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Abstract The authors discuss the existence and uniqueness up to isometries of E
n of

immersions φ : Ω ⊂ R
n → E

n with prescribed metric tensor field (gij) : Ω → S
n
>, and

discuss the continuity of the mapping (gij) → φ defined in this fashion with respect to
various topologies. In particular, the case where the function spaces have little regularity is
considered. How, in some cases, the continuity of the mapping (gij) → φ can be obtained
by means of nonlinear Korn inequalities is shown.
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1 Introduction

Throughout this paper, n designates an integer ≥ 2. Then En denotes the n-dimensional real
Euclidean space; Mn denotes the space of all real matrices of order n; Sn denotes the subspace
of all symmetric matrices in Mn; Sn

> denotes the subset of all positive-definite matrices in Sn;
On denotes the subset of all orthogonal matrices in Mn; and On

+ := {P ∈ On; detP = 1}. The
Euclidean inner product in En is denoted by ·, and the Euclidean norm in En and the Frobenius
norm in Mn are both denoted by | · |.

In all that follows, Latin indices and exponents range in the set {1, · · · , n} (save when oth-
erwise indicated, as for instance when they are used for indexing sequences) and the summation
convention with respect to repeated indices and exponents are used. A generic point in an open
set Ω ⊂ Rn is denoted by x = (xi), and partial derivatives of the first and second order, in the
classical or distributional sense, are denoted by ∂i := ∂

∂xi
and ∂ij := ∂2

∂xi∂xj
, respectively.

If φ : Ω → En is a sufficiently smooth immersion from an open subset Ω ⊂ Rn into En, then
the positive-definite symmetric tensor field (gij) : Ω → Sn

> defined by

gij := ∂iφ · ∂jφ in Ω
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is a Riemannian metric in Ω, called the metric tensor field induced by the immersion φ, and
the functions gij : Ω → E are called its covariant components.

The first objective of this paper is to review what can be said about the converse property:
If (gij) : Ω → Sn

> is a sufficiently smooth field of positive-definite symmetric matrices of order
n defined over an open set Ω ⊂ Rn, then does there exist an immersion φ : Ω → En such that

∂iφ · ∂jφ = gij in Ω ?

If the answer is yes, is such an immersion unique?
We will provide successive answers to these questions, for matrix fields (gij) : Ω → Sn

> with
components in the spaces (in this order)

C2(Ω), C2(Ω), C1(Ω), C1(Ω), W 1,p
loc (Ω) with p > n and W 1,p(Ω) with p > n

(see the first theorem in Sections 2–7). In each case, the answer relies on the following two
simple, yet crucial, observations.

Assume that there exists a sufficiently smooth immersion φ : Ω → En such that

∂iφ · ∂jφ = gij in Ω.

By definition of an immersion, the vector fields

gi := ∂iφ

are thus linearly independent at each x ∈ Ω. Hence there exist functions Γk
ij : Ω → R such that

∂igj = Γk
ijgk in Ω. (1.1)

The first observation is that the relations ∂iφ · ∂jφ = gij imply (after a series of straight-
forward computations) that the components Γk

ij are of the form

Γk
ij = Γk

ji = gk�Γij� in Ω,

where
(gk�) := (gij)−1 and Γij� :=

1
2
(∂igj� + ∂jgi� − ∂�gij).

The functions Γij� (resp. Γk
ij) are the Christoffel symbols of the first kind (resp. of the second

kind) associated with matrix field (gij).
The vector fields gi thus satisfy a Pfaff system of linear partial differential equations (the

equations (1.1) above), whose coefficients Γk
ij depend only on the matrix field (gij).

The second observation is that the relations ∂ijφ = ∂igj = Γk
ijgk imply that

0 = ∂j(∂ikφ) − ∂k(∂ijφ) = ∂j(Γ�
ikg�) − ∂k(Γ�

ijg�)

= (∂jΓ�
ik − ∂kΓ�

ij + Γq
ikΓ�

jq − Γq
ijΓ

�
kq)g� in Ω,

which in turn implies that (since the vector fields g� are linearly independent)

R�
·ijk := ∂jΓ�

ik − ∂kΓ�
ij + Γq

ikΓ�
jq − Γq

ijΓ
�
kq = 0 in Ω,
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or equivalently,

Rqijk := g�qR
�
·ijk = ∂jΓikq − ∂kΓijq + g�r(Γij�Γkqr − Γik�Γjqr) = 0 in Ω.

The functions Rqijk (resp. R�
·ijk) are the covariant components (resp. mixed components) of

the Riemann curvature tensor field associated with the matrix field (gij). The compatibility
conditions Rqijk = 0 in Ω are thus necessary for the existence of the immersion φ : Ω → En

such that ∂iφ · ∂jφ = gij in Ω.
We will then show that, under the crucial assumption that the open set Ω is simply-connected

(additional conditions may be imposed in some cases on the boundary of Ω), the compatibility
conditions

Rqijk = 0 in Ω,

possibly interpreted in the sense of distributions if need be, become also sufficient for the
existence of immersions φ : Ω → En satisfying

∂iφ · ∂jφ = gij in Ω,

and that such immersions φ are only defined up to composition by isometries of En (such
isometries are defined in Section 2) (see Theorems 2.1, 3.1, 4.1, 5.1, 6.1 and 7.1).

The second objective of this paper is to provide a natural complement to these existence and
uniqueness theorems of immersions φ : Ω → E

n with prescribed metric tensor fields (gij) : Ω →
Sn

>, i.e., to establish continuity theorems, showing that the immersion φ depends continuously
on their metric tensor fields (gij) with respect to specific topologies (see Theorems 2.2, 3.3, 4.2,
5.3 and 7.2).

In fact, if the metric tensors fields (gij) have components in one of the spaces C2(Ω), C1(Ω),
W 1,p(Ω), or Lq(Ω), these continuity theorems will be established as consequences of specific
nonlinear Korn inequalities (see Theorems 3.2, 5.2, 6.2 and 8.1). More specifically, we will show
that, given any immersion φ0 ∈ Ck+1(Ω; En), k = 1, 2, there exist two constants C = C(φ0) > 0
and δ = δ(φ0) > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖Ck+1(Ω;En) ≤ C‖(g̃ij) − (gij)‖Ck(Ω;Sn),

(the set Isom(En) is defined in Section 2) for all immersions φ ∈ Ck+1(Ω; En) and φ̃ ∈
Ck+1(Ω; En) that satisfy

‖(gij) − (g0
ij)‖Ck(Ω;Sn) < δ and ‖(g̃ij) − (g0

ij)‖Ck(Ω;Sn) < δ,

where
g0

ij := ∂iφ
0 · ∂jφ

0, gij := ∂iφ · ∂jφ and g̃ij := ∂iφ̃ · ∂jφ̃.

We will also show that, given any immersion φ0 ∈ W 2,p(Ω; En), p > n, there exist two
constants C = C(φ0) > 0 and δ = δ(φ0) > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖W 2,p(Ω;En) ≤ C‖(g̃ij) − (gij)‖W 1,p(Ω;Sn)

for all immersions φ ∈ W 2,p(Ω; En) and φ̃ ∈ W 2,p(Ω; En) that satisfy

‖(gij) − (g0
ij)‖W 1,p(Ω;Sn) < δ and ‖(g̃ij) − (g0

ij)‖W 1,p(Ω;Sn) < δ.
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Finally, we will show that, given any immersion φ ∈ C1(Ω; En) satisfying det∇φ > 0 in Ω,
any 1 ≤ q < ∞ and any 1 < p < ∞ such that q ≤ p ≤ 2q, there exists a constant C > 0 such
that, for all immersions φ̃ ∈ W 1,2q(Ω; En) that satisfy det∇φ̃ > 0 almost everywhere in Ω, we
have

inf
r∈Isom+(En)

‖r ◦ φ̃− φ‖W 1,p(Ω; En) ≤ C‖(g̃ij) − (gij)‖
q
p

Lq(Ω; Sn)

(the set Isom+(En) is defined in Section 8).

2 The Classical Case: Metric Tensor Fields in C2(Ω)

We begin with the classical case, where the matrix field (gij) : Ω → Sn
> has components

gij ∈ C2(Ω). Note that this is the minimal regularity assumption that ensures that all the
partial derivatives appearing in the proof of the existence and uniqueness theorem below are
classical ones.

