bakelman, and Pucci to establish their ABP estimate. The Alexandroff-
Bakelman-Pucci (ABP for short) estimate is an L∞ bound for solutions of the Dirichlet problem
associated to second order uniformly elliptic operators written in nondivergence form

Lu = aij(x)∂iju + bi(x)∂iu + c(x)u

with bounded measurable coefficients in a domain Ω of R
n. It asserts that if Ω is bounded and

c ≤ 0 in Ω, then, for every function u ∈ C2(Ω) ∩ C(Ω),

sup
Ω

u ≤ sup
∂Ω

u + C diam(Ω) ‖Lu‖Ln(Ω), (1.1)

where diam(Ω) denotes the diameter of Ω, and C is a constant depending only on the ellipticity
constants of L and on the Ln-norms of the coefficients bi (see Remark 3.1 below for its proof
and [25, Chapter 9] for more details). The estimate was proven by the previous authors in the

Manuscript received July 14, 2015. Revised October 7, 2015.
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sixties by using a technique that in this paper we call ABP method. Both the estimate and the
method have applications in several areas.

First, the ABP estimate is a basic tool in the regularity theory for fully nonlinear elliptic
equations F (D2u) = 0. The ABP method is also a key ingredient in Jensen’s uniqueness
result for viscosity solutions. For these questions, see for instance [18]. Other applications
were developed around 1994 by Berestycki, Nirenberg and Varadhan [2], who established lower
bounds on the principal eigenvalue of the operator L − c(x) and, as a consequence, maximum
principles in “small” domains. These maximum principles are very useful (when combined with
the moving planes method) to establish symmetry of positive solutions of nonlinear problems
(see [1, 9]).

In this paper, we give a new and simple proof (unpublished before) of the lower bound of
Berestycki, Nirenberg and Varadhan [2] concerning the principal eigenvalue λ1 = λ1(L0, Ω) of
the operator L0 := L − c(x), i.e.,

L0u = aij(x)∂iju + bi(x)∂iu.

The bound asserts that

λ1(L0, Ω) ≥ μ|Ω|− 2
n (1.2)

for some positive constant μ depending only on the ellipticity constants of L0, the L∞-norms
of the coefficients bi, and an upper bound for |Ω| 1

n . In particular, if one has such upper bound
for |Ω|, then the constant μ is independent of |Ω|. As a consequence, if |Ω| tends to zero then
λ1(L0, Ω) tends to infinity, by (1.2).

In contrast with theirs, our proof uses only the ABP method and does not require the
Krylov-Safonov Harnack inequality. Our proof gives a slight improvement of this result by
showing that μ depends in fact on the Ln-norms of the coefficients bi instead of the L∞-norms.
To prove this lower bound on λ1, we apply the ABP method to the problem satisfied by the
logarithm of the principal eigenfunction of L0.

Note that the constant μ in the lower bound does not depend on any modulus of regularity
for the coefficients of L0. This is why we say that it is a bound for operators with bounded
measurable coefficients. This generality is crucial for the applications to fully nonlinear elliptic
equations.

When L0 is in divergence form with bounded measurable coefficients, (1.2) was proved by
Brezis and Lions [5]. They established an estimate of the type (1.1) with Ln replaced by L∞.
Applied to the first eigenfunction, it gives (1.2) for operators in divergence form.

An improvement of the ABP estimate (1.1) in which diam(Ω) is replaced by |Ω| 1
n was proved

by the author in [7] (see also [9]).
When L0 = Δ is the Laplacian, (1.2) with its best constant μ is the Faber-Krahn inequality,

and becomes an equality when Ω is a ball (see [24]). Thus, among sets with the same given
volume, the ball has the smallest first Dirichlet eigenvalue. In this respect, we would like to
raise the following question.

Open Problem 1.1 When L0 = Δ is the Laplacian, can one prove the Faber-Krahn
inequality (that is, the inequality (1.2) with best constant, achieved by balls) by using an ABP
method as described in the following sections?

The rest of this paper is a survey in several isoperimetric inequalities proved by using the
ABP method. We first present the proof of the classical isoperimetric inequality in R

n found by
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the author around 1996 (see [8, 10]). It uses the ABP technique applied to a linear Neumann
problem for the Laplacian, instead of applying the method to a Dirichlet problem as in the
ABP estimate. It yields then the isoperimetric inequality with best constant. In addition, the
proof does not require the domain to be convex, and it shows easily that balls are the only
smooth domains for which the equality holds.

The proof using the ABP method can also be adapted to anisotropic perimeters. This gives
a new proof of the Wulff isoperimetric inequality, presented in Section 4.

