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Abstract Asymptotic expansions of the voltage potential in terms of the “radius” of a
diametrically small (or several diametrically small) material inhomogeneity(ies) are by now
quite well-known. Such asymptotic expansions for diametrically small inhomogeneities are
uniform with respect to the conductivity of the inhomogeneities.

In contrast, thin inhomogeneities, whose limit set is a smooth, codimension 1 manifold,
σ, are examples of inhomogeneities for which the convergence to the background potential,
or the standard expansion cannot be valid uniformly with respect to the conductivity, a, of
the inhomogeneity. Indeed, by taking a close to 0 or to infinity, one obtains either a nearly
homogeneous Neumann condition or nearly constant Dirichlet condition at the boundary
of the inhomogeneity, and this difference in boundary condition is retained in the limit.

The purpose of this paper is to find a “simple” replacement for the background poten-
tial, with the following properties: (1) This replacement may be (simply) calculated from
the limiting domain Ω\σ, the boundary data on the boundary of Ω, and the right-hand side.
(2) This replacement depends on the thickness of the inhomogeneity and the conductivity,
a, through its boundary conditions on σ. (3) The difference between this replacement and
the true voltage potential converges to 0 uniformly in a, as the inhomogeneity thickness
tends to 0.

Keywords Uniform asymptotic expansions, Conductivity problem,
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1 Introduction

Asymptotic expansions of the voltage potential in terms of the “radius” ε of a diametrically
small (or several diametrically small) material inhomogeneity(ies) are by now quite well-known
(see [4, 11]). Let ωε denote the inhomogeneity, and let 0 < aε < ∞ denote the conductivity
inside the inhomogeneity. The potential uε converges (in the far field) to a limit “background”
potential u0, which is independent of the conductivity aε; this convergence (and for that matter
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the approximation rate of any finite number of terms in the asymptotic expansion) is uniform
with respect to aε (see [21]).

As was shown in [10], the existence of the first two terms of the asymptotic expansion
carries over to a situation much more general than that of a finite collection of diametrically
small inhomogeneities, namely that of an arbitrary set ωε whose Lebesgue measure converges
to zero. The convergence statement there is modulo the extraction of a subsequence, and so
it is really a compactness result. Furthermore, the convergence is not generally uniform with
respect to the inhomogeneity conductivity aε.

Thin inhomogeneities, whose limit set is a smooth, codimension 1 manifold, are indeed
examples of inhomogeneities for which the convergence to the background potential u0 or the
standard expansion cannot be valid uniformly in aε. Indeed, by taking aε close to 0 or to
∞, one obtains either a nearly homogeneous Neumann condition or nearly constant Dirichlet
condition at the boundary ∂ωε of the inhomogeneity. This boundary, however, does not shrink
to a single point as ε→ 0, as is the case when the inhomogeneity is of small radius, but rather it
“converges” to a codimension 1 manifold, σ, which has positive capacity. Neither the problem
with homogeneous Neumann boundary condition nor the one with constant Dirichlet condition
on σ has u0 as its solution. Consequently, the convergence of uε towards u0 cannot take place
uniformly in aε.

The purpose of this paper is to find a “simple” replacement for u0, say u0
ε, with the following

properties:

(1) u0
ε may be (simply) calculated from the limiting domain Ω \ σ, the boundary data on

∂Ω, and the right hand side.

(2) u0
ε depends on ε and aε through its boundary conditions on σ.

(3) uε − u0
ε converges to 0 uniformly in aε, as ε tends to 0.

Such a convergence result is useful for theoretical as well as for practical purposes as follows:

(i) For theoretical purposes, it easily allows one to identify the (ε independent) limit of the
potential uε, when the behavior of aε is more precisely known.

(ii) For numerical purposes, it allows to trade a problem posed on a very thin domain,
which may be difficult to simulate due to the requirements of a very small mesh size, for a
problem posed on a fixed domain with a single additional interphase boundary condition (see
the numerical experiments in [22]).

We also briefly discuss the derivation of the next term in a “uniform” asymptotic expansion
of uε. From a practical point of view, knowledge of the first two terms would give a very
effective tool for the determination of ωε from the knowledge of far field data of uε, in a fashion
that would work independently of the conductivity aε (see [3] for the description of such a
reconstruction algorithm in the context where the conductivity inside the inhomogeneity is
constant and does not depend on ε: aε = a, where 0 < a <∞).

There are other studies of asymptotic expansions, specifically related to thin inhomo-
geneities. In [7], the authors established a first-order asymptotic expansion of uε when the
conductivity coefficient aε is independent of ε. They considered both the case of a closed, and
an open curve σ as far as the limiting set of the inhomogeneity is concerned. They relied on very
sharp regularity estimates for uε near the boundary of the inhomogeneity. This analysis was
carried over to the Helmholtz equation in [6]. In [5], a (closed) thin conductivity inhomogeneity
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was considered and analyzed in the case, where the coefficient aε degenerates to 0 as ε→ 0, by
using Γ-convergence techniques. This situation was also investigated in [1] in the context of the
minimization of non-linear energy functionals, and in [9] in a situation where the boundary of
the inhomogeneity was oscillating. In [22], the resistive limit aε

ε → 0 was considered, a case of
particular relevance as an approximation to the behavior of the membrane of a biological cell.
In this very particular situation, the authors established the existence of a limiting potential.
The analysis is very different from the one presented here and relies on matched asymptotic
expansions in all three subdomains: The interior region, the membrane, and the exterior region.
It seems difficult to extend such an analysis to the general case studied here.

The technique which we use here to verify the uniform approximation property of u0
ε es-

timates the norm distance between uε and u0
ε in terms of the gap between the corresponding

energies, by using both the primal and dual formulation. This technique goes back to at least
the reference [20]. It has the additional nice feature that it only relies on uniform regularity
estimates for the approximate solution u0

ε, not for uε.

2 Preliminaries and Main Notations

2.1 Setting of the problem

Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and σ be a closed C2,α curve,

included in Ω and lying at positive distance from ∂Ω. The closed curve σ divides Ω into two
subdomains Ω− and Ω+. Ω− (resp. Ω+) denotes the subdomain interior (resp. exterior) to the
curve σ, and unless otherwise specified, n stands for the normal vector to σ, pointing outward
from Ω−. For any subset V ⊂ Ω, we denote V ± := V ∩ Ω± (remark that, with this notation,
∂V ± �= ∂(V ±)). If u is any function defined on Ω, we denote by u± its restriction to Ω±. If u+

and u− have traces u+|σ and u−|σ on σ, we denote by [u] := u+|σ − u−|σ the jump of u across
σ. Moreover, when u is sufficiently regular, we denote by

∂u±

∂n
(x) = lim

t→0
∇u(x± tn(x)) · n(x)

the exterior and interior normal components of ∇u at x ∈ σ. The associated normal jump
across σ is denoted by

[
∂u
∂n

]
.

Except for the thin inhomogeneity the domain Ω is occupied by a conductive material, with
conductivity 1. The thin inhomogeneity (with mid-surface σ, and width 2ε (see Figure 1)) is

ωε := {x+ tn(x), x ∈ σ, t ∈ (−ε, ε)}
and it has conductivity aε. The conductivity γε in the entire domain is therefore given by

γε(x) =
{

1, if x ∈ Ω \ ωε,
aε, if x ∈ ωε.

(2.1)

We assume that aε ∈ (0,∞) is a scalar constant, but this constant may change with ε. In
particular, aε may go to 0 or ∞ as ε→ 0.

A potential ϕ ∈ H
1
2 (∂Ω) is applied to ∂Ω, and Ω has a charge distribution f ∈ L2(Ω). The

electric potential uε in Ω is the solution to{−div(γε∇uε) = f in Ω,
uε = ϕ on ∂Ω. (2.2)
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It is well-known that under the above hypotheses, the system (2.2) has a unique solution
uε ∈ H1(Ω). The following notations will be useful:

(i) For any open subset U ⊂ R
2, L2

0(U) denotes the subspace of L2(U) composed of functions
u such that

∫
U u dx = 0. There is a natural mapping L2(U) 	 u 
→ (u− 1

|U|
∫
U u dx

) ∈ L2
0(U).

By a small abuse of notation, for any function u ∈ L2(U), we shall write

‖u‖L2
0(U) =

∥∥∥u− 1
|U |
∫
U

u dx
∥∥∥
L2(U)

.

(ii) For sufficiently small δ > 0, Fδ denotes the following closed subspace of L2(Ω):

Fδ =
{
f ∈ L2(Ω), supp(f) ⊂ Ω \ ωδ,

∫
Ω−

f dx = 0
}
.

This Hilbert space may also be identified as Fδ = L2(Ω+ \ ωδ) × L2
0(Ω

− \ ωδ).

Figure 1 Setting of the thin inhomogeneity problem.

The goal of this paper is to understand the uniform asymptotic behavior of the potential
uε, as the width 2ε of the thin inhomogeneity goes to 0, uniform, that is, with respect to the
conductivity aε inside the inclusion. More precisely, we will derive an approximate problem
posed on the fixed domain Ω\σ (with boundary conditions on σ, depending on ε and aε), whose
solution u0

ε is uniformly close to uε as ε→ 0, independently of the behavior of the sequence aε.

Remark 2.1 Let us briefly comment on the hypotheses of the above model and the possible
generalizations of our results.

(i) We assume that the background conductivity γ0, that is, the conductivity outside the in-
homogeneity, is equal to 1. This is only a matter of convenience, and it would be straightforward
to replace it by a smooth, variable conductivity distribution γ0(x) with 0 < c0 < γ0(x) < c1.

(ii) We consider the case of only one internal inhomogeneity, but our analysis immediately
carries over to the case of finitely many well separated, internal inhomogeneities.

(iii) We have chosen for simplicity to restrict our analysis to the case of two space dimensions,
but with some additional work, it carries over to thin inhomogeneities in higher dimension as
well. The curve σ then gets replaced by a closed, smooth (codimension 1) hypersurface.

(iv) We also assume that aε is constant inside ωε. As we will show, the limit behavior of uε
is completely different depending on whether aε degenerates to 0 or to ∞ as ε→ 0 (and at what
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rate). We do not currently know how to (rigorously) generalize the analysis presented here to
the situation where aε is variable inside ωε and degenerates to 0 on some parts of ωε and to ∞
on other parts. A somewhat related problem would be to consider the case of a simple open
curve σ.

(v) Our present results pertain to the conductivity problem (zero frequency). It should
be interesting to study the same geometric setting in the context of the Helmholtz problem.
We expect the generalization to a single fixed frequency to be rather straightforward, a more
challenging problem would be to obtain results that are also uniform over a broad range of
frequencies.

2.2 Some facts about distances and projections

In this subsection, we present some material about distances and projections, as well as a
version of the coarea formula that will prove very useful when calculating integrals on a set of
the form ωε. The context is the same as in Section 2.1: σ is a closed curve of class C2,α defining
two subdomains Ω−,Ω+ of a larger (smooth) bounded domain Ω ⊂ R

2. For any x ∈ Ω, let
d(x, σ) := min

y∈σ d(x, y) be the Euclidean distance from x to σ. The signed distance function dΩ−

to the interior subdomain Ω− is defined as

dΩ−(x) =

⎧⎪⎨
⎪⎩
−d(x, σ), if x ∈ Ω−,
0, if x ∈ σ,

d(x, σ), if x ∈ Ω+,

∀x ∈ Ω.

It is well-known that the projection mapping

pσ : x 
→ the unique y ∈ σ s.t. d(x, y) = d(x, σ)

is well-defined on a sufficiently small tubular neighborhood ωδ of σ (see, e.g., [18, Proposition
5.4.14]). The maximum thickness of such a neighborhood depends on the curvature of σ. In
the remainder of this note, we shall assume that

ω1 ⊂ Ω, and pσ is well-defined on ω1. (2.3)

This hypothesis is only a matter of scaling, and all the analysis adapts mutatis mutandis to
the general case. Property (2.3) allows us to define an extension of the normal vector field
n : σ → S

1 to the whole ω1 as: n(x) := n(pσ(x)); other quantities which are intrinsically
defined on σ can be extended likewise. Thus, for any point x ∈ ω1, we shall denote by κ(x) the
curvature of σ at the point pσ(x).

The derivatives of dΩ− and pσ are as follows (see, e.g., [2]):

∇dΩ−(x) = n(x), ∇2(dΩ−)(x) =

⎛
⎝ κ(x)

1 + κ(x)dΩ− (x)
0

0 0

⎞
⎠ ,

∇pσ(x) =

⎛
⎝ 1

1 + κ(x)dΩ− (x)
0

0 0

⎞
⎠ ,

(2.4)
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where the above matrix identities are expressed in the orthonormal basis (τ(x), n(x)) of R
2.

Here τ denotes the 90 degree clockwise rotate of n(x), in other words the extension of a smooth
tangent field on σ, and ∇2u stands for the Hessian matrix of a function u.

These observations, together with the coarea formula (see [12]) yield the following proposi-
tion.

Proposition 2.1 Let g ∈ L1(Ω). Then,∫
ωε

g dx =
∫
σ

∫
p−1

σ (y)∩ωε

g(z)(1 + κ(y)dΩ−(z)) dμ1(z) ds(y), ε ≤ 1,

where dμ1 is the one-dimensional Hausdorff measure on the pre-images p−1
σ (y)∩ωε, and ds(y)

is the Hausdorff measure on the codimension 1 subset σ.

Remark 2.2 This formula may seem ill-defined at first glance, since g is only integrable
over Ω. It is a priori that is not defined on all the one-dimensional sets p−1

σ (y), y ∈ σ. However,
it turns out to be defined on almost every such set (see [15, Subsection 3.4.3, Theorem 2]), and
that is sufficient.

As explained above, the normal vector field n and the tangent vector field τ on σ can be
extended as orthonormal vector fields to a tubular neighborhood of σ. The coordinates (ξ·τ, ξ·n)
of a vector ξ in this basis will be denoted by (ξτ , ξn).

It is convenient to express the two-dimensional divergence operator in the local basis (τ, n).

Lemma 2.1 Let ξ be a vector field of class C1 defined on a tubular neighborhood of σ. Then,

div(ξ) =
∂

∂τ
(ξτ ) +

∂

∂n
(ξn) +

κ

1 + κdΩ−
ξn.

Proof We calculate

∂

∂τ
(ξτ ) = ∇(ξ · τ) · τ

= (∇ξT τ + ∇τT ξ) · τ
= (∇ξ τ) · τ + (∇τ τ) · ξ,

and similarly, ∂
∂n (ξn) = (∇ξ n) · n. For the latter identity, we relied on the fact that ∇n n =

∇nTn = 0 (which follows, e.g., from (2.4)). Since div(ξ) = tr(∇ξ) can be evaluated in any
orthonormal basis,

div(ξ) = (∇ξ τ) · τ + (∇ξ n) · n
=

∂

∂τ
(ξ · τ) +

∂

∂n
(ξ · n) − (∇τ τ) · ξ. (2.5)

By differentiation of τ ·τ = 1, one obtains (∇ττ)·τ = (∇τT τ)·τ = 0. Similarly, by differentiation
of n · τ = 0, using (2.4), one obtains

(∇τ τ) · n = (∇τT n) · τ = −(∇nT τ) · τ = − κ

1 + κdΩ−
.

The desired result follows from a combination of these two observations with (2.5).
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Remark 2.3 Arguments similar to those of the last proof reveal that

∂2g

∂τ∂n
=

∂2g

∂n∂τ
+

κ

1 + κdΩ−

∂g

∂τ

for any function g of class C2 on a neighborhood of σ. Thus, for any such function, Lemma 2.1
allows us to conclude that the vector field − ∂g

∂n τ + ∂g
∂τ n is divergence-free.

3 A General Argument to Estimate the Difference Between Energy
Minimizers

In this section, we introduce our main tool for assessing the convergence of minimizers
of variational problems, defined on possibly varying domains. We also present the special
considerations required to apply this tool to inhomogeneous Dirichlet problems, which are of
most relevance to the present studies.

3.1 An energy lemma

The following lemma may be viewed as a generalization of a rather standard fact about the
difference between minimizers of quadratic functionals.

Lemma 3.1 Let Vε,Wε be two families of Hilbert spaces, and let H be another Hilbert
space, which continuosly contains all the Vε and Wε. Consider also aε : Vε × Vε → R and
bε : Wε ×Wε → R, two families of symmetric bilinear forms that are continuous and coercive.
For any � ∈ H ′, define the energy functionals Eε and Fε (whose dependence on � is omitted) by

Eε(v) =
1
2
aε(v, v) − �(v), ∀v ∈ Vε,

Fε(w) =
1
2
bε(w,w) − �(w), ∀w ∈Wε.

Eε and Fε admit unique minimizers v
ε ∈ Vε, w
ε ∈ Wε, due to the usual Lax-Milgram theorem.
The gap between v
ε and w
ε can be controlled in terms of the gap between the corresponding
energies as follows:

sup
‖
‖H′≤1

‖v
ε − w
ε‖H ≤ 4 sup
‖
‖H′≤1

|Eε(v
ε) − Fε(w
ε)|. (3.1)

Proof Let � be an arbitrary linear form in H ′. By the standard Lax-Milgram theorem, we
know that v
ε and w
ε are characterized by the fact that

aε(v
ε, v) = �(v), ∀v ∈ Vε, bε(w
ε, w) = �(w), ∀w ∈ Wε. (3.2)

This in particular implies that

Eε(v
ε) = −1
2
�(v
ε), Fε(w
ε) = −1

2
�(w
ε). (3.3)

Consequently, for any � ∈ H ′, one has

|�(v
ε − w
ε)| = 2|Eε(v
ε) − Fε(w
ε)|. (3.4)
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Now, define the bilinear form q : H ′ ×H ′ → R by

q(�1, �2) = �1(v
2ε − w
2ε ), ∀�1, �2 ∈ H ′.

Using (3.2), we obtain that

q(�1, �2) = aε(v
1ε , v

2
ε ) − bε(w
1ε , w


2
ε ),

from which it is clear that q is symmetric. We are thus in position to use the polarization
identity for q,

q(�1, �2) =
1
4
(q(�1 + �2, �1 + �2) − q(�1 − �2, �1 − �2)),

to conclude that
sup

‖�1‖
H′≤1,

‖�2‖
H′≤1

|q(�1, �2)| ≤ 2 sup
‖
‖H′≤1

|q(�, �)|.

In combination with (3.4), this last inequality yields

sup
‖
2‖H′≤1

sup
‖
1‖H′≤1

|�1(v
2ε − w
2ε )| ≤ 4 sup
‖
‖H′≤1

|Eε(v
ε) − Fε(w
ε)|,

which immediately gives

sup
‖
‖H′≤1

‖v
ε − w
ε‖H ≤ 4 sup
‖
‖H′≤1

|Eε(v
ε) − Fε(w
ε)|.

This completes the proof of the lemma.