An isometry of En is a mapping r : En → En of class C1 that preserves the Euclidean metric
of En, i.e., a mapping that satisfies

∂ir · ∂jr = δij in E
n,

where δij denotes the Kronecker symbol. It is well known that r is an isometry of En if and
only if there exists a vector a ∈ En and an orthogonal matrix R ∈ On such that

r(x) = a+R x for all x ∈ E
n,

and that the set of all isometries of En, henceforth denoted by

Isom(En) := {r : E
n → E

n; r(x) = a+R x for all x ∈ E
n,a ∈ E

n, R ∈ O
n},

is a smooth finite-dimensional manifold, since On is a smooth manifold of dimension n(n−1)
2

(see, e.g., [1]).
Given a smooth enough mapping φ : Ω → En and a point x ∈ Ω, the notation ∇φ(x)

designates the n × n matrix whose j-th column vector is the vector gj(x) := ∂jφ(x).
The next theorem is classical (see, e.g., [15, 4]; for a detailed and self-contained proof, see

[6] or [5, Theorems 8.6-1, 8.7-1]).

Theorem 2.1 Let Ω be a simply-connected open set in Rn, and let (gij) ∈ C2(Ω; Sn
>) be a

matrix field whose Riemann curvature tensor field vanishes in Ω, i.e.,

∂jΓik� − ∂kΓij� + grq(ΓijrΓk�q − ΓikrΓj�q) = 0 in Ω,

where
Γijk :=

1
2
(∂jgik + ∂igjk − ∂kgij) and (grq) := (gij)−1.

Then there exists an immersion φ ∈ C3(Ω; En) such that

∂iφ · ∂jφ = gij in Ω.

In addition, an immersion ψ ∈ C3(Ω; En) satisfies

∂iψ · ∂jψ = gij in Ω
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if and only if there exists an isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.

Sketch of the Proof As already mentioned, the proof relies of the observation that, if an
immersion φ ∈ C3(Ω; En) satisfies

∂iφ · ∂jφ = gij in Ω,

then the n vector fields
gj := ∂jφ ∈ C2(Ω; En)

satisfy the Pfaff system of partial differential equations

∂igj = Γk
ijgk in Ω,

where
Γk

ij := gk�Γij� =
1
2
gk�(∂jgi� + ∂igj� − ∂�gij) ∈ C1(Ω).

Thus the idea of the proof of existence of a solution is to construct explicitly an immersion φ
by using these equations “in reverse order”. In other words, the proof consists first in showing
that there exist n vector fields gj ∈ C2(Ω; En) that satisfy the Pfaff system

∂igj = Γk
ijgk in Ω, (2.1)

second in showing that there exists a mapping φ ∈ C3(Ω; En) that satisfies the Poincaré system

∂jφ = gj in Ω, (2.2)

and third in showing that the mapping φ obtained in this fashion is an immersion and satisfies
the equations

∂iφ · ∂jφ = gij in Ω. (2.3)

(i) That the Pfaff system (2.1) possesses solutions is proved as follows. Pick any point x0

in Ω and any n vectors g0
j ∈ En that satisfy

g0
i · g0

j = gij(x0)

(it is easy to see that such vectors exist).
Next, given any point x ∈ Ω, let γ = (γi) ∈ C1([0, 1]; En) be a mapping that satisfies

γ(0) = x0, γ(1) = x, and γ(t) ∈ Ω for all t ∈ [0, 1] (the image of [0, 1] under the mapping γ is
thus a curve contained in Ω that joins the points x0 and x) and, for each j, let f j ∈ C1([0, 1]; En)
be the unique solution to the system of ordinary differential equations

df j

dt
(t) =

dγi

dt
(t)Γk

ij(γ(t))fk(t), t ∈ [0, 1],

f j(0) = g0
j .

The assumptions that Ω is simply-connected and that the matrix field (gij) satisfies the
equations

∂jΓik� − ∂kΓij� + grq(ΓijrΓk�q − ΓikrΓj�q) = 0 in Ω
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together imply that the value of f j at t = 1 is independent of the choice of the path γ joining
x0 to x (the regularity assumption gij ∈ C2(Ω) is needed here), so that the n vector fields
gj : Ω → En given by

gj(x) := f j(1)

are unambiguously defined. Then one proves that these vector fields belong to the space
C2(Ω; En), that they satisfy the system (2.1), and that

gi · gj = gij in Ω.

(ii) That the Poincaré system (2.2) possesses solutions is proved in a similar fashion.
More specifically, let x0 be any point in Ω and let f0 be any vector in En. Given any point

x ∈ Ω, let γ = (γi) ∈ C3([0, 1]; En) be any mapping that satisfies γ(0) = x0, γ(1) = x, and
γ(t) ∈ Ω for all t ∈ [0, 1], and let f ∈ C1([0, 1]; En) be the unique solution to the system of
ordinary differential equations

df
dt

(t) =
dγj

dt
(t)gj(γ(t)), t ∈ [0, 1],

f(0) = f0.

The assumptions that Ω is simply-connected and the relations

∂igj = Γk
ijgk = Γk

jigk = ∂jgi in Ω

(that Γk
ij = Γk

ji is a simple consequence of the definition of Γk
ij (see the introduction)), together

imply that the value of f at t = 1 is independent of the choice of the path γ joining x0 to x,
so that the mapping φ : Ω → En given by

φ(x) := f(1)

is unambiguously defined. Then one proves that this mapping belongs to the space C3(Ω; En)
and satisfies the Poincaré system (2.2).

(iii) That the mapping φ ∈ C3(Ω; En) is an immersion that satisfies ∂iφ · ∂jφ = gij is a
simple consequence of its definition, since

∂iφ · ∂jφ = gi · gj = gij in Ω,

which in turn implies that

(det ∇φ)2 = det(∇φT∇φ) = det(gi · gj) = det(gij) > 0 in Ω.

(iv) Finally, in order to prove that such a mapping is unique up to isometries of En, let
φ ∈ C3(Ω; En) and ψ ∈ C3(Ω; En) be two immersions that satisfy

∂iφ · ∂jφ = gij and ∂iψ · ∂jψ = gij in Ω,

respectively. At each point x ∈ Ω, let C
1
2 (x) ∈ Sn

> denote the square root of the matrix
C(x) := (gij(x)) ∈ Sn

>, let C− 1
2 (x) := (C

1
2 (x))−1, and let

P := (∇φ)C− 1
2 , Q := (∇ψ)C− 1

2 in Ω.
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Then P ∈ C2(Ω; On), Q ∈ C2(Ω; On), and

∇φ = PC
1
2 , ∇ψ = QC

1
2 in Ω.

Given any point x ∈ Ω, there exists a connected open set Ux ⊂ Ω containing x such that
the restriction φ|Ux ∈ C3(Ux; En) is injective, since φ ∈ C3(Ω; En) is an immersion. Let U ⊂ Ω
denote any connected and open subset such that φ|U ∈ C3(U ; En) is injective, let Û := φ(U),
and let r := ψ ◦ (φ|U )−1. Then Û is a connected open subset of En, r ∈ C3(Û ; En), and

(∇r) ◦ φ = ∇ψ(∇φ)−1 = QPT in U.

This relation implies that
∇rT∇r = I in Û ,

which means that r is the restriction to Û of an isometry of En.
It thus follows that, given any x ∈ Ω, there exists a connected open set Ux ⊂ Ω containing

x and an isometry rx ∈ Isom(En) such that

ψ = rx ◦ φ in Ux.

This relation implies that rx = ry whenever Ux ∩Uy �= Ø. Combined with the assumption that
Ω is in particular connected (as a simply-connected set), this implies that there exists a unique
isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.

As a complement to Theorem 2.1, we now show that, up to an isometry of En, an immersion
φ ∈ C3(Ω; En) depends continuously on its metric tensor field (gij) ∈ C2(Ω; Sn) when both
spaces are equipped with their respective Fréchet topologies.

More specifically, recall that a sequence (fm)∞m=1 of functions fm ∈ Ck(Ω), k ∈ N, converges
to f ∈ Ck(Ω) with respect to the Fréchet topology of Ck(Ω) if, for each compact subset K ⊂ Ω,

lim
m→∞ ‖fm − f‖Ck(K) = 0

and, if this is the case, we write

fm → f in Ck(Ω) as m → ∞.

Such notions can then be clearly extended to the spaces Ck(Ω; En) and Ck(Ω; Sn), k ∈ N.

Theorem 2.2 Let Ω be a connected and open subset of Rn, and let

φm ∈ C3(Ω; En), m ≥ 1 and φ ∈ C3(Ω; En)

be immersions that satisfy

(gm
ij ) → (gij) in C2(Ω; Sn) as m → ∞,

where
gm

ij := ∂iφ
m · ∂jφ

m ∈ C2(Ω), m ≥ 1 and gij := ∂iφ · ∂jφ ∈ C2(Ω),
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respectively denote the covariant components of the metric tensor fields induced by the immer-
sions φm, m ≥ 1 and φ.

Then there exist isometries rm ∈ Isom(En), m ≥ 1, such that

rm ◦ φm → φ in C3(Ω; En) as m → ∞.