The proof has also been recently extended by Serra and Teixidó [32], in a very clever
way, to domains in simply connected Cartan-Hadamard Riemannian manifolds of dimension
two. These are manifolds with nonpositive sectional curvature. In this way, they give a new
proof that the Euclidean isoperimetric inequality

(
i.e., (3.1) below with the Euclidean constant

P (B1)/|B1|
n−1

n
)

is also valid in such two-dimensional manifolds (with the same Euclidean con-
stant on it). In higher dimensions (except for 3 and 4), this is an important conjecture which
has been open for long time (see [22]).

Finally, Section 5 concerns the recent paper [16], by the author, Ros-Oton and Serra, where
we established new isoperimetric and Sobolev inequalities with weights in convex cones of R

n. In
particular, we give a new poof of the Lions-Pacella isoperimetric inequality (see [29]) in convex
cones. Let us recall that the classical proofs of the Wulff and the Lions-Pacella isoperimetric
inequalities used the Brunn-Minkowski inequality (4.2).

The result in [16] states that Euclidean balls centered at the origin solve the weighted
isoperimetric problem in any open convex cone Σ of R

n (with vertex at the origin) for the
following class of weights. Here, both perimeter and measure are computed with respect to
the weight. The weight w must be nonnegative, continuous, positively homogeneous of degree
α ≥ 0, and such that w

1
α is concave in the cone Σ if α > 0. This concavity condition is

equivalent to a natural curvature-dimension bound, in fact, to the nonnegativeness of a Bakry-
Émery Ricci tensor in dimension D = n + α. Except for the constant ones, all these weights
are not radially symmetric but still balls centered at the origin are the isoperimetric sets.

Our proof uses the ABP method applied to a Neumann problem for the operator

w−1div(w∇u) = Δu +
∇w

w
· ∇u.

This result yields as a consequence the following Sobolev inequality. If D = n+α, 1 ≤ p < D,
and p∗ = pD

D−p , then

( ∫
Σ

|u|p∗w(x)dx
) 1

p∗ ≤ Cw,p,n

(∫
Σ

|∇u|pw(x)dx
) 1

p

(1.3)

for all smooth functions u with compact support in R
n (and not necessarily vanishing on ∂Σ).

We can give the value of the best constant Cw,p,n, since it is attained by certain radial functions
(see [14]).

Monomial weights

w(x) = xA1
1 · · ·xAn

n in Σ = {x ∈ R
n : xi > 0 whenever Ai > 0} (1.4)

(here Ai ≥ 0) are an example of weights satisfying the above assumptions. The Sobolev
inequality (1.3) with the above monomial weights w appeared naturally in [13], where the
author and Ros-Oton studied the following open question raised by Haim Brezis.

Open Problem 1.2 (Haim Brezis, 1996 [4, 6]) Is the extremal solution of the problem
−Δu = λf(u) in a bounded smooth domain Ω ⊂ R

n, with zero Dirichlet boundary conditions,
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always bounded if the dimension n ≤ 9, and this for every positive, increasing, and convex
nonlinearity f? (see [4, 6, 13] for more details).

A stronger statement is whether the same conclusion holds for every stable solution of the
Dirichlet problem for −Δu = f(u) in Ω. It was proved to be true in dimensions 2 and 3 by
Nedev, in dimension 4 by the author, and in the radial case up to dimension 9 by the author
and Capella (see the references in [17]). In [11], we showed that these regularity results hold
essentially for any nonnegative nonlinearity f .

In [13], we studied this problem in convex domains with symmetry of double revolution,
and we establish its validity up to dimension n ≤ 7. If R

n = R
m × R

k, we say that a domain
is of double revolution if it is invariant under rotations of the first m variables and also under
rotations of the last k variables. Stable solutions depend only on the “radial” variables s =√

x2
1 + · · · + x2

m and t =
√

x2
m+1 + · · · + x2

n. In these coordinates, the Lebesgue measure in R
n

becomes sm−1tk−1 ds dt. This is a monomial weight as in (1.4). In [13], to prove regularity
results, we needed the above Sobolev inequalities with monomial weights, even with nonintegers
Ai in (1.4).

2 The Principal Eigenvalue for Elliptic Operators with Bounded
Measurable Coefficients

The ABP estimate is the basic bound for subsolutions u of the Dirichlet problem{
Lu ≥ f in Ω,

u ≤ 0 on ∂Ω,
(2.1)

where L is an elliptic operator written in nondivergence form

Lu = aij(x)∂iju + bi(x)∂iu + c(x)u

in a domain Ω ⊂ R
n. We assume that L is uniformly elliptic with bounded measurable coeffi-

cients, i.e., b := (b1, · · · , bn) ∈ L∞(Ω), c ∈ L∞(Ω) and

c0|ξ|2 ≤ aij(x) ξi ξj ≤ C0|ξ|2, ∀ξ ∈ R
n, ∀x ∈ Ω

for some constants 0 < c0 ≤ C0. The ABP estimate states that, if Ω is bounded, c ≤ 0 in Ω,
u ∈ C2(Ω) ∩ C(Ω) and (2.1) holds, then

sup
Ω

u ≤ C diam(Ω) ‖f‖Ln(Ω), (2.2)

where diam(Ω) denotes the diameter of Ω and C is a constant depending only on n, c0, and
‖b‖Ln(Ω).

