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Abstract The authors prove that flat ground state solutions (i.e. minimizing the energy
and with gradient vanishing on the boundary of the domain) of the Dirichlet problem
associated to some semilinear autonomous elliptic equations with a strong absorption term
given by a non-Lipschitz function are unstable for dimensions N = 1, 2 and they can be
stable for N ≥ 3 for suitable values of the involved exponents.
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1 Introduction and Main Results

Let N ≥ 1, and let Ω be a bounded domain in R
N whose boundary ∂Ω is a C1-manifold.

We consider the following semi-linear parabolic problem:

PP(α, β, λ, v0)

⎧⎨⎩vt − Δv + |v|α−1v = λ|v|β−1v in (0,+∞) × Ω,
v = 0 on (0,+∞) × ∂Ω,
v(0, x) = v0(x) on Ω.

(1.1)

Here λ is a positive parameter and 0 < α < β ≤ 1. Our main goal is to give some stability
criteria on solutions of the associated stationary problem

SP(α, β, λ)
{
−Δu+ |u|α−1u = λ|u|β−1u in Ω,
u = 0 on ∂Ω. (1.2)

Notice that since the diffusion-reaction balance involves the non-linear reaction term

f(λ, u) := λ|u|β−1u− |u|α−1u
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and it is a non-Lipschitz function at zero (since α < 1 and β ≤ 1), important peculiar behaviors
of solutions of both problems arise. For instance, that may lead to the violation of the Hopf
maximum principle on the boundary and the existence of compactly supported solutions as well
as the so-called flat solutions (sometimes also called free boundary solutions) which correspond
to weak solutions u such that

∂u

∂ν
= 0 on ∂Ω, (1.3)

where ν denotes the unit outward normal to ∂Ω. Solutions of this kind for stationary equations
with non-Lipschitz nonlinearity have been investigated in a number of papers. The pioneering
paper in which it was proved that the solution gives rise to a free boundary defined as the
boundary of its support was due to Häım Brezis [9] concerning multivalued non-autonomous
semilinear equations. The semilinear case with non-Lipschitz perturbations was considered
later in [4] (see also [6, 11–12]). For the case of semilinear autonomous elliptic equations,
see e.g. [16–17, 25, 27, 29, 42, 44–45, 51], to mention only a few. For (1.2), the existence
of radial flat solutions was first proved by Kaper and Kwong [44]. In this paper, applying
shooting methods, they showed that there exists R0 > 0 such that (1.2) considered in the
ball BR0 = {x ∈ R

N : |x| ≤ R0} = Ω has a radial compactly supported positive solution.
Furthermore, by the moving-plane method, it was proved in [45] that any classical solution
u ∈ C2(Ω) of (1.2) is necessarily radially symmetric if Ω is a ball. Observe that from this it
follows that the Dirichlet boundary value problem (1.2) has a compactly supported solution if
BR0 ⊆ Ω.

In this paper, we study the stability of solutions of the stationary problem SP(α, β, λ). We
point out that a direct analysis of the stability of the stationary solutions u∞ ∈ [0,+∞) of the
associated ODE

ODE(α, β, λ, v0)
{
vt + |v|α−1v = λ|v|β−1v in (0,+∞),
v(0) = v0

(1.4)

shows that the trivial solution u∞ ≡ 0 is asymptotically stable, and that the nontrivial station-
ary solution u∞ := λ−

1
β−α is unstable (see Figure 1).

Figure 1 Paths for ODE
(

1
2 ,

3
2 , λ, v0
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Obviously, the same criteria hold for the case of the semilinear problem with Neumann
boundary conditions. Nevertheless, unexpectedly, the situation is not similar for the case of
Dirichlet boundary conditions, and so, as the main result of this paper will show, for dimensions
N ≥ 3, the nontrivial flat solution of SP(α, β, λ) becomes stable in a certain range of the
exponents α < β < 1. To be more precise, our stability study will concern ground states
solutions (also called simply ground state) of SP(α, β, λ). By it, we mean a nonzero weak
solution uλ of SP(α, β, λ) which satisfies

Eλ(uλ) ≤ Eλ(wλ)

for any nonzero weak solution wλ of SP(α, β, λ). Here Eλ(u) is the energy functional corre-
sponding to SP(α, β, λ) which is defined on the Sobolev space H1

0(Ω) as follows:

Eλ(u) =
1
2

∫
Ω

|∇u|2 dx+
1

α+ 1

∫
Ω

|u|α+1 dx− λ
1

β + 1

∫
Ω

|u|β+1 dx.