Remark 3.1 Suppose that the spaces Vε and Wε are only “weakly” contained in H , in the
sense that there exist linear continuous mappings Pε : Vε → H and Qε : Wε → H through
which they may be identified with subspaces of H (we might even allow for the possibility that
these mappings are not injective). Change the quadratic functionals slightly to accommodate
for the following mappings:

Eε(v) =
1
2
aε(v, v) − P ∗

ε �(v), ∀v ∈ Vε,

Fε(w) =
1
2
bε(w,w) −Q∗

ε�(w), ∀w ∈Wε,

with P ∗
ε and Q∗

ε being the adjoints of Pε and Qε, respectively. The equivalent of Lemma 3.1
now asserts that

sup
‖
‖H′≤1

‖Pεv
ε −Qεw


ε‖H ≤ 4 sup

‖
‖H′≤1

|Eε(v
ε) − Fε(w
ε)|. (3.5)

Remark 3.2 Some comments are in order about the meaning of Lemma 3.1, and the way
we intend to use it. Our purpose is to prove an estimate for the difference (vε − wε) between
the minimizers vε ∈ Vε and wε ∈ Wε of two energy functionals Eε and Fε. In the applications
ahead, vε and wε are solutions to some elliptic PDEs whose coefficients, or domains of definition,
depend on ε. Of course, such an estimate can only be realized in terms of the norm ‖ · ‖H of a
“larger” space H , which “contains” all the Vε,Wε. Lemma 3.1 states that such an estimate can
be obtained in terms of the difference between the corresponding minimized energies (a quantity
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which should in principle be simpler to compute). To be more precise, such an estimate may
be obtained, provided that we are able to calculate the energy differences in a slightly more
general context, namely in the case when a (common) additional and rather arbitrary linear
term � ∈ H ′ has been added to the energies Eε, Fε. Somehow, this additional linear term
plays the role of a “sentinel”, and is meant to “observe” functions in Vε and Wε, or at least the
features of these that are expressed in the space H through which they are “seen”.

3.2 Extension of Lemma 3.1 to the case of inhomogeneous Dirichlet boundary
conditions

The purpose of this subsection is to describe the adjustments needed to the framework of
the previous lemma when we deal with inhomogeneous Dirichlet boundary conditions.

3.2.1 A short remark about minimization of functionals over sets of functions
satisfying an inhomogeneous Dirichlet boundary condition

Let Ω ⊂ R
2 be a bounded Lipschitz domain, and V be a Hilbert space of functions over Ω,

such that the trace mapping
V 	 u 
→ u|∂Ω ∈ H

1
2 (∂Ω)

is well-defined, continuous, and has a continuous right inverse (e.g. V = H1(Ω)). Let V0 = {u ∈
V, v = 0 on ∂Ω} be the associated homogeneous space. Let a : V × V → R be a continuous
and coercive bilinear form over V , and � : V → R be a continuous linear form over V . We are
interested in the following minimization problem:

min
v∈V

v=ϕ on ∂Ω

E(v), E(v) :=
1
2
a(v, v) − �(v), (3.6)

the solution, u, of which solves the variational problem{
a(u, v) = �(v) for all v ∈ V0,
u = ϕ on ∂Ω. (3.7)

As is well-known, (3.7) (and thus the minimization problem (3.6)) has a unique solution u =
û + uϕ ∈ V , where uϕ ∈ V is a right inverse of ϕ for the trace operator (i.e., uϕ = ϕ on ∂Ω),
and û ∈ V0 is defined by

a(û, v) = �(v) − a(uϕ, v), ∀v ∈ V0. (3.8)

The existence and uniqueness of û are straightforward consequences of the Lax-Milgram theo-
rem. From a slightly different point of view, û can also be regarded as the unique solution to
the following minimization problem:

F (û) = min
v∈V0

F (v), F (v) :=
1
2
a(v, v) − �(v) + a(uϕ, v).

By using (3.8), we actually have

F (û) = −1
2
a(û, û) = −1

2
�(û) +

1
2
a(uϕ, û). (3.9)
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We return to (3.6). As a straightforward consequence of the definition of uϕ,

min
v∈V

v=ϕ on ∂Ω

E(v)= min
v∈V0

E0(v), where E0(v) :=
1
2
a(v, v) − �(v) + a(uϕ, v) +

1
2
a(uϕ, uϕ) − �(uϕ).

Note that the quantity E0(v) differs from F (v) by a term which is independent of v. Owing to
the previous considerations, E0 has a unique minimum point v = û, and

min
v∈V

v=ϕ on ∂Ω

E(v) =
1
2
a(û, û) + a(uϕ, û) − �(û) +

1
2
a(uϕ, uϕ) − �(uϕ)

=
1
2
a(u, u) − �(u),

or, by using (3.9),

E(u) = min
v∈V

v=ϕ on ∂Ω

E(v) = −1
2
�(û) +

1
2
a(uϕ, û) +

1
2
a(uϕ, uϕ) − �(uϕ)

= −1
2
�(u) +

1
2
a(uϕ, u) − 1

2
�(uϕ). (3.10)

This last formula is particularly convenient since it is an affine expression of E(u) in terms of u,
depending on the data � and ϕ of the problem (3.7). It is the equivalent of (3.3) in the context
of variational problems of the form (3.7), posed on affine function spaces.

3.2.2 The energy lemma, the Dirichlet version

The following result adapts Lemma 3.1 to the case when inhomogeneous Dirichlet boundary
conditions are considered.

Lemma 3.2 Let Ω be a bounded domain in R
2, and let Vε,Wε be two families of Hilbert

spaces of functions defined on Ω, such that, for any ε > 0, the trace operator

Vε 	 v 
→ v|∂Ω ∈ H
1
2 (∂Ω)

is well-defined, continuous, and has a linear continuous right inverse ϕ 
→ vϕ (similarly for Wε

with a mapping ϕ 
→ wϕ). Let H be another Hilbert space, which continuously contains all the
Vε and Wε. Denote also by aε : Vε × Vε → R and bε : Wε ×Wε → R two families of symmetric
bilinear forms that are continuous and coercive. For any ϕ ∈ H

1
2 (∂Ω), � ∈ H ′, consider the

minimization problems

min
v∈Vε

v=ϕ on ∂Ω

Eε(v), Eε(v) =
1
2
aε(v, v) − �(v),

min
w∈Wε

w=ϕ on ∂Ω

Fε(w), Fε(w) =
1
2
bε(w,w) − �(w),

which admit unique minimizers v
,ϕε ∈ Vε, w
,ϕε ∈ Wε (again, the dependence of Eε, Fε on � is
omitted). Then, for any s ≥ 1

2 , the following estimate holds:

sup
‖�‖

H′≤1
‖ϕ‖Hs(∂Ω)≤1

‖v
,ϕε − w
,ϕε ‖H ≤ 4 sup
‖�‖

H′≤1
‖ϕ‖Hs(∂Ω)≤1

|Eε(v
,ϕε ) − Fε(w
,ϕε )|. (3.11)
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Proof For any elements ϕ ∈ Hs(∂Ω) and � ∈ H ′, (3.10) implies that

|Eε(v
,ϕε ) − Fε(w
,ϕε )| =
1
2
| − �(v
,ϕε − w
,ϕε ) + aε(vϕ, v
,ϕε ) − bε(wϕ, w
,ϕε ) − �(vϕ − wϕ)|.

Consider the space H := H ′ ×Hs(∂Ω) equipped with the norm

|||(�, ϕ)||| = max(‖�‖H′ , ‖ϕ‖Hs(∂Ω)),

and introduce the bilinear form q : H × H → R, defined for (�1, ϕ1), (�2, ϕ2) ∈ H by the
expression

q((�1, ϕ1), (�2, ϕ2)) = −�1(v
2,ϕ2
ε − w
2,ϕ2

ε ) + aε(vϕ1 , v

2,ϕ2
ε ) − bε(wϕ1 , w


2,ϕ2
ε ) − �2(vϕ1 − wϕ1).

The form q is symmetric. Indeed, introducing v̂
iε := v
i,ϕi
ε − vϕi and ŵ
iε := w
i,ϕi

ε − wϕi , one
obtains

q((�1, ϕ1), (�2, ϕ2)) = −�1(v̂
2ε − ŵ
2ε ) + aε(vϕ1 , v

2,ϕ2
ε ) − bε(wϕ1 , w


2,ϕ2
ε )

− �1(vϕ2 − wϕ2) − �2(vϕ1 − wϕ1)

= −aε(v
1,ϕ1
ε , v̂
2ε ) + bε(w
1,ϕ1

ε , ŵ
2ε ) + aε(vϕ1 , v

2,ϕ2
ε ) − bε(wϕ1 , w


2,ϕ2
ε )

− �1(vϕ2 − wϕ2) − �2(vϕ1 − wϕ1)

= aε(vϕ1 , vϕ2) − aε(v̂
1ε , v̂
2ε ) − bε(wϕ1 , wϕ2) + bε(ŵ
1ε , ŵ
2ε )

− �1(vϕ2 − wϕ2) − �2(vϕ1 − wϕ1).

The polarization identity now yields

sup
|||(�1,ϕ1)|||≤1
|||(�2,ϕ2)|||≤1

|q((�1, ϕ1), (�2, ϕ2))| ≤ 2 sup
|||(
,ϕ)|||≤1

|q((�, ϕ), (�, ϕ))|,

and therefore by the same technique as in the proof of Lemma 3.1

sup
‖�‖

H′≤1
‖ϕ‖Hs(∂Ω)≤1

‖v
,ϕε − w
,ϕε ‖H = sup
|||(
2,ϕ2)|||≤1

sup
‖
1‖H′≤1

|q((�1, 0), (�2, ϕ2))|

≤ sup
|||(�1,ϕ1)|||≤1
|||(�2,ϕ2)|||≤1

|q((�1, ϕ1), (�2, ϕ2))|

≤ 2 sup
|||(
,ϕ)|||≤1

|q((�, ϕ)(�, ϕ))|

= 4 sup
‖�‖

H′≤1
‖ϕ‖Hs(∂Ω)≤1

|Eε(v
,ϕε ) − Fε(w
,ϕε )|.

This is the desired estimate.

Remark 3.3 (1) For the estimates (3.1) and (3.11) of Lemma 3.1 and Lemma 3.2, respec-
tively, it is sufficient (on the right-hand side) to envoke the supremum for � belonging to a dense
subset of H ′, due to the continuity of the mappings � 
→ v
ε, � 
→ w
ε.

(2) Lemmas 3.1 and 3.2 do not generally hold when the energies Eε and Fε contain additional
linear terms cε ∈ V ′

ε and dε ∈W ′
ε (i.e., contain linear terms from a larger class than H ′)

Eε(v) =
1
2
aε(v, v) − cε(v) − �(v), Fε(w) =

1
2
bε(w,w) − dε(w) − �(w).
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In this case, it may still be possible to control the difference ‖v
ε−w
ε‖ in terms of the difference
|Eε(v
ε) − Fε(w
ε)| between the corresponding energies. However, this control will in general be
“weaker”, and may require assumptions that are not so naturally formulated in an abstract
framework.

4 Derivation of the 0th Order Approximation of uε

In this section, we formally construct a uniform 0th-order approximation to the solution uε
to (2.2). This approximation u0

ε is, as explained earlier, the solution to a “simpler” problem
with the same data f, ϕ, but posed on a fixed domain. Some of the coefficients of this “simpler”
problem depend on ε and aε, and as we have explained in the introduction this is inevitable.
Later, in Section 6, we shall rigorously prove a uniform approximation estimate for u0

ε. To be
more precise at that point, we shall prove that there exists a constant C which only depends
on the data Ω, σ, f and ϕ, and not on ε and aε, such that

‖uε − u0
ε‖ ≤ Cε.

The norm ‖ · ‖, and the dependence of C on f and ϕ will be specified later.
To construct the approximation u0

ε, we rely on the fact that uε is the minimizer of an
energy functional Eε, and that the flux (γε∇uε) is the maximizer of a dual energy Ecε . We
begin with the construction of an approximate energy E0

ε to Eε, and then we shall search the
desired approximation u0

ε as the minimizer of E0
ε . We also analyze the dual energy Ecε to obtain

additional information about the behavior of the flux (γε∇uε), which we shall need for the proof
of the estimate of (uε − u0

ε).

4.1 Asymptotic expansions of the energy functionals associated with uε

4.1.1 Asymptotic expansion of the primal Dirichlet energy

As is well-known, the solution uε to (2.2) is the unique solution of the minimization problem

min
u∈H1(Ω)

u=ϕ on ∂Ω

Eε(u), Eε(u) =
1
2

∫
Ω

γε|∇u|2 dx−
∫

Ω

fu dx. (4.1)

First, we transform part of this energy expression by means of the mapping Hε : ω1 → ωε,
defined by

Hε(x) = pσ(x) + εdΩ−(x)n(x). (4.2)

A straightforward calculation based on (2.4) yields

∇Hε =

⎛
⎝ 1 + εκdΩ−

1 + κdΩ−
0

0 ε

⎞
⎠ , (4.3)

where the above matrix is expressed in the local basis (τ, n) of the plane. For any function
u ∈ H1(ωε), we denote û := u ◦Hε. A change of variables now leads to∫

ωε

|∇u|2 dx =
∫
ω1

((det∇Hε)∇H−1
ε (∇H−1

ε )T)∇û · ∇û dx
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= ε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂û
∂τ

)2

dx+
1
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(∂û
∂n

)2
dx.

Using this change of variables, we may now equivalently restate problem (4.1) as

min
(u,v)∈V 0

ε
u=ϕ on ∂Ω

F 0
ε (u, v), (4.4)

where the set V 0
ε is defined as

V 0
ε = {(u, v) ∈ H1(Ω \ ωε) ×H1(ω1), ∀x ∈ σ, v(x ± n(x)) = u(x± εn(x))},

and the rescaled energy F 0
ε is given by

F 0
ε (u, v) =

1
2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂v
∂τ

)2

dx

+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

( ∂v
∂n

)2

dx−
∫

Ω

fu dx.

Obviously, the equalities featured in the above definition of the space V 0
ε are understood in the

sense of traces. We now proceed to formally simplify this problem. Retaining only the leading
order contribution in the definition of the energy functional F 0

ε (and of the space V 0
ε ), we are

led to the approximate problem

min
(u,v)∈V 0

u=ϕ on ∂Ω

F 0
ε (u, v), (4.5)

where we have introduced the function space

V 0 = {(u, v) ∈ H1(Ω \ σ) ×H1(ω1), s.t. ∀x ∈ σ, v(x ± n(x)) = u±(x)}, (4.6)

and the approximate energy

F 0
ε (u, v) =

1
2

∫
Ω\σ

|∇u|2 dx+
εaε
2

∫
ω1

(1 + κdΩ−)
(∂v
∂τ

)2
dx

+
aε
2ε

∫
ω1

1
1 + κdΩ−

( ∂v
∂n

)2

dx −
∫

Ω

fu dx.

This problem can be further simplified, by performing the “inner” minimization in v and ex-
pressing the result in terms of u. The problem (4.5) can thus be rewritten as

min
u∈H1(Ω\σ)
u=ϕ on ∂Ω

{1
2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx+G0
ε(u)
}
, (4.7)

where

G0
ε(u) = min

v∈H1(ω1)
v(x+n(x))=u+(x), x∈σ

v(x−n(x))=u−(x), x∈σ

{εaε
2

∫
ω1

(1 + κdΩ−)
(∂v
∂τ

)2

dx

+
aε
2ε

∫
ω1

1
1 + κdΩ−

( ∂v
∂n

)2
dx
}
. (4.8)
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This problem can be solved in terms of u which would give rise to an explicit expression for
G0
ε(u). Instead of doing so, we note that the two terms of the energy are of different orders

when ε→ 0. One might therefore naturally expect that the behavior of the minimizer v of the
previous expression to leading order should be dictated by the term aε

2ε

∫
ω1

1
1+κdΩ−

(
∂v
∂n

)2 dx.
From the Euler-Lagrange equation associated with this minimization, it follows that v should
satisfy ∫

ω1

1
1 + κdΩ−

∂v

∂n

∂w

∂n
dx = 0, ∀w ∈ H1

0 (ω1).

If we introduce the coarea formula of Proposition 2.1, this simplifies to∫
σ

∫ 1

−1

∂v

∂n
(x+ tn(x))

∂w

∂n
(x+ tn(x)) dt ds(x) = 0, ∀w ∈ H1

0 (ω1).

Choosing a test function w of the form w(x+ tn(x)) = φ(x)ψ(t), with arbitrary φ ∈ C∞(σ) and
ψ ∈ C∞

c (−1, 1), we now arrive at∫
σ

φ(x)
∫ 1

−1

d
dt

(v(x + tn(x)))ψ′(t) dt ds(x) = 0,

from which we conclude that for any x ∈ σ, and any function ψ ∈ C∞
c (−1, 1),∫ 1

−1

d
dt

(v(x + tn(x)))ψ′(t) dt = 0.

As a consequence, for any x ∈ σ, the function t 
→ v(x + tn(x)) is affine. Introducing the
boundary conditions for v (see 4.8), we now arrive at

v(x + tn(x)) =
t

2
[u](x) +

1
2
(u+(x) + u−(x)), ∀x ∈ σ, t ∈ (−1, 1).

Substituting this expression for the minimizer in (4.8), we obtain

G0
ε(u) ≈ εaε

2

∫
ω1

(1 + dΩ−κ)
(∂v
∂τ

)2
dx+

aε
2ε

∫
ω1

1
1 + dΩ−κ

( ∂v
∂n

)2

dx

=
εaε
2

∫
σ

∫ 1

−1

(1 + tκ)2
(∂v
∂τ

(x+ tn(x))
)2

dt ds(x)+
aε
2ε

∫
σ

∫ 1

−1

( ∂v
∂n

(x+ tn(x))
)2

dt ds(x)

=
εaε
2

∫
σ

∫ 1

−1

( ∂
∂τ

(v(x + tn(x)))
)2

dt ds(x) +
aε
4ε

∫
σ

(u+ − u−)2 ds

=
εaε
8

∫
σ

∫ 1

−1

(∂u+

∂τ
(x) +

∂u−

∂τ
(x) + t

(∂u+

∂τ
(x) − ∂u−

∂τ
(x)
))2

dt ds(x)

+
aε
4ε

∫
σ

(u+ − u−)2 ds,

where Proposition 2.1 was used for the first identity. Finally, after integration in t

G0
ε(u) ≈ εaε

3

∫
σ

((∂u+

∂τ

)2
+
(∂u−
∂τ

)2
+
∂u+

∂τ

∂u−

∂τ

)
ds+

aε
4ε

∫
σ

(u+ − u−)2 ds. (4.9)

Let us draw some conclusions of these formal calculations. (4.7) and (4.9) suggest to search
for an approximation u0

ε to uε by solving

min
u∈Vσ

u=ϕ on ∂Ω

E0
ε (u), (4.10)
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where Vσ denotes the space

Vσ = {v ∈ H1(Ω \ σ), v+|σ, v−|σ ∈ H1(σ)}, (4.11)

and the approximate energy E0
ε reads

E0
ε (u) =

1
2

∫
Ω\σ

|∇u|2 dx+
εaε
3

∫
σ

((∂u+

∂τ

)2

+
(∂u−
∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

+
aε
4ε

∫
σ

(u+ − u−)2 ds−
∫

Ω

fu dx. (4.12)

We also note that according to these calculations, the (rescaled) potential (uε ◦Hε), inside the
inhomogeneity ω1, should be approximated by the function v0

ε ∈ H1(ω1), given by

v0
ε(x + tn(x)) =

t

2
[u0
ε](x) +

1
2
(u0+
ε (x) + u0−

ε (x)), ∀x ∈ σ, t ∈ (−1, 1). (4.13)

4.1.2 Asymptotic expansion of the dual energy and its maximizer

Before turning to a rigorous study of the function u0
ε and its distance to uε, we perform in

this section a formal study of the dual energy Ecε corresponding to Eε in the spirit of [19].
The dual energy principle associated with Eε asserts that

min
u∈H1(Ω)

u=ϕ on ∂Ω

Eε(u) = max
ξ∈L2(Ω)2
−div(ξ)=f

Ecε(ξ)

with

Ecε(ξ) =
∫
∂Ω

ξ · nϕ ds− 1
2

∫
Ω

γ−1
ε |ξ|2 dx. (4.14)

The last extremal problem admits (γε∇uε) as the unique maximal argument. We shall now ap-
ply the same strategy as in the previous subsection, namely, to split the integral 1

2

∫
Ω
γ−1
ε |ξ|2 dx

into two, one over Ω \ ωε, the other over ωε, and rescale the second one by using a change of
variables. The following lemma provides a hint of what is the relevant rescaling when the
objects in question are vector fields.