The proof of the ABP estimate is explained below in Remark 3.1, after having presented in
the detail ABP proof of the isoperimetric inequality.

In 1979, Krylov and Safonov used the ABP estimate and the Calderón-Zygmund cube
decomposition to establish a deep result: The Harnack inequality for second order uniformly
elliptic equations in nondivergence form with bounded measurable coefficients. This result
allowed for the development of a regularity theory for fully nonlinear equations (see [18]).

Consider now the operator

L0u = (L − c(x))u = aij(x)∂iju + bi(x)∂iu,
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and assume that Ω is a bounded smooth domain and that the coefficients aij are smooth in
Ω. In [2], Berestycki, Nirenberg and Varadhan proved the existence of a unique eigenvalue
λ1 = λ1(L0, Ω) of −L0 in Ω (the principal eigenvalue) having a positive (smooth) eigenfunction
ϕ1 (the principal eigenfunction): ⎧⎪⎪⎨

⎪⎪⎩
L0ϕ1 = −λ1ϕ1 in Ω,

ϕ1 = 0 on ∂Ω,

ϕ1 > 0 in Ω.

In addition, λ1 is a simple eigenvalue and satisfies λ1 > 0.
In [2, Theorem 2.5], Berestycki, Nirenberg and Varadhan used the Krylov-Safonov theory to

establish the lower bound λ1 ≥ μ|Ω|− 2
n for some positive constant μ depending only on n, c0,

C0, and an upper bound on |Ω| 1
n ‖b‖L∞(Ω). We now give a simpler proof (unpublished before)

of this lower bound by using the ABP method. We do not need to use the Krylov-Safonov
theory. Our proof improves slightly the bound by showing that μ can be taken to depend on
‖b‖Ln(Ω), instead of |Ω| 1

n ‖b‖L∞(Ω). More precisely, we have the following theorem.

Theorem 2.1 If Ω is bounded, the principal eigenvalue λ1(L0, Ω) of L0 in Ω satisfies

λ1(L0, Ω) ≥ μ|Ω|− 2
n ,

where μ is a positive constant depending only on n, c0, C0 and ‖b‖Ln(Ω).

Proof Since ϕ1 > 0 in Ω, we can consider the function

u = − logϕ1.

Using ∇u = −ϕ−1
1 ∇ϕ1, we have{

aij ∂iju = λ1 − bi ∂iu + aij ∂iu ∂ju in Ω,

u = +∞ on ∂Ω.
(2.3)

We consider the lower contact set of u, defined by

Γu = {x ∈ Ω : u(y) ≥ u(x) + ∇u(x) · (y − x) for all y ∈ Ω}.
It is the set of points, where the tangent hyperplane to the graph of u lies below u in all Ω.

For every p ∈ R
n, the minimum min

Ω
{u(y) − p · y} is achieved at an interior point of Ω,

since u = +∞ on ∂Ω and Ω is bounded. At such a point x in Ω of minimum of the function
y �→ u(y) − p · y, we have x ∈ Γu and p = ∇u(x). It follows that

R
n = ∇u(Γu). (2.4)

It is interesting to visualize geometrically this proof by considering the graphs of the functions
p · y + c for c ∈ R. These are parallel hyperplanes which lie, for c close to −∞, below the graph
of u. We let c increase and consider the first c for which there is contact or “touching” at a
point x. It is clear that x 
∈ ∂Ω, since u = +∞ on ∂Ω.

Using (2.4), we can apply the area formula to the map p = ∇u(x) for x ∈ Γu. Integrating
in R

n a positive function g = g(|p|) to be chosen later, we obtain∫
Rn

g(|p|) dp ≤
∫

Γu

g(|∇u(x)|) det D2u(x) dx. (2.5)
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Note that D2u(x) is nonnegative definite at any point x ∈ Γu.
Next, we use the matrix inequality det(AB) ≤ { trace(AB)

n

}n, which holds for every pair
A and B of nonnegative symmetric matrices. This is a simple extension of the arithmetic-
geometric means inequality. We apply it with A = [aij(x)] and B = D2u(x) for x ∈ Γu. We
also use

(aij∂iju)n ≤ C(λn
1 + |b|n|∇u|n + |∇u|2n) in Γu,

which follows from (2.3). Here and throughout the proof, C denote a positive constant depend-
ing only on n, c0, C0 and ‖b‖Ln(Ω). We deduce that

det D2u ≤ c−n
0 det([aij ]D2u) ≤ c−n

0

( trace([aij ]D2u)
n

)n

= (nc0)−n(aij∂iju)n

≤ C(λn
1 + |b|n|∇u|n + |∇u|2n) in Γu.