For simplicity, we shall assume the initial value such that v0 ∈ L∞(Ω), v0 ≥ 0. As we shall
show in Section 2, then there exists a weak solution v ∈ C([0,+∞),L2(Ω)) of PP(α, β, λ, v0)
satisfying λ|v|β−1v − |v|α−1v ∈ L∞((0,+∞) × Ω) and

v(t) = T (t)v0 +
∫ t

0

T (t− s)(λ|v|β−1v − |v|α−1v)ds, (1.5)

with (T (t))t≥0 the heat semigroup with homogeneous Dirichlet boundary conditions, i.e., T (t) =
et(−Δ). Among some additional regularity properties of v, we mention that

v − T (t)v0 ∈ Lp(τ, T ; W2,p(Ω) ∩ W1,p
0 (Ω)) ∩ W1,p(τ, T ; Lp(Ω)) (1.6)

for every p ∈ (1,∞) and for any 0 < τ < T (in fact, τ = 0 if we also assume that v0 ∈ W1,p
0 (Ω)).

In particular, v satisfies the equation PP(α, β, λ, v0) for a.e. t ∈ (0,+∞). Moreover, if v(0) ∈
H1

0(Ω), then for any t > 0, ∫ t

0

‖vt(s)‖2
L2ds+ Eλ(v(t)) ≤ Eλ(v(0)). (1.7)

We shall show in Section 2 that there is uniqueness of solutions of PP(α, β, λ, v0) in the
class of solutions v, such that

v(t, x) ≥ Cd(x)
2

1−α in Ω, for t > 0 (1.8)

for some constant C > 0, where d(x) := dist(x, ∂Ω) (which we shall also denote simply as
δΩ). Sufficient conditions implying this non-degeneracy property (1.8) will be given. We also
prove that if λ ∈ [0, λ1), then the finite extinction time property is satisfied for solutions of
PP(α, β, λ, v0) (as in the pioneering paper [13] on multivalued semilinear parabolic problems;
see also the survey [22]). Moreover, we shall show in Section 2 that there is a certain resemblance
between the set of solutions of PP(α, β, λ, v0) and the corresponding one of the ODE problem
ODE(α, β, λ, v0), since

(a) for any λ > 0, the trivial solution u ≡ 0 of the stationary problem SP(α, β, λ) is
asymptotically stable in the sense that it attracts solutions of PP(α, β, λ, v0) for small initial
data v0 (see Proposition 2.1);



348 J. I. Dı́az, J. Hernández and Y. Il’yasov

(b) if v0 is “large enough” the trajectory of the solution of PP(α, β, λ, v0) is not non-
uniformly bounded when t↗ +∞ (see Proposition 2.4).

Concerning the stationary problem SP(α, β, λ) we recall that if u ∈ H1
0(Ω) ∩ L∞(Ω) is a

weak stationary solution of SP(α, β, λ), then, by standard regularity results, u ∈ W2,p(Ω) for
any p ∈ (1,∞) and then u ∈ C1,γ(Ω) for any γ.

In our stability study, we shall use some fibrering techniques. For given u ∈ H1
0(Ω), the

fibrering mappings are defined by Φu(r) = Eλ(ru), so that from the variational formulation of
SP(α, β, λ), we know that Φ′

u(r) = 0, where we use the notation

Φ′
u(r) =

∂

∂r
Eλ(ru).

If we also define Φ′′
u(r) = ∂2

∂r2Eλ(ru), then, in case β < 1, the equation Φ′
u(r) = 0 may have

at most two nonzero roots rmin > 0 and rmax > 0 such that Φ′′
u(rmax) ≥ 0, Φ′′

u(rmin) ≤ 0 and
0 < rmax ≤ rmin (see Figure 2), whereas, in case β = 1 the equation Φ′

u(r) = 0 for any λ > 0
has precisely one nonzero root rmax > 0 such that Φ′′

u(rmax) ≤ 0. This implies that any weak
solution of SP(α, β, λ) (any critical point of Eλ(u)) corresponds to one of the cases rmin = 1
or rmax = 1. However, it was discovered in [42] (see also [41]) that in case when we study
compactly supported solutions this correspondence essentially depends on the relation between
α, β and N .

