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1 Introduction

The Sobolev embedding theorem states that if Ẇ 1,p(Rn) is the homogeneous Sobolev space,
obtained by completing the set of compactly supported smooth functions C∞

c (Rn) under the
norm ‖∇u‖Lp(Rn), then Ẇ 1,p(Rn) embeds into Lp∗

(Rn), whenever n ≥ 2, 1 ≤ p < n and
1
p∗ = 1

p − 1
n . This fails when p = n, i.e., Ẇ 1,n(Rn) does not embed into L∞(Rn). One of the

well-known remedies of this failure is to say that Ẇ 1,n(Rn) embeds into BMO(Rn), the space
of functions of bounded mean oscillation. In [2, 4], Bourgain and Brezis established another
remedy of the failure of this Sobolev embedding for Ẇ 1,n(Rn). They proved, among other
things, that if X is a differential �-form on R

n with Ẇ 1,n(Rn) coefficients, where 1 ≤ � ≤ n− 1,
then there exists a differential �-form Y , whose components are all in Ẇ 1,n ∩ L∞(Rn), such
that

dY = dX

with

‖Y ‖Ẇ 1,n∩L∞ ≤ C‖dX‖Ln.
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(Such a theorem would have been trivial by Hodge decomposition, if Ẇ 1,n(Rn) were to embed
into L∞(Rn).) The existing proofs of the above theorem are all long and complicated. On the
contrary, a weaker version of this theorem, where one replaces the space Ẇ 1,n ∩ L∞ by L∞,
can be obtained from the following theorem of Van Schaftingen [9], when � ≤ n− 2.

Theorem 1.1 (see [9]) Suppose that f is a smooth vector field on R
n, with

div f = 0.

Then for any compactly supported smooth vector field φ on R
n, we have∣∣∣ˆ

Rn

〈f, φ〉
∣∣∣ ≤ C‖f‖L1‖∇φ‖Ln , (1.1)

where 〈·, ·〉 is the pointwise Euclidean inner product of two vector fields in R
n.

See e.g. [4, 6]. We refer the interested reader to the survey in [10], for a more detailed
account of this circle of ideas.

The original direct proof of Theorem 1.1 in [9] proceeds by decomposing
ˆ

Rn

〈f, φ〉 =
m∑

i=1

ˆ
R

(ˆ
Ri−1×{s}×Rn−i

fiφi

)
ds,

and by estimating first directly the innermost (n − 1)-dimensional integral. This gives the
impression that the strategy is quite rigid. The first goal of this note is to prove Theorem 1.1
by averaging a suitable estimate over all unit spheres in R

n.
In a second part of this paper, we adapt this idea of averaging over families of sets to prove

an analogue of Theorem 1.1, in the setting where R
n is replaced by the real hyperbolic space

H
n.

Theorem 1.2 Suppose that f is a smooth vector field on H
n, with

divg f = 0,

where divg is the divergence with respect to the metric g on H
n. Then for any compactly

supported smooth vector field φ on H
n, we have∣∣∣ˆ

Hn

〈f, φ〉g dVg

∣∣∣ ≤ C‖f‖L1(Hn)‖∇gφ‖Ln(Hn), (1.2)

where 〈·, ·〉g and dVg are the pointwise inner product and the volume measure with respect to g
respectively, ∇gφ is the (1, 1) tensor given by the Levi-Civita connection of φ with respect to g,
and

‖f‖L1(Hn) =
ˆ

Hn

|f |g dVg, ‖∇gφ‖Ln(Hn) =
(ˆ

Hn

|∇gφ|ng dVg

) 1
n

.

We note that the above theorem is formulated entirely geometrically on H
n, without the

need of specifying a choice of coordinate chart. As explained in Appendix A, Theorem 1.2 can
be proved indirectly by patching together known estimates on R

n via a partition of unity, and
by applying Hardy’s inequality to get rid of lower order terms.

We shall prove Theorem 1.2 by averaging a suitable estimate over a family of hypersurfaces
in H

n, where the family of hypersurfaces is obtained from the orbit of a “vertical hyperplane”
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under all isometries in H
n. The latter shares a similar flavour to the proof we will give below of

Theorem 1.1. The innovation in the proof of the result for the hyperbolic space is in deducing
Theorem 1.2 from Proposition 3.1, and in establishing Lemma 3.4 (see Section 3 for details).

2 Another Proof of Theorem 1.1

Theorem 1.1 will follow from the following proposition.

Proposition 2.1 Let f , φ be as in Theorem 1.1. Write B
n for the unit ball {x ∈ R

n : |x| <
1} in R

n, and S
n−1 for the unit sphere (i.e., the boundary of B

n). Also write dσ for the standard
surface measure on S

n−1, and ν for the outward unit normal to the sphere S
n−1. Then∣∣∣ ˆ

Sn−1
〈f, ν〉〈φ, ν〉dσ

∣∣∣ ≤ C‖f‖ 1
n

L1(Rn\Bn)‖f‖
1− 1

n

L1(Sn−1)‖φ‖W 1,n(Sn−1). (2.1)

Here ‖φ‖W 1,n(Sn−1) = ‖φ‖Ln(Sn−1) + ‖∇Sn−1φ‖Ln(Sn−1), where ∇Sn−1φ is the (1, 1) tensor on
S

n−1 given by the covariant derivative of the vector field φ.

The proof of Proposition 2.1 in turn depends on the following two lemmas. The first one is
a simple lemma about integration by parts.

Lemma 2.1 Let f, ν be as in Proposition 2.1. Then for any compactly supported smooth
function ψ on R

n, we have
ˆ

Sn−1
〈f, ν〉ψ dσ = −

ˆ
Rn\Bn

〈f,∇ψ〉dx.

The second one is a decomposition lemma for functions on the sphere S
n−1.