Therefore, choosing g(|p|) = (λn
1 + |Ω|−1|p|n + |p|2n)−1 in (2.5), we have∫

Rn

dp

λn
1 + |Ω|−1|p|n + |p|2n

≤
∫

Γu

C(λn
1 + |b|n|∇u|n + |∇u|2n)

λn
1 + |Ω|−1|∇u|n + |∇u|2n

dx

≤ C

∫
Γu

(1 + |Ω||b|n) dx

≤ C(1 + ‖b‖n
Ln(Ω))|Ω| ≤ C|Ω|. (2.6)

On the other hand, using λn
1 + |Ω|−1|p|n + |p|2n ≤ λn

1 + 2|Ω|−1|p|n for |p| ≤ |Ω|− 1
n , we see

that ∫
Rn

dp

λn
1 + |Ω|−1|p|n + |p|2n

≥
∫

B
|Ω|−

1
n

dp

λn
1 + 2|Ω|−1|p|n

= c(n)|Ω| log
(
1 +

2|Ω|−2

λn
1

)
. (2.7)

Combining (2.6) and (2.7), we conclude 2|Ω|−2λ−n
1 ≤ C, which is the desired inequality.

3 The Classical Isoperimetric Inequality

In this section, we present a proof of the classical isoperimetric problem for smooth domains
of R

n which uses the ABP technique. It was found by the author in 1996 and published in
[8, 10]. The proof establishes the following theorem.

Theorem 3.1 (Isoperimetric Inequality) Let Ω be a bounded smooth domain of R
n. Then

P (Ω)

|Ω|n−1
n

≥ P (B1)

|B1|n−1
n

, (3.1)

where B1 is the unit ball of R
n, |Ω| denotes the measure of Ω, and P (Ω) the perimeter of Ω.

Moreover, the equality occurs in (3.1) if and only if Ω is a ball of R
n.

Proof Let u be a solution of the Neumann problem⎧⎪⎨
⎪⎩

Δu =
P (Ω)
|Ω| in Ω,

∂u

∂ν
= 1 on ∂Ω,

(3.2)
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where Δ denotes the Laplace operator and ∂u
∂ν the exterior normal derivative of u on ∂Ω. The

constant P (Ω)
|Ω| has been chosen so that the problem has a unique solution up to an additive

constant. For these classical facts, see Example 2 in Section 10.5 of [27], or the end of Section
6.7 of [25]. In addition, we have that u is smooth in Ω.

We consider the lower contact set of u, defined by

Γu = {x ∈ Ω : u(y) ≥ u(x) + ∇u(x) · (y − x) for all y ∈ Ω}. (3.3)

It is the set of points, where the tangent hyperplane to the graph of u lies below u in all Ω. We
claim that

B1(0) ⊂ ∇u(Γu), (3.4)

where B1(0) = B1 denotes the unit ball of R
n with center 0.

To show (3.4), take any p ∈ R
n satisfying |p| < 1. Let x ∈ Ω be a point, such that

min
y∈Ω

{u(y) − p · y} = u(x) − p · x

(this is, up to a sign, the Legendre transform of u). If x ∈ ∂Ω, then the exterior normal
derivative of u(y)−p ·y at x would be nonpositive and hence

(
∂u
∂ν

)
(x) ≤ |p| < 1, a contradiction

with (3.2). It follows that x ∈ Ω and, therefore, that x is an interior minimum of the function
u(y)−p ·y. In particular, p = ∇u(x) and x ∈ Γu. Claim (3.4) is now proved. It is interesting to
visualize geometrically the proof of the claim, by considering the graphs of the functions p ·y+c

for c ∈ R. These are parallel hyperplanes which lie, for c close to −∞, below the graph of u.
We let c increase and consider the first c for which there is contact or “touching” at a point x.
It is clear geometrically that x 
∈ ∂Ω, since |p| < 1 and ∂u

∂ν = 1 on ∂Ω.
Next, from (3.4), we deduce

|B1| ≤ |∇u(Γu)| =
∫
∇u(Γu)

dp ≤
∫

Γu

detD2u(x) dx. (3.5)

We have applied the area formula to the map ∇u : Γu → R
n, and we have used that its