Figure 2 rmin and rmax

In this paper, developing [42], we introduce in the set of relevant exponents E := {(α, β) : 0
< α < β ≤ 1} the following critical exponents curve depending on the dimension N :

C(N) := {(α, β) ∈ E : 2(1 + α)(1 + β) −N(1 − α)(1 − β) = 0}. (1.9)

This curve exists if and only if N ≥ 3 and it separates two sets of exponents in E (see Figure 3)

Es(N) := {(α, β) ∈ E : 2(1 + α)(1 + β) −N(1 − α)(1 − β) < 0},
Eu(N) := {(α, β) ∈ E : 2(1 + α)(1 + β) −N(1 − α)(1 − β) > 0},
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whereas in the cases N = 1, 2, one has E = Eu(N).

Figure 3 Sets Es(N) and Eu(N) for N = 3, 4 and 10

The main property of C(N) is contained in the following lemma.

Lemma 1.1 Let N ≥ 1 and let Ω be a bounded and star-shaped domain in R
N whose

boundary ∂Ω is a C1-manifold.
(1) Assume (α, β) ∈ C(N). Then any flat ground state solution u of (1.2) satisfies Φ′′

u(r)|r=1

= 0.
(2) Assume (α, β) ∈ Eu(N). Then any flat ground state solution u of (1.2) satisfies

Φ′′
u(r)|r=1 < 0.

(3) Assume (α, β) ∈ Es(N). Then any ground state solution u of (1.2) satisfies Φ′′
u(r)|r=1 >

0.

The existence of flat (or compactly supported) ground state solutions of (1.2) in the case
β < 1, N ≥ 3 and (α, β) ∈ Es(N) was obtained in [42]. Furthermore, the existence of flat
solutions of (1.2) (not necessary ground states) in case N ≥ 1, 0 < α < β ≤ 1 was proved in
[25, 27, 44–45].

As already mentioned, one of the main goals of this paper is to study the H1
0-stability

of flat ground state solutions of SP(α, β, λ). We recall that, if v(t; v0) is a weak solution to
PP(α, β, λ, v0), we shall say that v(t; v0) is H1

0-stable if, given any ε > 0, there exists δ > 0 such
that

‖v(t; v0) − v(t;w0)‖1 < ε for any w0 such that ‖v0 − w0‖1 < δ, ∀t > 0, (1.10)

where we use the H1
0(Ω)-norm

‖u‖1 =
(∫

Ω

|∇u|2 dx
) 1

2
.
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Conversely, we say that a solution v(t; v0) of PP(α, β, λ, v0) is H1
0-unstable if there is ε > 0 such

that for any δ > 0 and T > 0, there exists

w0 ∈ Uδ(v0) := {w ∈ H1
0 (Ω) : ‖v0 − w‖1 < δ}

and there exists T > 0 such that for any t > T ,

‖v(t; v0) − v(t;w0)‖1 > ε, (1.11)

where v(t;w0) is any weak solution of PP(α, β, λ, w0). Furthermore, we will use also the follow-
ing definition: A solution uλ of SP(α, β, λ) is said to be linearly unstable stationary solution if
λ1(−Δ + αuα−1

λ − λβuβ−1
λ ) < 0.

In what follows, we will also use the following definition (see [5, 38]): A solution v(t; v0) of
PP(α, β, λ, v0) is said to be globally H1

0(Ω)-unstable, if for any δ > 0 there exists

w0 ∈ Uδ(v0) := {w ∈ H1
0 (Ω) : ‖v0 − w‖1 < δ},

such that

‖v(t; v0) − v(t;w0)‖1 → ∞ as t→ ∞. (1.12)

Motivated by the uniqueness results for the PP(α, β, λ, w0), we shall assume later the fol-
lowing “isolation assumption”:

(U) Given uλ non-negative ground state solution of SP(α, β, λ), there exists a “positive-
neighborhood”

Uδ(uλ) := {v ∈ H1
0 (Ω), v ≥ 0 on Ω, such that ‖uλ − v‖1 < δ}

with δ > 0 such that SP(α, β, λ) has no other non-negative weak solution in Uδ(uλ) \ uλ.
Our first two results concern the existence and (un-)stability of ground states of (1.2). In

case 0 < α < β < 1, we have the following theorem.

Theorem 1.1 Let N ≥ 1, 0 < α < β < 1, Ω be a bounded domain in R
N , with a smooth

boundary.
(1) There exists λ∗ > 0 such that for all λ > λ∗, (1.2) has a ground state uλ which is

non-negative in Ω and uλ ∈ C1,κ(Ω) ∩ C2(Ω) for some κ ∈ (0, 1).
(2) Assume (U), then the ground state uλ is an H1

0(Ω)-stable stationary solution of the
parabolic problem (1.1).