Lemma 2.2 Let ϕ be a smooth function on S
n−1. For any λ > 0, there exists a decompo-

sition
ϕ = ϕ1 + ϕ2 on S

n−1,

and an extension ϕ̃2 of ϕ2 to R
n \ B

n, such that ϕ̃2 is smooth and bounded on R
n \ B

n, with

‖ϕ1‖L∞(Sn−1) ≤ Cλ
1
n ‖∇Sn−1ϕ‖Ln(Sn−1),

‖∇ϕ̃2‖L∞(Rn\Bn) ≤ Cλ
1
n−1‖∇Sn−1ϕ‖Ln(Sn−1).

Here ‖∇Sn−1ϕ‖ is the norm of the gradient of the function ϕ on S
n−1. We postpone the

proofs of Lemmas 2.1–2.2 to the end of this section.
Now we are ready for the proof of Proposition 2.1.

Proof of Proposition 2.1 Let f, φ be as in the statement of Theorem 1.1. Apply
Lemma 2.2 to ϕ = 〈φ, ν〉, where λ > 0 is to be chosen. Then since

‖∇Sn−1〈φ, ν〉‖Ln(Sn−1) ≤ C‖φ‖W 1,n(Sn−1),

there exists a decomposition
〈φ, ν〉 = ϕ1 + ϕ2 on S

n−1,

and an extension ϕ̃2 of ϕ2 to R
n \ B

n, such that ϕ̃2 ∈ C∞ ∩ L∞(Rn \ B
n),

‖ϕ1‖L∞(Sn−1) ≤ Cλ
1
n ‖φ‖W 1,n(Sn−1)
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and
‖∇ϕ̃2‖L∞(Rn\Bn) ≤ Cλ

1
n−1‖φ‖W 1,n(Sn−1).

Now ˆ
Sn−1

〈f, ν〉〈φ, ν〉dσ =
ˆ

Sn−1
〈f, ν〉ϕ1 dσ +

ˆ
Sn−1

〈f, ν〉ϕ2 dσ

= I + II.

In the first term, we estimate trivially

|I| ≤ ‖f‖L1(Sn−1)‖ϕ1‖L∞(Sn−1) ≤ Cλ
1
n ‖f‖L1(Sn−1)‖φ‖W 1,n(Sn−1).

To estimate the second term, we let θ be a smooth cut-off function with compact support on
R

n, such that θ(x) = 1 whenever |x| ≤ 1. For ε ∈ (0, 1), let θε(x) = θ(εx). Then θε = 1 on
S

n−1, so we can rewrite II as

II =
ˆ

Sn−1
〈f, ν〉ϕ2θε dσ

for any ε ∈ (0, 1). We then integrate by parts using Lemma 2.1, with ψ := ϕ̃2θε, and obtain

II = −
ˆ

Rn\Bn

〈f,∇ϕ̃2〉θε dx−
ˆ

Rn\Bn

〈f,∇θε〉ϕ̃2 dx.

(The cut-off function θε is inserted so that ψ has compact support.) We now let ε → 0+. The
second term then tends to 0, since it is just

−ε
ˆ

Rn\Bn

〈f(x), (∇θ)(εx)〉ϕ̃2(x) dx,

where f ∈ L1, ∇θ(ε·) ∈ L∞ and ϕ̃2 ∈ L∞ on R
n \ B

n. On the other hand, the first term tends
to

−
ˆ

Rn\Bn

〈f,∇ϕ̃2〉dx

by dominated convergence theorem, since f ∈ L1 and ∇ϕ̃2 ∈ L∞ on R
n \ B

n. As a result,

II = −
ˆ

Rn\Bn

〈f,∇ϕ̃2〉dx,

from which we see that

|II| ≤ ‖f‖L1(Rn\Bn)‖∇ϕ̃2‖L∞(Rn\Bn) ≤ Cλ
1
n−1‖f‖L1(Rn\Bn)‖φ‖W 1,n(Sn−1).

Together, by choosing λ =
‖f‖L1(Rn\Bn)

‖f‖L1(Sn−1)
, we get

∣∣∣ˆ
Sn−1

〈f, ν〉〈φ, ν〉dσ
∣∣∣ ≤ C‖f‖ 1

n

L1(Rn\Bn)‖f‖
1− 1

n

L1(Sn−1)‖φ‖W 1,n(Sn−1)

as desired.

We will now deduce Theorem 1.1 from Proposition 2.1. The idea is to average (2.1) over all
unit spheres in R

n.
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Proof of Theorem 1.1 First, for each fixed x ∈ R
n, we have

〈f(x), φ(x)〉 = c

ˆ
Sn−1

〈f(x), ω〉〈φ(x), ω〉dσ(ω), (2.2)

where we are identifying ω ∈ S
n−1 with the corresponding unit tangent vector to R

n based at
the point x. Hence to estimate

´
Rn〈f(x), φ(x)〉dx, it suffices to estimate

ˆ
Rn

ˆ
Sn−1

〈f(x), ω〉〈φ(x), ω〉dσ(ω) dx,

which is the same as ˆ
Rn

ˆ
Sn−1

〈f(z + ω), ω〉〈φ(z + ω), ω〉dσ(ω) dz

by a change of variable (x, ω) �→ (z + ω, ω). Now when z = 0, the inner integral can be
estimated by Proposition 2.1; for a general z �= 0, one can still estimate the inner integral by
Proposition 2.1, since the proposition is invariant under translations. Thus the above double
integral is bounded, in absolute value, by

C‖f‖ 1
n

L1(Rn)

ˆ
Rn

‖f(z + ·)‖1− 1
n

L1(Sn−1)‖φ(z + ·)‖W 1,n(Sn−1) dz.

Applying Hölder’s inequality to the last integral in z, one bounds this by

C‖f‖ 1
n

L1(Rn)

( ˆ
Rn

‖f(z + ·)‖L1(Sn−1) dz
)1− 1

n
(ˆ

Rn

‖φ(z + ·)‖n
W 1,n(Sn−1) dz

) 1
n

.

