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1 Introduction

Nonlocal and nonlinear advection-diffusion equations arise in hydrodynamics, and are of
general scientific and mathematical interest. In this paper, I would like to present concisely
some of the results in the area, with enough detail to capture the main ideas, but without all
the technical details that might end up by obscuring them (and taking too much space). The
equations are of the type

∂tθ + u · ∇θ + κΛsθ = 0 (1.1)

for θ(x, t) a real scalar-valued function of x ∈ R
d and t ≥ 0, with u given by

u = P (Λ)R⊥θ, (1.2)

and where we denote

Λ = (−Δ)
1
2 (1.3)

and

R = ∇Λ−1 (1.4)

the Riesz transforms. We define R⊥ = MR, where M is a fixed antisymmetric constant matrix.
In most of our discussions below, d = 2, and R⊥ is R rotated counterclockwise by 90 degrees.
Note that by construction,

∇ · u = 0. (1.5)
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The power s and the real function P (λ) define the model, and the nonnegative constant κ
distinguishes between the inviscid (κ = 0) and dissipative (κ > 0) cases. The major examples
are, for d = 2, P (λ) = λ−1 with s = 2, and P (λ) = λ0 with s = 1. The cases P (λ) = λ−1

and s = 2 correspond to the 2D Euler and the Navier-Stokes equations, respectively. The cases
P (λ) = λ0 and s = 1 correspond to the inviscid Surface Quasi-Geostrophic equation (SQG),
and to the critical dissipative SQG, respectively. The term “critical” here refers to the fact
that the pseudodifferential order of the dissipation is the same as the differential order of the
nonlinear term. This is criticality in the sense of Goldilocks: The case s > 1 is too easy, the
case s < 1 is too hard, and the case s = 1 is just right. There is no reason why criticality in
the sense of Goldilocks cannot be true criticality, i.e., a threshold for qualitative change. In the
Burgers equation with fractional dissipation, s = 1 is a true critical case: Blow up behavior
occurs for s < 1, and does not for s ≥ 1 (see [1, 23]).

It is well-known that the 2D Euler equations have global smooth solutions if the initial
data are smooth and localized. In fact, a slightly more singular constitutive equation P (λ) =
λ−1 log log(e+λ) still gives rise to global smooth solutions (see [5]). It is not known if solutions
with P (λ) growing faster at infinity have global smooth solutions.

SQG appeared as an equation for frontogenesis in meteorology, but its mathematical study
was developed because of analogies with 3D incompressible Euler equations (see [9, 20]). The
inviscid SQG equation is

∂tθ + u · ∇θ = 0, u = R⊥θ. (1.6)

We briefly recall some of the analogies between 2D SQG and 3D Euler equations. The 3D
Euler equations are conservative (kinetic energy is conserved) but they could potentially form
a first singularity from smooth and localized initial data at time T . This could happen, if and
only if the vorticity ω = ∇× u diverges in L∞ in such a manner that

∫ T

0

‖ω‖L∞(R3)dt = ∞. (1.7)

This is the celebrated Beale-Kato-Majda criterion (see [2]). The vorticity has special properties
in the 3D Euler equations. It evolves according to

∂tω + u · ∇ω = ω · ∇u. (1.8)

In this equation, the advecting velocity is one derivative smoother than the advected vector
ω. In two dimensions the right-hand side of (1.8) vanishes identically. In three dimensions this
stretching term can produce growth of vorticity magnitude. The equation is geometric, it is the
transport equation for tangent fields, and it is equivalent to the commutation relation

[Dt, ω · ∇] = 0, (1.9)

where Dt = ∂t + u · ∇ is material derivative. The meaning of this relation is that the integral
curves of the vector field ω(·, t) are transported by the flow: Vortex lines are material curves.

Inviscid SQG in 2D has all these properties: It is conservative (kinetic energy is conserved)
and the vector ω = ∇⊥θ (not to be confused with the curl of the SQG velocity u) obeys the
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same transport equation (1.8) by a velocity u that is one derivative smoother, and the same
commutation relation (1.9) holds. The transported integral lines are level sets of the scalar θ.
The same Beale-Kato-Majda criterion (1.7) applies. Both the Euler equations and SQG have
a geometric depletion of nonlinearity that reduces the order of the nonlinear stretching if the
direction field ω

|ω| is regular in regions of high |ω|.
There are differences between the two equations. SQG has more known conservation laws.