In case β = 1 we have following theorem.

Theorem 1.2 Let N ≥ 1, β = 1, 0 < α < 1, Ω be a bounded star-shaped domain in R
N ,

with a smooth boundary.
(1) There exists λ∗ > 0 such that for all λ > λ∗, (1.2) has a ground state uλ which is

non-negative in Ω and u ∈ C1,κ(Ω) ∩ C2(Ω) for some κ ∈ (0, 1).
(2) Assume (U), the ground state uλ is a globally H1

0(Ω)-unstable stationary solution of the
parabolic problem (1.1).

Our main result on the H1
0(Ω)-stability and H1

0(Ω)-unstability of flat ground state solutions
for 0 < α < β < 1 is as follows.
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Theorem 1.3 Let N ≥ 1, Ω be a bounded domain in R
N whose boundary ∂Ω is a C1-

manifold.
(I) Assume N = 1, 2. Then for every (α, β) ∈ E (i.e., 0 < α < β) any flat ground state

solution uλ of (1.2) is a linearized unstable stationary solution of the parabolic problem (1.1).
(II) Assume (U), N ≥ 3 and (α, β) ∈ Eu(N). Then any flat ground state solution uλ of

(1.2) is a linearized unstable stationary solution of the parabolic problem (1.1).
(III) Assume N ≥ 3, (α, β) ∈ Es(N) and Ω is a strictly star-shaped domain with respect to

the origin.
(1) There exists λ∗ > 0 such that (1.2) has a flat ground state uλ∗ , where uλ∗ ≥ 0 and

uλ∗ ∈ C1,γ(Ω) ∩ C2(Ω) for some γ ∈ (0, 1).
(2) If in addition, (U) holds, then the flat ground state solution uλ∗ is an H1

0(Ω)-stable
stationary solution of the parabolic problem (1.1).

In the case β = 1 we have following theorem.

Theorem 1.4 Assume N ≥ 1, 0 < α < 1, β = 1 and Ω be a bounded domain in R
N whose

boundary ∂Ω is a C1-manifold.
(1) There exists λ∗ > 0 such that (1.2) has a ground state uλ∗ which is a flat solution in Ω

where uλ∗ ≥ 0 and uλ∗ ∈ C1,α(Ω) ∩ C2(Ω) for some α ∈ (0, 1).
(2) If in addition (U) holds, the flat ground state solution uλ∗ is globally H1

0(Ω)-unstable
stationary solution of the parabolic problem (1.1).

The limit case α = 0 can be also considered. In particular, this shows that the first “com-
pressed mode” function (solution of SP(0, 1, λ) (see [46–47])) of great relevance in signal pro-
cessing is globally H1

0(Ω)-unstable.

2 Parabolic Problem. Existence, Uniqueness and Boundedness on
Non-negative Solutions

Given v0 ∈ L∞(Ω), v0 ≥ 0, we shall say that v ∈ C([0,+∞),L2(Ω)) is a weak solution of
PP(α, β, λ, v0) if v ≥ 0, λvβ − vα ∈ L∞((0, T ) × Ω) for any T > 0 and

v(t) = T (t)v0 +
∫ t

0

T (t− s)(λvβ(s) − vα(s))ds. (2.1)

Here (T (t))t≥0 is the heat semigroup with homogeneous Dirichlet boundary conditions, i.e.,
T (t) = et(−Δ). The existence of weak solutions is an easy variation of previous results in the
literature (see, e.g., [3, 14] and the works [19–20] dealing with the more difficult case of singular
equations α ∈ (−1, 0)). For the reader convenience, we shall collect here some additional
regularity information on weak solutions of PP(α, β, λ, v0).