Lemma 4.1 Let U, V be two smooth subdomains of R
2, ψ : U → V be a diffeomorphism

of class C1. Let ξ ∈ L2(V )2 be a vector field, and f ∈ L2(V ). Then the (weak) divergence
of ξ equals f if and only if the vector field |det(∇ψ)|(∇ψ)−1(ξ ◦ ψ) ∈ L2(U)2 has divergence
|det(∇ψ)|f◦ψ. In particular, ξ is (weakly) divergence-free, if and only if |det(∇ψ)|(∇ψ)−1(ξ◦ψ)
is divergence-free.

Proof We have, successively,

div(ξ) = f

⇔
∫
V

ξ · ∇p dx = −
∫
V

fp dx, ∀p ∈ C∞
c (V )

⇔
∫
U

|det(∇ψ)|(ξ ◦ ψ) · (∇p) ◦ ψ dx = −
∫
U

|det(∇ψ)|(f ◦ ψ)(p ◦ ψ) dx, ∀p ∈ C∞
c (V )

⇔
∫
U

|det(∇ψ)|(ξ ◦ ψ) · ((∇ψ)−1)T∇(p ◦ ψ) dx
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= −
∫
U

|det(∇ψ)|(f ◦ ψ)(p ◦ ψ) dx, ∀p ∈ C∞
c (V )

⇔
∫
U

|det(∇ψ)|(∇ψ)−1(ξ ◦ ψ) · ∇p̂ dx = −
∫
U

|det(∇ψ)|(f ◦ ψ)p̂ dx, ∀p̂ ∈ C∞
c (U)

⇔ |det(∇ψ)|(∇ψ)−1(ξ ◦ ψ) has divergence |det(∇ψ)|f ◦ ψ,

which proves the desired result.

Remark 4.1 In the same way, we established Lemma 4.1. We may establish that if ξ ∈
Hdiv(V ) with ξ ·n = g on ∂V in a weak sense, then |det(∇ψ)|(∇ψ)−1(ξ ◦ψ) ·n = g ◦ψ| ∂∂τ ψ| on
∂U .

For any ξ ∈ L2(Ω)2,∫
ωε

|ξ|2 dx =
∫
ω1

det(∇Hε)(ξ ◦Hε) · (ξ ◦Hε) dx

=
∫
ω1

( 1
det(∇Hε)

∇HT
ε ∇Hε

)
ξ̂ · ξ̂ dx,

where we denote ξ̂ = det(∇Hε)(∇Hε)−1(ξ ◦Hε). We also calculate that∣∣∣ ∂
∂τ
Hε

∣∣∣ = |∇Hετ · τ | =
1 + εκdΩ−

1 + κdΩ−
.

Performing a change of variables on ωε, and using these two identities in combination with
(4.3), Lemma 4.1 and Remark 4.1, we are led to rewrite the maximization problem for Ecε in
the form

max
(ξ,η)∈V c0

ε
−div(ξ)=f
−div(η)=0

F c0ε (ξ, η), (4.15)

where

V c0ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ξ, η) ∈ Hdiv(Ω \ ωε) ×Hdiv(ω1), ∀x ∈ σ,

1 + κ

1 + εκ
ηn(x+ n(x)) = ξn(x+ εn(x)),

1 − κ

1 − εκ
ηn(x− n(x)) = ξn(x− εn(x))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (4.16)

and the functional F c0ε is given by

F c0ε (ξ, η) =
∫
∂Ω

ξ · nϕ ds− 1
2

∫
Ω\ωε

|ξ|2 dx− 1
2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx

− ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx.

Here we use that the support of f is away from ωε (since f ∈ Fδ for some fixed δ > 0).
As before, only the leading order terms in the definitions of V c0ε and F c0ε are now retained

in the construction of the approximate extremal problem

max
(ξ,η)∈V c0
−div(ξ)=f
−div(η)=0

F c0ε (ξ, η). (4.17)
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The approximate set V c0 is

V c0 =

⎧⎪⎪⎨
⎪⎪⎩

(ξ, η) ∈ Hdiv(Ω \ σ) ×Hdiv(ω1),
∫
σ

[ξn] = 0,

and ∀x ∈ σ,
(1 + κ)ηn(x+ n(x)) = ξ+n (x),
(1 − κ)ηn(x− n(x)) = ξ−n (x)

⎫⎪⎪⎬
⎪⎪⎭ , (4.18)

and the approximate energy F c0ε is

F c0ε (ξ, η) =
∫
∂Ω

ξ · nϕ ds− 1
2

∫
Ω\σ

|ξ|2 dx− 1
2εaε

∫
ω1

1
1 + κdΩ−

η2
τ dx

− ε

2aε

∫
ω1

(1 + κdΩ−)η2
n dx. (4.19)

Note that we have included the integral constraint
∫
σ
[ξn] = 0 as part of the description of the

set V c0. This additional constraint is a consequence of the interface conditions imposed on ξ

and η, and the constraint div(η) = 0, and so it leaves the maximization unchanged. To simplify
(4.17) further, we remark as in Subsection 4.1.1 that the extremal problem in η can be solved
explicitely (at least approximately) in terms of ξ. Indeed, we rewrite (4.17) as

max
ξ∈Hdiv(Ω\σ)
−div(ξ)=f∫

σ [ξn]=0

{∫
∂Ω

ξ · nϕ ds− 1
2

∫
Ω\σ

|ξ|2 dx−Gc0ε (ξ)
}
,

where

Gc0ε (ξ) := min
η∈W c0

−div(η)=0

{ 1
2εaε

∫
ω1

1
1 + κdΩ−

η2
τ dx+

ε

2aε

∫
ω1

(1 + κdΩ−)η2
n dx
}
. (4.20)

Here the set W c0 is given by

W c0 =
{
η ∈ Hdiv(ω1), ∀x ∈ σ,

(1 + κ)ηn(x+ n(x)) = ξ+n (x)
(1 − κ)ηn(x− n(x)) = ξ−n (x)

}
.

We then proceed to calculate explicitely the expression (4.20). Intuitively, the minimizer η
should be characterized to leading order by the minimization of the term 1

2εaε

∫
ω1

1
1+κdΩ− η

2
τ dx.

The associated Euler-Lagrange equation reads∫
ω1

1
1 + κdΩ−

ητζτ dx = 0

for any ζ ∈ Hdiv(ω1) s.t.−div(ζ) = 0, and (1±κ(x))ζn(x±n(x)) = 0. Since for any ψ ∈ C∞
c (ω1),

the field (−∂ψ
∂n ,

∂ψ
∂τ ) is divergence-free (see Remark 2.3), and has a vanishing normal component

(∂ψ∂τ ) on ∂ω1, we obtain ∫
ω1

1
1 + κdΩ−

ητ
∂ψ

∂n
dx = 0,

and now by using Proposition 2.1, we have

∫
σ

∫ 1

−1

ητ (x+ tn(x))
∂ψ

∂n
(x+ tn(x)) dt ds(x) = 0.
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Due to the same argument as in Subsection 4.1.1, we conclude that the quantity ητ (x+ tn(x))
is independent of t ∈ (−1, 1), that is, there exists a function a : σ → R, such that

ητ (x + tn(x)) = a(x), ∀x ∈ σ, t ∈ (−1, 1).

We now rely on the divergence-free property of η to complete the calculation. Using Lemma
2.1, one has, for any fixed x ∈ σ and t ∈ (−1, 1),

∂ητ
∂τ

(x+ tn(x)) +
∂ηn
∂n

(x+ tn(x)) +
κ(x)

1 + tκ(x)
ηn(x+ tn(x)) = div(η)(x + tn(x)) = 0,

that is, letting z(t) = ηn(x+ tn(x)),

z′(t) +
κ(x)

1 + tκ(x)
z(t) = − 1

1 + tκ(x)
∂

∂τ
(ητ (x+ tn(x))) = − 1

1 + tκ(x)
∂a

∂τ
(x),

which is nothing but an ODE for z. A simple calculation now gives that there exists a function
b : σ → R, such that

ηn(x+ tn(x)) = − t

1 + tκ(x)
∂a

∂τ
(x) +

b(x)
1 + tκ(x)

.

Owing to the boundary conditions for ηn in the definition of the set W c0, the functions a and
b must satisfy ⎧⎪⎨

⎪⎩
−∂a
∂τ

(x) + b(x) = ξ+n (x),

∂a

∂τ
(x) + b(x) = ξ−n (x),

∀x ∈ σ,

which after straightforward manipulations leads to

∂

∂τ
(ητ (x+ tn(x))) = −1

2
[ξn](x),

ηn(x + tn(x)) =
1
2

( t

1 + tκ(x)
[ξn](x) + 1

1+tκ(x) (ξ
+
n (x) + ξ−n (x))

)
.

(4.21)

These expressions are unfortunately not as explicit as those obtained in Subsection 4.1.1, and
in particular they do not lead to a similarly simple variational problem for ξ. However, they
do (approximately) connect the exterior and interior components, ξ and η, of the maximizer of
F c0ε , which hopefully is close to that of F c0ε .

5 Study of the Approximate Function u0
ε: Uniform Energy and Regu-

larity Estimates

In this section, we study properties of the solution u0
ε to (4.10), which is our candidate for

the 0th order term of the asymptotic expansion of uε.
We assume the data to be such that f ∈ L2(Ω) with support away from σ, and with∫

Ω− f dx = 0 (this is expressed by requiring f ∈ Fδ for some fixed δ > 0, see the definitions in
Subsection 2.1). We also assume that ϕ ∈ H

1
2 (∂Ω). After first proving existence and uniqueness

of the solution u0
ε, our main purpose is to establish energy and regularity estimates for u0

ε (and
its derivatives) which are uniform with respect to ε and the sequence aε (see Subsections 5.3–
5.4).
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5.1 Existence, uniqueness, and a classical formulation of (4.10)

Let Vσ,0 be the subspace of Vσ (the latter being defined by (4.11)) composed of functions
with vanishing trace on ∂Ω. We define the following semi-norm and norm on Vσ :

|u|2Vσ
=
∫

Ω\σ
|∇u|2 dx+

∫
σ

((∂u+

∂τ

)2
+
(∂u−
∂τ

)2)
ds+

∫
σ

(u+ − u−)2 ds,

‖u‖2
Vσ

= ‖u‖2
L2(Ω) + |u|2Vσ

.

We note that due to a standard Poincaré inequality, the seminorm | · |Vσ is actually a norm on
Vσ,0, equivalent to ‖u‖2

Vσ
. The variational formulation associated to (4.10) is as follows.

Find u0
ε ∈ Vσ with u0

ε|∂Ω = ϕ, such that∫
Ω\σ

∇u0
ε · ∇v dx

+
2εaε

3

∫
σ

(∂u0+
ε

∂τ

∂v+

∂τ
+
∂u0−

ε

∂τ

∂v−

∂τ
+

1
2

(∂u0+
ε

∂τ

∂v−

∂τ
+
∂u0−

ε

∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(u0+
ε − u0−

ε )(v+ − v−) ds =
∫

Ω

fv dx, ∀v ∈ Vσ,0. (5.1)

Proposition 5.1 The minimization problem (4.10), or equivalently the variational problem
(5.1), has a unique solution u0

ε ∈ Vσ.

Proof The existence and uniqueness of u0
ε follow from the standard Lax-Milgram theorem,

the only point which deserves comment is the (nonuniform in ε and aε) coercivity of the bilinear
form involved in (5.1) on the space Vσ,0. This coercivity follows from the inequality

1
3
(a2 + b2 + ab) =

1
6
(a2 + b2) +

1
6
(a+ b)2 ≥ 1

6
(a2 + b2), ∀a, b ∈ R, (5.2)

and the fact (noted above) that the seminorm | · |Vσ is a norm on Vσ,0, equivalent to ‖ · ‖2
Vσ

.

Problem (4.10) can be stated in a “classical” form. Indeed, using smooth test functions
v ∈ C∞

c (Ω \ σ) in (5.1), we first see that u0
ε satisfies

−Δu0
ε = f in Ω \ σ

in the sense of distributions. If f and ϕ are smooth, then it is fairly easy to prove that u0
ε

is actually C2,α up to the boundary ∂Ω and up to the curve σ, and it solves the equation
−Δu0

ε = f in a classical sense. The proof of regularity is a very standard elliptic regularity
argument, that we leave to the reader, however, in Subsections 5.3–5.4 (and the appendix), we
shall show exactly what a priori estimates hold uniformly in ε and aε. Now using again (5.1),
and an integration by parts, we obtain that∫

σ

(
− ∂u0+

ε

∂n
v+ +

∂u0−
ε

∂n
v−
)

ds

+
2εaε

3

∫
σ

(∂u0+
ε

∂τ

∂v+

∂τ
+
∂u0−

ε

∂τ

∂v−

∂τ
+

1
2

(∂u0+
ε

∂τ

∂v−

∂τ
+
∂u0−

ε

∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(u0+
ε − u0−

ε )(v+ − v−)ds = 0 (5.3)
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for all functions v ∈ Vσ,0. Using this last equality with test functions v ∈ H1(Ω \ σ), such that
v = 0 on ∂Ω, v+ is smooth on σ, and v− = 0 on σ, we obtain that

∂u0+
ε

∂n
+
εaε
3

(
2
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ.

Symmetrically, by exchanging the roles of v− and v+, one obtains

∂u0−
ε

∂n
− εaε

3

(∂2u0+
ε

∂τ2
+ 2

∂2u0−
ε

∂τ2

)
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ.

In summary, u0
ε is a solution to the following problem on Ω \ σ:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δu0
ε = f in Ω \ σ,

u0
ε = ϕ on ∂Ω,

∂u0+
ε

∂n
+
εaε
3

(
2
∂2u0+

ε

∂τ2
+
∂2u0−

ε

∂τ2

)
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ,

∂u0−
ε

∂n
− εaε

3

(∂2u0+
ε

∂τ2
+ 2

∂2u0−
ε

∂τ2

)
− aε

2ε
(u0+
ε − u0−

ε ) = 0 on σ.

(5.4)

Let us also notice that insertion of v ∈ C∞
c (Ω), v ≡ 1 in a neighborhood of σ, into (5.3)

yields ∫
σ

[∂u0
ε

∂n

]
ds = 0.

This identity, in combination with the fact that
∫
Ω− f ds = 0, gives∫

σ

∂u0+
ε

∂n
ds =

∫
σ

∂u0−
ε

∂n
ds = 0. (5.5)

5.2 The dual energy maximization problem for u0
ε

In this paper, it will prove convenient on several occasions to use the dual energy maximiza-
tion principle for u0

ε. We remind the reader that the hypotheses for f and ϕ are

f ∈ Fδ =
{
f ∈ L2(Ω), supp(f) ⊂ Ω \ ωδ,

∫
Ω−

f dx = 0
}
, ϕ ∈ H

1
2 (∂Ω).

We write

E0
ε (u

0
ε)

= min
u∈Vσ

u=ϕ on ∂Ω

⎧⎪⎪⎨
⎪⎪⎩

1
2

∫
Ω\σ

|∇u|2 dx+
εaε
3

∫
σ

((∂u+

∂τ

)2

+
(∂u−
∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

+
aε
4ε

∫
σ

(u+ − u−)2 ds−
∫

Ω

fu dx

⎫⎪⎪⎬
⎪⎪⎭

= min
u∈Vσ

u=ϕ on ∂Ω

max
ξ∈L2(Ω\σ)2

w+,w−,z∈L2(σ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω\σ

ξ · ∇u dx− 1
2

∫
Ω\σ

|ξ|2 dx

+
2εaε

3

∫
σ

(∂u+

∂τ
w+ +

∂u−

∂τ
w− +

1
2

(∂u+

∂τ
w− +

∂u−

∂τ
w+
))

ds

−εaε
3

∫
σ

(w+2 + w−2 + w+w−) ds

+
aε
2ε

∫
σ

(u+ − u−)z ds− aε
4ε

∫
σ

z2 ds−
∫

Ω

fu dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,
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where the maximum in the last expression is achieved uniquely at ξ = ∇u, w+ = ∂u+

∂τ , w− = ∂u−
∂τ

and z = (u+ − u−). We can now exchange the min and max in the above formula (see [14]) to
rewrite

E0
ε (u

0
ε) = max

{∫
∂Ω

ξ · nϕ ds− 1
2

∫
Ω\σ

|ξ|2 dx− εaε
3

∫
σ

(w+2+w−2+w+w−) ds− aε
4ε

∫
σ

z2 ds
}
.

In this last expression, the maximum is taken over all functions ξ ∈ L2(Ω \ σ)2, w+, w−, z ∈
L2(σ), such that

− div(ξ) = f in Ω+ ∪ Ω−,

ξ+ · n+
εaε
3

(
2
∂w+

∂τ
+
∂w−

∂τ

)
− aε

2ε
z = 0 on σ, (5.6)

ξ− · n− εaε
3

(∂w+

∂τ
+ 2

∂w−

∂τ

)
− aε

2ε
z = 0 on σ.

We note that, in this particular context, the above exchange of the minimum and maximum
can be justified very simply, since the functionals at stake are quadratic, and we know explicitly
the associated minimizer and maximizer.

This last maximum is achieved uniquely at ξ = ∇u0
ε, w

+ = ∂u0+
ε

∂τ , w− = ∂u0−
ε

∂τ and z =
(u0+
ε − u0−

ε ). We thus end up with the following convenient alternative expression for the
minimum energy E0

ε (u0
ε):

E0
ε (u

0
ε) =

∫
∂Ω

∂u0
ε

∂n
ϕ ds− 1

2

∫
Ω\σ

|∇u0
ε|2 dx

− εaε
3

∫
σ

((∂u0+
ε

∂τ

)2

+
(∂u0−

ε

∂τ

)2

+
∂u0+

ε

∂τ

∂u0−
ε

∂τ

)
ds

− aε
4ε

∫
σ

(
u0+
ε − u0−

ε

)2
ds. (5.7)

5.3 Uniform energy estimates for u0
ε

The following lemma provides preliminary energy estimates for the function u0
ε.