Since ˆ
Rn

‖f(z + ·)‖L1(Sn−1) dz = c‖f‖L1(Rn)

and ˆ
Rn

‖φ(z + ·)‖n
W 1,n(Sn−1) dz ≤ c(‖φ‖n

Ln(Rn) + ‖∇φ‖n
Ln(Rn)),

we proved that under the assumption of Theorem 1.1, we have∣∣∣ ˆ
Rn

〈f, φ〉
∣∣∣ ≤ C‖f‖L1(Rn)(‖∇φ‖Ln(Rn) + ‖φ‖Ln(Rn)). (2.3)

This is almost the desired conclusion, except that we have an additional zeroth order term on
φ on the right-hand side of the estimate. But that can be scaled away by homogeneity. In fact,
if f and φ satisfies the assumption of Theorem 1.1, then so does the dilations

fε(x) := ε−nf(ε−1x), φε(x) := φ(ε−1x), ε > 0.

Applying (2.3) to fε and φε instead, we get∣∣∣ ˆ
Rn

〈fε, φε〉
∣∣∣ ≤ C‖fε‖L1(Rn)(‖∇φε‖Ln(Rn) + ‖φε‖Ln(Rn)),

i.e., ∣∣∣ˆ
Rn

〈f, φ〉
∣∣∣ ≤ C‖f‖L1(Rn)(‖∇φ‖Ln(Rn) + ε‖φ‖Ln(Rn)).
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So, letting ε→ 0+, we get the desired conclusion of Theorem 1.1.

Proof of Lemma 2.1 Note that 〈f, ν〉ψ = 〈ψf, ν〉, and ν is the inward unit normal to
∂(Rn \ B

n). So by the divergence theorem on R
n, we have

ˆ
Sn−1

〈f, ν〉ψ dσ = −
ˆ

Rn\Bn

div(ψf) dx.

But since div f = 0, we have

div(ψf) = 〈f,∇ψ〉 + ψ div f = 〈f,∇ψ〉,

and the desired equality follows.

Proof of Lemma 2.2 Suppose that ϕ and λ are as in Lemma 2.2. We will construct first
a decomposition ϕ = ϕ1 + ϕ2 on S

n−1, so that both ϕ1 and ϕ2 are smooth on S
n−1, and

‖ϕ1‖L∞(Sn−1) ≤ Cλ
1
n ‖∇Sn−1ϕ‖Ln(Sn−1),

‖∇Sn−1ϕ2‖L∞(Sn−1) ≤ Cλ
1
n−1‖∇Sn−1ϕ‖Ln(Sn−1).

(Here ∇Sn−1ϕ2 is the gradient on S
n−1.) Once this is established, the lemma will follow, by

extending ϕ2 so that it is homogeneous of degree 0; in other words, we will then define

ϕ̃2(x) := ϕ2

( x

|x|
)
, |x| ≥ 1.

It is then straight forward to verify that

‖∇ϕ̃2‖L∞(Rn\Bn) ≤ Cλ
1
n−1‖∇Sn−1ϕ‖Ln(Sn−1),

since the radial derivative of ϕ̃2 is zero.
To construct the desired decomposition on S

n−1, we proceed as follows.
If λ ≥ 1, we set ϕ2 =

ffl
Sn ϕ, so that ∇Sn−1ϕ2 = 0 on S

n−1, then

ϕ1 = ϕ−
 

Sn

ϕ,

and the estimate for ϕ1 follows from the classical Morrey–Sobolev estimate.
If 0 < λ < 1, we pick a non-negative radial cut-off function η ∈ C∞

c (Rn), with η = 1 in a
neighborhood of 0, and define ηλ(x) = η(λ−1x) for x ∈ R

n. We then consider the function

x ∈ R
n �→

ˆ
Sn−1

ηλ(x− y) dσ(y).

When restricted to x ∈ S
n−1, this function is a constant independent of the choice of x ∈ S

n−1,
by rotation invariance of the integral. We then write cλ for this constant, i.e.,

cλ :=
ˆ

Sn−1
ηλ(x − y) dσ(y), |x| = 1. (2.4)

Note that by our choice of η, when 0 < λ < 1,

cλ 
 λn−1. (2.5)
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Now we define, for x ∈ S
n−1, that

ϕ2(x) = c−1
λ

ˆ
Sn−1

ηλ(x− y)ϕ(y) dσ(y), ϕ1(x) = ϕ(x) − ϕ2(x).

Then for x ∈ S
n−1, we have

ϕ1(x) = c−1
λ

ˆ
Sn−1

ηλ(x − y)[ϕ(x) − ϕ(y)] dσ(y)

by definition of cλ. But for x, y ∈ S
n−1, we have, by Morrey’s embedding, that

|ϕ(x) − ϕ(y)| ≤ C|x− y| 1
n ‖∇Sn−1ϕ‖Ln(Sn−1).

It follows that

|ϕ1(x)| ≤ C‖∇Sn−1ϕ‖Ln(Sn−1)c
−1
λ

ˆ
Sn−1

ηλ(x− y)|x− y| 1
n dσ(y).

Letting η̃(x) = |x| 1
n η(x) and η̃λ(x) = η̃(λ−1x), we see that the right-hand side above is just

Cλ
1
n ‖∇Sn−1ϕ‖Ln(Sn−1)c

−1
λ

ˆ
Sn−1

η̃λ(x− y) dσ(y).