Jacobian, detD2u, is nonnegative in Γu by definition of this set.
Finally, we use the arithmetic-geometric means inequality applied to the eigenvalues of

D2u(x) (which are nonnegative numbers for x ∈ Γu). We obtain

detD2u ≤
(Δu

n

)n

in Γu. (3.6)

This, combined with (3.5) and Δu ≡ P (Ω)
|Ω| , gives

|B1| ≤
(P (Ω)

n|Ω|
)n

|Γu| ≤
(P (Ω)

n|Ω|
)n

|Ω|. (3.7)

Since P (B1) = n|B1|, we conclude the isoperimetric inequality

P (B1)

|B1|n−1
n

= n|B1| 1
n ≤ P (Ω)

|Ω|n−1
n

. (3.8)

Note that when Ω = B1, then u(x) = |x|2
2 and, in particular, all the eigenvalues of D2u(x)

are equal. Therefore, it is clear that (3.4) and (3.6) are equalities when Ω = B1. This explains
why the proof gives the isoperimetric inequality with best constant.
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The previous proof can also be used to show that balls are the only smooth domains for
which equality occurs in the isoperimetric inequality. Indeed, if (3.8) is an equality, then all the
inequalities in (3.5)–(3.7) are also equalities. In particular, we have |Γu| = |Ω|. Since Γu ⊂ Ω,
Ω is an open set, and Γu is closed relatively to Ω, we deduce that Γu = Ω.

Recall that the geometric and arithmetic means of n nonnegative numbers are equal if and
only if these n numbers are all equal. Hence, the equality in (3.6) and the fact that Δu is
constant in Ω give that D2u = aI in all Γu = Ω, where I is the identity matrix and a = P (Ω)

n|Ω|
is a positive constant. Let x0 ∈ Ω be any given point. Integrating D2u = aI on segments from
x0, we deduce that

u(x) = u(x0) + ∇u(x0) · (x − x0) +
a

2
|x − x0|2

for x in a neighborhood of x0. In particular, ∇u(x) = ∇u(x0)+a(x−x0) in such a neighborhood,
and hence the map ∇u− aI is locally constant. Since Ω is connected, we deduce that this map
is indeed a constant, say ∇u − aI ≡ y0.

It follows that ∇u(Γu) = ∇u(Ω) = y0 +aΩ. By (3.4), we know that B1(0) ⊂ ∇u(Γu) = y0 +
aΩ. In addition, these two open smooth sets, B1(0) and y0 + aΩ, have the same measure, since
equality occurs in the first inequality of (3.5). We conclude that B1(0) = ∇u(Γu) = y0 + aΩ,
and hence that Ω is a ball.

The previous proof is also suited for a quantitative version as we will show in [12] with Cinti,
Pratelli, Ros-Oton and Serra.

Remark 3.1 The ABP estimate (2.2) is proved by proceeding as in the previous proof for
the isoperimetric inequality, but now by considering the Dirichlet problem (2.1) instead of (3.2).
The main claim (3.4) is now replaced by BM

d
(0) ⊂ ∇u(Γu), where M = sup

Ω
u, d = diam(Ω)

and Γu is now the upper contact set of u (see [25, Chapter 9] for details).

In 1994 (before our proof), Trudinger [35] gave a proof of the classical isoperimetric inequal-
ity by using the Monge-Ampère operator and the ABP estimate. His proof consists of applying
the ABP estimate to the problem{

detD2u = χΩ in BR,

u = 0 on ∂BR,

where χΩ is the characteristic function of Ω and BR = BR(0), and then letting R → ∞.
Before the proofs in [8, 35] by using ABP, there was already Gromov’s proof (see [26]) of

the isoperimetric inequality, which used the Knothe map (see also [19] for a presentation). A
more classical proof of the isoperimetric problem is based on Steiner symmetrization (see [3,
23, 31]). A fifth proof consists of deducing easily the isoperimetric inequality from the Brunn-
Minkowski inequality (4.2) (see [24]). Finally, in 2004, Cordero-Erausquin, Nazaret and Villani
[20] used the Brenier map from optimal transportation to give another proof of the isoperimetric
inequality. This optimal transport proof, as well as the Knothe-Gromov one, both lead also to
the Wulff isoperimetric inequality for anisotropic perimeters, which is discussed in the following
section.

4 The Wulff Isoperimetric Inequality

In a personal communication, Robert McCann pointed out that our proof of Theorem 3.1
also establishes the following inequality concerning Wulff shapes and surface energies of crystals.
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Given any positive and smooth function H on S
n−1 = ∂B1 (the surface tension), consider the

convex set W ⊂ R
n (called the Wulff shape) defined by

W = {p ∈ R
n : p · ν < H(ν) for all ν ∈ S

n−1}. (4.1)

Note that W is an open set with 0 ∈ W . To visualize W , it is useful to note that it is the
intersection of the half-spaces {p · ν < H(ν)} among all ν ∈ S

n−1. In particular, W is a convex
set.