Lemma 5.1 Let Ω ⊂ R
2 be a bounded Lipschitz domain, and σ be a closed C2,α curve in

Ω, lying at positive distance from ∂Ω. Let ϕ ∈ H
1
2 (∂Ω) and f ∈ Fδ for some δ > 0. Then,

(1) There exists a constant C > 0, independent of ε and aε (but dependent on Ω and σ),
such that

‖∇u0
ε‖L2(Ω\σ) + (εaε)

1
2

(∥∥∥∂u0+
ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂u0−

ε

∂τ

∥∥∥
L2(σ)

)
+
(aε
ε

) 1
2 ‖u0+

ε − u0−
ε ‖L2(σ)

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

).

(2) There exists a constant C > 0 independent of ε and aε (but dependent on Ω and σ),
such that

‖u0
ε‖L2(Ω+) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

), ‖u0
ε‖L2

0(Ω
−) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

Proof (1) By definition of ϕ ∈ H
1
2 (∂Ω), there exists uϕ ∈ H1(Ω) which we may assume to

have compact support in Ω+ \ ωδ for some δ > 0, such that uϕ = ϕ on ∂Ω and ‖uϕ‖H1(Ω) ≤
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C‖ϕ‖
H

1
2 (∂Ω)

. The variational formulation of problem (4.10) may be expressed in terms of

wε := u0
ε − uϕ,∫
Ω\σ

∇wε · ∇v dx

+
2εaε

3

∫
σ

(∂w+
ε

∂τ

∂v+

∂τ
+
∂w−

ε

∂τ

∂v−

∂τ
+

1
2

(∂w+
ε

∂τ

∂v−

∂τ
+
∂w−

ε

∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(w+
ε − w−

ε )(v+ − v−) ds =
∫

Ω

fv dx−
∫

Ω\σ
∇uϕ · ∇v dx, ∀v ∈ Vσ,0. (5.8)

Inserting v = wε as a test function, and relying on the inequality (5.2), we immediately obtain

‖∇wε‖2
L2(Ω\σ) + εaε

(∥∥∥∂w+
ε

∂τ

∥∥∥2
L2(σ)

+
∥∥∥∂w−

ε

∂τ

∥∥∥2
L2(σ)

)
+
aε
ε
‖w+

ε − w−
ε ‖2

L2(σ)

≤ C(‖ϕ‖
H

1
2 (∂Ω)

+ ‖f‖L2(Ω+))‖wε‖H1(Ω+) + ‖f‖L2(Ω−)‖wε −m‖L2(Ω−) (5.9)

for any value m ∈ R (since
∫
Ω− f = 0). Due to the Poincaré inequality for functions on Ω+

which vanish on ∂Ω, we have

‖wε‖H1(Ω+) ≤ C‖∇wε‖L2(Ω+),

and from the Poincaré-Wirtinger inequality on Ω−

∥∥∥wε − 1
|Ω−|

∫
Ω−

wε

∥∥∥
L2(Ω−)

≤ C‖∇wε‖L2(Ω−).

It follows from a combination of these estimates and (5.9) that

‖∇wε‖L2(Ω\σ) + (εaε)
1
2

(∥∥∥∂w+
ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂w−

ε

∂τ

∥∥∥
L2(σ)

)
+
(aε
ε

) 1
2 ‖w+

ε − w−
ε ‖L2(σ)

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

). (5.10)

The desired result follows from this estimate and the facts that u0
ε = wε + uϕ, ‖uϕ‖H1(Ω) ≤

C‖ϕ‖
H

1
2 (∂Ω)

, and uϕ vanishes on σ.

(2) The first inequality is a consequence of (5.10) and the decomposition u0
ε = wε + uϕ,

combined with the Poincaré inequality for functions on Ω+ which vanish on ∂Ω. The second
inequality similarly follows from (5.10) and the Poincaré-Wirtinger inequality on the domain
Ω−. Note that this latter estimate concerns the L2

0(Ω
−) semi-norm, not the L2(Ω−) norm.

5.4 Uniform regularity estimates for u0
ε

We now proceed to state the uniform regularity estimates for the function u0
ε, which we shall

require for our later analysis. The results needed are stated in the following theorem, whose
proof is postponed to Section 9.

Theorem 5.1 Assume that Ω and σ are of class C2,α, that the source term f belongs to
Fδ for some δ > 0, and that ϕ ∈ H

3
2 (∂Ω). Then the unique solution u0

ε to the problem (4.10)
belongs to H2(Ω \ σ) ∩H2(σ), and the following estimates hold:

|u0
ε|H2(Ω\σ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖H3/2(∂Ω)), (5.11)
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(εaε)
1
2

(∥∥∥∂2u0+
ε

∂τ2

∥∥∥
L2(σ)

+
∥∥∥∂2u0−

ε

∂τ2

∥∥∥
L2(σ)

)
+
(aε
ε

) 1
2
∥∥∥∂u0+

ε

∂τ
− ∂u0−

ε

∂τ

∥∥∥
L2(σ)

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

), (5.12)

where |u|H2(V ) :=
( ∑

β∈N2
|β|=2

∥∥∥∂|β|u
∂xβ

∥∥∥2
L2(V )

) 1
2 stands for the H2 semi-norm of a function u ∈ H2(V ),

and the constant C depends only on Ω and σ (and not on ε and aε).

Remark 5.1 (1) The proof of Theorem 5.1 can be iterated, if one assumes higher regularity
of Ω, σ, f and ϕ. More precisely, if Ω and σ are of class Cm,α, f ∈ Fδ ∩ Hm−2(Ω) and
ϕ ∈ Hm− 1

2 (∂Ω) for some m ≥ 2, then∥∥∥∂|β|u0
ε

∂xβ

∥∥∥
L2(Ω\σ)

≤ C(‖f‖Hm−2(Ω) + ‖ϕ‖
Hm− 1

2 (∂Ω)
)

for any multi-index β of length ≤ m. Note also that these results are local. Thus, even if f
only belongs to Fδ for some δ > 0, but σ is a Cm,α curve, then u0

ε is of class Cm(V \ σ) for any
open set V , such that V � ωδ and∥∥∥∂|β|u0

ε

∂xβ

∥∥∥
L2(V \σ)

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

)

for any multi-index β of length ≤ m.
(2) The two estimates (5.11)–(5.12) are of a quite different nature. They are complementary

in the sense that, depending on the behavior of the sequence aε, one may prove more precise
than the other. Estimate (5.11) expresses the fact that all the derivatives of u0

ε are uniformly
bounded with respect to ε and aε, provided that the data of the problem have enough regularity.
On the other hand, the estimate (5.12) is analogous to the preliminary estimates of Lemma 5.1.
It does not carry much information in the low conductivity regime (i.e., aε � ε), but it is in
some sense much stronger than (5.11) in the high conductivity regime (i.e., aε � ε).

(3) Recall that, due to Lemma 5.1, u0
ε|Ω+ (and not just its derivatives) also turns out to be

uniformly bounded with respect to ε and aε. However, in general, this is not the case of u0
ε|Ω− ,

which is only uniformly bounded up to a constant.

6 Proof of the Asymptotic Exactness of u0
ε

We are now in position to verify the asymptotic exactness of u0
ε, in other words to show

that the gap ‖uε − u0
ε‖ tends to zero as ε tends to zero. The precise estimate we establish is

the following.

Theorem 6.1 Assume that the “center” curve σ is of class C∞, and that ϕ ∈ H
1
2 (∂Ω).

Let δ > 0 be a fixed positive real number, and suppose f ∈ Fδ. Let uε ∈ H1(Ω) (resp. u0
ε ∈ Vσ)

be the unique solution to the minimization problem (4.1) (resp. (4.10)). Then the following
estimates hold, for ε > 0 sufficiently small:

‖uε − u0
ε‖L2(Ω+\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)ε,

‖uε − u0
ε‖L2

0(Ω
−\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)ε,

where the constant C is independent of ε, and of aε.
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Proof The technique used here is very close to that used in [21] (a main idea of which is
already found in [20]). It relies on two key ingredients:

(i) The uniform energy and regularity estimates for u0
ε and ∇u0

ε presented in Subsections
5.3–5.4. Interestingly enough, neither energy nor regularity estimates for the exact solution uε
are required.

(ii) The general argument of Lemma 3.2, which controls the discrepancy between uε and u0
ε

in terms of the discrepancy between the minimum values of the corresponding energies Eε and
E0
ε .

Using the notation of Lemma 3.2, we choose Vε = H1(Ω), Wε = Vσ and H = Fδ (we identify
H ′ with Fδ). The natural mapping Pε : Vε → H is

H1(Ω) 	 u 
→ Pεu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u|Ω+\ωδ

in Ω+ \ ωδ,
0 in ωδ ∈ Fδ,

u|Ω−\ωδ
− 1

|Ω− \ ωδ|
∫

Ω−\ωδ

u dx in Ω− \ ωδ.

The operator Pε (which, like Vε and Wε, in this case actually does not depend on ε) also
naturally maps Wε into H . According to Lemma 3.2 (and Remark 3.3) the following estimates
hold:

‖uε − u0
ε‖L2(Ω+\ωδ)

≤ C
(

sup
f∈Fδ, ϕ∈H

1
2 (∂Ω)

f,ϕ smooth

|Eε(uε) − E0
ε (u0

ε)|
(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)2
)
(‖f ||L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

), (6.1)

‖uε − u0
ε‖L2

0(Ω
−\ωδ)

≤ C
(

sup
f∈Fδ, ϕ∈H

1
2 (∂Ω)

f,ϕ smooth

|Eε(uε) − E0
ε (u

0
ε)|(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)2)(‖f ||L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

). (6.2)

The idea is then to estimate the discrepancy (Eε(uε)−E0
ε (u

0
ε)) between the minimum values

of the energies by using particular “test functions” in place of uε (or its gradient), which make
Eε (or its dual) mimic the behavior of the functional E0

ε near the limiting curve σ. The existence
of such test functions is made possible by the regularity estimates for u0

ε stated in the Subsection
5.3. Subsections 6.1–6.2 below are devoted to establishing the desired control over this energy
discrepancy.

In the following, for the sake of brevity, we denote by C a constant, possibly changing from
one instance to the other, which only depends on Ω and σ, but is independent of ε, aε, f and
ϕ. We also use the shorthand

C(f, ϕ) ≡ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

).

6.1 Proof of the upper bound Eε(uε) − E0
ε (u0

ε) ≤ C(f, ϕ)2ε

As a straightforward consequence of the definition (4.1), one has, for any function u ∈ H1(Ω),
such that u = ϕ on ∂Ω,

Eε(uε) − E0
ε (u

0
ε) ≤ Eε(u) − E0

ε (u
0
ε).
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We proceed to construct a “test function” u, which makes the right-hand side of the above
inequality small. To this end, a natural idea is to exploit the equivalent form (4.4) of the
problem, and use the pair (u0

ε, v
0
ε ◦H−1

ε ) as a test function, where u0
ε is the unique solution to

(4.10), and v0
ε is given by (4.13). This is unfortunately not possible, since the pair (u0

ε, v
0
ε) does

not belong to the space V 0
ε . Indeed, it does not satisfy the boundary conditions{
v(x+ n(x)) = u(x+ εn(x)),
v(x− n(x)) = u(x− εn(x)), ∀x ∈ σ,

but satisfies instead {
v(x+ n(x)) = u+(x),
v(x− n(x)) = u−(x), ∀x ∈ σ.

To remedy this, let us define zε ∈ H1(Ω \ ωε) as the unique solution to⎧⎪⎪⎨
⎪⎪⎩
−Δzε = 0 in Ω \ ωε,
zε = 0 on ∂Ω,
zε = u0+

ε ◦ pσ − u0
ε on ∂ω+

ε ,
zε = u0−

ε ◦ pσ − u0
ε on ∂ω−

ε .

By construction, the pair (u0
ε + zε, v

0
ε) belongs to V 0

ε . Let us now work toward estimating the
function zε. As an easy consequence of definitions,

‖zε|∂ωε‖C1(∂ωε) ≤ Cε(‖u0
ε‖C2(V +) + ‖u0

ε −m‖C2(V −))

≤ Cε(‖u0
ε‖H4(V +) + ‖u0

ε −m‖H4(V −)).

Here V is a neighboorhood contained in ωδ for a fixed δ with f ∈ Fδ and m = 1
|Ω−|
∫
Ω− u

0
ε.

According to Theorem 5.1 (and Remark 5.1), it follows that

‖zε|∂ωε‖C1(∂ωε) ≤ C(f, ϕ)ε.

By a very simple construction, we may extend the trace zε|∂ωε to a function Zε defined on the
whole domain Ω \ ωε with Zε = 0 on ∂Ω and

‖Zε‖C1(Ω\ωε) ≤ C‖zε||C1(∂ωε) ≤ C(f, ϕ)ε.

A simple calculation gives that ∫
Ω\ωε

∇(zε − Zε)∇zε dx = 0,

in other words, ∫
Ω\ωε

|∇zε|2 dx =
∫

Ω\ωε

∇Zε∇zε dx,

and so

‖∇zε‖L2(Ω\ωε)
≤ ‖∇Zε‖L2(Ω\ωε)

≤ C‖Zε‖C1(Ω\ωε)
≤ C(f, ϕ)ε. (6.3)

Now, using the pair (u0
ε + zε, v

0
ε) as a “test function” in (4.4), we calculate

F 0
ε (u0

ε + zε, v
0
ε) =

1
2

∫
Ω\ωε

|∇u0
ε + ∇zε|2 dx−

∫
Ω

f(u0
ε + zε) dx
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+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂v0
ε

∂τ

)2
dx+

aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(∂v0
ε

∂n

)2

dx.

Here ∫
Ω\ωε

|∇u0
ε + ∇zε|2 dx =

∫
Ω\ωε

|∇u0
ε|2 dx+ 2

∫
Ω\ωε

∇u0
ε · ∇zε dx+

∫
Ω\ωε

|∇zε|2 dx

≤
∫

Ω\ωε

|∇u0
ε|2 dx+ C(f, ϕ)2ε,

where we used (6.3) and the uniform energy estimate of Lemma 5.1. Similarly, one has∣∣∣ ∫
Ω

fzε dx
∣∣∣ ≤ C(f, ϕ)2ε,

because of our assumptions about f , and the estimate (6.3), in combination with the fact that
zε vanishes on ∂Ω. Concerning the terms on ω1,

εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂v0
ε

∂τ

)2

dx ≤ εaε
2

∫
ω1

(1 + κdΩ−)
(∂v0

ε

∂τ

)2

dx+ C(f, ϕ)2ε

=
εaε
3

∫
σ

((∂u0+
ε

∂τ

)2

+
(∂u0−

ε

∂τ

)2

+
∂u0+

ε

∂τ

∂u0−
ε

∂τ

)
ds+ C(f, ϕ)2ε,

where the first line is a consequence of the uniform energy estimates of Lemma 5.1, and the sec-
ond line follows by the exact same calculation that we performed in Subsection 4.1.1. Similarly,
we obtain

aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(∂v0
ε

∂n

)2
dx ≤ aε

4ε

∫
σ

(u0+
ε − u0−

ε )2 ds+ C(f, ϕ)2ε.

To conclude, let u ∈ H1(Ω) denote the function

u =
{
u0
ε + zε in Ω \ ωε,
v0
ε ◦H−1

ε in ωε.

Combining all these estimates, we finally get

Eε(uε) − E0
ε (u

0
ε) ≤ Eε(u) − E0

ε (u
0
ε) = F 0

ε (u0
ε + zε, v

0
ε) − E0

ε (u
0
ε) ≤ C(f, ϕ)2ε.

6.2 Proof of the lower bound: E0
ε (u0

ε) − Eε(uε) ≤ C(f, ϕ)2ε, and end of proof of
Theorem 6.1

In order to prove the lower bound, we rely on the use of the dual energies associated to Eε
and E0

ε . More precisely, based on the equivalent, rescaled form (4.15) of the dual problem to
Eε,

E0
ε (u

0
ε) − Eε(uε) ≤ E0

ε (u
0
ε) − F c0ε (ξ, η)

for every vector couple (ξ, η) in the space V c0ε defined by (4.16), and satisfying −div(ξ) = f ,
−div(η) = 0. Using the definition of F c0ε and the alternative expression (5.7) for E0

ε (u
0
ε), we

may rewrite this as

E0
ε (u

0
ε) − Eε(uε) ≤ 1

2

∫
Ω\ωε

|ξ|2 dx+
1

2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx+

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx
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−
∫
∂Ω

ξ · nϕ ds+
∫
∂Ω

∂u0
ε

∂n
ϕ ds− 1

2

∫
Ω\σ

|∇u0
ε|2 dx

− εaε
3

∫
σ

((∂u0+
ε

∂τ

)2

+
(∂u0−

ε

∂τ

)2

+
∂u0+

ε

∂τ

∂u0−
ε

∂τ

)
ds

− aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds. (6.4)

In light of the discussions in Subsections 4.1.2 and 5.2, and particularly due to the formulas
(4.21), it is tempting to define a test flux ξ ∈ Hdiv(Ω\σ) by ξ = ∇u0

ε, and to define η ∈ Hdiv(ω1)
in such a way, that for x ∈ σ, t ∈ (−1, 1),

∂

∂τ
(ητ (x+ tn(x))) = −1

2

[∂u0
ε

∂n

]
(x),

ηn(x+ tn(x)) =
1
2

( t

1 + tκ(x)

[∂u0
ε

∂n

]
(x) +

1
1 + tκ(x)

(∂u0+
ε

∂n
(x) +

∂u0−
ε

∂n
(x)
))
,

and insert (ξ, η) into (6.4). Using the pointwise expression (5.4) for the boundary conditions
for u0

ε, we are led to(
ητ (x+ tn(x))
ηn(x+ tn(x))

)

=

⎛
⎜⎜⎝

εaε
2

(∂u0+
ε

∂τ
+
∂u0−

ε

∂τ

)
1
2

1
1 + tκ

(
− tεaε

(∂2u0+
ε

∂τ2
+
∂2u0−

ε

∂τ2

)
− εaε

3

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)
+
aε
ε

(u0+
ε − u0−

ε )
)
⎞
⎟⎟⎠ .

Unfortunately, such a choice of “test couple” is not admissible, since it does not belong to the
space V c0ε . Nevertheless, it “almost” belongs to this space, and we may use a “small” additive
correction to remedy that situation. We define zε ∈ H1(Ω \ ωε) as the unique solution (up to
a constant) to the problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δzε = 0 in Ω \ ωε,
∂zε
∂n

= 0 on ∂Ω,

∂zε
∂n

= g+
ε on ∂ω+

ε ,

∂zε
∂n

= g−ε on ∂ω−
ε .