Sketch of the Proof The details of the proof below can be found in [7]. An argument
similar to that used in the proof of the uniqueness part of Theorem 2.1 shows that it suffices to
prove Theorem 2.2 in the particular case where φ = id , where id denotes the identity mapping
of the set Ω. So let a sequence of immersions

φm ∈ C3(Ω; En), m ≥ 1,

be given that satisfies

gm
ij := ∂iφ

m · ∂jφ
m → δij in C2(Ω) as m → ∞.

For each m ≥ 1, let (gk�,m(x)) denote the inverse of the matrix (gm
ij (x)), x ∈ Ω, let

Γk,m
ij :=

1
2
gk�,m(∂ig

m
j� + ∂jg

m
i� − ∂�g

m
ij ) ∈ C1(Ω)

denote the Christoffel symbols of the second kind associated with the matrix field (gm
ij ), and let

gm
i := ∂iφ

m ∈ C2(Ω; En).

The definition of the Christoffel symbols Γk,m
ij implies on the one hand that

Γk,m
ij → 0 in C1(Ω) as m → ∞.

On the other hand,

|gm
i |2 := gm

i · gm
i = gm

ii → 1 in C2(Ω) as m → ∞ (no summation).

Combined with the relations (see the proof of Theorem 2.1)

∂ig
m
j = Γk,m

ij gm
k in C1(Ω; En),

the above convergences imply that

∂ijφ
m = ∂ig

m
j → 0 in C1(Ω; En).

Let x0 be a point in Ω, and, for each m ≥ 1, let

Rm := ∇φm(x0)(gm
ij (x0))−

1
2 ,

where (gm
ij (x0))−

1
2 denotes the inverse of the square root of the matrix (gij(x0)) ∈ Sn

>. Note
that the matrix Rm is orthogonal since gm

ij (x0) := ∂iφ
m(x0) · ∂jφ

m(x0).
Let the functions rm : En → En and ψm : Ω → En be defined by

rm(x) = x0 + (Rm)T(x − φm(x0)) for all x ∈ E
n
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and
ψm := rm ◦ φm,

respectively. Then rm ∈ Isom(En), ψm ∈ C3(Ω; En) and

ψm(x0) = x0, ∇ψm(x0) = (gm
ij (x0))

1
2 , ∂ijψ

m = (Rm)T∂ijφ
m.

Therefore,

ψm(x0) → id(x0) in E
n,

∇ψm(x0) → ∇id(x0) in M
n,

∂ijψ
m → ∂ij id in C1(Ω; En)

as m → ∞, which in turn implies that

ψm → id in C3(Ω; En) as m → ∞.

3 Metric Tensor Fields in C2(Ω)

A domain in Rn is a bounded and connected open subset of Rn whose boundary is Lipschitz-
continuous, the set Ω being locally on one side of its boundary (see [19, 2]).

The space Ck(Ω), where Ω denotes an open subset of Rn and k ∈ N, is defined as the
space of all functions f ∈ Ck(Ω) that, together with all their derivatives up to order k, possess
continuous extensions to the closure Ω of Ω. In the particular case where Ω is a domain, we
have

Ck(Ω) := {f |Ω; f ∈ Ck(Rn)}
(see [20, 8]). The space Ck(Ω) is equipped with the norm defined by

‖f‖Ck(Ω) = max
|α|≤k

sup
x∈Ω

|∂αf(x)|,

where ∂α is the usual multi-index notation for partial derivatives operators.
We establish in this section results similar to those in the previous section, but now for

matrix fields (gij) with components gij ∈ C2(Ω), instead of gij ∈ C2(Ω). While no boundedness
or regularity assumption on the boundary of Ω was needed in the previous section, here we
assume that Ω is a domain.

Theorem 3.1 Let Ω be a simply-connected domain in Rn, and let (gij) ∈ C2(Ω; Sn
>) be a

matrix field whose Riemann curvature tensor field vanishes in Ω, i.e.,

∂jΓik� − ∂kΓij� + grq(ΓijrΓk�q − ΓikrΓj�q) = 0 in Ω,

where
Γij� :=

1
2
(∂jgi� + ∂igj� − ∂�gij) and (grq) := (gij)−1.

Then there exists an immersion φ ∈ C3(Ω; En) such that

∂iφ · ∂jφ = gij in Ω.
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In addition, an immersion ψ ∈ C3(Ω; En) satisfies

∂iψ · ∂jψ = gij in Ω

if and only if there exists an isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.

Sketch of the Proof The details of the proof below can be found in [8]. By Theorem 2.1,
there exists an immersion φ ∈ C3(Ω; En) such that

∂iφ · ∂jφ = gij in Ω.

It remains to prove that φ, together with its partial derivatives up to order three, possess
continuous extensions to Ω.

The first step is to prove that each vector field gi := ∂iφ ∈ C2(Ω; En), together with
its partial derivatives up to order two, possess continuous extensions to Ω. Let B ⊂ Rn be
any open ball such that ω := B ∩ Ω �= Ø, let x and y be any two points in the set ω, let
γ = (γi) ∈ C1([0, 1]; ω) be any mapping that satisfies γ(0) = x and γ(1) = y, and let

f i := gi ◦ γ ∈ C1([0, 1]; En).

Since the vector fields gi satisfy the Pfaff system

∂igj = Γk
ijgk in Ω, (3.1)

where

Γk
ij :=

1
2
gk�(∂jgi� + ∂igj� − ∂�gij) ∈ C1(Ω) and (gk�) := (gij)−1 ∈ C2(Ω; Sn

>),

the vector fields f i satisfy the system of ordinary differential equations

df j

dt
(t) =

dγi

dt
(t)Γk

ij(γ(t))fk(t), t ∈ [0, 1].

Since Γk
ij ∈ C1(Ω) and |gi|2 = gi ·gi = gii ∈ C2(Ω) (no summation), and since ω is a compact

subset of Ω, there exists a constant C1 = C1(ω) such that

sup
x∈ω

|Γk
ij(x)| ≤ C1 and max

1≤i≤n
sup
x∈ω

|gi(x)| ≤ C1.

We then infer from the inspection of the above system of ordinary differential equations that
there exists a constant C2 = C2(ω) such that

|gi(y) − gi(x)| = |f i(1) − f i(0)| ≤ C2

∫ 1

0

∣∣∣dγ
dt

(t)
∣∣∣ dt.

The assumption that the boundary of Ω is Lipschitz continuous implies that the mapping
γ can be chosen in such a way that the right-hand side of the above inequality is bounded by a
constant times the diameter of the ball B. This implies that the vector fields gi are uniformy
continuous in Ω, hence that they can be extended by continuity up to the boundary of Ω. Since



Recovery of Immersions from Their Metric Tensors and Nonlinear Korn Inequalities: A Brief Survey 263

in addition the vector fields gi satisfy the Pfaff system (3.1), whose coefficients Γk
ij belong to

C1(Ω), these extensions of gi belong in fact to the space C2(Ω; En).
The second step consists in showing that the mapping φ ∈ C3(Ω; En), together with its

partial derivatives up to order three, possesses continuous extensions to Ω. This is done as in
the first step, but this time using the Poincaré system

∂iφ = gi in Ω

satisfied by φ, instead of the Pfaff system (3.1) satisfied by gi.
Finally, the uniqueness part of the theorem is a simple consequence of the uniqueness part

of Theorem 2.1.

Note that, as shown in [8], the assumption that Ω is a domain in Theorem 3.1, as well as
in Theorem 3.2 below, can be replaced by the weaker, but a bit too technical to be reproduced
here, assumption that Ω is connected and satisfies the “geodesic property”.

The next theorem establishes a nonlinear Korn inequality in C3(Ω), which implies in par-
ticular (see Theorem 3.3) that, up to an isometry of En, an immersion φ ∈ C3(Ω; En) depends
continuously on its metric tensor field (gij) ∈ C2(Ω; Sn

>).

Theorem 3.2 Let Ω be a domain in Rn, and let φ0 ∈ C3(Ω; En) be an immersion. Then
there exist two constants C = C(φ0) > 0 and δ = δ(φ0) > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖C3(Ω;En) ≤ C‖(g̃ij) − (gij)‖C2(Ω;Sn)

for all immersions φ ∈ C3(Ω; En) and φ̃ ∈ C3(Ω; En) that satisfy

‖(gij) − (g0
ij)‖C2(Ω;Sn) < δ and ‖(g̃ij) − (g0

ij)‖C2(Ω;Sn) < δ,

where
g0

ij := ∂iφ
0 · ∂jφ

0, gij := ∂iφ · ∂jφ and g̃ij := ∂iφ̃ · ∂jφ̃

denote the covariant components of the metric tensor fields induced by the immersions φ0, φ,
and φ̃, respectively.