Proposition 2.1 For any v0 ∈ L∞(Ω), v0 ≥ 0 there exists a non-negative weak solution
v ∈ C([0,+∞),L2(Ω)) of PP(α, β, λ, v0). In fact, for every p ∈ [1,∞], v ∈ C([0,+∞); Lp(Ω)),
and if p <∞,

v − T (·)v0 ∈ Lp(τ, T ; W2,p(Ω) ∩ W1,p
0 (Ω)) ∩ W1,p(τ, T ; Lp(Ω)) (2.2)

for any 0 < τ < T. In particular, v satisfies the equation PP(α, β, λ, v0) for a.e. t ∈ (0,+∞).
Moreover, if we also assume that v0 ∈ H1

0(Ω), then ∂
∂tEλ(v(·)) ∈ L1(τ, T ), and function Eλ(v(·))
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is absolutely continuous for a.e. t ∈ (τ, T ) and

∂

∂t
Eλ(v(t)) =

∫
Ω

(λvβ + vα)vt(t)dx −
∫

Ω

vt(t)2dx. (2.3)

Proof Among many possible methods to prove the existence of weak solutions, we shall
follow here the one based on a fixed point argument as in [32] (see also [31], where the case
β = 0 was considered on a Riemannian manifold). For every h ∈ L∞((0, T ) × Ω), we consider
the problem (Ph)

(Ph)

⎧⎨⎩
vt − Δv + |v|α−1v = h in (0,+∞) × Ω,
v = 0 on (0,+∞) × ∂Ω,
v(0, x) = v0(x) on Ω,

which we can reformulate in terms of an abstract Cauchy problem on the Hilbert space H =
L2(Ω) as

(Ph)

⎧⎨⎩
dv
dt

(t) + Av(t) = h(t), t ∈ (0, T ), in H,

v(0) = v0,

where A = ∂ϕ denotes the subdifferential of the convex function

ϕ(v) =

⎧⎨⎩
1
2

∫
Ω

|∇v|2 dx+
1

α+ 1

∫
Ω

|v|α+1 dx, if v ∈ H1
0(Ω) ∩ Lα+1(Ω),

+∞, otherwise

(see, e.g., [7–8, 21]). As in [31–32], we define the operator T : h → g, where g = λ|vh|β−1vh
and vh is the solution of (Ph). It is easy to see that every fixed point of T is a solution of
PP(α, β, λ, v0). Then T satisfies the hypotheses of Kakutani Fixed Point Theorem (see, e.g.,
Vrabie [54]), since if X = L2((0, T ),L2(Ω)) then

(i) K = {h ∈ L2(0, T,L∞(Ω)) : ‖h(t)‖L∞(Ω) ≤ C0 a.e. t ∈ (0, T )} is a nonempty, convex
and weakly compact set of X.

(ii) T : K �→ 2X with nonempty, convex and closed values such that T (g) ⊂ K, ∀g ∈ K.

(iii) Graph(T ) is weakly×weakly sequentially closed.
Consequently, T has at least one fixed point in K which is a local (in time) solution of

PP(α, β, λ, v0). The final key point is to show that there is no blow-up phenomenon. This
holds by the a priori estimate

0 ≤ v(t, x) ≤ z(t, x) for any t ∈ [0,+∞) × Ω,

where v(t, x) is any weak solution of PP(α, β, λ, v0), and z(t, x) is the solution of the corre-
sponding auxiliary problem ⎧⎨⎩zt − Δz = λzβ in (0,+∞) × Ω,

z = 0 on (0,+∞) × ∂Ω,
z(0, x) = v0(x) on Ω.

(2.4)

This implies that there is no finite blow-up (and thus the maximal existence time is Tmax =
+∞). In particular, if β ∈ (0, 1), we have the estimate

‖v(t)‖L∞(Ω) ≤
(
‖v0‖1−β

L∞(Ω) + (1 − β)t
) 1

1−β .
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If β = 1, then the function w(t, x) = v(t, x)e−λt satisfies⎧⎨⎩wt − Δw + e−λ(1−α)twα = 0 in (0,+∞) × Ω,
w = 0 on (0,+∞) × ∂Ω,
w(0, x) = v0(x) on Ω,

(2.5)

which is uniformly (pointwise) bounded by the solution of the linear heat equation with the

same initial datum. Since the operator A = ∂ϕ
Lp(Ω)×Lp(Ω)

is m-accretive in Lp(Ω) for every
p ∈ [1,∞] (see, e.g., the presentation made in [21]), by the regularity results for semilinear
accretive operators we conclude the first part of the additional regularity of the statement
(2.2). Finally, by [8, Theorem 3.6] we know that ∂

∂tϕ(vh) ∈ L1(τ, T ), ϕ(vh) is absolutely
continuous and for a.e. t ∈ (τ, T ),

∂

∂t
ϕ(vh) =

∫
Ω

(h(t))(vh)t(t)dx−
∫

Ω

[(vh)t(t)]2dx.