For every smooth domain Ω ∈ R
n (not necessarily convex), define

PH(Ω) :=
∫

∂Ω

H(ν(x)) dS(x)

to be its surface energy, where dS(x) denotes the area element on ∂Ω and ν(x) is the unit
exterior normal to ∂Ω at x. Then, among sets Ω with measure |W |, the surface energy PH(Ω)
is minimized by (and only by) the Wulff shape W and its translates. Equivalently, for every Ω
(without restriction on its measure) we have the following theorem.

Theorem 4.1 ([33–34, 37]) Let Ω be a bounded smooth domain of R
n. Then

PH(Ω)

|Ω|n−1
n

≥ PH(W )

|W |n−1
n

,

with equality if and only if Ω = aW + b for some a > 0 and b ∈ R
n.

This theorem was first stated, without proof, by Wulff [37] in 1901. His work was followed
by Dinghas [21], who studied the problem within the class of convex polyhedra. He used the
Brunn-Minkowski inequality

|A + B| 1
n ≥ |A| 1

n + |B| 1
n , (4.2)

valid for all nonempty measurable sets A and B of R
n for which A + B is also measurable (see

[24] for more information on this inequality). Some years later, Taylor [33–34] finally proved
the theorem among sets of finite perimeter (see [16] for more references in this subject). As
mentioned in the previous section, this anisotropic isoperimetric inequality also follows easily
by using the Knothe-Gromov map or the Brenier map from optimal transport. In addition, a
proof of the Wulff theorem using an anisotropic rearrangement was given by Van Schaftingen
in [36] (with a method coming from Klimov [28]).

This anisotropic isoperimetric problem can be solved with the same method that we have
used above for the isoperimetric problem. One considers now the solution of⎧⎪⎨

⎪⎩
Δu =

PH(Ω)
|Ω| in Ω,

∂u

∂ν
= H(ν) on ∂Ω.

Claim (3.4) is now replaced by W ⊂ ∇u(Γu), which is proved again by using the Legendre
transform of u. Then, the area formula gives |W | ≤ {PH (Ω)

n|Ω|
}n|Ω|.

To conclude, one uses PH(W ) = n|W |. This last equality follows from the fact that
H(ν(p)) = p · ν(p) for almost every p ∈ ∂W (here ν(p) denotes the unit exterior normal to
∂W at p), and thus

PH(W ) =
∫

∂W

H(ν(x))dS =
∫

∂W

x · ν(x)dS =
∫

W

div(x)dx = n|W |.

A similar argument as in the previous section shows that the equality is only achieved by
the sets Ω = aW + b (see [16] for details).
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5 Weighted Isoperimetric and Sobolev Inequalities in Convex Cones

The isoperimetric inequality in convex cones of Lions and Pacella reads as follows.

Theorem 5.1 ([29]) Let Σ be an open convex cone in R
n with vertex at 0, and B1 := B1(0).

Then

P (Ω; Σ)

|Ω ∩ Σ|n−1
n

≥ P (B1; Σ)

|B1 ∩ Σ|n−1
n

for every measurable set Ω ⊂ R
n with |Ω∩Σ| < ∞. Here P (Ω; Σ) is the perimeter of Ω relative

to Σ. When Ω is smooth, it agrees with the (n − 1)-Hausdorff measure of ∂Ω ∩ Σ.

Note that Σ is an open set. Hence, if there is a part of ∂Ω contained in ∂Σ, then it is not
counted in this perimeter. The assumption of convexity of the cone can not be removed as
shown in [29].

The proof of Theorem 5.1 given in [29] is based on the Brunn-Minkowski inequality (4.2).
Alternatively, Theorem 5.1 can also be deduced from a degenerate case of the classical Wulff
inequality of Section 4. For this, one must allow the surface energy H to vanish in part of S

n−1.
More precisely, we say that a function H defined in R

n is a gauge when

H is nonnegative, positively homogeneous of degree one, and convex. (5.1)

The Wulff inequality can be proved for such surface energies H . With this in hand, one can
establish the Lions-Pacella inequality as follows.

It is easy to prove that the convex set B1 ∩ Σ is equal to the Wulff shape W , defined
by (4.1), for a unique gauge H (which depends on the cone Σ). This function H vanishes
on normal vectors to ∂Σ and agrees with 1 on unit vectors inside Σ. This is why one can
recover the Lions-Pacella inequality from the Wulff one associated to this H . In particular, the
Lions-Pacella inequality can be proved by using the ABP method (see [16] for more details).