Sketch of the Proof The details of the proof below can be found in [8].
To begin with, one proves that the mappings

A ∈ S
n
> → A

1
2 ∈ S

n
>

and
(aij) ∈ C2(Ω; Sn

>) → 1
2
ak�(∂iaj� + ∂jai� − ∂�aij) ∈ C1(Ω),

where the functions ak� ∈ C2(Ω) are defined at each point x ∈ Ω by (ak�(x)) := (aij(x))−1, are
of class C∞.

Let x0 ∈ Ω. Using that the above mappings are in particular of class C1, one proves that
there exists two constants δ = δ(φ0) > 0 and D1 = D1(φ0) > 0 such that, for all immersions
φ ∈ C3(Ω; En) and φ̃ ∈ C3(Ω; En) that satisfies

‖(gij) − (g0
ij)‖C2(Ω;Sn) < δ and ‖(g̃ij) − (g0

ij)‖C2(Ω;Sn) < δ,
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where g0
ij := ∂iφ

0 · ∂jφ
0 ∈ C2(Ω), gij := ∂iφ · ∂jφ ∈ C2(Ω) and g̃ij := ∂iφ̃ · ∂jφ̃ ∈ C2(Ω), then

|(g̃ij(x0))
1
2 − (gij(x0))

1
2 | ≤ D1‖(g̃ij) − (gij)‖C2(Ω;Sn) (3.2)

and ∑
i,j,k

‖Γ̃k
ij − Γk

ij‖C1(Ω) ≤ D1‖(g̃ij) − (gij)‖C2(Ω;Sn), (3.3)

where

Γk
ij :=

1
2
gk�(∂igj� + ∂jgi� − ∂�gij) with (gk�) = (gij)−1,

Γ̃k
ij :=

1
2
g̃k�(∂ig̃j� + ∂j g̃i� − ∂�g̃ij) with (g̃k�) = (g̃ij)−1.

Next, define an isometry r ∈ Isom(En) by letting

r(x) := φ(x0) +RR̃
T
(x − φ̃(x0)) for all x ∈ E

n,

where
R := ∇φ(x0)(gij(x0))−

1
2 and R̃ := ∇φ̃(x0)(g̃ij(x0))−

1
2 .

Note that the matrices R and R̃ are orthogonal, since

∂iφ(x0) · ∂jφ(x0) = gij(x0) and ∂iφ̃(x0) · ∂jφ̃(x0) = g̃ij(x0).

Let
ψ := r ◦ φ̃ ∈ C3(Ω; En),

and define the vector fields

gi := ∂iφ ∈ C2(Ω; En) and hi := ∂iψ ∈ C2(Ω; En).

Then, thanks to the definition of the isometry r,

ψ(x0) = φ(x0) and ∇ψ(x0) = ∇φ(x0)(gij(x0))−
1
2 (g̃ij(x0))

1
2 .

Noting that the mapping ψ − φ ∈ C3(Ω; En) satisfies the Poincaré system

∂i(ψ − φ) = hi − gi in Ω,

(ψ − φ)(x0) = 0,

one deduces (as in the proof of Theorem 3.1, by integrating along paths γ ∈ C1([0, 1]; Ω) joining
x0 to a generic point x ∈ Ω) that

‖ψ − φ‖C3(Ω;En) ≤ D2

n∑
i=1

‖hi − gi‖C2(Ω;En), (3.4)

where the constant D2 depends only on Ω.
Since the isometries φ and ψ satisfy

∂iφ · ∂jφ = gij in Ω and ∂iψ · ∂jψ = ∂iφ̃ · ∂jφ̃ = g̃ij in Ω,
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the vector fields gi and hi satisfy the Pffaf systems (see the proof of Theorem 2.1)

∂igj = Γk
ijgk in Ω and ∂ihj = Γ̃k

ijhk in Ω,

respectively. Hence

∂i(hj − gj) = Γ̃k
ij(hk − gk) + (Γ̃k

ij − Γk
ij)gk in Ω,

which, combined with the estimate (3.3), yields (again by integrating along paths γ ∈ C1([0, 1];
Ω) joining x0 to a generic point x ∈ Ω, but this time using in addition Gronwall’s inequality):

n∑
i=1

‖hi − gi‖C2(Ω;En) ≤ D3

( n∑
i=1

|(hi − gi)(x0)| +
∑
i,j,k

‖Γ̃k
ij − Γk

ij‖C1(Ω)

)
, (3.5)

where the constant D3 depends on Ω and φ0.
Finally, since the vectors (hi − gi)(x0) ∈ E

n are the column vectors of the matrix

∇(ψ − φ)(x0) = ∇φ(x0)(gij(x0))−
1
2 ((g̃ij(x0))

1
2 − (gij(x0))

1
2 ) ∈ M

n,

it follows that
n∑

i=1

|(hi − gi)(x0)| ≤ D4|(g̃ij(x0))
1
2 − (gij(x0))

1
2 |, (3.6)

where the constant D4 depends only on φ0.
Combining inequalities (3.2) to (3.6) yields the announced nonlinear Korn inequality.

An immediate consequence of the nonlinear Korn inequality of Theorem 3.2 is the following
convergence result, similar to that of Theorem 2.2.

Theorem 3.3 Let Ω be a domain in Rn, and let

φm ∈ C3(Ω; En), m ≥ 1 and φ ∈ C3(Ω; En)

be immersions that satisfy

(gm
ij ) → (gij) in C2(Ω; Sn) as m → ∞,

where
gij := ∂iφ · ∂jφ and gm

ij := ∂iφ
m · ∂jφ

m, m ≥ 1.

Then there exist isometries rm ∈ Isom(En), m ≥ 1, such that

rm ◦ φm → φ in C3(Ω; En) as m → ∞.

4 Metric Tensor Fields in C1(Ω)

Beginning with this section, we consider regularity assumptions that are weaker than those
classically made, like in Section 2, for establishing the existence and uniqueness of an immersion
with prescribed metric tensor field.

To begin with, we show that the theorems established in Section 2 still hold for matrix fields
with coefficients gij ∈ C1(Ω), instead of gij ∈ C2(Ω). The notation D(Ω) designates the space
of infinitely differentiable functions with compact support in Ω.
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Theorem 4.1 Let Ω be a simply-connected open set in Rn, and let (gij) ∈ C1(Ω; Sn
>) be a

matrix field whose Riemann curvature tensor field vanishes in the sense of distributions, i.e.,∫
Ω

(
Γij�∂kϕ − Γik�∂jϕ + grq(ΓijrΓk�q − ΓikrΓj�q)ϕ

)
dx = 0 for all ϕ ∈ D(Ω),

where
Γij� :=

1
2
(∂jgi� + ∂igj� − ∂�gij) and (grq) := (gij)−1.

Then there exists an immersion φ ∈ C2(Ω; En) such that

∂iφ · ∂jφ = gij in Ω.

In addition, an immersion ψ ∈ C2(Ω; En) satisfies

∂iψ · ∂jψ = gij in Ω

if and only if there exists an isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.

Sketch of the Proof The details of the proof sketched below can be found in [16]. Like
in the proof of Theorem 2.1, we first show that there exist n vector fields gj ∈ C1(Ω; En) that
satisfy the Pfaff system

∂igj = Γk
ijgk in Ω, where Γk

ij := gk�Γij�, (4.1)

we then prove that there exists a mapping φ ∈ C2(Ω; En) that satisfies the Poincaré system

∂jφ = gj in Ω, (4.2)

and finally, we prove that the mapping φ obtained in this fashion is an immersion and satisfies
the equations

∂iφ · ∂jφ = gij in Ω. (4.3)

The difference, however, is that we now have to prove the existence of a solution to the Pfaff
system (4.1) under the weaker assumption that (gij) ∈ C1(Ω; Sn

>). As a result, the coefficients

Γij� :=
1
2
(∂jgi� + ∂igj� − ∂�gij)

are only continuous in Ω, and they satisfy the relations

∂jΓik� − ∂kΓij� + grq(ΓijrΓk�q − ΓikrΓj�q) = 0 (4.4)

only in the distributional sense (while in Theorem 2.1 the relations (4.4) were satisfied in the
classical sense, i.e., pointwise). The rest of the proof, which consists in showing that the Poincaré
system (4.2) has a solution φ ∈ C2(Ω; En) and that this solution satisfies the relations (4.3),
uses the same arguments as those used in the proof of Theorem 2.1 (save for the regularity
assumptions), so we do not discuss this issue here.
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We only briefly sketch the proof of the existence of a solution to the Pfaff system (4.1) under
the assumptions that (gij) ∈ C1(Ω; Sn

>) and that the functions Γij� ∈ C0(Ω) satisfy (4.4) in the
distributional sense.