Recall that in the last two boundary conditions, n stands for the normal vector to ∂ω±
ε , oriented

in the direction from Ω− to Ω+. The function g+
ε is defined by

g+
ε (x+ εn(x)) =

1 + κ(x)
1 + εκ(x)

ηn(x + n(x)) − ξn(x+ εn(x))

= (1 + κ(x))
( 1

1 + εκ(x)
− 1
)
ηn(x+ n(x))

+ (1 + κ(x))ηn(x+ n(x)) − ξ+n (x) + ξ+n (x) − ξn(x+ εn(x))

= (1 + κ(x))
( 1

1 + εκ(x)
− 1
)
ηn(x+ n(x)) + ξ+n (x) − ξn(x+ εn(x)), ∀x ∈ σ,
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and g−ε is defined by the similar formula

g−ε (x− εn(x)) =
1 − κ(x)
1 − εκ(x)

ηn(x − n(x)) − ξn(x− εn(x))

= (1 − κ(x))
( 1

1 − εκ(x)
− 1
)
ηn(x− n(x))

+ (1 − κ(x))ηn(x− n(x)) − ξ−n (x) + ξ−n (x) − ξn(x− εn(x))

= (1 − κ(x))
( 1

1 − εκ(x)
− 1
)
ηn(x− n(x)) + ξ−n (x) − ξn(x− εn(x)), ∀x ∈ σ,

so that the couple (ξ+∇zε, η) belongs to V c0ε . The requirement that
∫
∂ω+

ε
g+
ε ds =

∫
∂ω−

ε
g−ε ds =

0 is guaranteed by the identity (5.5) and the fact that f vanishes in ωε, so that
∫
∂ω±

ε

∂u0
ε

∂n ds = 0
as well. Using the uniform regularity estimates of Theorem 5.1 (and Remark 5.1), we obtain
that

‖g±ε ‖C1,α(∂ω±
ε ) ≤ C(f, ϕ)ε,

and a standard regularity argument (as for the Dirichlet problem in the previous section) now
gives

‖∇zε‖L2(Ω\ωε) ≤ C(‖g+
ε ‖C1,α(∂ω+

ε ) + ‖g−ε ‖C1,α(∂ω−
ε )) ≤ C(f, ϕ)ε.

It is now possible to use (ξ + ∇zε, η) as a test couple in (6.4). Doing so, we obtain first

1
2

∫
Ω\ωε

|ξ + ∇zε|2 dx =
1
2

∫
Ω\ωε

|∇u0
ε|2 dx+

∫
Ω\ωε

∇u0
ε · ∇zε dx+

1
2

∫
Ω\ωε

|∇zε|2 dx

≤ 1
2

∫
Ω\ωε

|∇u0
ε|2 dx+ C(f, ϕ)2ε (6.5)

and ∫
∂Ω

(ξ + ∇zε) · nϕ ds =
∫
∂Ω

∂u0
ε

∂n
ϕ ds. (6.6)

Besides,

1
2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx ≤ (1 + Cε)

1
2εaε

∫
ω1

1
1 + κdΩ−

η2
τ dx

= (1 + Cε)
1

2εaε

∫
σ

∫ 1

−1

η2
τ (x+ tn(x)) dt ds

= (1 + Cε)
εaε
4

∫
σ

(∂u0+
ε

∂τ
+
∂u0−

ε

∂τ

)2
ds

≤ (1 + Cε)
εaε
3

∫
σ

((∂u0+
ε

∂τ

)2
+
(∂u0−

ε

∂τ

)2
+
(∂u0+

ε

∂τ

)(∂u0−
ε

∂τ

))
ds,

where for the last estimate we used the algebraic inequality

∀a, b ∈ R,
1
4
(a+ b)2 =

1
3
(a2 + b2 + ab) − 1

12
(a− b)2 ≤ 1

3
(a2 + b2 + ab).

Using the uniform energy estimates of Lemma 5.1, we conclude

1
2εaε

∫
ω1

1 + εκdΩ−

1 + κdΩ−
η2
τ dx
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≤ εaε
3

∫
σ

((∂u0+
ε

∂τ

)2

+
(∂u0−

ε

∂τ

)2

+
(∂u0+

ε

∂τ

)(∂u0−
ε

∂τ

))
ds+ C(f, ϕ)2ε. (6.7)

On the other hand,

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx

≤ (1 + Cε)
ε

2aε

∫
ω1

(1 + κdΩ−)η2
n dx

= (1 + Cε)
ε

2aε

∫
σ

∫ 1

−1

(1 + tκ(x))2η2
n(x+ tn(x)) dt ds

= (1 + Cε)
ε

8aε

∫
σ

∫ 1

−1

(
− tεaε

(∂2u0+
ε

∂τ2
+
∂2u0−

ε

∂τ2

)
− εaε

3

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)
+
aε
ε

(u0+
ε − u0−

ε )
)2

dt ds

= (1 + Cε)
ε3aε
12

∫
σ

(∂2u0+
ε

∂τ2
+
∂2u0−

ε

∂τ2

)2

ds

+ (1 + Cε)
ε

4aε

∫
σ

(
− εaε

3

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)
+
aε
ε

(u0+
ε − u0−

ε )
)2

ds

= (1 + Cε)
ε3aε
12

∫
σ

(∂2u0+
ε

∂τ2
+
∂2u0−

ε

∂τ2

)2

ds+ (1 + Cε)
ε3aε
36

∫
σ

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)2

ds

− (1 + Cε)
εaε
6

∫
σ

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)
(u0+
ε − u0−

ε ) ds+ (1 + Cε)
aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds.

Due to the uniform energy estimates of Theorem 5.1, the first two integrals in the last expression
are easily controlled by C(f, ϕ)2ε2. When it comes to the third integral, one has

∣∣∣εaε
6

∫
σ

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)
(u0+
ε − u0−

ε ) ds
∣∣∣

≤ εaε
6

( ∫
σ

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)2

ds
) 1

2
(∫

σ

(u0+
ε − u0−

ε )2 ds
) 1

2

≤ ε

6

(
εaε

∫
σ

(∂2u0+
ε

∂τ2
− ∂2u0−

ε

∂τ2

)2
ds
) 1

2
(aε
ε

∫
σ

(u0+
ε − u0−

ε )2 ds
) 1

2

≤ C(f, ϕ)2ε,

since the integral terms in the product are each bounded by C(f, ϕ). We thus obtain the
estimate

ε

2aε

∫
ω1

1 + κdΩ−

1 + εκdΩ−
η2
n dx ≤ (1 + Cε)

aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds+ C(f, ϕ)2ε

≤ aε
4ε

∫
σ

(u0+
ε − u0−

ε )2 ds+ C(f, ϕ)2ε, (6.8)

where we again make use of the uniform energy estimate in Lemma 5.1. Application of the
auxiliary estimates (6.5)–(6.8) to (6.4) with the test couple (ξ + ∇zε, η) finally yields

E0
ε (u

0
ε) − Eε(uε) ≤ C(f, ϕ)2ε,

which is the desired lower bound on Eε(uε) − E0
ε (u0

ε).
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The End of Proof of Theorem 6.1 By a combination of the upper bound of the previous
subsection and the lower bound of this subsection, we obtain

−C(f, ϕ)2ε ≤ Eε(uε) − E0
ε (u

0
ε) ≤ C(f, ϕ)2ε

or
|Eε(uε) − E0

ε (u
0
ε)| ≤ C(‖f ||L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)2ε.

Insertion of this estimate into (6.1) and (6.2) respectively finally gives

‖uε − u0
ε‖L2(Ω+\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)ε,

‖uε − u0
ε‖L2

0(Ω
−\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)ε.

This completes the proof of Theorem 6.1.

Remark 6.1 The 0th order uniform approximation to uε is only unique modulo a function
that is of the order O(ε), uniformly in ε and aε. As a reflection of this, the energetic expression
E0
ε (of (4.12) is not unique either. A proof very similar to the one presented above (together with

corresponding uniform regularity and energy estimates) would reveal that the unique minimizer
to

Ẽ0
ε (v) :=

1
2

∫
Ω\σ

|∇v|2 dx+
εaε
2

∫
σ

((∂v+

∂τ

)2
+
(∂v−
∂τ

)2)
ds+

aε
4ε

∫
σ

(v+ − v−)2 ds−
∫

Ω

fv dx

is also a uniform 0th order approximation of uε.

7 Limit Behavior of u0
ε

So far, we have only discussed the approximation of uε in terms of the solution u0
ε to another

simpler minimization problem, which, however, still depends on ε and aε. When the behavior
of the sequence aε is known more precisely as ε→ 0, then explicit, ε and aε independent limit
behaviors of u0

ε (and thus of uε) can be derived.

7.1 The general case

Let us assume that both εaε and aε

ε have a limit as ε → 0, including possible limits of 0
and ∞. Remark that, in the general case, there always exists a subsequence εn → 0, such that
this is achieved. Since εaε � aε

ε , the limiting pair
(

lim
ε→0

εaε, lim
ε→0

aε

ε

)
has one of the five possible

forms (∞,∞), (a0,∞), (0,∞), (0, b0) and (0, 0), where 0 < a0 < ∞ and 0 < b0 < ∞ are
arbitrary constants. The following result describes the precise limiting behaviour of u0

ε (and
thus of uε) in each of these five cases.

Proposition 7.1 Let aε be any sequence of positive real numbers, and u0
ε ∈ Vσ be the unique

solution to the minimization problem (4.10). Suppose f ∈ Fδ for some δ > 0 and ϕ ∈ H
1
2 (∂Ω),

and suppose that both εaε and aε

ε have a limit as ε → 0, including possible limits of 0 and ∞.
The following five cases describe the associated limiting behaviour of u0

ε.
Case 1 εaε → ∞ (thus aε

ε → ∞). The limit of u0
ε is u∞∞ ∈ H1

c,σ(Ω) := {u ∈ H1(Ω), u =
cst on σ}, the unique solution to the minimization problem

min
u∈H1

c,σ(Ω)
u=ϕ on ∂Ω

E∞
∞ (u), E∞

∞(u) :=
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx, (7.1)
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and there exists a constant C independent of ε and aε, such that

‖u0
ε − u∞∞‖L2(Ω) ≤ C

εaε
(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

Case 2 εaε → a0 for a certain real value 0 < a0 < ∞ (thus aε

ε → ∞). The limit of u0
ε

is u∞a0
∈ H1(Ω) ∩ Vσ = {u ∈ H1(Ω), u|σ ∈ H1(σ)}, the unique solution to the minimization

problem

min
u∈H1(Ω)∩Vσ

u=ϕ on ∂Ω

E∞
a0

(u), E∞
a0

(u) :=
1
2

∫
Ω

|∇u|2 dx+ a0

∫
σ

(∂u
∂τ

)2
ds−

∫
Ω

fu dx, (7.2)

and there exists a constant C independent of ε and aε, such that

‖u0
ε − u∞a0

‖L2(Ω) ≤ C
(∣∣∣εaε
a0

− 1
∣∣∣+ ∣∣∣ a0

εaε
− 1
∣∣∣+ ε

aε

)
(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

Case 3 εaε → 0 and aε

ε → ∞. The limit of u0
ε is u∞0 ∈ H1(Ω), the unique solution to the

minimization problem

min
u∈H1(Ω)

u=ϕ on ∂Ω

E∞
0 (u), E∞

0 (u) :=
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx, (7.3)

and there exists a constant C independent of ε and aε, such that

‖u0
ε − u∞0 ‖L2(Ω) ≤ C

(
εaε +

ε

aε

)
(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

Case 4 aε

ε → b0 for a certain real value 0 < b0 < ∞ (thus εaε → 0). The limit of u0
ε is

ub00 ∈ H1(Ω \ σ), the unique solution to the minimization problem

min
u∈H1(Ω\σ)
u=ϕ on ∂Ω

Eb00 (u), Eb00 (u) :=
1
2

∫
Ω\σ

|∇u|2 dx+
b0
4

∫
σ

(u+ − u−)2 ds−
∫

Ω

fu dx, (7.4)

and there exists a constant C independent of ε and aε, such that

‖u0
ε − ub00 ‖L2(Ω+) + ‖u0

ε − ub00 ‖L2
0(Ω

−) ≤ C
(
εaε +

∣∣∣ aε
εb0

− 1
∣∣∣+ ∣∣∣εb0

aε
− 1
∣∣∣)(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

Case 5 aε

ε → 0 (thus εaε → 0). The limit of u0
ε is u0

0 ∈ H1(Ω \ σ), a solution to the
minimization problem

min
u∈H1(Ω\σ)
u=ϕ on ∂Ω

E0
0(u), E0

0 (u) :=
1
2

∫
Ω\σ

|∇u|2 dx−
∫

Ω

fu dx. (7.5)

This solution is unique up to an additive constant on Ω−. There exists a constant C independent
of ε and aε, such that

‖u0
ε − u0

0‖L2(Ω+) + ‖u0
ε − u0

0‖L2
0(Ω

−) ≤ C
(
εaε +

aε
ε

)
(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

The proof of this proposition again relies on Lemma 3.2. It is in many ways very similar to
the proof of Theorem 6.1, but simpler, so we only provide a sketch. A complete proof would
notably involve uniform estimates for the limit problems in the spirit of Theorem 5.1. Before
we proceed to the sketch of the proof, some remarks are in order.
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(i) The functional spaces involved in the minimization problems (7.1)–(7.3) feature functions
that belong (at least) toH1(Ω), and thus do not jump across σ. As a consequence, the derivation
of uniform energy estimates in the spirit of Lemma 5.1 does not require any assumption about
f other than f ∈ L2(Ω). The natural choice for the space H in the application of Lemma 3.2
is then L2(Ω), and so we obtain L2(Ω) estimates of the discrepancy between u0

ε and its limits.
The assumption

∫
Ω− f = 0 is not necessary in order to establish the results of Proposition 7.1

in Cases 1 through 3.
(ii) In Case 4, the assumption

∫
Ω− f = 0 is not required to ensure that the minimization

problem (7.4) has a unique solution. It is needed in order to ensure that one may obtain energy
estimates for u0

b0
that are uniform with respect to b0 (see the proof of Lemma 5.1). Lemma 3.2

then provides a uniform estimate for (u0
ε − u0

b0
) on Ω+, and a uniform estimate for the same

difference on Ω−, modulo a constant.
(iii) In Case 5, the assumption

∫
Ω− f = 0 is required to ensure that the minimization problem

(7.5) has a unique solution, which is defined up to a constant in Ω−. Note that the convergence
result expressed in this case is independent of this constant.

Proof (1) We use Lemma 3.2 with Vε = Vσ, Wε = H1
c,σ(Ω) and H = L2(Ω), and proceed

to estimate the difference |E0
ε (u

0
ε) − E∞

∞(u∞∞)|. Since H1
c,σ(Ω) ⊂ Vσ, we have

E0
ε (u

0
ε) − E∞

∞(u∞∞) ≤ E0
ε (u

∞
∞) − E∞

∞ (u∞∞)

=
1
2

∫
Ω\σ

|∇u∞∞|2 dx+
εaε
3
.0 +

aε
4ε
.0 −
∫

Ω

fu∞∞ dx

− 1
2

∫
Ω

|∇u∞∞|2 dx +
∫

Ω

fu∞∞ dx

= 0.

To obtain an upper bound for (E∞∞(u∞∞) − E0
ε (u0

ε)), we first rewrite E∞∞ (u∞∞) as

E∞
∞ (u∞∞) =

1
2

∫
Ω

|∇u∞∞|2 dx−
∫

Ω

fu∞∞ dx

=
∫
∂Ω

∂u∞∞
∂n

ϕ ds− 1
2

∫
Ω

|∇u∞∞|2 dx−
∫
σ

[∂u∞∞
∂n

]
u∞∞ ds.

Since u∞∞ amounts to a constant on σ, and since
∫
σ

[∂u∞
∞

∂n

]
ds = 0 (which is easily derived from

the fact that u∞∞ is the minimizer to (7.1)), we conclude that

E∞
∞ (u∞∞) =

∫
∂Ω

∂u∞∞
∂n

ϕ ds− 1
2

∫
Ω

|∇u∞∞|2 dx.

Now, introducing the dual energy principle for u0
ε established in Subsection 5.2, we obtain

E∞
∞(u∞∞) − E0

ε (u
0
ε) ≤

∫
∂Ω

∂u∞∞
∂n

ϕ ds− 1
2

∫
Ω

|∇u∞∞|2 −
∫
∂Ω

ξ · nϕ ds+
1
2

∫
Ω\σ

|ξ|2 dx

+
εaε
3

∫
σ

(w+2 + w−2 + w+w−) ds+
aε
4ε

∫
σ

z2 ds

for any ξ ∈ L2(Ω \ σ)2 and w+, w−, z ∈ L2(σ) satisfying the relations (5.6). Insertion of
ξ = ∇u∞∞, z = 0, and the two indefinite σ integrals

w+ = − 1
εaε

(
2
∫
∂u∞+

∞
∂n

ds+
∫
∂u∞−

∞
∂n

ds
)
,
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w− =
1
εaε

(
2
∫
∂u∞−

∞
∂n

ds+
∫
∂u∞+

∞
∂n

ds
)

in the above relation yields

E∞
∞ (u∞∞) − E0

ε (u
0
ε) ≤

1
εaε

∫
σ

(( ∫ ∂u∞+
∞
∂n

ds
)2

+
(∫ ∂u∞−

∞
∂n

ds
)2

+
(∫ ∂u∞+∞

∂n
ds
)(∫ ∂u∞−∞

∂n
ds
))

ds.

The result follows by using energy estimates for u∞∞.
(2) We rely again on Lemma 3.2 with Vε = Vσ, Wε = H1(Ω) ∩ Vσ and H = L2(Ω). As

H1(Ω) ∩ Vσ ⊂ Vσ , we have on one hand,

E0
ε (u

0
ε) − E∞

a0
(u∞a0

) ≤ E0
ε (u

∞
a0

) − E∞
a0

(u∞a0
)

=
1
2

∫
Ω\σ

|∇u∞a0
|2 dx+ εaε

∫
σ

(∂u∞a0

∂τ

)2

ds

− 1
2

∫
Ω

|∇u∞a0
|2 dx− a0

∫
σ

(∂u∞a0

∂τ

)2
ds

≤
∣∣∣εaε
a0

− 1
∣∣∣ a0

∫
σ

(∂u∞a0

∂τ

)2
ds.