But this last integral can be estimated by
ˆ

Sn−1
η̃λ(x− y) dσ(y) � λn−1,

by the support and L∞ bound of η̃λ. Hence using also (2.5), we see that

‖ϕ1‖L∞(Sn−1) ≤ Cλ
1
n ‖∇Sn−1ϕ‖Ln(Sn−1)

as desired.
Next, suppose that x ∈ S

n−1, and v is a unit tangent vector to S
n−1 at x. Then

∂vφ2(x) = λ−1c−1
λ

ˆ
Sn−1

〈v,∇η〉(λ−1(x− y))ϕ(y) dσ(y). (2.6)

But if we differentiate both sides of the definition (2.4) of cλ with respect to ∂v, we see that

0 =
ˆ

Sn−1
〈v,∇η〉(λ−1(x− y)) dσ(y). (2.7)

Multiplying (2.7) by λ−1c−1
λ φ(x), and subtracting that from (2.6), we get

∂vφ2(x) = λ−1c−1
λ

ˆ
Sn−1

〈v,∇η〉(λ−1(x− y))[ϕ(y) − ϕ(x)] dσ(y).

Using Morrey’s embedding again, we see that

|∂vφ2(x)| ≤ Cλ−1‖∇Sn−1ϕ‖Ln(Sn−1)c
−1
λ

ˆ
Sn−1

|〈v,∇η〉|(λ−1(x− y))|x− y| 1
n dσ(y).

Letting η(x) = |x| 1
n |〈v,∇η〉|(x) and ηλ(x) = η(λ−1x), we see that the right-hand side above is

just

Cλ
1
nλ−1‖∇Sn−1ϕ‖Ln(Sn−1)c

−1
λ

ˆ
Sn−1

ηλ(x− y) dσ(y).
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But this last integral can be estimated by
ˆ

Sn−1
ηλ(x− y) dσ(y) dσ(y) � λn−1,

by the support and L∞ bound of ηλ. Hence using also (2.5), we see that

‖∇Sn−1ϕ2‖L∞(Sn−1) ≤ Cλ
1
n−1‖∇Sn−1ϕ‖Ln(Sn−1)

as desired.

3 A Borderline Sobolev Embedding on the Real Hyperbolic Space H
n

We now turn to a corresponding result on the real hyperbolic space H
n. We will first give

a direct proof in this current section, in the spirit of the earlier proof of Theorem 1.1 by using
spherical averages. In the appendix, we give a less direct proof, using a variant of Theorem 1.1
on R

n.
First we need some notations. We will use the upper half space model for the hyperbolic

space. In other words, we take H
n to be

H
n = R

n
+ = {x = (x′, xn) ∈ R

n−1 × R : xn > 0},

and the metric on H
n to be

g :=
| dx|2
x2

n

.

We will use the following orthonormal frame of vector fields:

ei := xn
∂

∂xi
, i = 1, · · · , n

at every point of H
n. Note that if j �= n, then

∇enej = 0. (3.1)

(Here ∇ = ∇g is the Levi-Civita connection with respect to the hyperbolic metric g.) In fact,
since {e1, · · · , en} is an orthonormal basis, for any k = 1, · · · , n, we have

〈∇enej, ek〉g =
1
2
(〈[en, ej ], ek〉g − 〈[en, ek], ej〉g − 〈[ej , ek], en〉g)

=
1
2
(〈ej , ek〉g − 〈(1 − δkn)ek, ej〉g − 〈−δknej , en〉g) = 0.

Also, we have

∇enen = 0. (3.2)

This is because if j �= n, then

〈∇enen, ej〉g = −〈en,∇enej〉g = 0

by (3.1), and

〈∇enen, en〉g =
1
2
en(〈en, en〉g) = 0.
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To prove Theorem 1.2, note that we only need to consider the case n ≥ 2, since when n = 1,

‖φ‖L∞(H1) ≤
ˆ ∞

0

|∂yφ(y)|dy = ‖∇gφ‖L1(H1),

and (1.2) follows trivially. Hence from now on we assume n ≥ 2.
We will deduce Theorem 1.2 from the following proposition.

Proposition 3.1 Assume n ≥ 2. Let f , φ be as in Theorem 1.2. Write S for the copy of
(n− 1)-dimensional hyperbolic space inside H

n, given by

S = {x ∈ H
n : x1 = 0},

and X for the half-space
X = {x ∈ H

n : x1 > 0},
so that S is the boundary of X. Also write dV ′

g for the volume measure on S with respect to
the hyperbolic metric on S, and ν = e1 for the unit normal to S. Then∣∣∣ˆ

S

〈f, ν〉g〈φ, ν〉g dV ′
g

∣∣∣ ≤ C‖f‖ 1
n

L1(X)‖f‖
1− 1

n

L1(S)‖φ‖W 1,n(S). (3.3)

Here ‖φ‖W 1,n(S) = ‖φ‖Ln(S) + ‖∇gφ‖Ln(S), and all integrals on S on the right-hand side are
with respect to dV ′

g .

The S will be called a vertical hyperplane in H
n. It is a totally geodesic submanifold of H

n.
We will consider all hyperbolic hyperplanes in H

n, that is the image of S under all isometries
of H

n. The set of all such hypersurfaces in H
n will be denoted by S; it will consist of all

Euclidean parallel translates of S in the x′-direction, and all Euclidean northern hemispheres
whose centers lie on the plane {xn = 0}.

The proof of Proposition 3.1 in turn depends on the following two lemmas. The first one is
a simple lemma about integration by parts, which is the counterpart of Lemma 2.1.

Lemma 3.1 Assume n ≥ 2. Let f , S, X, ν be as in Proposition 3.1. Then for any
compactly supported smooth function ψ on H

n, we have
ˆ

S

〈f, ν〉gψ dV ′
g = −

ˆ
X

〈f,∇gψ〉g dVg.

The second one is a decomposition lemma for functions on S, which is the counterpart of
Lemma 2.2.

Lemma 3.2 Assume n ≥ 2. Let ϕ be a smooth function with compact support on S. For
any λ > 0, there exists a decomposition

ϕ = ϕ1 + ϕ2 on S,

and an extension ϕ̃2 of ϕ2 to H
n, such that ϕ̃2 is smooth with compact support on H

n, and

‖ϕ1‖L∞(S) ≤ Cλ
1
n ‖∇gϕ‖Ln(S)

with
‖∇gϕ̃2‖L∞(Hn) ≤ Cλ

1
n−1‖∇gϕ‖Ln(S).
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We postpone the proofs of Lemmas 3.1–3.2 to the end of this section.
Now we are ready for the proof of Proposition 3.1.