The whole distribution function of θ is conserved, and the Ḣ− 1
2 norm is conserved as well.

Nevertheless, the blow up problem is open for both the 3D Euler and the 2D SQG equations.
The 2D SQG equations have a form of weak continuity of the nonlinearity that permits

the construction of weak solutions in L2 from arbitrary initial data (see [25]). In fact, local
existence of smooth solutions and global existence of weak solutions hold for inviscid equations
with P (λ) = λ−1+β for 1 ≤ β ≤ 2 (see [6]).

The critical dissipative SQG has global smooth solutions. This was proved independently
by Caffarelli and Vasseur (see [4]) and by Kiselev, Nazarov and Volberg (see [21]). The proofs
are different in spirit. The proof in [4] uses a harmonic extension and a de Giorgi methodology
of zooming in. The proof in [21] uses an invariant family of moduli of continuity. Other proofs
exist (see [22]). An extension of an inequality of Córdoba and Córdoba (see [14]) providing a
nonlinear lower bound for the fractional Laplacian (see [11]) was used for yet a different proof.
The proof as described below appeared in [10] and was used to study long time behavior of
forced critical SQG. Global regularity can be obtained also for critical modified SQG equations
(see [8]) and for slightly supercritical SQG equations (see [16–17, 29]). The problem of global
existence of smooth solutions for supercritical SQG, by which we mean equations (see (1.1))
with u given in (see (1.2)) with P (λ) = λ0 and with κ > 0 but 0 < s < 1, is open. Solutions of
supercritical s < 1 drift diffusion equations with u ∈ Cα, with α = 1− s are Hölder continuous
with small exponent (see [13, 26]). This condition is sharp in the sense that there exist linear
drift diffusion equations with drift of lower regularity than C1−s for which the solutions loose
continuity in finite time (see [28]). Higher regularity is obtained if u ∈ Cα with α > 1 − s (see
[12, 19]). Thus, in the critical case s = 1, any Cα regularity with α > 0 implies full regularity.
All weak solutions of the supercritical SQG become regular after a finite time (see [15, 18, 24,
27]).

In this paper, we discuss a method of proof based on lower bounds for the fractional Lapla-
cian. We discuss results in the whole space R

d, and comment on counterparts in the case
of bounded domains. In order to make the presentation simple, we discuss only the critical
dissipative SQG.

2 Lower Bounds

The motivation for the lower bounds is as follows: We consider the equation

∂tθ + u · ∇θ + Λθ = 0, u = R⊥θ (2.1)

with initial data θ0. Suppose that the problem is set in R
d and we would like to prove that

smooth initial data (in appropriate sense) give rise to solutions that remain smooth for all time.
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It is known that the equation has weak solutions with a weak maximum principle (see [25])

sup
t

‖θ‖L∞ ≤ ‖θ0‖L∞ . (2.2)

Differentiating the equation results formally in

∂tg + u · ∇g = −Λg − (∇u)Tg (2.3)

for g = ∇θ. Because ∂t + u · ∇ is pure transport, it does not add size to g. We would like Λg
to win the battle with (∇u)g. This leads us to consider Λg for functions g which are gradients
of bounded functions.

It is quite remarkable that Λg, as it turns out, does in fact beat (∇u)g, because ∇u ∼ g,
and for large data, the battle looks hopeless.