The factor a0

∫
σ

(∂u∞
a0
∂τ

)2 ds is bounded by C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

)2, uniformly with respect

to a0 (as follows easily from standard energy estimates for the problem (7.2)).
On the other hand, the dual energy maximization principle for E∞

a0
(u∞a0

) reads

Ea0(u
∞
a0

) = max
( ∫

∂Ω

ξ · nϕ ds− 1
2

∫
Ω

|ξ|2 − 1
a0

∫
σ

w2 ds
)
,

where the maximum is taken over the set of functions ξ ∈ L2(Ω)2, w ∈ L2(σ), such that

−div(ξ) = f in Ω+ and in Ω−, [ξn] + 2
∂w

∂τ
= 0 on σ. (7.6)

The maximum is uniquely attained at ξ = ∇u∞a0
and w = a0

∂u∞
a0
∂τ . We thus obtain

E∞
a0

(u∞a0
) − E0

ε (u
0
ε) ≤

∫
∂Ω

∂u∞a0

∂n
ϕ ds− 1

2

∫
Ω

|∇u∞a0
|2 − a0

∫
σ

(∂u∞a0

∂τ

)2

ds−
∫
∂Ω

ξ · nϕ ds

+
1
2

∫
Ω\σ

|ξ|2 dx+
εaε
3

∫
σ

(w+2 + w−2 + w+w−) ds+
aε
4ε

∫
σ

z2 ds

for any ξ ∈ L2(Ω \ σ)2 and w+, w−, z ∈ L2(σ) satisfying (5.6). We now insert ξ = ∇u∞a0
,

together with

w+ = w− =
a0

εaε

∂u∞a0

∂τ

and z given by
aε
2ε
z =

∂u∞+
a0

∂n
+ a0

∂2u∞a0

∂τ2
=
∂u∞−

a0

∂n
− a0

∂2u∞a0

∂τ2
.

The last identity holds true because of (7.6), and it insures that this choice of ξ, w±, z satisfies
(5.6). As a result

E∞
a0

(u∞a0
) − E0

ε (u
0
ε) ≤ εaε

∫
σ

w+2 ds+
aε
4ε

∫
σ

z2 ds− a0

∫
σ

(∂u∞a0

∂τ

)2

ds
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≤
∣∣∣ a0

εaε
− 1
∣∣∣a0

∫
σ

(∂u∞a0

∂τ

)2

ds+
ε

aε

∫
σ

(∂u∞+
a0

∂n
+ a0

∂2u∞a0

∂τ2

)2

ds.

These upper and lower bounds for E0
ε (u

0
ε) − E∞

a0
(u∞a0

), in combination with the appropriate a
priori estimate for u∞a0

, lead to the desired conclusion.
(3) It is in every aspect simpler to handle than the other cases, and is left to the reader.
(4) Here we take Vε = Vσ, Wε = H1(Ω \ σ) and

H =
{
f ∈ L2(Ω),

∫
Ω−

f = 0
}
.

We obtain an upper bound for (E0
ε (u

0
ε)−Eb00 (ub00 )) by using v = ub00 as a “test function” in the

minimization of E0
ε :

E0
ε (u

0
ε) − Eb00 (ub00 ) ≤ E0

ε (u
b0
0 ) − Eb00 (ub00 )

≤ 1
2

∫
Ω\σ

|∇ub00 |2 dx+
εaε
2

∫
σ

((∂ub0+0

∂τ

)2
+
(∂ub0−0

∂τ

)2)
ds

+
aε
4ε

∫
σ

(ub0+0 − ub0−0 )2 ds

− 1
2

∫
Ω\σ

|∇ub00 |2 dx− b0
4

∫
σ

(ub0+0 − ub0−0 )2 ds

≤ C
(
εaε +

∣∣∣ aε
εb0

− 1
∣∣∣)(‖ϕ||

H
1
2 (∂Ω)

+ ‖f‖L2(Ω))2

for a constant C, which does not depend on b0 and ε, aε. Here we used the fact that

1
3
(a2 + b2 + ab) =

1
2
(a2 + b2) − 1

6
(a− b)2 ≤ 1

2
(a2 + b2),

and an appropriate a priori estimate for ub00 . In order to establish a satisfactory lower bound
on E0

ε (u0
ε) − Eb00 (ub00 )), we first observe that, as an immediate consequence of the variational

problem satisfied by ub00 , one has

∂ub0+0

∂n
=
∂ub0−0

∂n
=
b0
2

(ub0+0 − ub0−0 ) on σ. (7.7)

Now, using the dual energy maximization principle for E0
ε (see Subsection 5.2), and the fact

that

1
2

∫
Ω\σ

|∇ub00 |2 dx+
b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds−

∫
Ω

fub00 dx

=
∫
∂Ω

∂ub00
∂n

ϕ ds− 1
2

∫
Ω\σ

|∇ub00 |2 dx− b0
4

∫
σ

(ub0+
0 − ub0−0 )2 ds, (7.8)

we obtain

Eb00 (ub00 ) − E0
ε (u

0
ε) ≤

∫
∂Ω

∂ub00
∂n

ϕ ds− 1
2

∫
Ω\σ

|∇ub00 |2 dx− b0
4

∫
σ

(ub0+0 − ub0−0 )2 ds

−
∫
∂Ω

ξ · nϕ ds+
1
2

∫
Ω\σ

|ξ|2 dx+
εaε
2

∫
σ

(w+2 + w−2) ds+
aε
4ε

∫
σ

z2 ds
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for any ξ ∈ L2(Ω \ σ)2 and w+, w−, z ∈ L2(σ) satisfying (5.6). Due to (7.7), we may choose
ξ = ∇ub00 , w+ = w− = 0 and z = εb0

aε
(ub0+0 −ub0−0 ) for insertion into the last line of the previous

inequality. This yields

Eb00 (ub00 ) − E0
ε (u

0
ε) ≤

aε
4ε

∫
σ

z2 ds− b0
4

∫
σ

(ub0+0 − ub0−0 )2 ds

≤
(εb0
aε

− 1
)b0

4

∫
σ

(ub0+
0 − ub0−0 )2 ds

≤ C
(εb0
aε

− 1
)
(‖ϕ‖

H
1
2 (∂Ω)

+ ‖f‖L2(Ω))2

for some constant C which is independent of b0 and ε, aε. Here we used the same algebraic
inequality as before, and an appropriate a priori estimate for ub00 . In summary, we have proved

|E0
ε (u

0
ε) − Eb00 (ub00 )| ≤ C

(
εaε +

∣∣∣ aε
εb0

− 1
∣∣∣+ ∣∣∣εb0

aε
− 1
∣∣∣)(‖ϕ‖

H
1
2 (∂Ω)

+ ‖f‖L2(Ω)

)2

,

and by Lemma 3.2 this yields the desired estimate for ‖u0
ε − ub00 ‖L2(Ω+) + ‖u0

ε − ub00 ‖L2
0(Ω

−).
(5) In this last case, we take Vε = Vσ, Wε = {v ∈ H1(Ω \ σ),

∫
Ω− v dx = 0} (a set over

which the minimization problem (7.5) has a unique solution) and

H =
{
f ∈ L2(Ω),

∫
Ω−

f = 0
}
.

The proof proceeds along the same lines as in the previous case(s), and is left to the reader.

7.2 A closer look at the case aε = a, independent of ε

In this section, we make some observations pertaining to the case when the coefficient aε is
independent of ε, in other words when

aε = a, where a > 0 is a fixed real number.

Following the discussions in Section 6 and Subsection 7.1, two 0th-order approximations of the
solution uε to (2.2) are available in this case, namely,

uε = u0
ε + O(ε), (7.9)

which we shall refer to as the 0th order uniform expansion of uε, and

uε = u∞0 + O
(
aε+

ε

a

)
, (7.10)

which we shall refer to as the 0th order “natural asymptotic” expansion of uε. The latter is just
the one term Taylor expansion of uε with respect to ε (at zero). u∞0 is the unique solution to

−Δu∞0 = f in Ω, u∞0 = ϕ on ∂Ω.

The particular form of the remainder term in (7.10) follows from (7.9) and Case 3 of Proposition
7.1. We recall that u0

ε ∈ Vσ is the unique solutions to (4.10) (or (5.4)).
From Proposition 7.1, we know that

u0
ε = u∞0 + O

(
aε+

ε

a

)
,
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and so a Taylor expansion of u0
ε with respect to ε also starts with the term u∞0 . We would like

to understand a little better the answer to the following question “in the process of correcting
u∞0 to make it into a uniform approximation to uε in terms of the conductivity coefficient a, will
it suffice to add just a finite number of terms in the Taylor series (of u0

ε)?”. For that purpose
we now derive the specific form of the first-order Taylor expansion

u0
ε = u∞0 + εu1 + Oa(ε2).

To this end, we follow the strategy employed before. As a first step, we define the (ε-
dependent) function u1 ∈ Vσ by the relation u0

ε = u∞0 + εu1, and write a minimization problem
satisfied by u1. We then approximate this problem by using heuristic arguments, and define u1

as the solution to this simplified problem. In spite of the heuristic nature of our derivation, it
is possible to prove that u1 = u1 + O(ε) (we shall, however, omit the proof here).

Step 1 Derivation of a minimization problem for u1. Due to the definition of u0
ε, u1 arises

as the unique minimizer in Vσ,0 of the following energy:

J1
ε (u) =

1
ε
(E0

ε (u
∞
0 + εu) − E0

ε (u
∞
0 )).

A simple calculation gives

J1
ε (u) = ε

(1
2

∫
Ω\σ

|∇u|2 dx+
εa

3

∫
σ

((∂u+

∂τ

)2

+
(∂u−
∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

+
a

4ε

∫
σ

(u+ − u−)2 ds
)

+
∫

Ω\σ
∇u∞0 · ∇u dx

+ εa

∫
σ

∂u∞0
∂τ

(∂u+

∂τ
+
∂u−

∂τ

)
ds−

∫
Ω

fu dx

= ε
(1

2

∫
Ω\σ

|∇u|2 dx+
εa

3

∫
σ

((∂u+

∂τ

)2

+
(∂u−
∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

− a

∫
σ

∂2u∞0
∂τ2

(u+ + u−) ds
)

+
a

4

∫
σ

(u+ − u−)2 ds

−
∫
σ

∂u∞0
∂n

(u+ − u−) ds. (7.11)

Step 2 Simplification of the minimization problem of J1
ε (u). It seems reasonable to assume

that the minimization process of J1
ε (u) will principally seek to minimize the terms of order 0

as ε→ 0, that is, the two terms

a

4

∫
σ

(u+ − u−)2 ds−
∫
σ

∂u∞0
∂n

(u+ − u−) ds.

The minimum of this last expression is achieved when (u+ −u−) = 2
a
∂u∞

0
∂n on σ. Subject to this

relation, the minimization process should then concentrate on the first order terms

ε
(1

2

∫
Ω\σ

|∇u|2 dx− a

∫
σ

∂2u∞0
∂τ2

(u+ + u−) ds
)
.

Using the corresponding Euler-Lagrange equations, we are led to a candidate u1 ∈ Vσ,0 (for the
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0th-order approximation to u1), that is characterized as the solution to the following problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu1 = 0 in Ω \ σ,
u1 = 0 on ∂Ω,

[u1] =
2
a

∂u∞0
∂n

on σ,[∂u1

∂n

]
= −2a

∂2u∞0
∂τ2

on σ.

(7.12)

It is indeed possible to prove the following proposition.

Proposition 7.2 Let u1 ∈ H1(Ω \ σ) be the unique solution to (7.12). There exists a
constant C, which only depends on Ω, σ and a, such that

‖∇(u0
ε − u∞0 − εu1)‖L2(Ω\σ)2 ≤ Cε2(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

The proof of this is fairly straightforward, and follows by carefully considering the boundary
value problem satisfied by u0

ε − u∞0 − εu1 = ε(u1 − u1). We leave the details to the reader. The
fact that u1 degenerates like a and 1

a when a tends to ∞ and 0, respectively, strongly indicates
that the estimate u0

ε − u∞0 = O(aε+ ε
a ) is the best possible. Higher order terms in the Taylor

series of u0
ε could be calculated, and they would degenerate too when a tends to ∞ and 0. This

would strongly indicate that no finite Taylor expansion of u0
ε (at zero) would achieve a uniform

approximation to u0
ε (that is uniform with respect to a).

It is interesting to compare the above calculation of the first two terms in the Taylor Series
of u0

ε to the calculation carried out in [7]. In that paper, the authors considered the Neumann
version of the problem (2.2) in the case that aε = a, and they calculated the first two terms in
the ε→ 0 asymptotic expansion of the solution to the problem⎧⎨

⎩
−div(γε∇uε) = 0 in Ω,

γε
∂uε
∂n

= ψ on ∂Ω,

(i.e., the case f = 0) which we shall also call uε, since the difference in the type of boundary
conditions on ∂Ω and source in Ω plays no role for the discussion here. γε is defined by (2.1)
as before. The result in [7] is

uε(y) = u∞0 (y) + εũ1(y) + o(ε), ∀y ∈ ∂Ω. (7.13)

In this formula, the function ũ1 is defined in terms of the Neumann function N(x, y) of Ω, a
polarization tensor M(x), and the harmonic function u∞0 ,

ũ1(y) = 2
∫
σ

(a− 1)M(x)∇u∞0 (x) · ∇xN(x, y) ds(x), y /∈ σ.

The polarization tensor M(x) is for x ∈ σ given by M(x) =
(

1 0
0 1

a

)
in the local basis

(τ(x), n(x)), and the Neumann function is the solution to⎧⎪⎨
⎪⎩

ΔxN(x, y) = δy in Ω,

∂

∂nx
N(x, y) =

1
|∂Ω| on ∂Ω,
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where δy is the Dirac distribution centered at x = y. Equivalently, due to the jump relations
for single and double layer potentials (see, e.g., [16, Chapter 3]), ũ1 ∈ H1(Ω \ σ) is the unique
solution (modulo a constant) to the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δũ1 = 0 in Ω \ σ,
∂ũ1

∂n
= 0 on ∂Ω,

[ũ1] = −2
(
1 − 1

a

)∂u∞0
∂n

on σ,[∂ũ1

∂n

]
= −2(a− 1)

∂2u∞0
∂τ2

on σ.

(7.14)

We immediately notice that the boundary value problems satisfied by u1 and ũ1 imply that
the difference u1− ũ1 is uniformly bounded with respect to a. If the same thing were to happen
for higher terms in the Taylor series, then it would be very consistent with the fact that the
difference uε − u0

ε is uniformly bounded with respect to a. It would also strongly suggest that
no finite Taylor expansion of uε would lead to a uniform approximation (that is uniform in a).

8 Derivation of the 1st-Order Approximation of uε

In the previous sections, we have derived a uniform 0th-order approximation (u0
ε, v

0
ε) ∈

Vσ ×H1(ω1) to the couple (uε|Ω\ωε
, uε ◦Hε) ∈ H1(Ω \ ωε) ×H1(ω1). Properly speaking, we

only proved that u0
ε is a uniform approximation of uε|Ω\ωε

“far away from the curve σ”, that
is, on subsets of Ω of the form Ω \ ωδ for some fixed δ > 0. However, the proof of this fact
made use of the heuristic approximate guess v0

ε for the potential (uε ◦Hε) inside the rescaled
inhomogeneity.

Relying on the same strategy, we now briefly outline the derivation of a uniform first-order
approximation result for the solution uε to (2.2). We note that the 0th- and first-order analyses
turn out to share a lot of common features. Thus for the sake of brevity, we shall omit some of
the very tedious calculations related to the latter.

We start from the rescaled form of the problem (4.1) as established in Subsection 4.1.1. The
couple (uε|Ω\ωε

, uε ◦Hε) is the unique minimizer of the energy

F 0
ε (u, v) =

1
2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂v
∂τ

)2

dx

+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

( ∂v
∂n

)2

dx−
∫

Ω

fu dx,

among the elements of the space

V 0
ε =
{

(u, v), u ∈ H1(Ω \ ωε), v ∈ H1(ω1), ∀x ∈ σ,
v(x+ n(x)) = u(x+ εn(x))
v(x− n(x)) = u(x− εn(x))

}
,

that additionally satisfies u = ϕ on ∂Ω. We have seen that a uniform 0th-order approximation
of this couple (in the sense described above) is (u0

ε, v
0
ε) ∈ V 0, where V 0 is defined in (4.6), u0

ε

is defined as the solution to the minimization problem (4.10), and v0
ε is given by (4.13). For

technical convenience, we define the couple (uε, vε) ∈ H1(Ω \ ωε) ×H1(ω1) by the identity

(uε|Ω\ωε
, uε ◦Hε) = (u0

ε + ε(yε + uε), v0
ε + ε(wε + vε)), (8.1)



Uniform Asymptotic Expansion of the Voltage Potential 331

where yε ∈ H1(Ω \ ωε) denotes the unique solution to the problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δyε = 0 in Ω \ ωε,
yε = 0 on ∂Ω,

yε(x+ εn(x)) =
∂u0+

ε

∂n
(x) − 1

ε
(u0
ε(x+ εn(x)) − u0+

ε (x)) x ∈ σ,

yε(x− εn(x)) = −∂u
0−
ε

∂n
(x) − 1

ε
(u0
ε(x− εn(x)) − u0−

ε (x)) x ∈ σ,

and wε ∈ H1(ω1) is given by the formula

wε(x + tn(x))

=
t

2

(∂u0+
ε

∂n
(x) +

∂u0−
ε

∂n
(x)
)

+
1
2

(∂u0+
ε

∂n
(x) − ∂u0−

ε

∂n
(x)
)
, ∀x ∈ σ, ∀t ∈ (−1, 1). (8.2)

We note that (x± εn(x)) describes ∂ω±
ε as x runs through σ. Due to the introduction of these

two auxiliary functions yε and wε, the “unknown” couple (uε, vε) has no “jump” from ∂ωε to
∂ω1, i.e., (uε, vε) lies in V 0

ε . Note that, using the uniform regularity estimates of Theorem 5.1
and arguing as we did for the study of the function zε in Subsection 6.1, we may easily prove
that

‖yε‖L2(Ω+\ωδ) + ‖yε‖L2
0(Ω

−\ωδ) + ‖∇yε‖L2(Ω\ωδ) ≤ C(‖f ||L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

)ε. (8.3)

From its definition, (uε, vε) is the unique minimizer of the functional

F 1
ε (u, v) :=

1
ε
(F 0
ε (u0

ε + ε(yε + u), v0
ε + ε(wε + v)) − F 0

ε (u0
ε + εyε, v

0
ε + εwε)),

among the couples (u, v) ∈ V 0
ε , such that u = 0 on ∂Ω. To find a uniform 0th-order approxi-

mation to (uε, vε), we expand the functional F 1
ε (u, v) as follows:

F 1
ε (u, v) =

(1
2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂v
∂τ

)2

dx+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

( ∂v
∂n

)2

dx

+
∫

Ω\ωε

∇yε · ∇u dx+ εaε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

∂wε
∂τ

∂v

∂τ
dx

+
aε
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

∂wε
∂n

∂v

∂n
dx
)
ε+
∫

Ω\ωε

∇u0
ε · ∇u dx

+ εaε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

∂v0
ε

∂τ

∂v

∂τ
dx+

aε
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

∂v0
ε

∂n

∂v

∂n
dx−

∫
Ω

fu dx. (8.4)

We observe that the quadratic part of this energy is the same as that of the 0th-order energy
F 0
ε (modulo a factor of ε). The linear part has two components, correponding to the first three

linear terms and the last four linear terms of (8.4), respectively. Following this splitting of the
linear part, we decompose (uε, vε) as

(uε, vε) = (u1,ε, v1,ε) + (u2,ε, v2,ε), (8.5)

where (u1,ε, v1,ε) and (u2,ε, v2,ε) ∈ V 0
ε are the unique minimizers of the respective energies

F 1,1
ε (u, v) and F 1,2

ε (u, v), defined by

F 1,1
ε (u, v) =

1
2

∫
Ω\ωε

|∇u|2 dx +
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂wε
∂τ

+
∂v

∂τ

)2

dx
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+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(∂wε
∂n

+
∂v

∂n

)2
dx+

∫
Ω\ωε

∇yε · ∇u dx (8.6)

and

F 1,2
ε (u, v) =

(1
2

∫
Ω\ωε

|∇u|2 dx+
εaε
2

∫
ω1

1 + κdΩ−

1 + εκdΩ−

(∂v
∂τ

)2
dx

+
aε
2ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

(∂v
∂n

)2
dx
)
ε+
∫

Ω\ωε

∇u0
ε · ∇u dx

+ εaε

∫
ω1

1 + κdΩ−

1 + εκdΩ−

∂v0
ε

∂τ

∂v

∂τ
dx+

aε
ε

∫
ω1

1 + εκdΩ−

1 + κdΩ−

∂v0
ε

∂n

∂v

∂n
dx−

∫
Ω

fu dx. (8.7)

Note that the definition of F 1,1
ε slightly differs from the sum of the quadratic terms and the

first three linear terms of (8.4) by an additive term that only depends on wε (and a factor of
ε), which has no effect on the solution to the corresponding minimization problem.