Proof of Proposition 3.1 Let f, φ be as in the statement of Theorem 1.2. Apply
Lemma 3.2 to ϕ = 〈φ, ν〉g , where λ > 0 is to be chosen. Then since

‖∇g〈φ, ν〉g‖Ln(S) ≤ C‖φ‖W 1,n(S),

(this follows since |ek〈φ, ν〉| = |〈∇ek
φ, ν〉 + 〈φ,∇ek

ν〉| ≤ |∇gφ|g + |φ|g for all k), there exists a
decomposition

〈φ, ν〉g = ϕ1 + ϕ2 on S,

and an extension ϕ̃2 of ϕ2 to H
n, such that ϕ̃2 ∈ C∞

c (Hn),

‖ϕ1‖L∞(S) ≤ Cλ
1
n ‖φ‖W 1,n(S)

and
‖∇gϕ̃2‖L∞(Hn) ≤ Cλ

1
n−1‖φ‖W 1,n(S).

Now ˆ
S

〈f, ν〉g〈φ, ν〉g dV ′
g =

ˆ
S

〈f, ν〉gϕ1 dV ′
g +

ˆ
S

〈f, ν〉gϕ2 dV ′
g

= I + II.

In the first term, we estimate trivially

|I| ≤ ‖f‖L1(S)‖ϕ1‖L∞(S) ≤ Cλ
1
n ‖f‖L1(S)‖φ‖W 1,n(S).

In the second term, we first integrate by parts using Lemma 3.1, with ψ = ϕ̃2, and obtain

II = −
ˆ

X

〈f,∇gϕ̃2〉g dVg,

so

|II| ≤ ‖f‖L1(X)‖∇gϕ̃2‖L∞(Hn)

≤ Cλ
1
n−1‖f‖L1(X)‖φ‖W 1,n(S).

Together, by choosing λ =
‖f‖L1(X)

‖f‖L1(S)
, we get

∣∣∣ ˆ
S

〈f, ν〉g〈φ, ν〉g dV ′
g

∣∣∣ ≤ C‖f‖ 1
n

L1(X)‖f‖
1− 1

n

L1(S)‖φ‖W 1,n(S)

as desired.

We now deduce Theorem 1.2 from Proposition 3.1. The idea is to average (3.3) over all
images of S under isometries in H

n (i.e., all hypersurfaces in the collection S).

Proof of Theorem 1.2 First, for each fixed x = (x′, xn) ∈ H
n, we have the following

analogue of the identity (2.2), used in the proof of Theorem 1.1:

〈f(x), φ(x)〉g = c

ˆ
Sn−1

〈f(x), xnω〉g〈φ(x), xnω〉g dσ(ω).
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Here we are identifying ω ∈ S
n−1 with the corresponding tangent vector to H

n based at the
point x. (Note then xnω has length 1 with respect to the metric g at x, so xnω belongs to
the unit sphere bundle at x.) Furthermore, since the above integrand is even in ω, we may
replace the integral over S

n−1 by the integral only over the northern hemisphere S
n−1
+ := {ω ∈

S
n−1 : ωn > 0}. Hence to estimate

´
Hn〈f(x), φ(x)〉g dVg, it suffices to estimate

ˆ
Rn

+

ˆ
S

n−1
+

〈f(x), xnω〉g〈φ(x), xnω〉g dσ(ω)
dx
xn

n

. (3.4)

We will compute this integral by making a suitable change of variables.
To do so, given x ∈ R

n
+ and ω ∈ S

n−1
+ , let S(x, ω) be the hyperbolic hypersurface in S passing

through x with normal vector ω at x. In other words, S(x, ω) would be a Euclidean hemisphere,
with center on the plane {xn = 0}; we denote the center of this Euclidean hemisphere by (z, 0),
where z = z(x, ω).

For each fixed x ∈ R
n
+, the map ω �→ z(x, ω) provides an invertible change of variables from

S
n−1
+ to R

n−1. Thus we are led to parametrize the integral in (3.4) by z instead of ω. In order
to do that, we observe that the vectors x − (z, 0) and ω are collinear. This implies that if
z = z(x, ω), then

ω =
x− (z, 0)
|x− (z, 0)| .

(Here |x − (z, 0)| is the Euclidean norm of x − (z, 0).) Write Φx(z) for the right-hand side of
the above equation. We view Φx as a map Φx : R

n−1 → S
n−1
+ ⊂ R

n, and compute the Jacobian
of the map. We have

(DΦx)t(z) =
1

|x− (z, 0)|
(
(−I, 0) +

(x′ − z) ⊗ (x − (z, 0))t

|x− (z, 0)|2
)
.

(Here we think of x, z as column vectors, and DΦx as an (n− 1) × n matrix.) Thus

(DΦx)tDΦx(z) =
1

|x− (z, 0)|2
(
I − (x′ − z) ⊗ (x′ − z)t

|x− (z, 0)|2
)
.

By computing the determinant in a basis that contains x′ − z, we get

JacΦx(z) =
√

det[(DΦx)tDΦx(z)]

=
1

|x− (z, 0)|n−1

√
1 − |x′ − z|2

|x− (z, 0)|2

=
xn

|x− (z, 0)|n .