Let us now turn to the extension of the Lions-Pacella theorem in [16] to the case of some
homogeneous weights, as explained in the introduction. Given a gauge H and a nonnegative
function w defined in Σ, consider the weighted anisotropic perimeter

Pw,H(Ω; Σ) :=
∫

∂Ω∩Σ

H(ν(x))w(x)dS

(defined in this way when ∂Ω is regular enough) and the weighted measure

w(Ω ∩ Σ) :=
∫

Ω∩Σ

w(x) dx.

Theorem 5.2 ([16]) Let H be a gauge in R
n, i.e., a function satisfies (5.1), and W with

its associated Wulff shape is defined by (4.1). Let Σ be an open convex cone in R
n with vertex

at the origin, such that W ∩ Σ 
= ∅. Let w be a continuous function in Σ, positive in Σ, and
positively homogeneous of degree α ≥ 0. Assume in addition that w

1
α is concave in Σ in case

α > 0.
Then, for each measurable set Ω ⊂ R

n with w(Ω ∩ Σ) < ∞,

Pw,H(Ω; Σ)

w(Ω ∩ Σ)
D−1

D

≥ Pw,H(W ; Σ)

w(W ∩ Σ)
D−1

D

, (5.2)

where D = n + α.
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After announcing our result in [15] and posting the preprint [16], Milman and Rotem [30]
found an alternative proof of our isoperimetric inequality, Theorem 5.2 ([30] mentions that
the same was found independently by Nguyen). Their proof uses the Borell-Brascamp-Lieb
extension of the the Brunn-Minkowski inequality.

Our key hypothesis that w
1
α is a concave function is equivalent to a natural curvature-

dimension bound, in fact, to the nonnegativeness of a Bakry-Émery Ricci tensor in dimension
D = n + α. This was pointed out by C. Villani.

Note that the shape of the minimizer is W ∩ Σ, and that W depends only on H and not
on the weight w neither on the cone Σ. In particular, in the isotropic case H = ‖ · ‖2, we
find the following noteworthy fact. Even if the weights that we consider are not radial (unless
w ≡ constant), still Euclidean balls centered at the origin (intersected with the cone) minimize
this isoperimetric quotient.

The equality in (5.2) holds whenever Ω∩Σ = rW ∩Σ, where r is any positive number. That
rW ∩ Σ is the unique minimizer of (5.2) will be shown in the upcoming paper [12], where in
addition we show a quantitative version of (5.2).

Note also that we allow w to vanish somewhere (or everywhere) on ∂Σ. This happens in
the case of the monomial weights (1.4), for which the previous theorem holds. From (5.2), it
is simple to deduce the sharp Sobolev inequality with monomial weights (1.3) stated in the
introduction.

Next, to show the key ideas in a simpler situation, we prove Theorem 5.2 in the isotropic
case H = ‖ · ‖2 when the weight w ≡ 0 on ∂Σ. This is the case of the monomial weights. To
simplify, we also assume that Ω = U ∩ Σ, where U is some bounded smooth domain in R

n.
Let w be a positive homogeneous function of degree α > 0 in an open convex cone Σ ⊂ R

n.
In the proof we will need an easy lemma stating that w

1
α is concave in Σ if and only if

α
(w(z)

w(x)

) 1
α ≤ ∇w(x) · z

w(x)
(5.3)

holds for each x, z ∈ Σ (see [16]).
To prove the result, we also need the following equality. Here we denote Pw,H by Pw, since

H is the Euclidean norm. Using that w ≡ 0 on ∂Σ, we deduce

Pw(W ; Σ) =
∫

∂W∩Σ

H(ν(x))w(x)dS =
∫

∂W∩Σ

x · ν(x)w(x)dS

=
∫

∂(W∩Σ)

x · ν(x)w(x)dS =
∫

W∩Σ

div(xw(x))dx

=
∫

W∩Σ

{nw(x) + x · ∇w(x)}dx =
∫

W∩Σ

(n + α)w(x)dx = D w(W ∩ Σ), (5.4)

where we have used that x · ∇w(x) = αw(x), since w is homogeneous of degree α.
A key point in the following proof is that, when Ω = B1 ∩Σ, the function u(x) = |x|2

2 solves
w−1div(w∇u) = b for some constant b, the normal derivative of u on ∂B1∩Σ is identically one,
and the normal derivative of u on ∂Σ ∩ B1 is identically zero.