First, one shows that, given any cube ω ⊂ Ω whose edges are parallel to the coordinate axes
of Rn and any n vectors vi ∈ En, there exist n vector fields gω

j ∈ C1(Ω; En) that satisfy the
Pfaff system

∂ig
ω
j = Γk

ijg
ω
k in ω, (4.5)

gω
j (xω) = vj , (4.6)

where xω = (xω
i ) denotes the center of the cube ω.

The vector fields gj are defined at each x ∈ ω by integrating the above system along a
broken line joining xω to x, the edges of which are parallel to the coordinate axes of Rn. More
specifically, let ε denote the half-length of the edge of the cube ω, let ω1 := (xω

1 − ε, xω
1 + ε),

let ω2 := (xω
1 − ε, xω

1 + ε) × (xω
2 − ε, xω

2 + ε), etc., so that ω = ωn. Then, using relations (4.4),
one shows that there exist n vector fields h1

j ∈ C1(ω1; En) such that

∂1h
1
j = Γk

1j(·, xω
2 , · · · , xω

n)h1
k in ω1,

h1
j(x

ω
1 ) = vj ,

then that there exist n vector fields h2
j ∈ C1(ω2; En) such that

∂ih
2
j = Γk

ij(·, xω
3 , · · · , xω

n)h2
k in ω2, i ∈ {1, 2},

h2
j(x

ω
1 , xω

2 ) = vj ,

and finally, after n steps, that there exist n vector fields hn
j ∈ C1(ωn; En) such that

∂ih
n
j = Γk

ijh
n
k in ωn,

hn
j (xω) = vj .

The vector fields gω
j := hn

j then satisfy the Pfaff system (4.5).
Second, one shows that the vector fields vi used in the previous step to define the vector

fields gω
i can be chosen in such a way that

vi · vj = gij(xω),

then that

gω
i · gω

j = gij in ω. (4.7)

The last implication is established by showing that the Pfaff system

∂�hij = Γk
i�hjk + Γk

j�hik in ω,

hij(xω) = gij(xω)

has at most one solution (hij) ∈ C1(ω; Sn) and that both matrix fields (gω
i · gω

j ) ∈ C1(ω; Sn)
and (gij) ∈ C1(ω; Sn) satisfy the above Pfaff system.
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Third, one shows that, if ω ⊂ Ω and ω̃ ⊂ Ω are two cubes such that ω ∩ ω̃ �= Ø, if
gi ∈ C1(ω; En) and g̃i ∈ C1(ω̃; En) are vector fields that satisfy respectively the Pfaff systems

∂igj = Γk
ijgk in ω and ∂ig̃j = Γk

ij g̃k in ω̃,

and if there exists a point x0 ∈ ω ∩ ω̃ such that

gi(x0) = g̃i(x0),

then
gi = g̃i in ω ∩ ω̃.

To this end, it suffices to observe that ω ∩ ω̃ is connected, and that, for each point x ∈ ω ∩ ω̃

and for each mapping γ = (γi) ∈ C1([0, 1]; ω ∩ ω̃) such that γ(0) = x0 and γ(1) = x, the vector
fields

gi ◦ γ ∈ C1([0, 1]; En) and g̃i ◦ γ ∈ C1([0, 1]; En)

satisfy the same Cauchy problem.
Finally, a solution to the Pfaff system (4.1) is constructed by “glueing together” the solutions

of the Pfaff systems (4.5). This is possible thanks to the simple-connectedness of Ω and to the
uniqueness result proved in the the third step above.

The proof that the immersion φ ∈ C2(Ω; En) obtained in this fashion is unique up to
isometries in En is analogous to the part (iv) in the proof of Theorem 2.1 (it suffices to replace
the spaces Ck(Ω; En) by the spaces Ck−1(Ω; En) at each one of their occurrences). This concludes
the proof of Theorem 4.1.

The next theorem is a natural complement to Theorem 4.1, which shows that the immersion
φ is a continuous function of the matrix field (gij) for some ad hoc Fréchet topologies (the
definition of a Fréchet topology is recalled in Section 2).

Theorem 4.2 Let Ω be a connected open subset of Rn, and let

φm ∈ C2(Ω; En), m ≥ 1 and φ ∈ C2(Ω; En)

be immersions that satisfy

(gm
ij ) → (gij) in C1(Ω; Sn) as m → ∞,

where
gij := ∂iφ · ∂jφ ∈ C1(Ω) and gm

ij := ∂iφ
m · ∂jφ

m ∈ C1(Ω), m ≥ 1.

Then there exist isometries rm ∈ Isom(En), m ≥ 1, such that

rm ◦ φm → φ in C2(Ω; En) as m → ∞.

Proof It suffices to replace in the proof of Theorem 2.2 the spaces Ck(Ω), k = 1, 2, 3, by
Ck−1(Ω), at each one of their occurrences. More specifically, one first shows that it suffices to
consider the particular case where φ = id , so that the immersions

φm ∈ C2(Ω; En), m ≥ 1
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satisfy
gm

ij := ∂iφ
m · ∂jφ

m → δij in C1(Ω) as m → ∞.

Then (the notations used here are the same as in the proof of Theorem 2.2)

Γk,m
ij → 0 in C0(Ω) as m → ∞

and
|gm

i |2 = gm
ii → 1 in C1(Ω) as m → ∞ (no summation).

Since the vector fields gm
i := ∂iφ

m ∈ C1(Ω; En) satisfy the Pfaff systems

∂ig
m
j = Γk,m

ij gm
k in C0(Ω; En),

the above convergences imply that

∂ijφ
m = ∂ig

m
j → 0 in C0(Ω; En).

Let x0 be a point in Ω, let

Rm := ∇φm(x0)(gm
ij (x0))−

1
2 ∈ O

n,

let rm ∈ Isom(En) be defined by

rm(x) := x0 + (Rm)T(x − φm(x0)) for all x ∈ E
n,

and let the mapping ψm ∈ C2(Ω; En) be defined by

ψm := rm ◦ φm.

Then

ψm(x0) = id(x0) in E
n for each m ≥ 1,

∇ψm(x0) → ∇id(x0) in M
n as m → ∞,

∂ijψ
m → ∂ij id in C0(Ω; En) as m → ∞,

which in turn implies that

ψm → id in C2(Ω; En) as m → ∞.

5 Metric Tensor Fields in C1(Ω)

In this section, we show that the theorems established in Section 3 still hold for matrix fields
with coefficients gij ∈ C1(Ω), instead of gij ∈ C2(Ω). As in Theorem 3.1, the assumption that Ω
is a domain can be replaced in theorem below by the weaker assumption that Ω is a connected
open subset of Rn that satisfies the “geodesic property”.

Theorem 5.1 Let Ω be a simply-connected domain in Rn, and let (gij) ∈ C1(Ω; Sn
>) be a

matrix field whose Riemann curvature tensor field vanishes in the sense of distributions, i.e.,∫
Ω

(
Γij�∂kϕ − Γik�∂jϕ + grq(ΓijrΓk�q − ΓikrΓj�q)ϕ

)
dx = 0 for all ϕ ∈ D(Ω),
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where
Γij� :=

1
2
(∂jgi� + ∂igj� − ∂�gij) and (grq) := (gij)−1.

Then there exists an immersion φ ∈ C2(Ω; En) such that

∂iφ · ∂jφ = gij in Ω.

In addition, an immersion ψ ∈ C2(Ω; En) satisfies

∂iψ · ∂jψ = gij in Ω

if and only if there exists an isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.

Proof Theorem 5.1 is deduced from Theorem 4.1 in the same way that Theorem 3.1
was deduced from Theorem 2.1; in other words, Theorem 5.1 is proved by showing that any
immersion φ ∈ C2(Ω; En) that satisfies

∂iφ · ∂jφ = gij in Ω

(the existence of such an immersion is guaranteed by Theorem 4.1), as well as all of its partial
derivatives up to order two, possess continuous extensions to Ω. To see that this is indeed the
case, it suffices to replace in the proof of Theorem 3.1 the spaces Ck(Ω) by the spaces Ck−1(Ω)
at each one of their occurrences.

The next theorem establishes a nonlinear Korn inequality in C2(Ω), similar to the nonlinear
Korn inequality in C3(Ω) established in Theorem 3.2. This inequality implies in particular (see
Theorem 5.3) that, up to an isometry of E

n, an immersion φ ∈ C2(Ω; En) depends continuously
on its metric tensor field (gij) ∈ C1(Ω; Sn

>). As in Theorem 3.2, the assumption that Ω is a
domain can be replaced in Theorem 5.2 by the weaker assumption that Ω is a connected open
subset of Rn that satisfies the “geodesic property”.