Then (2.3) holds by taking h = λ|vh|β−1vh (the fixed point of T ).

Corollary 2.1 Assume β = 1. Then the weak solution is unique.

Proof Thanks to the change of variable w(t, x) = v(t, x)e−λt, the problem becomes (2.5)
and the result follows from the semigroup theory since it is well-known that the operator
Aw := −Δw + e−λ(1−α)t|w|α−1w is a T-accretive operator in Lp(Ω) for any p ∈ [1,+∞] (see,
e.g., [25, Chapter 4]).

A more delicate question deals with the proof of the uniqueness of weak solutions for β ∈
(0, 1). We point out that some previous results in the literature dealing with the case β ∈ (0, 1)
(see [14] and its references) are not applicable to our framework due to the presence of the
absorption term |v|α−1v.

We define the following class of functions:

M(ν, T ) := {v ∈ C([0, T ]; L2(Ω))
∣∣, ∀T ′ ∈ (0, T ), there exists C(T ′) > 0, such that

∀t ∈ (0, T ′), v(t, x) ≥ C(T ′)d(x)ν in Ω}, (2.6)

where δ(x) := dist(x, ∂Ω) (which we shall denote simply as δ) and

ν ∈
(
0,

2
1 − α

]
. (2.7)

The following result collects some useful estimates leading to the uniqueness of non-degen-
erate weak solutions.

Theorem 2.1 Let w (resp. v) be a weak subsolution PP(α, β, λ, w0), i.e.,⎧⎨⎩wt − Δw + |w|α−1w ≤ λ|w|β−1w in (0,+∞) × Ω,
w = 0 on (0,+∞) × ∂Ω,
w(0, x) = w0(x) on Ω

with w ∈ C([0, T ]; L2(Ω)) ∩ L∞((0, T ) × Ω) ∩ L2
loc(0, T : H1

0(Ω)), w ∈ H1
loc(0, T : H−1(Ω)) (resp.

similar conditions for v but with the reversed inequalities).
(i) If v ∈ M(ν, T ) for some ν ∈

(
0, 2

1−α
]
, there exists a constant C > 0, such that for any

t ∈ [0, T ), we have

‖[w(t) − v(t)]+‖L2(Ω) ≤ eλCt‖[w0 − v0]+‖L2(Ω). (2.8)



354 J. I. Dı́az, J. Hernández and Y. Il’yasov

(ii) If w ∈ M(ν, T ) for some ν ∈
(
0, 2

1−α
]
, there exists a constant C > 0, such that for any

t ∈ [0, T ), we have

‖[w(t) − v(t)]−‖L2(Ω) ≤ eλCt‖[w0 − v0]−‖L2(Ω). (2.9)

(iii) Assume w0 ≤ v0, and v ∈ M(ν, T ) or w ∈ M(ν, T ). Then, for any t ∈ [0, T ], w(t, ·) ≤
v(t, ·) a.e. in Ω.

(iv) There is uniqueness of weak solutions in the class M(ν, T ). Moreover, if v, w ∈ M(ν, T )
are weak solutions of PP(α, β, λ, w0) and PP(α, β, λ, v0), respectively, then there exists a con-
stant C > 0, such that for any t ∈ [0, T ), we have

‖w(t) − v(t)‖L2(Ω) ≤ eλCt‖w0 − v0‖L2(Ω). (2.10)

We shall get later some sufficient conditions on the initial datum v0 ensuring that there
exists some weak solution of PP(α, β, λ, v0) belonging to the class M(ν, T ).

Proof of Theorem 2.1 Multiplying by (w(t) − v(t))+ the difference of the inequalities
satisfied by w and v, we obtain

1
2

d
dt

∫
Ω

[w(t) − v(t)]2+dx+
∫

Ω

|∇[w(t) − v(t)]+|2dx+
∫

Ω

(w(t)α − v(t)α)[w(t) − v(t)]+dx

≤ λ

∫
{w>v}

(w(t)β − v(t)β)[w(t) − v(t)]dx.