The fractional Laplacian has an explicit kernel in R
d,

Λsf(x) = cPV

∫
Rd

f(x) − f(y)
|x− y|d+s

dy, (2.4)

and it is this explicit form that was used in [11] to prove the lower bound that we are discussing.
We are also interested in the same problem in bounded domains, where ΛD is the Dirichlet
Laplacian. This is defined in terms of the eigenfunction expansion, and the kernel is not
explicit. Let us consider a bounded open domain Ω ⊂ R

d with smooth boundary. Let Δ
denote the Laplacian operator with homogeneous Dirichlet boundary conditions. Its L2(Ω) -
normalized eigenfunctions are denoted wj , and its eigenvalues counted with their multiplicities
are denoted λj :

−Δwj = λjwj . (2.5)

It is well-known that 0 < λ1 ≤ · · · ≤ λj → ∞, and that −Δ is a positive selfadjoint operator
in L2(Ω) with domain D(−Δ) = H2(Ω) ∩H1

0 (Ω). Functional calculus can be defined by using
the eigenfunction expansion. In particular,

(−Δ)αf =
∞∑

j=1

λα
j fjwj (2.6)

with
fj =

∫
Ω

f(y)wj(y)dy

for f ∈ D((−Δ)α) = {f | (λα
j fj) ∈ 	2(N)}. We denote by

Λs
D = (−Δ)α, s = 2α (2.7)

the fractional powers of the Dirichlet Laplacian, with 0 ≤ α ≤ 1 and with ‖f‖s,D the norm in
D(Λs

D),

‖f‖2
s,D =

∞∑
j=1

λs
jf

2
j . (2.8)
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Note that in view of the identity

λα = cα

∫ ∞

0

(1 − e−tλ)t−1−αdt (2.9)

with

1 = cα

∫ ∞

0

(1 − e−s)s−1−αds,

valid for 0 ≤ α < 1, we have the representation

((−Δ)αf)(x) = cα

∫ ∞

0

[f(x) − etΔf(x)]t−1−αdt (2.10)

for f ∈ D((−Δ)α). The same representation holds in the whole space (using the Fourier
transform). The kernel of the heat semigroup in the whole space is explicit

Gt(z) = (4πt)−
d
2 e−

|z|2
4t , (2.11)

and this, together with the fact that
∫

Rd Gt(z)dz = 1, gives

Λsf(x) = c

∫ ∞

0

t−1− s
2

∫
Rd

Gt(z)(f(x) − f(x− z))dzdt,

which yields (2.4). It is known that the kernel HD(x, y, t) of the Dirichlet heat semigroup in
bounded domains,

HD(x, y, t) =
∞∑

j=1

e−tλjwj(x)wj(y) (2.12)

is positive and nonsingular for t > 0, and this is enough to prove the analogue of the Córdoba-
Córdoba inequality (see [14]) in the case of bounded domains as well (see [7]).

Proposition 2.1 Let Φ be a C2 convex function satisfying Φ(0) = 0. Let f ∈ C∞
0 (Ω) and

0 ≤ s ≤ 2. Then

Φ′(f)Λsf − Λs(Φ(f)) ≥ 0 (2.13)

holds pointwise almost everywhere in Ω.

In order to go beyond this inequality, more information about the kernel is needed. Let us
explain the case of R

d, Φ(f) = 1
2f

2 and s = 1. We define D2(g),

D2(g)(x) = g(x)Λg(x) − 1
2
Λg2(x), (2.14)

and estimate it for a scalar valued function g = ∂1f , where ∂1 is a partial derivative, and f is
a bounded function. We use the explicit representation (2.4) and compute

D2(g)(x) =
c

2

∫
Rd

(g(x) − g(y))2

|x− y|d+1
dy. (2.15)
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We take a smooth radial cutoff function ψ(r) obeying 0 ≤ ψ(r) ≤ 1 with ψ(r) = 0 for
r ∈ [0, 1

2 ], ψ(r) = 1 on r ∈ [1,∞). We take an arbitrary length 	 (to be chosen later) and write

D2(g)(x) ≥ c

2

∫
Rd

ψ
( |x− y|

	

)(g(x) − g(y))2

|x− y|d+1
dy. (2.16)

We open brackets and ignore one positive term

D2(g)(x) ≥ c

2
g2(x)

∫
Rd

ψ
( |x− y|

	

) 1
|x− y|d+1

dy − cg(x)
∫

Rd

ψ
( |x− y|

	

) g(y)
|x− y|d+1

dy

= G(x) −B(x). (2.17)

It is time to remember that g = ∂1f . We integrate by parts in the bad term B(x) and bound
from above:

|B(x)| ≤ C1|g(x)|	−2‖f‖L∞.