Theorem 5.2 Let Ω be a domain in Rn, and let φ0 ∈ C2(Ω; En) be an immersion. Then
there exist two constants C = C(φ0) > 0 and δ = δ(φ0) > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖C2(Ω;En) ≤ C‖(g̃ij) − (gij)‖C1(Ω;Sn)

for all immersions φ ∈ C2(Ω; En) and φ̃ ∈ C2(Ω; En) that satisfy

‖(gij) − (g0
ij)‖C1(Ω;Sn) < δ and ‖(g̃ij) − (g0

ij)‖C1(Ω;Sn) < δ,

respectively, where

g0
ij := ∂iφ

0 · ∂jφ
0, gij := ∂iφ · ∂jφ and g̃ij := ∂iφ̃ · ∂jφ̃

denote the covariant components of the metric tensor fields induced by the immersions φ0, φ,
and φ̃, respectively.
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Proof It suffices to replace in the proof of Theorem 3.2 the spaces Ck(Ω) by the spaces
Ck−1(Ω) at each one of their occurrences.

An immediate consequence of the nonlinear Korn inequality of Theorem 5.2 is the following
convergence result, similar to that of Theorem 3.3.

Theorem 5.3 Let Ω be a domain in Rn, and let

φm ∈ C2(Ω; En), m ≥ 1 and φ ∈ C2(Ω; En)

be immersions that satisfy

(gm
ij ) → (gij) in C1(Ω; Sn) as m → ∞,

where

gij := ∂iφ · ∂jφ and gm
ij := ∂iφ

m · ∂jφ
m, m ≥ 1.

Then there exist isometries rm ∈ Isom(En), m ≥ 1, such that

rm ◦ φm → φ in C2(Ω; En) as m → ∞.

6 Metric Tensor Fields in W 1,p(Ω), p > n

Given an open subset Ω of Rn and 1 < p < ∞, let

Lp(Ω; En) := {(fi) : Ω → E
n; fi ∈ Lp(Ω)},

Wm,p(Ω; En) := {(fi) : Ω → E
n; fi ∈ Wm,p(Ω)},

Lp(Ω; Mn) := {(gij) : Ω → M
n; gij ∈ Lp(Ω)},

W 1,p(Ω; Mn) := {(gij) : Ω → M
n; gij ∈ W 1,p(Ω)},

where Lp(Ω) and Wm,p(Ω), m = 1, 2, designate the usual Lebesgue and Sobolev spaces. These
spaces are respectively equipped with the norms

‖f‖Lp(Ω) :=
(∫

Ω

|f(x)|pdx
) 1

p

for all f ∈ Lp(Ω; En),

‖f‖W 1,p(Ω) :=
(
‖f‖p

Lp(Ω) + ‖∇f‖p
Lp(Ω)

) 1
p

for all f ∈ W 1,p(Ω; En),

‖f‖W 2,p(Ω) :=
(
‖f‖p

W 1,p(Ω)
+

∑
i,j

‖∂ijf‖p
Lp(Ω)

) 1
p

for all f ∈ W 2,p(Ω; En),

‖C‖Lp(Ω) :=
(∫

Ω

|C(x)|pdx
) 1

p

for all C ∈ Lp(Ω; Mn),

‖C‖W1,p(Ω) :=
(
‖C‖p

Lp(Ω)dx +
∑

i

‖∂iC‖p
Lp(Ω)

) 1
p

for all C ∈ W 1,p(Ω; Mn).

It is well known that, if Ω is a domain in Rn and if p > n, then the inclusion

W 1,p(Ω) ⊂ C0(Ω)
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holds and there exists a constant C0 (which depends on Ω and p) such that

sup
x∈Ω

|f(x)| ≤ C0‖f‖W 1,p(Ω) for all f ∈ W 1,p(Ω).

As is customary, a function f ∈ W 1,p(Ω), i.e., in effect an equivalence class, is identified in this
case with its continuous representative.

It is also well known that, again if Ω is a domain in Rn and p > n, the space W 1,p(Ω) is a
Banach algebra, in the sense that the product of two functions in W 1,p(Ω) is still in W 1,p(Ω)
and there exists a constant C1 (which depends on p) such that

‖fg‖W 1,p(Ω) ≤ C1‖f‖W 1,p(Ω)‖g‖W 1,p(Ω) for all f, g ∈ W 1,p(Ω)

(particularly neat proofs of such results for domains with smooth boundaries are found in [3]).
Up to now, the metric fields (gij) : Ω → Sn

> (resp. (gij) : Ω → Sn
>) were assumed to

be at least of class C1 on Ω (resp. on Ω). We now consider the situation where the metric
fields (gij) : Ω → Sn

> are in the space W 1,p(Ω; Sn) for some p > n and Ω is a domain in Rn.
It is remarkable that, under such a weak regularity assumption, an existence and uniqueness
theorem analogous to the previous ones still holds as follows.

Theorem 6.1 Let Ω be a simply-connected domain in Rn, let p > n, and let (gij) ∈
W 1,p(Ω; Sn

>) be a matrix field whose Riemann curvature tensor field vanishes in the sense of
distributions, i.e.,∫

Ω

(Γij�∂kϕ − Γik�∂jϕ + grq(ΓijrΓk�q − ΓikrΓj�q)ϕ)dx = 0 for all ϕ ∈ D(Ω),

where

Γij� :=
1
2
(∂jgi� + ∂igj� − ∂�gij) ∈ Lp(Ω) and (grq) := (gij)−1 ∈ W 1,p(Ω; Sn

>).

Then there exists an immersion φ ∈ W 2,p(Ω; En) such that

∂iφ · ∂jφ = gij in Ω.

In addition, an immersion ψ ∈ W 2,p(Ω; En) satisfies

∂iψ · ∂jψ = gij in Ω

if and only if there exists an isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.

Idea of the Proof First, notice that the assumption that (gij(x)) ∈ Sn
> at each x ∈ Ω

together with the inclusion W 1,p(Ω) ⊂ C0(Ω) implies that inf
x∈Ω

det(gij(x)) > 0. This property,

combined with the property that W 1,p(Ω) is an algebra in turn implies that grq ∈ W 1,p(Ω) ⊂
C0(Ω). Hence products like grqΓijrΓk�q are well defined in the space L

p
2 (Ω) (which is contained

in the space L1(Ω) since p > n ≥ 2).
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The existence proof follows the same pattern as before, i.e., it consists in first finding vector
fields gj ∈ W 1,p(Ω; En) that satisfy the Pfaff system

∂igj = Γk
ijgk in Ω, where Γk

ij := gk�Γij� ∈ Lp(Ω), (6.1)

then in finding an immersion φ ∈ W 2,p(Ω; En) that satisfies the Poincaré system

∂jφ = gj in Ω. (6.2)

Otherwise the proof is much more delicate and technical than those of the previous existence
theorems. It combines a key existence theorem for Pfaff systems “with coefficients in Lp” (see
[17, Theorem 6.8]), with an approach due to Mardare (see [18, Theorem 4.1]) for solving the
above Pfaff and Poincaré systems, which relies in particular on a careful “glueing” of local
solutions.

The next theorem, which is due to [11] (see also [12]), establishes a nonlinear Korn inequality
in W 2,p(Ω), with the same function spaces for the metric tensors and for the immersions as in
the above existence theorem. Note, however, that the existence of the immersions is assumed
here.

Theorem 6.2 Let Ω be a domain in Rn, and let p > n. Given any ε > 0, define the set

Φε :=
{
φ ∈ W 2,p(Ω; En); det(gij) ≥ ε in Ω and ‖(gij)‖W1,p(Ω) ≤ 1

ε

}
,

where gij := ∂iφ · ∂jφ. Then there exists a constant Cε > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖W 2,p(Ω) ≤ Cε‖(g̃ij) − (gij)‖W1,p(Ω) for all φ, φ̃ ∈ Φε,

where g̃ij := ∂iφ̃ · ∂jφ̃.

Idea of the Proof Pick any point x0 ∈ Ω. Then one shows that, given any φ, φ̃ ∈ Φε,
the matrix Q0 := ∇φ(x0)(gij(x0))−

1
2 (g̃ij(x0))

1
2 (∇φ̃(x0))−1 is orthogonal and the vector fields

gi := ∂iφ ∈ W 1,p(Ω; En) and g̃�
i := ∂i(Q0φ̃) ∈ W 1,p(Ω; En)

satisfy the Pfaff systems{
∂igj = Γk

ijgk a.e. in Ω,
gi(x0) = ∂iφ(x0),

{
∂ig̃

�
j = Γ̃k

ij g̃
�
k a.e. in Ω,

g̃�
i(x0) = Q0∂iφ̃(x0),

where
Γk

ij := gk�(∂jgi� + ∂igj� − ∂�gij) and Γ̃k
ij := g̃k�(∂j g̃i� + ∂ig̃j� − ∂�g̃ij).

The rest of the proof relies on a series of careful estimates, which eventually allow to use a
key comparison theorem between the solutions of Pfaff systems “with coefficients in Lp” (see
[17, Theorem 4.1]).