But, since β ∈ (0, 1),

wβ − vβ ≤ β

v1−β (w − v) for any 0 < v < w ≤M

for some M > 0. On the other hand, since v ∈ M(ν, T ), and α < β, by applying Young’s
inequality, we get

vβ−1 ≤ 1
C(1−β)d(x)ν(1−β)

≤ ε

d(x)2
+ Cε

for any ε > 0 and for some Cε > 0. Then, from the monotonicity of the function w → wα,
taking M = max(‖w‖L∞((0,T )×Ω), ‖v‖L∞((0,T )×Ω)), we obtain

1
2

d
dt

∫
Ω

[w(t) − v(t)]2+dx+
∫

Ω

|∇[w(t) − v(t)]+|2dx

≤ λε

∫
Ω

[w(t) − v(t)]2+
d(x)2

dx+ λCε

∫
Ω

[w(t) − v(t)]2+dx.

Applying Hardy’s inequality, ∫
Ω

z2

d(x)2
dx ≤ C

∫
Ω

|∇z|2dx

for any z ∈ H1
0 (Ω), choosing ε > 0 sufficiently small and using Gronwall’s inequality, we get

the conclusion (i). The proof of (ii) is similar, but this time we multiply by (v(t) − w(t))− the
difference of the inequalities satisfied by v and w and use the fact that, since β ∈ (0, 1),

(wβ − vβ)[w(t) − v(t)]− ≤ β

w1−β [w(t) − v(t)]2− for any 0 < v,w ≤M
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for some M > 0. Again, since v ∈ M(ν, T ), and α < β, by applying Young’s inequality, we get

wβ−1 ≤ 1
C(1−β)d(x)ν(1−β)

≤ ε

d(x)2
+ Cε

for any ε > 0 and for some Cε > 0 and the proof ends as in the case (i). The proofs of (iii) and
(iv) are easy consequences of (i) and (ii).

Proposition 2.2 Assume

v0(x) ≥ K0d(x)
2

1−α for any x ∈ Ω, (2.11)

for some constant K0 > 0. Let v be a weak solution of PP(α, β, λ, v0).
(a) Given T > 0 for any K0 > 0, there is a T0 = T0(K0) ∈ (0, T ] such that v ∈ M(ν, T0)

for ν = 2
1−α .

(b) If K0 and λ are large enough, then v ∈ M(ν, T ) for ν = 2
1−α , for any T > 0.

Proof By (iii) of the above theorem, it is enough to construct a (local) subsolution sat-
isfying the required boundary behavior. We shall carry out such construction by adapting the
techniques presented in [24] (see also some related local subsolutions in [1, 23, 30]). From
the assumption (2.11) for any x0 ∈ ∂Ω, there exist ε > 0, δ ≥ 1, C0 > 0 and x1 ∈ Ω with
Bδε(x1) ⊂ Ω such that

v0(x) ≥ C0|x− x0|ν , a.e. x ∈ Bε(x1). (2.12)

Let us take x1 ∈ Ω such that δε > |x1 − x0| ≥
(
δ+1
2

)
ε, and define

U(x) =

{
K1ε

ν −K2|x− x1|ν , if 0 ≤ |x− x1| ≤ ε,

K3(δε− |x− x1|)ν , if ε ≤ |x− x1| ≤ δε,

and for x ∈ Bδε(x1), t ∈ (0, T ],

V (t, x) = ϕ(t)U(x).

We shall show that it is possible to choose all the above constants and function ϕ(t), such that V
is a weak subsolution of PP(α, β, λ, v0) with the desired growth near ∂Bδε(x1) for suitable time
interval [0, T0(K0)) in case (a) or on the whole interval [0, T ] in case (b). Since U(x) = η(|x−x1|)
on Bδε(x1), the Laplacian operator can be written as

Δη(r) = η′′(r) +
N − 1
r

η′(r)

with r ∈ (0, δε). By defining η1(r) = K1ε
ν −K2r

ν and η2(r) = K3(δε− r)ν , we have

η(r) =
{
η1(r), 0 ≤ r ≤ ε,
η2(r), ε ≤ r ≤ δε.

The list of conditions which we must check to ensure that V (t, x) is a local-weak-subsolution is
the following:

(1) V ∈ C([0, T ]; L2(Bδε(x1))) ∩ L∞((0, T ) × Bδε(x1)) ∩ L2
loc(0, T : H1

0(Bδε(x1))), V ∈
H1

loc(0, T : H−1(Bδε(x1))). This is guaranteed if we take ϕ ∈ H1(0, T ) and U ∈ C1(Bδε(x1))
(since by construction U = 0 on ∂Bδε(x1)). In particular, we must have

(K1 −K2)εν = K3(ε(δ − 1))ν , (2.13)

νK2ε
ν−1 = −νK3(ε(δ − 1))ν−1. (2.14)
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(2) V (0, x) ≤ v0(x) a.e. on Bδε(x1). Thanks to (2.12), since η1(r) is concave and C0r
ν is

convex, it is enough to have

ϕ(0)K3(ε(δ − 1))ν ≤ C0ε
ν on Bδε(x1).