8.1 0th-order approximation of the couple (u1,ε, v1,ε)

To obtain a 0th-order approximation (u1,ε, v1,ε) of (u1,ε, v1,ε), we follow the same strategy
as in Section 4. We use a heuristic argument to build an approximate two-scale minimization
problem

min
(u,v)∈V 0

u=0 on ∂Ω

F 1,1
ε (u, v). (8.8)

This problem can now (heuristically) be solved for v in terms of u, leading to a minimization
problem featuring only u. This process yields a candidate (u1,ε, v1,ε) for a uniform 0th-order
approximation of (u1,ε, v1,ε). Then we can rigorously prove a uniform approximation estimate,
using arguments similar to those of Section 6. This estimate would assert that

‖u1,ε − u1,ε‖L2(Ω+\ωδ) + ‖u1,ε − u1,ε‖L2
0(Ω

−\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

)
√
ε

with C independent of ε and aε. For brevity, we shall not present the proof of this estimate
here, instead we limit ourselves to describing the heuristic derivation of the approximate energy
F 1,1
ε .

Arguing as in Section 4, and relying on the estimate (8.3), we approximate the quantity
F 1,1
ε (u, v) by

F 1,1
ε (u, v) :=

1
2

∫
Ω\σ

|∇u|2 dx+
εaε
2

∫
ω1

(1 + κdΩ−)
(∂wε
∂τ

+
∂v

∂τ

)2

dx

+
aε
2ε

∫
ω1

1
1 + κdΩ−

(∂wε
∂n

+
∂v

∂n

)2

dx. (8.9)

The problem (8.8) can now be rewritten as

min
u∈Vσ

u=0 on ∂Ω

{1
2

∫
Ω\σ

|∇u|2 dx+G1
ε(u)
}
,

where we define

G1
ε(u):= min

v∈H1(ω1)
v(x+n(x))=u+(x), x∈σ

v(x−n(x))=u−(x), x∈σ

{εaε
2

∫
ω1

(1 + κdΩ−)
(∂wε
∂τ

+
∂v

∂τ

)2

dx
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+
aε
2ε

∫
ω1

1
1 + κdΩ−

(∂wε
∂n

+
∂v

∂n

)2
dx
}
. (8.10)

We (heuristically) solve this minimization problem to get an explicit approximate expression
for G1

ε(u) in terms of u. To this end, we notice that G1
ε(u) features two terms with different

behavior as ε → 0. Intuitively, the minimizer vu of this composite energy will to lowest order
be determined by the term

∫
ω1

1
1+κdΩ−

(
∂wε

∂n + ∂v
∂n

)2 dx. The corresponding Euler-Lagrange
equation asserts that vu must satisfy∫

ω1

1
1 + κdΩ−

(∂vu
∂n

+
∂wε
∂n

)∂w
∂n

dx = 0, ∀w ∈ H1
0 (ω1).

Arguing as in Subsection 4.1.1 (that is, taking w(x + tn(x)) = φ(x)ψ(t) with arbitrary φ ∈
C∞(σ) and ψ ∈ C∞

c (−1, 1), and using Proposition 2.1), we conclude that the function t 
→
vu(x+ tn(x)) is affine for any fixed x ∈ σ. The boundary conditions of the problem (8.10) now
give

vu(x+ tn(x)) =
t

2
[u](x) +

1
2
(u+(x) + u−(x)), ∀x ∈ σ, t ∈ (−1, 1).

Inserting this expression into (8.10), and using (8.2) as well as Proposition 2.1, we arrive at the
minimization problem

min
u∈Vσ

u=0 on ∂Ω

E1
ε (u), (8.11)

where E1
ε (u) := F 1,1

ε (u, vu) has the following expression:

E1
ε (u) :=

1
2

∫
Ω\σ

|∇u|2 dx +
aε
4ε

∫
σ

(
u+ +

∂u0+
ε

∂n
−
(
u− − ∂u0−

ε

∂n

))2

ds

+
εaε
3

∫
σ

(( ∂
∂τ

(
u+ +

∂u0+
ε

∂n

))2
+
( ∂
∂τ

(
u− − ∂u0−

ε

∂n

))2

+
( ∂
∂τ

(
u+ +

∂u0+
ε

∂n

))( ∂
∂τ

(
u− − ∂u0−

ε

∂n

)))
ds.

The solution u1,ε to this minimization problem is our candidate for a uniform approximation
to u1,ε. The function v1,ε ∈ H1(ω1) defined in the rescaled inhomogeneity by

∀x ∈ σ, t ∈ (−1, 1), v1,ε(x+ tn(x)) =
t

2
[u1,ε](x) +

1
2
(u+

1,ε(x) + u−1,ε(x))

is our candidate for an approximation to v1,ε.

8.2 0th-order approximation of the couple (u2,ε, v2,ε) and the uniform first order
approximation result

Let us now turn our attention to the uniform approximation of the solution (u2,ε, v2,ε) to
the problem

min
(u,v)∈V 0

ε
u=0 on ∂Ω

F 1,2
ε (u, v), (8.12)

where the energy F 1,2
ε (u, v) is given by (8.7). Performing calculations somewhat more com-

plicated than those in the previous section it is possible heuristically to arrive at a candidate
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(u2,ε, v2,ε) for a uniform approximation. We shall not present these calculations here, but only
state the result as follows.

The function u2,ε is the solution to the problem

min
u∈Vσ

u=0 on ∂Ω

E2
ε (u), (8.13)

where the functional E2
ε is given by

E2
ε (u) =

1
2

∫
Ω\σ

|∇u|2 dx+
εaε
3

∫
σ

((∂u+

∂τ

)2

+
(∂u−
∂τ

)2

+
∂u+

∂τ

∂u−

∂τ

)
ds

+
aε
4ε

∫
σ

(u+ − u−)2 ds+
∫
σ

∂2u0+
ε

∂τ2
u+ ds

+
∫
σ

∂2u0−
ε

∂τ2
u− ds+

1
4

∫
σ

κ
[∂u0

ε

∂n

]
(u+ − u−) ds. (8.14)

The function v2,ε ∈ H1(ω1) is defined as

v2,ε(x + tn(x)) =
t

2
[u2,ε](x) +

1
2
(u+

2,ε(x) + u−2,ε(x)) + w2,ε, ∀x ∈ σ, ∀t ∈ (−1, 1), (8.15)

the function w2,ε ∈ H1(ω1) being given by{
w2,ε(x+ tn(x)) = t2a+(x) + tb(x) + c(x), ∀t ∈ (0, 1), x ∈ σ,
w2,ε(x+ tn(x)) = t2a−(x) + tb(x) + c(x), ∀t ∈ (−1, 0), x ∈ σ,

∀x ∈ σ (8.16)

with

a±(x) = −εκ(x)
2aε

∂u0±
ε

∂n
(x) +

ε

4

(∂2u0+
ε

∂τ2
+
∂2u0−

ε

∂τ2

)
(x), b(x) =

εκ(x)
4aε

[∂u0
ε

∂n

]
(x),

c(x) =
εκ(x)
4aε

(∂u0+
ε

∂n
(x) +

∂u0−
ε

∂n
(x)
)
− ε

4

(∂2u0+
ε

∂τ2
+
∂2u0−

ε

∂τ2

)
(x).

It is then possible to prove that

‖u2,ε − u2,ε‖L2(Ω+\ωδ) + ‖u2,ε − u2,ε‖L2
0(Ω

−\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

)
√
ε

with C independent of ε and aε. Combining the decompositions (8.1) and (8.5) with (8.3) and
the above estimates for u1,ε−u1,ε and u2,ε−u2,ε, we would now arrive at the following theorem.

Theorem 8.1 In the situation described in Section 2.1, let δ > 0 be a fixed positive real
number, f ∈ Fδ and ϕ ∈ H

1
2 (∂Ω). Let uε ∈ H1(Ω) be the unique solution of the minimization

problem (4.1), let u0
ε be the unique solution to (4.10) and u1,ε, u2,ε be the unique solutions to

(8.11) and (8.13). Then the following estimates hold for ε > 0 sufficiently small:

‖uε − u0
ε − ε(u1,ε + u2,ε)‖L2(Ω+\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)ε
3
2 ,

‖uε − u0
ε − ε(u1,ε + u2,ε)‖L2

0(Ω
−\ωδ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)ε
3
2 ,

where the constant C depends only on Ω and σ, and is independent of f , ϕ, ε and the sequence
aε.
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Remark 8.1 In view of these results it is interesting to expand a little on the discussion
of Subsection 7.2, concerning the comparison between the uniform asymptotic expansion of uε
(uniform, with respect to the conductivity aε) and the “natural” asymptotic expansion (7.13)
in the particular case, where aε is a fixed real number a > 0 independent of ε.

For fixed aε = a, arguing as in Subsection 7.2, one may show that the following expansion
holds for the first-order term (u1,ε + u2,ε) of the uniform asymptotic expansion of uε as ε→ 0:

u1,ε + u2,ε = U1 + Oa(ε),

where U1 ∈ Vσ,0 is characterized by the following equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ΔU1 = 0 in Ω\σ,
U1 = 0 on ∂Ω,

[U1] = −2
∂u∞0
∂n

on σ,[∂U1

∂n

]
= 2

∂2u∞0
∂τ2

on σ.

Hence, it is verified exactly how the first-order term ũ1 of the a-dependent “natural” asymptotic
expansion of uε (defined as in (7.14), but with a homogeneous Dirichlet boundary condition
on ∂Ω) decomposes as the sum of the first-order term u1 of the principal uniform expansion
u0
ε (defined by (7.12)) and of the leading term U1 of the first-order term (u1,ε + u2,ε) in the

uniform expansion of uε.

9 Appendix Proof of the Uniform Regularity Estimates for u0
ε

This appendix is devoted to the proof of Theorem 5.1. For the reader’s convenience, let us
first recall a useful characterization of W 1,p spaces. Let Ω ⊂ R

2 be an open set, and suppose
1 < p ≤ ∞; define 1 ≤ p′ < ∞ by the relation 1

p + 1
p′ = 1. For any function u ∈ Lp(Ω), any

open subset V � Ω and any vector h ∈ R
2 with |h| < dist(V, ∂Ω), we define the difference

quotient Dhu ∈ Lp(V ) by

Dhu(x) =
u(x+ h) − u(x)

|h| , ∀x ∈ V.

If Ω and V are both convex, then it is fairly simple to prove that

‖Dhu‖Lp(V ) ≤ ‖∇u‖Lp(Ω)

for any vector h ∈ R
2 with |h| < dist(V, ∂Ω). The related complete characterization of W 1,p

spaces which we have in mind is the following (see [8, Proposition 9.3]).

Proposition 9.1 Let u ∈ Lp(Ω). Then the following assertions are equivalent:
(i) u belongs to W 1,p(Ω).
(ii) There exists a constant C > 0, such that∣∣∣ ∫

Ω

u
∂v

∂xi
dx
∣∣∣ ≤ C‖v‖Lp′(Ω) for any v ∈ C∞

c (Ω), ∀i = 1, 2.

(iii) There exists a constant C > 0, such that for any open subset V � Ω,

lim sup
h→0

‖Dhu‖Lp(V ) ≤ C.
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Furthermore, the smallest constant C satisfying (ii) or (iii) is C = ‖∇u‖Lp(Ω).

We are now in position to prove the desired result.

Proof of Theorem 5.1 The proof of this result is an adaptation of that of Theorem 9.25
in [8], and relies on the method of translations. First we observe that, by a standard argument
of partition of unity, it is enough to prove that u0

ε belongs to H2(V \ σ) and that the estimate
(5.11) holds with V \ σ instead of Ω \ σ, where V is a sufficiently small (convex) neighborhood
in Ω of an arbitrary point x0 ∈ Ω. Three cases must be distinguished as follows:

(i) x0 belongs to Ω \ σ.
(ii) x0 lies on ∂Ω.
(iii) x0 lies on σ.
The uniform estimate (5.12) arises as a consequence of the treatment of Case (iii).
Case (i) Let V and W be open convex subsets of Ω+ (or Ω−) with V � W � Ω+ (or Ω−).

Let χ ∈ C∞
c (Ω \ σ) be a smooth cutoff function with

χ ≡ 1 on V, χ ≡ 0 on Ω \W, 0 ≤ χ ≤ 1.

Then, for any test function v ∈ H1(Ω \ σ),∫
W

∇(χu0
ε) · ∇v dx =

∫
W

χ∇u0
ε · ∇v dx+

∫
W

u0
ε∇χ · ∇v dx

=
∫
W

∇u0
ε · ∇(χv) dx−

∫
W

v∇u0
ε · ∇χ dx+

∫
W

u0
ε∇χ · ∇v dx

=
∫
W

fχv dx−
∫
W

v∇u0
ε · ∇χ dx +

∫
W

u0
ε∇χ · ∇v dx, (9.1)

where we used the variational formulation (5.1) with a test function whose support is compact
in Ω \ σ. Let us now define wε := χu0

ε. Our goal is to use the method of translations to show
that ∇wε belongs to H1(Ω \ σ). Let h ∈ R

2 be any vector of sufficiently small length, and let
us insert D−hDhwε ∈ H1(Ω \ σ) as a test function in (9.1). The result is∫

Ω\σ
|∇Dhwε|2 dx =

∫
Ω\σ

Dh(χf)Dhwε dx−
∫

Ω\σ
(D−hDhwε)∇u0

ε · ∇χ dx

+
∫

Ω\σ
Dhu

0
ε∇χ(x+ h) · ∇Dhwε dx+

∫
Ω\σ

u0
ε∇Dhχ · ∇Dhwε dx. (9.2)

Here we use the following formula for the difference quotient of a product:

Dh(uv)(x) = Dhu(x)v(x + h) + u(x)Dhv(x),

as well as “discrete integration by parts” for the difference quotients (which is nothing but
change of variables in the corresponding integrals). We recall that for h sufficiently small

(
less

than 1
2dist(W,∂(Ω \ σ))

)
, Dhwε has compact support in some convex W̃ , with W � W̃ � Ω+

(or Ω−). From (9.2), we now obtain

lim sup
h→0

‖∇Dhwε‖2
L2(W̃ )

≤ C lim sup
h→0

‖Dh(χf)‖
H−1(W̃ )

lim sup
h→0

‖Dhwε‖H1(W̃ )

+ C lim sup
h→0

‖D−hDhwε‖L2(W̃ )‖∇u0
ε‖L2(W̃ )
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+ C
(

lim sup
h→0

‖Dhu
0
ε‖L2(W̃ )

+ ‖u0
ε‖L2(W̃ )

)
lim sup
h→0

‖∇Dhwε‖L2(W̃ )

≤ C(‖u0
ε‖L2(W̃ )

+ ‖∇u0
ε‖L2(W̃ )

) lim sup
h→0

‖∇Dhwε‖L2(W̃ )

+ C‖f‖L2(Ω) lim sup
h→0

‖Dhwε‖H1(W̃ ). (9.3)

Using the Poincaré inequality for H1(W̃ ) functions vanishing on ∂W̃ , we have that there exists
a constant C which only depends on W̃ , such that

‖Dhwε‖H1(W̃ )
≤ C‖∇Dhwε‖L2(W̃ )

.

From (9.3), we conclude that

lim sup
h→0

‖∇Dhwε‖2
L2(W̃ )

≤ C(‖f‖L2(Ω) + ‖u0
ε‖L2(W̃ )

+ ‖∇u0
ε‖L2(W̃ )

) lim sup
h→0

‖∇Dhwε‖L2(W̃ )
. (9.4)

If W̃ � Ω+, then, due to Lemma 5.1,

‖u0
ε‖L2(W̃ )

+ ‖∇u0
ε‖L2(W̃ )

≤ ‖u0
ε‖L2(Ω+) + ‖∇u0

ε‖L2(Ω+)

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

).

On the other hand, if W̃ is a subset of Ω−, then we have a priori no bound on ‖u0
ε‖L2(Ω−). To

circumvent this, we note that from the very beginning, we could rewrite the entire argument by
replacing u0

ε in the various integral inequalities by u0
ε−m, wherem is an arbitrary constant. This

includes the definition of wε, which now becomes wε = χ(u0
ε−m). We selectm = 1

|Ω−|
∫
Ω− u

0
ε dx,

and from the “revised” version of (9.4), we now obtain

lim sup
h→0

‖∇Dhwε‖L2(W̃ )
≤ C(‖f‖L2(Ω) + ‖u0

ε −m‖L2(Ω−) + ‖∇u0
ε‖L2(Ω−))

≤ C(‖f‖L2(Ω) + ‖∇u0
ε‖L2(Ω−))

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

),

owing to the Poincaré-Wirtinger inequality and Lemma 5.1. Whether W̃ is a subset of Ω+ or
Ω−, Proposition 9.1 now allows us to conclude that all the entries of the Hessian matrix ∇2wε

belong to L2(W ), and that the following inequality holds:

|u0
ε|H2(V ) ≤ |wε|H2(W ) ≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

).

Case (ii) The proof in this case is similar to that of (i), modulo the usual changes of the
method of translation due to the presence of the boundary (see [8, Theorem 9.25] again). We
omit the details and concentrate instead on those of Case (iii).