Note that the assumption that Ω is a domain can be replaced in Theorem 6.2 by the weaker
assumption that Ω is a bounded and connected open subset of Rn that satisfies the “uniform
interior cone property” (see [2]).

As in [11] (see also [12]), one can then establish the following local Lipschitz-continuity
result as a corollary to the nonlinear Korn inequality of Theorem 6.2.
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Theorem 6.3 Let Ω be a domain in Rn, let p > n, and let φ0 ∈ W 2,p(Ω; En) be an
immersion. Then there exist constants δ = δ(φ0) > 0 and C = C(φ0) > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖W 2,p(Ω) ≤ C‖(g̃ij) − (gij)‖W1,p(Ω)

for all φ ∈ W 2,p(Ω; En) and all φ̃ ∈ W 2,p(Ω; En) that satisfy

‖(gij) − (g0
ij)‖W1,p(Ω) < δ and ‖(g̃ij) − (g0

ij)‖W1,p(Ω) < δ,

where

g0
ij := ∂iφ

0 · ∂jφ
0, gij := ∂iφ · ∂jφ and g̃ij := ∂iφ̃ · ∂jφ̃.

7 Metric Tensor Fields in W 1,p
loc (Ω), p > n

The existence and uniqueness theorems and the nonlinear Korn inequalities of Sections 3 and
5 have been extended in Section 6 from continuously-differentiable immersions in the closure of
a domain to immersions in Sobolev spaces.

In this section, we show that the existence and uniqueness theorems and the continuity the-
orems of Sections 2 and 4 can be likewise extended from continuously-differentiable immersions
in an open set to immersions that belong locally to Sobolev spaces. Note that, by contrast with
Section 6, no regularity assumptions on the boundary of Ω are needed in this section.

To begin with, we show that the existence and uniqueness theorems established in Sections
2 and 6 still hold for matrix fields with coefficients gij ∈ W 1,p

loc (Ω), p > n, instead of gij ∈ Ck(Ω),
k = 1, 2. Recall that a function f : Ω → E belongs to the space W 1,p

loc (Ω), p > n, if, for each
point x0 in Ω, there exists an open ball B ⊂ Ω containing x0 such that f |B ∈ W 1,p(B).

Theorem 7.1 Let Ω be a simply-connected open set in Rn, let p > n, and let (gij) ∈
W 1,p

loc (Ω; Sn
>) be a matrix field whose Riemann curvature tensor field vanishes in the sense of

distributions, i.e.,∫
Ω

(Γij�∂kϕ − Γik�∂jϕ + grq(ΓijrΓk�q − ΓikrΓj�q)ϕ)dx = 0 for all ϕ ∈ D(Ω),

where

Γij� :=
1
2
(∂jgi� + ∂igj� − ∂�gij) and (grq) := (gij)−1.

Then there exists an immersion φ ∈ W 2,p
loc (Ω; En) such that

∂iφ · ∂jφ = gij in Ω.

In addition, an immersion ψ ∈ W 2,p
loc (Ω; En) satisfies

∂iψ · ∂jψ = gij in Ω

if and only if there exists an isometry r ∈ Isom(En) such that

ψ = r ◦ φ in Ω.
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Proof Pick any point x0 in Ω. Given any point x ∈ Ω, let γ ∈ C1([0, 1]; Ω) be any mapping
that satisfies γ(0) = x0 and γ(1) = x (such a mapping exists since Ω is connected). Let ε > 0
denote the half-distance from the compact set γ([0, 1]) to the boundary of Ω, let N be the
smallest integer that is >

(
1
ε

)
sup

t∈[0,1]

∣∣dγ
dt (t)

∣∣, and, for each m = 0, 1, · · · , N , let tm := m
N and let

Bm denote the open ball in Rn centered at xm := γ(tm) with radius ε. Then x = xN and

Bm ⊂ Ω for all 0 ≤ m ≤ N,

xm ∈ Bm−1 for all 1 ≤ m ≤ N.

Since Bm is a simply-connected domain in Rn, since (gij |Bm) ∈ W 1,p(Bm; Sn
>), and since

the relations∫
Ω

(
Γij�∂kϕ − Γik�∂jϕ + grq(ΓijrΓk�q − ΓikrΓj�q)ϕ

)
dx = 0 for all ϕ ∈ D(Ω)

imply in particular that the Riemann curvature tensor field of the matrix field (gij |Bm) vanishes
in the sense of distributions on Bm, Theorem 6.1 implies that there exists an immersion φm ∈
W 2,p(Bm; En) such that

∂iφm · ∂jφm = gij in Bm.

Let the immersions

ψm := rm ◦ φm : Bm → E
n, m = 0, 1, · · · , N,

be defined for m = 0 by

r0(x) := R0(x − φ0(x0)) for all x ∈ E
n,

where
R0 := (gij(x0))−

1
2 (∇φ0(x0))T ∈ O

n,

and, for m = 1, 2, · · · , N by

rm(x) := ψm−1(xm) +Rm(x − φm(xm)) for all x ∈ E
n,

where
Rm := ∇ψm−1(xm)(gij(xm))−1(∇φm(xm))T ∈ O

n.

The above definition of the immersions ψm ∈ W 2,p(Bm; En) implies that

∂iψm · ∂jψm = gij in Bm, m = 0, 1, · · · , N,

and that

ψm(xm) = ψm−1(xm) and ∇ψm(xm) = ∇ψm−1(xm), m = 1, 2 · · · , N.

Then the simple connectedness of Ω and the uniqueness part of Theorem 6.1 imply that the point
ψN (x) ∈ E

n only depends on the matrix field (gij) and on x0 (in particular, it is independent
of the path γ joining x0 to x). It follows that the mapping φ : Ω → En, where

φ(x) := ψN (x) ∈ E
n for all x ∈ Ω,
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is unambiguously defined, that

φ|BN = ψN ∈ W 2,p(BN ; Sn
>),

and that
∂iφ · ∂jφ = gij in Ω.

The proof of the uniqueness part of the theorem is similar to the proof of the uniqueness
part of Theorem 2.1, where it suffices to replace the spaces Ck by W k−1,p

loc at each one of their
occurrences.

We now show that the convergence theorems established in Sections 2 and 4 still hold for
immersions in W 1,p

loc (Ω; En), p > n, instead of immersions in Ck(Ω), k = 2, 3.
Recall that a sequence (fm)∞m=1 of functions fm ∈ W k,p

loc (Ω), k = 1, 2, p > n, converges to
f ∈ W k,p

loc (Ω) with respect to the Fréchet topology of W k,p
loc (Ω) if and only if

lim
m→∞ ‖fm − f‖W k,p(B) = 0

for each open ball B in R
n such that B ⊂ Ω. If this is the case, we write

fm → f in W k,p
loc (Ω) as m → ∞.

Such notions can then be clearly extended to the spaces W k,p
loc (Ω; En) and W k,p

loc (Ω; Sn).

Theorem 7.2 Let Ω be a connected open subset of Rn, let p > n, and let

φm ∈ W 2,p
loc (Ω; En), m ≥ 1 and φ ∈ W 2,p

loc (Ω; En)

be immersions that satisfy

(gm
ij ) → (gij) in W 1,p

loc (Ω; Sn) as m → ∞,

where

gij := ∂iφ · ∂jφ ∈ W 1,p
loc (Ω) and gm

ij := ∂iφ
m · ∂jφ

m ∈ W 1,p
loc (Ω), m ≥ 1.

Then there exist isometries rm ∈ Isom(En), m ≥ 1, such that

rm ◦ φm → φ in W 2,p
loc (Ω; En) as m → ∞.

Proof Pick any point x0 in Ω. For each m ≥ 1, let

Rm := ∇φ(x0)(gij(x0))−
1
2 (gm

ij (x0))−
1
2 (∇φm(x0))T ∈ O

n,

let rm ∈ Isom(En) be defined by

rm(x) := φ(x0) +Rm(x − φm(x0)) for all x ∈ E
n,

and let
ψm := rm ◦ φm ∈ W 2,p

loc (Ω; En).
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Note that the immersions ψm satisfy in particular the relations

ψm(x0) = φ(x0) for all m ≥ 1,

∇ψm(x0) → ∇φ(x0) in M
n as m → ∞.

(7.1)

Let B be any open ball in Rn such that B ⊂ Ω. Since the open set Ω is connected, there
exists a domain ω in Rn such that x0 ∈ ω, B ⊂ ω, and ω ⊂ Ω.

On the one hand, the assumptions of the theorem imply that φ|ω ∈ W 2,p(ω; En), φm|ω ∈
W 2,p(ω; En), m ≥ 1, and

(gm
ij |ω) → (gij |ω) in W 1,p(ω; Sn) as m → ∞.