By a change of variable ω = Φx(z), and using Fubini’s theorem, we see that (3.4) is equal to

ˆ
Rn−1

ˆ
Rn

+

〈f(x), xnΦx(z)〉g〈φ(x), xnΦx(z)〉g
|x− (z, 0)|n

dx
xn−1

n

dz. (3.5)

Now we fix z ∈ R
n−1, and compute the inner integral over x by integrating over successive

hemispheres of radius r centered at (z, 0). More precisely, let S(z, r) be the Euclidean northern
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hemisphere with center (z, 0) and of radius r > 0. Then S(z, r) ∈ S, and for any z ∈ R
n−1, we

have ˆ
Rn

+

〈f(x), xnΦx(z)〉g〈φ(x), xnΦx(z)〉g
|x− (z, 0)|n

dx
xn−1

n

=
ˆ ∞

0

ˆ
x∈S(z,r)

〈f(x), xnΦx(z)〉g〈φ(x), xnΦx(z)〉g dσ(x)
xn−1

n

dr
rn
,

where dσ(x) is the Euclidean surface measure on S(z, r). However, if x ∈ S(z, r), then xnΦx(z)
is precisely the upward unit normal to S(z, r) at x. Also, if dV ′

g is the induced surface measure
on S(z, r) from the hyperbolic metric on H

n, then

dV ′
g =

dσ(x)
xn−1

n r
;

indeed if we write ω = x−(z,0)
|x−(z,0)| , then at x ∈ S(z, r), we have

dV ′
g = ixnω dVg = ixnω

dx
xn

n

=
irω dx
xn−1

n r
=

dσ(x)
xn−1

n r
.

(Here i denotes the interior product of a vector with a differential form.) Hence the integral
(3.5) is just equal to

ˆ
Rn−1

ˆ ∞

0

ˆ
S(z,r)

〈f, ν〉g〈φ, ν〉g dV ′
g

dr
rn−1

dz. (3.6)

By Proposition 3.1 and its invariance under isometries of the hyperbolic space H
n, we have∣∣∣ˆ

S(z,r)

〈f, ν〉g〈φ, ν〉g dV ′
g

∣∣∣
≤ C‖f‖ 1

n

L1(Hn)

(ˆ
S(z,r)

|f |g dV ′
g

)1− 1
n
(ˆ

S(z,r)

(|∇gφ|ng + |φ|ng ) dV ′
g

) 1
n

.

Hence by Hölder’s inequality, (3.6) is bounded by

C‖f‖ 1
n

L1(Hn)

(ˆ
Rn−1

ˆ ∞

0

ˆ
S(z,r)

|f |g dV ′
g

dr
rn−1

dz
)1− 1

n

·
( ˆ

Rn−1

ˆ ∞

0

ˆ
S(z,r)

(|∇gφ|ng + |φ|ng ) dV ′
g

dr
rn−1

dz
) 1

n

.

But undoing our earlier changes of variable, we see that
ˆ

Rn−1

ˆ ∞

0

ˆ
S(z,r)

|f |g dV ′
g

dr
rn−1

dz

=
ˆ

Rn−1

ˆ ∞

0

ˆ
x∈S(z,r)

|f(x)|g dσ(x)
xn−1

n

dr
rn

dz

=
ˆ

Rn−1

ˆ
Rn

+

|f(x)|g
|x− (z, 0)|n

dx
xn−1

n

dz

=
ˆ

Rn
+

|f(x)|g
(ˆ

Rn−1

xn

|x− (z, 0)|n dz
) dx
xn

n

= C‖f‖L1(Hn).
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Similarly,ˆ
Rn−1

ˆ ∞

0

ˆ
S(z,r)

(|∇gφ|ng + |φ|ng ) dV ′
g

dr
rn−1

dz = C(‖∇gφ‖n
Ln(Hn) + ‖φ‖n

Ln(Hn)).

Altogether, (3.6) (and hence (3.4)) is bounded by

C‖f‖L1(Hn)(‖∇gφ‖Ln(Hn) + ‖φ‖Ln(Hn)).

This is almost what we want, except that on the right-hand side we have an additional
‖φ‖Ln(Hn). To fix this, one applies Lemma 3.3 below, with p = n, and the desired conclu-
sion of Theorem 1.2 follows.

Lemma 3.3 Assume n ≥ 2. For any compactly supported smooth vector field φ on H
n, and

any 1 ≤ p <∞, we have
‖φ‖Lp(Hn) ≤ C‖∇gφ‖Lp(Hn).

Proof In fact, for any function Φ ∈ C∞
c (Hn), and any exponent 1 ≤ p <∞, we have, from

Hardy’s inequality, that

‖Φ‖Lp(Hn) ≤ C‖enΦ‖Lp(Hn). (3.7)

This is because ˆ ∞

0

|Φ(x)|p dxn

xn
n

≤
( p

n− 1

)p
ˆ ∞

0

|enΦ|p(x) dxn

xn
n

by Hardy’s inequality. (3.7) then follows by integrating over all x′ ∈ R
n−1 with respect to dx′.

Now we apply (3.7) to Φ = 〈φ, ej〉, 1 ≤ j ≤ n− 1. In view of (3.1), we have

enΦ = 〈∇enφ, ej〉 + 〈φ,∇enej〉 = 〈∇enφ, ej〉,
so we get

‖〈φ, ej〉‖Lp(Hn) ≤ C‖∇gφ‖Lp(Hn).

Similarly, we can apply (3.7) to Φ = 〈φ, en〉, and use (3.2) in place of (3.1). Altogether, we see
that

‖φ‖Lp(Hn) ≤ C‖∇gφ‖Lp(Hn),

as desired.

We now turn to the proofs of Lemmas 3.1–3.2.

Proof of Lemma 3.1 Note that 〈f, ν〉gψ = 〈ψf, ν〉g, and ν is the inward unit normal to
∂X . Also dV ′

g agrees with the induced surface measure on S from H
n. So by the divergence

theorem on H
n, we have ˆ

S

〈f, ν〉gψ dV ′
g = −

ˆ
X

divg (ψf) dVg.

But since divg f = 0, we have

divg(ψf) = 〈f,∇gψ〉g + ψ divg f = 〈f,∇gψ〉g,
and the desired equality follows.