Case (iii) Let V � Ω be a sufficiently small convex neighborhood of the point x0 ∈ σ. Let
W be another convex open subset of Ω, such that V � W � Ω, and let χ ∈ C∞

c (Ω) be a smooth
cutoff function, such that

χ ≡ 1 on V, χ ≡ 0 on Ω \W, 0 ≤ χ ≤ 1.
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To simplify notations, we assume that σ∩W is flat (the general case being no more difficult, but
more involved as far as notations are concerned). The tangent vector τ to σ is the coordinate
vector ex, and the normal vector n, pointing outward from Ω−, is ey. Following the steps of the
proof of (i), let wε = χ(u0

ε −m) for some constant m to be specified later. A simple calculation
reveals that wε satisfies∫

Ω\σ
∇wε · ∇v dx+

2εaε
3

∫
σ

(∂w+
ε

∂τ

∂v+

∂τ
+
∂w−

ε

∂τ

∂v−

∂τ
+

1
2

(∂w+
ε

∂τ

∂v−

∂τ
+
∂w−

ε

∂τ

∂v+

∂τ

))
ds

+
aε
2ε

∫
σ

(w+
ε − w−

ε )(v+ − v−) ds

=
∫

Ω\σ
gεv dx+

∫
Ω\σ

hε · ∇v dx− 2εaε
3

∫
σ

∂χ

∂τ

(
v+ ∂u

0+
ε

∂τ
+ v−

∂u0−
ε

∂τ

+
1
2

(
v+ ∂u

0−
ε

∂τ
+ v−

∂u0+
ε

∂τ

))
ds+

2εaε
3

∫
σ

∂χ

∂τ

(
(u0+
ε −m)

∂v+

∂τ
+ (u0−

ε −m)
∂v−

∂τ

+
1
2

(
(u0+
ε −m)

∂v−

∂τ
+ (u0−

ε −m)
∂v+

∂τ

))
ds (9.5)

for all v ∈ Vσ,0. Here gε = fχ−∇u0
ε · ∇χ and hε = (u0

ε −m)∇χ.
Let us introduce m0 = 1

|σ|
∫
σ u

0−
ε ds and m1 = 1

|σ|
∫
σ u

0+
ε ds, and let wiε be defined as

wiε = χ(u0
ε −mi), i = 0, 1. We now use the method of translations to show that the tangential

derivatives ∂w0
ε

∂τ and ∂w1
ε

∂τ belong to H1(W−) and H1(W+), respectively. To this end, let h =
tτ = tex, for t > 0 sufficiently small, and choose v = D−hDhw

0
ε in W− and v = 0 in W+, and

then v = 0 in W− and v = D−hDhw
1
ε in W+ as test functions in (9.5). This yields∫

Ω−
|∇Dhw

0
ε |2 dx+

2εaε
3

∫
σ

((∂Dhw
0−
ε

∂τ

)2

+
1
2
∂Dhw

0+
ε

∂τ

∂Dhw
0−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
0+
ε −Dhw

0−
ε )(−Dhw

0−
ε ) ds

= −2εaε
3

∫
σ

∂χ

∂τ
(x+ h)Dhw

0−
ε

(∂Dhu
0−
ε

∂τ
+

1
2
∂Dhu

0+
ε

∂τ

)
ds

− 2εaε
3

∫
σ

∂Dhχ

∂τ
Dhw

0−
ε

(∂u0−
ε

∂τ
+

1
2
∂u0+

ε

∂τ

)
ds+

2εaε
3

∫
σ

∂χ

∂τ
(x+ h)

∂Dhw
0−
ε

∂τ

(
Dhu

0−
ε

+
1
2
Dhu

0+
ε

)
ds+

2εaε
3

∫
σ

∂Dhχ

∂τ

∂Dhw
0−
ε

∂τ

(
(u0−
ε −m0) +

1
2
(u0+
ε −m0)

)
ds

+
∫

Ω−
DhgεDhw

0
ε dx+

∫
Ω−

Dhh
0
ε · ∇Dhw

0
ε dx, (9.6)

where h0
ε = (u0

ε −m0)∇χ, and∫
Ω+

|∇Dhw
1
ε |2 dx+

2εaε
3

∫
σ

((∂Dhw
1+
ε

∂τ

)2

+
1
2
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )Dhw

1+
ε ds

= −2εaε
3

∫
σ

∂χ

∂τ
(x+ h)Dhw

1+
ε

(∂Dhu
0+
ε

∂τ
+

1
2
∂Dhu

0−
ε

∂τ

)
ds

− 2εaε
3

∫
σ

∂Dhχ

∂τ
Dhw

1+
ε

(∂u0+
ε

∂τ
+

1
2
∂u0−

ε

∂τ

)
ds
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+
2εaε

3

∫
σ

∂χ

∂τ
(x+ h)

∂Dhw
1+
ε

∂τ

(
Dhu

0+
ε +

1
2
Dhu

0−
ε

)
ds

+
2εaε

3

∫
σ

∂Dhχ

∂τ

∂Dhw
1+
ε

∂τ

(
(u0+
ε −m1) +

1
2
(u0−
ε −m1)

)
ds

+
∫

Ω+
DhgεDhw

1
ε dx+

∫
Ω+

Dhh
1
ε · ∇Dhw

1
ε dx, (9.7)

where h1
ε = (u0

ε−m1)∇χ. Note that, by performing an integration by parts on the first integral
in the right-hand side of (9.6), we can rewrite∫

σ

∂χ

∂τ
(x+ h)Dhw

0−
ε

(∂Dhu
0−
ε

∂τ
+

1
2
∂Dhu

0+
ε

∂τ

)
ds

= −
∫
σ

∂2χ

∂τ2
(x+ h)Dhw

0−
ε

(
Dhu

0−
ε +

1
2
Dhu

0+
ε

)
ds

−
∫
σ

∂χ

∂τ
(x+ h)

∂Dhw
0−
ε

∂τ

(
Dhu

0−
ε +

1
2
Dhu

0+
ε

)
ds. (9.8)

A similar identity holds for the first integral in the right-hand side of (9.7). Combining (9.6),
(9.7) and (9.8), we obtain∫

Ω−
|∇Dhw

0
ε |2 dx+

2εaε
3

∫
σ

((∂Dhw
0−
ε

∂τ

)2
+

1
2
∂Dhw

0+
ε

∂τ

∂Dhw
0−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
0+
ε −Dhw

0−
ε )(−Dhw

0−
ε ) ds

≤ Cεaε‖Dhw
0−
ε ‖L2(σ)

(∥∥∥Dhu
0−
ε

∥∥∥
L2(σ∩W )

+
∥∥∥Dhu

0+
ε

∥∥∥
L2(σ∩W )

+
∥∥∥∂u0−

ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂u0+

ε

∂τ

∥∥∥
L2(σ)

)
+ Cεaε

∥∥∥∂Dhw
0−
ε

∂τ

∥∥∥
L2(σ)

(‖Dhu
0−
ε ‖L2(σ∩W ) + ‖Dhu

0+
ε ‖L2(σ∩W )

+ ‖u0−
ε −m0‖L2(σ) + ‖u0+

ε −m0‖L2(σ))

+ ‖Dhgε‖H−1(W−)‖Dhw
0
ε‖H1(W−) + ‖Dhh

0
ε‖L2(W−)‖∇Dhw

0
ε‖L2(W−) (9.9)

and∫
Ω+

|∇Dhw
1
ε |2 dx+

2εaε
3

∫
σ

((∂Dhw
1+
ε

∂τ

)2

+
1
2
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

)
ds

+
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )Dhw

1+
ε ds

≤ Cεaε‖Dhw
1+
ε ‖L2(σ)

(∥∥∥Dhu
0−
ε

∥∥∥
L2(σ∩W )

+
∥∥∥Dhu

0+
ε

∥∥∥
L2(σ∩W )

+
∥∥∥∂u0−

ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂u0+

ε

∂τ

∥∥∥
L2(σ)

)
+ Cεaε

∥∥∥∂Dhw
1+
ε

∂τ

∥∥∥
L2(σ)

(‖Dhu
0−
ε ‖L2(σ∩W ) + ‖Dhu

0+
ε ‖L2(σ∩W )

+ ‖u0−
ε −m1‖L2(σ) + ‖u0+

ε −m1‖L2(σ))

+ ‖Dhgε‖H−1(W+)‖Dhw
1
ε‖H1(W+) + ‖Dhh

1
ε‖L2(W+)‖∇Dhw

1
ε‖L2(W+). (9.10)

Some of the terms in the right-hand sides of the above inequalities can be estimated further.
Owing to Poincaré’s inequality, there exists a constant C (which only depends on W and σ),
such that for any function u ∈ H1(W \ σ) with u = 0 on ∂W ,

‖u‖H1(W±) ≤ C‖∇u‖L2(W±). (9.11)
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Similarly, there exists a constant C (still depending only on W and σ), such that for any
function u ∈ H1(σ) with u = 0 on ∂W ∩ σ,

‖u‖L2(W∩σ) ≤ C
∥∥∥∂u
∂τ

∥∥∥
L2(W∩σ)

. (9.12)

From Proposition 9.1 (and the equivalent for σ) we conclude that

lim sup
h=tex

t→0

‖Dhu‖L2(σ∩W ) ≤
∥∥∥∂u
∂τ

∥∥∥
L2(σ)

, ∀u ∈ H1(σ),

lim sup
h=tex

t→0

‖Dhu‖L2(W\σ) ≤
∥∥∥∇u∥∥∥

L2(Ω\σ)
, ∀u ∈ H1(Ω \ σ).

(9.13)

In particular, we deduce from (9.13) that

lim sup
h=tex

t→0

‖Dhu
0±
ε ‖L2(σ∩W ) ≤

∥∥∥∂u0±
ε

∂τ

∥∥∥
L2(σ)

. (9.14)

Using (9.11), we obtain that there exists a constant C, independent of ε and aε, such that

‖Dhw
0
ε‖H1(W−) ≤ C‖∇Dhw

0
ε‖L2(W̃−)

, ‖Dhw
1
ε‖H1(W+) ≤ C‖∇Dhw

1
ε‖L2(W̃+)

. (9.15)

From the a priori estimates of Lemma 5.1, it also follows that

lim sup
h=tex

t→0

[‖Dhgε‖H−1(W\σ) + ‖Dhh
0
ε‖L2(W−) + ‖Dhh

1
ε‖L2(W+)]

≤ C(‖ϕ‖
H

1
2 (∂Ω)

+ ‖f‖L2(Ω)). (9.16)

From the Poincaré-Wirtinger inequality on σ, we have

‖u0−
ε −m0‖L2(σ) ≤ C

∥∥∥∂u0−
ε

∂τ

∥∥∥
L2(σ)

, ‖u0+
ε −m1‖L2(σ) ≤ C

∥∥∥∂u0+
ε

∂τ

∥∥∥
L2(σ)

. (9.17)

We now sum (9.9) and (9.10), noticing that (Dhw
1+
ε − Dhw

1−
ε ) = (Dhw

0+
ε − Dhw

0−
ε ) on σ.

Taking into account (9.14)–(9.17), we arrive at

lim sup
h=tex

t→0

[ ∫
Ω−

|∇Dhw
0
ε |2 dx+

∫
Ω+

|∇Dhw
1
ε |2 dx

+
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1+
ε −Dhw

0−
ε ) ds

+
2εaε

3

∫
σ

((∂Dhw
0−
ε

∂τ

)2
+
(∂Dhw

1+
ε

∂τ

)2

+
1
2

(∂Dhw
0+
ε

∂τ

∂Dhw
0−
ε

∂τ
+
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

))
ds
]

≤ Cεaε lim sup
h=tex

t→0

(∥∥∥∂Dhw
0−
ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂Dhw

1+
ε

∂τ

∥∥∥
L2(σ)

)

×
(∥∥∥∂u0−

ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂u0+

ε

∂τ

∥∥∥
L2(σ)

+ ‖u0+
ε −m0‖L2(σ) + ‖u0−

ε −m1‖L2(σ)

)
+ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

) lim sup
h=tex

t→0

(‖∇Dhw
0
ε‖L2(W̃−)

+ ‖∇Dhw
1
ε‖L2(W̃+)

). (9.18)
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Some terms in this last expression still need to be rewritten. We observe that

(aε
ε

) 1
2 |m1 −m0| ≤ C

(aε
ε

) 1
2 ‖u0+

ε − u0−
ε ‖L2(σ)

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

), (9.19)

where we used the uniform a priori estimates of Lemma 5.1. This inequality, in combination
with the fact that

Dhw
0+
ε −Dhw

1+
ε = (m1 −m0)Dhχ, Dhw

1−
ε −Dhw

0−
ε = (m0 −m1)Dhχ,

allows us to rewrite the last integral in the left-hand side of (9.18) as follows:∫
σ

((∂Dhw
0−
ε

∂τ

)2

+
(∂Dhw

1+
ε

∂τ

)2

+
1
2

(∂Dhw
0+
ε

∂τ

∂Dhw
0−
ε

∂τ
+
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

))
ds

=
∫
σ

((∂Dhw
0−
ε

∂τ

)2

+
(∂Dhw

1+
ε

∂τ

)2

+
∂Dhw

1+
ε

∂τ

∂Dhw
0−
ε

∂τ

)
ds

+
1
2
(m1 −m0)

∫
σ

∂Dhχ

∂τ

(∂Dhw
0−
ε

∂τ
− ∂Dhw

1+
ε

∂τ

)
ds.

It follows, using the algebraic identity (5.2) and (9.19), that there exist two positive constants
C1 and C2, which do not depend on ε or aε, such that

εaε

∫
σ

((∂Dhw
0−
ε

∂τ

)2

+
(∂Dhw

1+
ε

∂τ

)2

+
1
2

(∂Dhw
0+
ε

∂τ

∂Dhw
0−
ε

∂τ
+
∂Dhw

1+
ε

∂τ

∂Dhw
1−
ε

∂τ

))
ds

≥ C1εaε

(∥∥∥∂Dhw
0−
ε

∂τ

∥∥∥2
L2(σ)

+
∥∥∥∂Dhw

1+
ε

∂τ

∥∥∥2
L2(σ)

)
− C2(ε3aε)

1
2 (‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)
(∥∥∥∂Dhw

0−
ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂Dhw

1+
ε

∂τ

∥∥∥
L2(σ)

)
. (9.20)

We now estimate the next to last integral in the left-hand side of (9.18). It may be rewritten

aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1+
ε −Dhw

0−
ε ) ds

=
aε
2ε

‖Dhw
1+
ε −Dhw

1−
ε ‖2

L2(σ) +
aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1−
ε −Dhw

0−
ε ) ds

with ∣∣∣aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1−
ε −Dhw

0−
ε ) ds

∣∣∣
=
aε
2ε

|m1 −m0|
∣∣∣ ∫

σ

(Dhw
1+
ε −Dhw

1−
ε )Dhχ ds

∣∣∣
≤ C(‖f‖L2(Ω) + ‖ϕ‖

H
1
2 (∂Ω)

)
(aε
ε

) 1
2 ‖Dhw

1+
ε −Dhw

1−
ε ‖L2(σ),

and so

aε
2ε

∫
σ

(Dhw
1+
ε −Dhw

1−
ε )(Dhw

1+
ε −Dhw

0−
ε ) ds ≥ aε

2ε
‖Dhw

1+
ε −Dhw

1−
ε ‖2

L2(σ)

− C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

)
(aε
ε

) 1
2 ‖Dhw

1+
ε −Dhw

1−
ε ‖L2(σ). (9.21)
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Turning to the right-hand side of (9.18), we have

(εaε)
1
2 (‖u0+

ε −m0‖L2(σ) + ‖u0−
ε −m1‖L2(σ))

≤ C(εaε)
1
2 (‖u0+

ε −m1‖L2(σ) + ‖u0−
ε −m0‖L2(σ) + |m1 −m0|)

≤ C(εaε)
1
2

(∥∥∥∂u0+
ε

∂τ

∥∥∥
L2(σ)

+
∥∥∥∂u0−

ε

∂τ

∥∥∥
L2(σ)

)
+ C
(aε
ε

) 1
2 |m1 −m0|

≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (∂Ω)

), (9.22)

due to (9.19) and the uniform a priori estimates of Lemma 5.1. Here we have also used that
εaε ≤ aε

ε . Combining (9.18), (9.20)–(9.22), and using Lemma 5.1, we finally get

lim sup
h=tex

t→0

⎛
⎜⎜⎜⎝
‖∇Dhw

0
ε‖2
L2(Ω−)2 + ‖∇Dhw

1
ε‖2
L2(Ω+)2

+εaε
(∥∥∥∂Dhw

1+
ε

∂τ

∥∥∥2
L2(σ)

+
∥∥∥∂Dhw

0−
ε

∂τ

∥∥∥2
L2(σ)

)
+
aε
2ε

‖Dhw
1+
ε −Dhw

1−
ε ‖2

L2(σ)

⎞
⎟⎟⎟⎠

1
2

≤ C(‖ϕ‖
H

1
2 (∂Ω)

+ ‖f‖L2(Ω)). (9.23)

In particular,

lim sup
h=tex

t→0

(‖∇Dhw
0
ε‖L2(Ω−) + ‖∇Dhw

1
ε‖L2(Ω+)) ≤ C(‖ϕ‖

H
1
2 (∂Ω)

+ ‖f‖L2(Ω)),

from which Proposition 9.1 allows us to conclude that ∂w0
ε

∂x = ∂w0
ε

∂τ ∈ H1(W−) and ∂w1
ε

∂x = ∂w1
ε

∂τ ∈
H1(W+), with the estimate

∥∥∥∂u0
ε

∂x

∥∥∥
H1(V \σ)

≤
∥∥∥∂w0

ε

∂x

∥∥∥
H1(W−)

+
∥∥∥∂w1

ε

∂x

∥∥∥
H1(W+)

≤ C(‖ϕ‖
H

1
2 (∂Ω)

+ ‖f‖L2(Ω)),

the constant C being independent of ε and aε.
We have to obtain the corresponding estimate for ∂u0

ε

∂y . First

∥∥∥ ∂2u0
ε

∂x∂y

∥∥∥
L2(V \σ)2

≤
∥∥∥∂u0

ε

∂x

∣∣∣∣∣∣
H1(V \σ)2

≤ C(‖ϕ‖
H

1
2 (∂Ω)

+ ‖f‖L2(Ω)).

To get control of ∂2u0
ε

∂y2 , we go back to the original equation (5.4) satisfied by u0
ε,

∂2u0
ε

∂y2
= −f − ∂2u0

ε

∂x2
in the sense of distributions on V \ σ.

These two observations lead to a uniform H1(V \ σ) estimate for ∂u0
ε

∂y , and thus to the desired
uniform H2(V \ σ) seminorm estimate for u0

ε. From (9.23), it also follows that

εaε

(∥∥∥∂2u0+
ε

∂τ2

∥∥∥2
L2(σ∩V )

+
∥∥∥∂2u0−

ε

∂τ2

∥∥∥2
L2(σ∩V )

)
+
aε
ε

∥∥∥∂u0+
ε

∂τ
− ∂u0−

ε

∂τ

∥∥∥2
L2(σ∩V )

≤ C(‖ϕ‖
H

1
2 (∂Ω)

+ ‖f‖L2(Ω))2,

and this completes the proof of Theorem 5.1.
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Remark 9.1 In this proof, we relied in a crucial way on the ordering εaε ≤ aε

ε between the
coefficients appearing in the approximate energy (4.12). We do not know whether the similar
uniform regularity estimate holds in other regimes of coefficients.

Postscript Any opinion, findings, and conclusions or recommendations expressed in this
paper are those of the authors, and do not necessarily reflect the views of the National Science
Foundation.
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