On the other hand, Theorem 6.3 implies that there exist constants δ = δ(φ|ω) > 0 and
C = C(φ|ω) > 0 such that

inf
r∈Isom(En)

‖r ◦ φ̃− φ‖W 2,p(ω) ≤ C‖(g̃ij) − (gij)‖W1,p(ω)

for all φ̃ ∈ W 2,p(ω; En) that satisfy

‖(g̃ij) − (gij)‖W1,p(ω) < δ.

The two properties above imply that there exist isometries rm
ω ∈ Isom(En) such that the

immersions ψm
ω := rm

ω ◦ φm ∈ W 2,p
loc (Ω; En) satisfy

‖ψm
ω − φ‖W 2,p(ω) → 0 as m → ∞. (7.2)

Note that the immersions ψm
ω satisfy in particular the relations

ψm
ω (x0) → φ(x0) as m → ∞,

∇ψm
ω (x0) → ∇φ(x0) as m → ∞.

(7.3)

The immersions ψm and ψm
ω defined above are related by

ψm = ρm
ω ◦ψm

ω in Ω,

where ρm
ω := rm ◦ (rm

ω )−1 ∈ Isom(En). Since ρm
ω are isometries of En, there exist am

ω ∈ En and
Qm

ω ∈ On such that
ρm

ω (x) = am
ω +Qm

ω x for all x ∈ E
n.

Noting that the matrix ∇φ(x0) is invertible and using relations (7.1) and (7.3), we easily infer
that

am
ω → 0 and Qm

ω → I as m → ∞.

That
ψm → φ in W 2,p

loc (Ω; En) as m → ∞,

then follows by using these convergences and the convergence (7.2) in the right-hand side of the
following inequality:

‖ψm − φ‖W 2,p(ω) ≤ ‖(ρm
ω − id) ◦ψm

ω ‖W 2,p(ω) + ‖ψm
ω − φ‖W 2,p(ω)

≤ ‖am
ω ‖Lp(ω) + |Qm

ω − I|‖ψm
ω ‖W 2,p(ω) + ‖ψm

ω − φ‖W 2,p(ω).
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8 Metric Tensor Fields in Lq(Ω), 1 ≤ q < ∞
In the previous sections, we considered immersions φ : Ω → E

n defined over a connected
open subset Ω of Rn and whose gradient field ∇φ is at least continuous in Ω. Hence det∇φ is
either > 0, or < 0, in Ω.

In this section, we consider immersions φ : Ω → En whose gradient field ∇φ is only in
Lp(Ω; Mn), which only means that det∇φ �= 0 almost everywhere in Ω, so that det∇φ may
change sign in Ω. This is why we will assume that all the immersions φ : Ω → En considered
in this section preserve the orientation, in the sense that they satisfy det∇φ > 0 almost
everywhere in Ω. This assumption naturally leads to using “proper” isometries of En in this
section (instead of isometries of E

n as in the previous sections), according to the following
definition.

A proper isometry of En is an isometry of En that preserves the orientation of En. In other
words, a proper isometry of En is an element of the set

Isom+(En) := {r : E
n → E

n; r(x) = a+R x for all x ∈ E
n,a ∈ E

n, R ∈ O
n
>}.

The next theorem establishes a nonlinear Korn inequality in W 1,p(Ω) similar to those of
Theorems 3.2, 5.2, or 6.2, but again with respect to Lebesgue and Sobolev norms like in the
nonlinear Korn inequality in W 2,p(Ω) of Theorem 6.2.

Theorem 8.1 Let Ω be a domain in Rn, and let φ ∈ C1(Ω; En) be an immersion that
satisfies det∇φ > 0 in Ω.

Then, given any 1 ≤ q < ∞ and any 1 < p < ∞ such that q ≤ p ≤ 2q, there exists a constant
C = C(p, q,φ) > 0 such that, for all mappings φ̃ ∈ W 1,2q(Ω; En) that satisfy det∇φ̃ > 0 almost
everywhere in Ω,

inf
r∈Isom+(En)

‖r ◦ φ̃− φ‖W 1,p(Ω) ≤ C‖(g̃ij) − (gij)‖
q
p

Lq(Ω),

where

gij := ∂iφ · ∂jφ ∈ C0(Ω) and g̃ij := ∂iφ̃ · ∂jφ̃ ∈ Lq(Ω)

denote the covariant components of the metric tensor fields induced by the immersions φ and
φ̃, respectively.

Sketch of the Proof The details of the proof below can be found in [9] (see also [10]).
(i) The Poincaré-Wirtinger inequality implies that there exists a constant D such that, for

all vector fields f ∈ W 1,p(Ω; En),

inf
a∈En

‖f + a‖Lp(Ω) ≤ D‖∇f‖Lp(Ω).

Therefore, for each R ∈ On
+ and each φ̃ ∈ W 1,p(Ω; En),

inf
a∈En

‖a+Rφ̃− φ‖p
W 1,p(Ω)

= inf
a∈En

‖a+Rφ̃− φ‖p
Lp(Ω) + ‖∇(Rφ̃− φ)‖p

Lp(Ω)

≤ (Dp + 1)‖∇(Rφ̃− φ)‖p
Lp(Ω),
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which next implies that

inf
r∈Isom+(En)

‖r ◦ φ̃− φ‖W 1,p(Ω) = inf
R∈On

+

inf
a∈En

‖a+Rφ̃− φ‖W 1,p(Ω)

≤ (1 + Dp)
1
p inf

R∈On
+

‖∇(Rφ̃− φ)‖Lp(Ω).

Thus it suffices to prove that there exists a constant C1 = C1(p, q,φ) such that

inf
R∈On

+

‖∇φ̃−R∇φ‖Lp(Ω) ≤ C1‖(g̃ij) − (gij)‖
q
p

Lq(Ω).

(ii) The polar factorization theorem for invertible matrices implies that the matrix fields
∇φ ∈ C0(Ω; Mn) and ∇φ̃ ∈ L2q(Ω; Mn) can be written as

∇φ = P (∇φT∇φ)
1
2 = P (gij)

1
2 in Ω,

∇φ̃ = Q
(∇φ̃T∇φ̃) 1

2 = Q (g̃ij)
1
2 a.e. in Ω,

respectively, where P (x) ∈ On
+ for all x ∈ Ω and Q ∈ On

+ for almost all x ∈ Ω (the assumptions
that det∇φ > 0 in Ω and det ∇φ̃ > 0 a.e. in Ω are used here).

Since the Frobenius norm | · | is invariant under rotations, the above relations imply that,
for almost all x ∈ Ω,

inf
R∈On

+

|∇φ̃(x) −R∇φ(x)| ≤ |(g̃ij(x))
1
2 − (gij(x))

1
2 |.

Besides, one can prove that, for each 1 ≤ q < ∞ and each 1 < p < ∞ such that q ≤ p ≤ 2q,
there exists a constant C2 = C2(p, q,φ) < ∞ (the constant C2 depends on φ via the norms
‖(gij)‖L∞(Ω;Sn) and ‖(gij)−1‖L∞(Ω;Sn)) such that, for almost all x ∈ Ω,

|(g̃ij(x))
1
2 − (gij(x))

1
2 | ≤ C2|(g̃ij(x)) − (gij(x))| q

p .

The last two inequalities combined with step (i) show that the announced nonlinear Korn
inequality will follow if one can find a constant C3 = C3(p,φ) such that

inf
R∈On

+

‖∇φ̃−R∇φ‖Lp(Ω) ≤ C3

∥∥∥ inf
R∈On

+

|∇φ̃−R∇φ|
∥∥∥

Lp(Ω)
.

(iii) The above inequality was established, first for φ = id and p = 2 by Friesecke, James and
Müller [14] under the name of “geometric rigidity lemma”, then generalized to any 1 < p < ∞
by Conti [13], and finally generalized to any immersion φ ∈ C1(Ω; En) and any 1 < p < ∞ by
Ciarlet and Mardare [9].

The nonlinear Korn inequalities of Theorems 3.2, 5.2, and 6.2 are established by using that
the vector fields gi := ∂iφ associated with a sufficiently smooth immersion φ : Ω → En satisfy
the Pfaff system

∂igj = Γk
ijgk in Ω,

whose coefficients are defined by

Γk
ij :=

1
2
gk�(∂igj� + ∂jgi� − ∂�gij),
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where
gij := ∂iφ · ∂jφ and (gk�) := (gij)−1.

Note that, by contrast, the nonlinear Korn inequality of Theorem 8.1 cannot be established
in the same way, since the immersions appearing there do not possess enough regularity to
ensure that the above Pfaff system makes sense (the above definition of the coefficients Γk

ij does
not make sense for immersions φ that are only in the space W 1,p(Ω; En)).
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