We bound the good term G(x) below:

G(x) ≥ C2g
2(x)	−1.

Now we choose 	, so that |B(x)| ≤ 1
2G(x), i.e.,

	−1 ≤ C3|g(x)|‖f‖−1
L∞.

This proves (see [11])

D2(g)(x) ≥ C‖f‖−1
L∞|g(x)|3. (2.18)

This is effectively a cubic lower bound for a quadratic form, given the existing information
on f . The fact that the kernel is precisely a power is not important. What we used was the
translation invariance (the kernel is a function of x−y), the positivity of the kernel, the fact that
the kernel is not integrable near the origin, and the fact that the kernel is integrable at infinity.
The translation invariance requirement can be relaxed. In fact, a similar lower bound can be
obtained as follows in the case of the fractional Laplacian with Dirichlet boundary conditions
ΛD (see [7]):

D2(g)(x) ≥ C‖f‖−1
L∞|gd(x)|3, (2.19)

where gd(x) = g(x) if |g(x)| ≥ ‖f‖L∞
(dist(x,∂Ω)) and gd = 0 otherwise. The proof of this fact requires

a different treatment, because we do not have in general explicit representations of the kernel
of the fractional Laplacian. We use instead the heat kernel representation (2.10) and precise
lower bounds on the heat kernel and upper bounds on its gradient.

There are many possible variants of the arguments above and lower bounds, corresponding
to the available information on g. A useful variant concerns finite differences, when

g(x) = (δhf)(x) = f(x+ h) − f(x),

where h is vector in R
d. Then, in the case of R

d, we obtain

D2(δhf)(x) ≥ C|h|−1‖f‖−1
L∞|δhf(x)|3. (2.20)
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3 Hölder Regularity

The velocity advecting the scalar θ in (2.1) is given explicitly by

u(x, t) = cPV

∫
Rd

(x− y)⊥

|x− y|d+1
θ(y, t)dy. (3.1)

We take a finite difference g = δhθ and compute its evolution:

(∂t + u · ∇x + δh(u) · ∇h + Λ)g = 0. (3.2)

We used here the fact that δh(u) · ∇xθ(x + h) = δh(u) · ∇h(δhu)(x). Let us denote by L the
operator

L = (∂t + u · ∇x + δh(u) · ∇h + Λ), (3.3)

and note that it has a weak maximum principle. The easiest way to see this is by time-splitting:
the short time evolution under the pure transport term does not add size, and the short time
evolution under the dissipative semigroup does not add size either. Multiplying (3.2) by g in
order to have nonnegative quantities, we obtain

1
2
L(g2) +D2(g) = 0, (3.4)

and then we divide by |h|2α:

1
2
L(|h|−2αg2) + |h|−2αD2(g) =

1
2
(δh(u) · ∇|h|−2α)g2. (3.5)

The right-hand side is bounded by
∣∣∣1
2
(δh(u) · ∇|h|−2α)g2

∣∣∣ ≤ α|δh(u)||h|−2α−1g2. (3.6)

The job of |h|−2αD2(g) is to be larger than this bound of the right-hand side. As usual in
critical cases, constants do matter. Nevertheless, we use the same name C for all constants;
they are explicitly computable and universal, and the order in which they are computed can be
easily unraveled by the interested reader. We know from (2.20) that

|h|−2αD2(g) ≥ C‖θ‖−1
L∞ |h|−2α−1g3. (3.7)

Now δhu ∼ g is true in spirit, but not in flesh (pointwise). We use the representation (3.1) and
split