Proof of Theorem 5.2 (In the case w ≡ 0 on ∂Σ and H = ‖ · ‖2) For the sake of
simplicity, we assume here that Ω = U ∩ Σ, where U is some bounded smooth domain in R

n.
Observe that since Ω = U ∩ Σ is piecewise Lipschitz, and w ≡ 0 on ∂Σ, it holds

Pw(Ω; Σ) =
∫

∂Ω

w(x)dx. (5.5)
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Hence, using w ∈ C(Σ) and (5.5), it is immediate to prove that for any y ∈ Σ, we have

lim
δ↓0

Pw(Ω + δy; Σ) = Pw(Ω; Σ), lim
δ↓0

w(Ω + δy) = w(Ω).

We denote Ω + δy = {x+ δy, x ∈ Ω}. Note that Pw(Ω + δy; Σ) could not converge to Pw(Ω; Σ)
as δ ↓ 0, if w did not vanish on the boundary of the cone Σ.

By this approximation property and a subsequent regularization of Ω + δy (a detailed ar-
gument can be found in [16]), we see that it suffices to prove (5.2) for smooth domains whose
closure is contained in Σ. Thus, from now on in the proof, Ω is a smooth domain satisfying
Ω ⊂ Σ.

At this stage, it is clear that by approximating w|Ω, we can assume w ∈ C∞(Ω) and w > 0
in Ω.

Let u be a solution of the linear Neumann problem⎧⎨
⎩

w−1div(w∇u) = bΩ in Ω,

∂u

∂ν
= 1 on ∂Ω.

(5.6)

The Fredholm alternative ensures that there exists a solution of (5.6) (which is unique up to
an additive constant) if and only if the constant bΩ is given by

bΩ =
Pw(Ω; Σ)

w(Ω)
. (5.7)

Note also that since w is positive and smooth in Ω, (5.6) is a uniformly elliptic problem with
smooth coefficients. Thus, u ∈ C∞(Ω). For these classical facts, see Example 2 in Section 10.5
of [27], or the end of Section 6.7 of [25].

Consider now the lower contact set of u, Γu, defined by (3.3) as the set of points in Ω at
which the tangent hyperplane to the graph of u lies below u in all Ω. Then, as in Section 3,
we touch by below the graph of u with hyperplanes of fixed slope p ∈ B1, and by using the
boundary condition in (5.6), we deduce that B1 ⊂ ∇u(Γu). From this, we obtain

B1 ∩ Σ ⊂ ∇u(Γu) ∩ Σ,

and thus

w(B1 ∩ Σ) ≤
∫
∇u(Γu)∩Σ

w(p)dp ≤
∫

Γu∩(∇u)−1(Σ)

w(∇u(x)) det D2u(x) dx

≤
∫

Γu∩(∇u)−1(Σ)

w(∇u)
(Δu

n

)n

dx. (5.8)

We apply the area formula to the smooth map ∇u : Γu → R
n and also the classical arithmetic-

geometric means inequality, where all eigenvalues of D2u are nonnegative in Γu by definition
of this set.

Next we use that, when α > 0,

sαtn ≤
(αs + nt

α + n

)α+n

for all s > 0, t > 0,

which follows from the concavity of the logarithm function. Using also (5.3), we find

w(∇u)
w(x)

(Δu

n

)n

≤
(α

(
w(∇u)
w(x)

) 1
α

+ Δu

α + n

)α+n

≤
( ∇w(x)·∇u

w(x) + Δu

D

)D

.
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Recall that D = n + α. Thus, using the equation in (5.6), we obtain

w(∇u)
w(x)

(Δu

n

)n

≤
(bΩ

D

)D

in Γu ∩ (∇u)−1(Σ). (5.9)

If α = 0, then w ≡ 1, and (5.9) is trivial.
Therefore, since Γu ⊂ Ω, combining (5.8) and (5.9), we obtain

w(B1 ∩ Σ) ≤
∫

Γu∩(∇u)−1(Σ)

(bΩ

D

)D

w(x)dx =
(bΩ

D

)D

w(Γu ∩ (∇u)−1(Σ))

≤
(bΩ

D

)D

w(Ω) = D−D Pw(Ω; Σ)D

w(Ω)D−1
.

In the last equality, we use the value of the constant bΩ, given by (5.7).
Finally, by (5.4), we have Pw(B1 ∩ Σ; Σ) = D w(B1 ∩ Σ). Then we obtain the desired

inequality (5.2).
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[10] Cabré, X., Elliptic PDEs in probability and geometry, symmetry and regularity of solutions, Discrete
Contin. Dyn. Syst., 20, 2008, 425–457.
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[16] Cabré, X., Ros-Oton, X. and Serra, J., Sharp isoperimetric inequalities via the ABP method, J. Eur.
Math. Soc., 18, 2016, 2971–2998.



214 X. Cabré
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