The proof of Lemma 3.2 will be easy, once we establish the following lemma.
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Lemma 3.4 Let ϕ be a smooth function with compact support on H
m, m ≥ 1. For any

p > m and λ > 0, there exists a decomposition

ϕ = ϕ1 + ϕ2 on H
m,

such that ϕ2 is smooth with compact support on H
m, and

‖ϕ1‖L∞(Hm) ≤ Cλ1−m
p ‖∇gϕ‖Lp(Hm)

with
‖∇gϕ2‖L∞(Hm) ≤ Cλ−

m
p ‖∇gϕ‖Lp(Hm).

We postpone the proof of this lemma to the end of this section.

Proof of Lemma 3.2 Suppose that ϕ and λ are as in Lemma 3.2. We identify S with
H

m, where m = n−1. (This is possible because the restriction of the metric of H
n to S induces

a metric on S that is isometric to that of H
m.) Using Lemma 3.4, with p = n, we obtain a

decomposition ϕ = ϕ1 + ϕ2 on S, such that

‖ϕ1‖L∞(S) ≤ Cλ
1
n ‖∇gϕ‖Ln(S)

with

‖∇gϕ2‖L∞(S) ≤ Cλ
1
n−1‖∇gϕ‖Ln(S). (3.8)

We then extend ϕ2 to H
n by setting for (x1, x

′′, xn) ∈ R × R
n−2 × R+,

ϕ̃2(x1, x
′′, xn) = ϕ2

(
0, x′′,

√
x2

1 + x2
n

)
.

One immediately checks that ϕ̃2 is smooth with compact support on H
n, with

‖∇gϕ̃2‖L∞(Hn) ≤ ‖∇gϕ2‖L∞(S).

In view of (3.8), we obtain the desired bound for ∇gϕ̃2.

It remains to prove Lemma 3.4.

Proof of Lemma 3.4 When m = 1, the 1-dimensional hyperbolic space H
1 is isometric to

R, and Lemma 3.4 follows from its counterpart on R (see, e.g., [9]). Alternatively, it will follow
from our treatment in the case m ≥ 2, 0 < λ < 1 below.

So assume from now on m ≥ 2. Suppose that ϕ is smooth with compact support on H
m,

p > m and λ > 0. We will construct our desired decomposition ϕ = ϕ1 + ϕ2. Recall that since
p > m, the Morrey inequality on H

m implies

‖ϕ‖L∞(Hm) ≤ C‖∇gϕ‖Lp(Hm). (3.9)

To see this, let ζ ∈ C∞
c (R) be a cut-off function, such that ζ(s) = 1 if |s| ≤ 1

2 , and ζ(s) = 0 if
|s| ≥ 1. Let x0 := (0, 1) ∈ H

m, and let ζx0(x) := ζ(d(x, x0)), where d is the hyperbolic distance
on H

m. Consider the localization ζx0ϕ of ϕ, to the unit ball centered at x0. It satisfies

‖ζx0ϕ‖W 1,p(Rm) ≤ C‖∇gϕ‖Lp(Hm), (3.10)
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where the left-hand side is a shorthand for

‖ζx0ϕ‖Lp(Rm) + ‖∇e(ζx0ϕ)‖Lp(Rm).

Here ∇e denotes the Euclidean gradient of a function. (3.10) holds because by the support of
ζx0 , we have

‖ζx0ϕ‖Lp(Rm) 
 ‖ζx0ϕ‖Lp(Hm) ≤ ‖∇gϕ‖Lp(Hm)

and

‖∇e(ζx0ϕ)‖Lp(Rm) ≤ ‖(∇eζx0)ϕ‖Lp(Rm) + ‖ζx0(∇eϕ)‖Lp(Rm)

≤ C(‖ϕ‖Lp(Hm) + ‖∇gϕ‖Lp(Hm))

≤ C‖∇gϕ‖Lp(Hm),

where we have used Lemma 3.3 in the last inequalities (note that Lemma 3.3 applies now, since
m ≥ 2). In particular, by Morrey’s inequality on R

m, from (3.10), we get

|ζx0(x)ϕ(x) − ζx0(y)ϕ(y)| ≤ C‖∇gϕ‖Lp(Hm)|x− y|1−m
p

for all x, y ∈ R
m. Taking x = x0 and y ∈ H

m such that d(y, x0) = 2, we get

|ϕ(x0)| ≤ C‖∇gϕ‖Lp(Hm).

Since the isometry group of H
m acts transitively on H

m, and since the right-hand side of the
above inequality is invariant under isometries, we obtain

|ϕ(x)| ≤ C‖∇gϕ‖Lp(Hm)

for all x ∈ H
m, and hence (3.9).

In particular, in view of (3.9), when λ ≥ 1, it suffices to take ϕ1 = ϕ and ϕ2 = 0. We then
get the desired estimates for ϕ1 and ϕ2 trivially.

On the other hand, suppose now 0 < λ < 1. We fix a compactly supported smooth function
η ∈ C∞

c (Rm), with ˆ
Rm

η(v) dv = 1.

For x = (x′, xm) ∈ H
m, we define

ϕ2(x) =
ˆ

Rm

ϕ(x′ + xmevmv′, xmevm)λ−mη(λ−1v) dv,

where we wrote v = (v′, vm) ∈ R
m−1 × R, and define

ϕ1(x) = ϕ(x) − ϕ2(x).