δhu = δhuin + δhuout (3.8)

with

δhuin = cPV

∫
Rd

(
1 − ψ

( |x− y|
	

)) (x− y)⊥

|x− y|d+1
(g(y) − g(x))dy (3.9)

and

δhuout = cPV

∫
Rd

δ−h

[
ψ

( |x− y|
	

) (x− y)⊥

|x− y|d+1

]
θ(y)dy (3.10)
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with the ψ we used before and with an 	 we will choose shortly. We used translation invariance,
and in (3.9), we used the fact that g = δhθ and the vanishing of the spherical averages of the
kernel, while in (3.10), we moved the finite difference onto the kernel. We bound δhuin by using
the expression (2.15):

|δhuin(x)| ≤ C
√
	D2(g), (3.11)

and we bound δhuout by

|δhuout(x)| ≤ C
|h|
	
‖θ‖L∞ . (3.12)

These bounds are easily obtained by using Schwartz inequalities in the first and the homogeneity
and smoothness of the kernel in the second. The term α|h|−2α−1g2|δhuin| in (3.6) can be hidden
in 1

4 |h|−2αD2(g) (using Young’s inequality) and the price is

Cα2	|h|−2−2αg4.

Let us choose

	 = |h|g−1‖θ‖L∞ , (3.13)

and so the price is
Cα2|h|−1−2αg3‖θ‖L∞ ,

i.e.,

α|h|−2α−1g2|δhuin| ≤ 1
4
|h|−2αD2(g) + Cα2|h|−1−2αg3‖θ‖L∞ . (3.14)

The term α|h|−2α−1g2|δhuout| in (3.6) is bounded with our choice (3.13) of 	 by

α|h|−2α−1g2|δhuout| ≤ Cα|h|−2α−1g3. (3.15)

Putting together the bounds (3.14)–(3.15) and using (3.7) in (3.5), we have

L(|h|−2αg) + C|h|−2α−1g3‖θ‖−1
L∞ ≤ C(α+ α2‖θ‖L∞)g3|h|−2α−1. (3.16)

The right-hand side and the dissipation have the same order of magnitude, g3|h|−2α−1 as it
befits a critical case. There are no adjustable parameters, except one: α itself. If this is chosen
small enough

α‖θ‖L∞ ≤ c, (3.17)

then we obtain

L(|h|−2α−1g) ≤ 0, (3.18)

and consequently,

sup
h �=0

sup
x,t

|δhθ(x, t)|
|h|2α

≤ sup
h �=0

sup
x

|δhθ0(x)|
|h|2α

. (3.19)

We thus proved the following result (see [10]).
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Theorem 3.1 Let θ0 ∈ L∞(Rd). There exists α depending only on ‖θ0‖L∞, such that, if
θ(x, t) solves (2.1), then

‖θ(·, t)‖Cα ≤ ‖θ0‖Cα (3.20)

holds for all t ≥ 0.

In the case of bounded domains, we can obtain global existence of weak solutions (see [7]).

4 Higher Regularity

The proof of higher regularity of solutions given in [12] is done by using the Littlewood-
Paley decomposition. Here we present a different proof based on a version of the nonlinear
lower bound on the fractional Laplacian. In this section, we consider the supercritical case

∂tθ + u · ∇θ + Λsθ = 0, u = R⊥θ (4.1)

with 0 < s ≤ 1, and assume that we are given a solution on a time interval [0, T ], and that the
solution is bounded in Cα with α > 1 − s,

sup
t∈[0,T ]

‖θ‖Cα = Γ <∞. (4.2)

We use now a version of the lower bound on D2(g),

D2(g)(x) = g(x)Λsg(x) − 1
2
(Λs(g2))(x) =

c

2

∫
Rd

(g(x) − g(y))2

|x− y|d+s
dy (4.3)

suitable for the case g = ∂1f with f ∈ Cα (see [11]),

D2(g)(x) ≥ Cg2+ s
1−α ‖f‖−

s
1−α

Cα . (4.4)

The proof of this inequality is very similar to the proof of (2.18) and is left as an exercise for
the dilligent reader. We differentiate (4.1), denote g = ∇θ and multiply by ∇θ,

1
2
(∂t + u · ∇ + Λs)|g|2 +D2(g) = −g(∇u)g. (4.5)

Notice that our assumption α > 1−smakes the situation subcritical (in the sense of Goldilocks):
The lower bound (4.3) is better than cubic,