Note that ϕ2 is smooth with compact support on H
m, and hence so is ϕ1. Now for i =

1, 2, · · · ,m− 1, we have

(eiϕ2)(x, y) =
ˆ

Rm

e−vm(eiϕ)(x′ + xmu
′evm , xmevm)λ−mη(λ−1v) dv.
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Since v �→ η(λ−1v) has support uniformly bounded with respect to 0 < λ < 1, we have
e−vm ≤ C on the support of the integral, where C is independent of 0 < λ < 1. Hence by
Hölder’s inequality, we have

‖eiϕ2‖L∞(Hm)

≤ C
( ˆ

Rm

|eiϕ|p(x′ + xmevmv′, xmevm) dv
) 1

p ‖λ−mη(λ−1v)‖Lp′( dv)

= Cλ−
m
p

( ˆ
Rm

+

|eiϕ|p(z) dz
zm

m

) 1
p

,

the last line following from the changes of variables zm = evm , and then z′ = x′ + zmv
′. We

thus see that

‖eiϕ2‖L∞(Hm) ≤ Cλ−
m
p ‖eiϕ‖Lp(Hm),

as desired.
Furthermore, when i = m,

(emϕ2)(x) =
ˆ

Rm

[
(emϕ)(x′ + xmv

′evm , xmevm)

+
m−1∑
i=1

vi(eiϕ)(x′ + xmv
′evm , xmevm)

]
λ−mη(λ−1v) dv.

Using that |vi| ≤ C on the support of the integrals (uniformly in 0 < λ < 1), and Hölder’s
inequality as above, we see that

‖emϕ2‖L∞(Hm) ≤ Cλ−
m
p ‖∇gϕ‖Lp(Hm),

as desired.
Finally, to estimate ϕ1, note that

ϕ(x) = lim
λ→0+

ˆ
Rm

ϕ(x′ + xmevmv′, xmevm)λ−mη(λ−1v) dv.

Hence

ϕ1(x) = ϕ(x) − ϕ2(x)

= −
ˆ λ

0

ˆ
Rm

ϕ(x′ + xmevmv′, xmevm)
d
ds

[s−mη(s−1v)] dv ds.

But

− d
ds

[s−mη(s−1v)] =
m∑

i=1

∂

∂vi
[s−m(viη)(s−1v)],

so we can plug this back in the equation for ϕ1, and integrate by parts in v. Now

∂

∂vi
[ϕ(x′ + xmevmv′, xmevm)] = (eiϕ)(x′ + xmevmv′, xmevm), i = 1, · · · ,m− 1
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and
∂

∂vm
[ϕ(x′ + xmevmv′, xmevm)] = (emϕ)(x′ + xmevmv′, xmevm)

+
m−1∑
i=1

vi(eiϕ)(x′ + xmevmv′, xmevm).

Hence

ϕ1(x) = −
ˆ λ

0

m∑
i=1

ˆ
Rm

(eiϕ)(x′ + xmevmv′, xmevm)s−m(viη)(s−1v) dv ds

−
ˆ λ

0

m−1∑
i=1

ˆ
Rm

vi(eiϕ)(x′ + xmevmv′, xmevm)s−m(viη)(s−1v) dv ds.

When 0 < λ < 1, the integral in v in each term can now be estimated by Hölder’s inequality,
yielding

‖ϕ1‖L∞(Hn) ≤
ˆ λ

0

Cs−
m
p ‖∇gϕ‖Lp(Hm) ds

= Cλ1− m
p ‖∇gϕ‖Lp(Hm).

This completes the proof of Lemma 3.4.

Appendix A Indirect Proof of Theorem 1.2

We will give an alternative proof of Theorem 1.2 from the following variant of Theorem 1.1,
whose proof can be found, for instance, in [9] (it can also be deduced by a small modification
of the proof we gave above of Theorem 1.1).

Proposition A.1 (see [9]) Suppose that f is a smooth vector field on R
n (not necessarily

div f = 0). Then for any compactly supported smooth vector field φ on R
n, we have∣∣∣ˆ

Rn

〈f, φ〉
∣∣∣ ≤ C(‖f‖L1‖∇φ‖Ln + ‖ div f‖L1‖φ‖Ln), (A.1)

where 〈·, ·〉 is the pointwise Euclidean inner product of two vector fields in R
n.

To prove Theorem 1.2, we consider a function ζ ∈ C∞
c (R) and we define for α ∈ H

n the
function ζα : H

n → R by
ζα(x) = ζ(d(x, α)).

We assume that ˆ
Hn

ζ2
α(x) dVg(α) = 1.

Now given vector fields f and φ as in Theorem 1.2, we writeˆ
Hn

〈f, φ〉g dVg =
ˆ

Hn

ˆ
Hn

〈ζαf(x), ζαφ(x)〉g dVg(z) dVg(α).

If α = (0, 1) ∈ H
n, thenˆ

Hn

〈ζαf(x), ζαφ(x)〉g dVg =
ˆ

Rn
+

〈
ζαf,

ζαφ

xn+2
n

〉
e
dx,
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where 〈·, ·〉e is the Euclidean inner product of two vectors. Hence by Proposition A.1, this last
integral is bounded by

C
(
‖ζαf‖L1(Rn)

∥∥∥∇e

( ζαφ

xn+2
n

)∥∥∥
Ln(Rn)

+ ‖〈∇e(ζα), f〉e‖L1(Rn)

∥∥∥ ζαφ

xn+2
n

∥∥∥
Ln(Rn)

)
,

where we write ∇e to emphasize that the gradients are with respect to the Euclidean metric.
Now on the support of ζα, we have |xn| 
 1, so altogether, we get∣∣∣ˆ

Hn

〈ζαf, ζαφ〉g dVg

∣∣∣
≤ C(‖ζαf‖L1(Hn) + ‖〈∇g(ζα), f〉g‖L1(Hn))(‖∇gφ‖Ln(Hn) + ‖φ‖Ln(Hn)). (A.2)

This remains true even if α �= (0, 1), since there is an isometry mapping α to (0, 1), and since
(A.2) is invariant under isometries of H

n. By integrating with respect to α ∈ H
n, we see that∣∣∣ˆ

Hn

〈f, φ〉g dVg

∣∣∣ ≤ C‖f‖L1(Hn)(‖∇gφ‖Ln(Hn) + ‖φ‖Ln(Hn)).

We now use Lemma 3.3 to bound ‖φ‖Ln(Hn) by ‖∇gφ‖Ln(Hn). This concludes our alternative
proof of Theorem 1.2.
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