D2(g) ≥ CΓ− s
1−α g3+ s+α−1

1−α . (4.6)

Now in order to bound the right-hand side of (4.5), we have again a situation in which ∇u ∼ g

in spirit but not in flesh. We split

∇u = ∇uin + ∇umed + ∇uout, (4.7)

where

∇uin(x) = cPV

∫
Rd

χ1(|x− y|) (x− y)⊥

|x− y|d+1
(g(y) − g(x))dy, (4.8)

∇umed(x) =
∫

Rd

χ2(|x − y|) (x− y)⊥

|x− y|d+1
∇y(θ(y) − θ(x))dy, (4.9)

∇uout =
∫

Rd

χ3(|x − y|) (x− y)⊥

|x− y|d+1
∇θ(y)dy. (4.10)
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We employed here a radial partition of unity χ1(r)+χ2(r)+χ3(r) = 1, where χ1 is supported on
[0, 2ρ), χ2 supported on [ρ, 2) and χ3 supported on (1,∞). We choose χi, so that 0 ≤ χi(r) ≤ 1
and |χ′

2(r)| ≤ Cρ−1, |χ′
3(r)| ≤ C. (For example, χ1(r) = φ( r

ρ), χ2(r) = −φ( r
ρ ) + φ(r) and

χ3(r) = 1 − φ(r) with φ smooth, nonincreasing, 0 ≤ φ(r) ≤ 1, identically equal to 1 on [0, 1]
and compactly supported in [0, 2).) We will choose ρ < 1

2 below. We use (4.3) and a Schwartz
inequality for ∇uin

|∇uin(x)| ≤ Cρ
s
2
√
D2(g). (4.11)

For ∇umed, we integrate by parts and use the assumption on θ,

|∇umed(x)| ≤ CΓρ−1+α. (4.12)

For ∇uout, we just integrate by parts,

|∇uout(x)| ≤ C‖θ‖L∞ . (4.13)

We choose ρ to balance the first two terms,

ρ = C
[
ΓD2(g)−

1
2

] 1
1−α+ s

2 , (4.14)

and we get therefore the upper bound

|g(∇u)g| ≤ C[‖θ‖L∞ + Γ
s

s+2(1−α)D2(g)
1−α

s+2(1−α) ]g2. (4.15)

Hiding the term involving D2(g) results in

CΓ
s

s+2(1−α)D2(g)
1−α

s+2(1−α) g2 ≤ 1
2
D2(g) + CΓ

s
1−α+s g

2(s+2(1−α))
1−α+s .

The beauty of this ugly calculation is that the exponent of g above, 2(s+2(1−α))
1−α+s , is strictly

smaller than the exponent of g in the lower bound (4.6), 3+ s+α−1
1−α , if and only if s+α−1 > 0,

which is precisely our situation. This allows to hide again the right-hand side,

CΓ
s

s+2(1−α)D2(g)
1−α

s+2(1−α) g2 ≤ 3
4
D2(g) + CΓ

3s
s+α−1 .

Putting these considerations together results in the bound

1
2
(∂t + u · ∇ + Λs)|g|2 +

1
4
D2(g) ≤ C[‖θ‖L∞ + Γ]g2 + CΓ

3s
s+α−1 . (4.16)

The Γ added in the term with g2 in the right-hand side of (4.16) is not needed, if the ρ defined
in (4.14) obeys ρ < 1

2 . If this inequality fails, it fails because we have D2(g) ≤ CΓ2. In this
case, using (4.11)–(4.13) with ρ = 1

4 , we obtain

|∇u(x)| ≤ C[‖θ‖L∞ + Γ],

and it makes (4.16) true in all cases. Therefore, we obtain:

Theorem 4.1 Let θ be a solution of (4.1) obeying the bound (4.2) on [0, T ]. Then there
exists a constant C depending on Γ, ‖θ0‖L∞ and T , such that

sup ‖∇θ‖L∞ ≤ C[‖∇θ0‖L∞ + 1]. (4.17)

Passing now to C1,α bounds is easy, and higher still regularity can be obtained by calculus
inequalities.
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