(3) V t − ΔV + V α ≤ λV β (in a weak form) on [0, T0(K0)) × Bδε(x1). For μ > 0, let us
introduce L(η : μ) = −Δη + μηα. Then, if we write r = εs,

L(η1) ≤ ν(ν − 1)K2r
ν−2 + ν(N − 1)K2r

ν−2 + μ[K1ε
ν −K2r

ν ]α

= [ν(ν − 1)K2s
να + ν(N − 1)K2s

να + μ(K1 −K2s
ν)α]εαν

≤ K4ε
να,

where

K4 = K4(μ) := ν[(ν − 1) + (N − 1)K2] + μK1. (2.15)

On the other hand,

L(η2) ≤ −λν(ν − 1)K3(δε− r)ν−2 + (N − 1)νK3
(δε− r)ν−1

r
+ μKα

3 (δε)να

≤ νK3(δε− r)να
(
− (ν − 1) + (N − 1)

(δε− r)
r

+ μKα−1
3 ν−1

)
.

Now (δε−r)
r ≤ δ − 1 when ε ≤ r ≤ δε, and thus if

1 ≤ δ < 1 +
να+ 1
N − 1

, (2.16)

so, if we choose K3 as

K3 = K3(μ, δ) :=
( μν−1

(να + 1) − (N − 1)(δ − 1)

) 1
1−α

, (2.17)

we obtain that −Λη2 + μηα2 ≤ 0.
Moreover,

V t − ΔV + V α = ϕ′η − ϕ
(
η′′ +

N − 1
r

η′
)

+ ϕαηα.

Then, if we have ϕ ∈ C1(0, T ), such that

ϕ′(t) ≤ 0, (2.18)

then we have

ϕ(0) ≤ 1. (2.19)

Given ε1 ∈ (0, 1), we always can find T0(ε1) ≤ T , such that

ε1 ≤ ϕ(t) ≤ 1 for any t ∈ [0, T0(ε1)]

and hence, if

μ =
1

(ε1)1−α
, (2.20)
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we have

ΔV + V α ≤ (ε1)1−αϕ(t)α(−Δη(r) + μηα) ≤ 0.

This implies that V t − ΔV + V α ≤ λV β (in a weak form) on [0, T0(ε1)) × (Bδε(x1) \ Bε(x1)).
The remaining condition is to have the above inequality also on Bε(x1). This will be an easy
consequence, if we take any subsolution of the associated ODE as function ϕ, more precisely,
such that

ϕ′(t) +
(max η1)α

min η1
ϕ(t)α ≤ λ

(min η1)1−β
ϕ(t)β .

By taking ϕ(0) and ε1 small enough, it is easy to see that it is possible to choose the rest of
constants, such that all the above conditions follow and this ends the proof of case (a). In case
(b) the arguments are very similar, but in this case, it is possible to take as the function ϕ(t)
given by

ϕ(t) = (ε2 + e−kt)

for suitable ε2 > 0 and k > 0 small enough.

Corollary 2.2 Assume v0 as in Proposition 2.2 and let v be a weak solution of PP(α, β, λ,
v0), such that the non-degeneracy constant C in (2.6) is independent of T for any T > 0. Let
u ∈ L∞(Ω) be a solution of the stationary problem SP(α, β, λ), such that v(t) → u in L2(Ω)
a.e. t↗ +∞. Then u satisfies the nondeneracy property u(x) ≥ Kd(x)

2
1−α for some K > 0.

The stability of the trivial solution u ≡ 0 of SP(α, β, λ) for λ small is very well illustrated
by means of the following “extinction in finite time” property of solutions of the associated
parabolic problem PP(α, β, λ, v0) assumed λ small enough.

Theorem 2.2 Assume

λ ∈ [0, λ1). (2.21)

Let v0 ∈ L∞(Ω), v0 ≥ 0. Assume β = 1 or (2.11). Then there exists T0 > 0, such that the
solution v of PP(α, β, λ, v0) satisfies v(t) ≡ 0 on Ω for any t ≥ T0.

Proof We shall use an energy method in the spirit of [2] (see also [33]). By multiplying by
v(t) and integrating by parts (as in the proof of uniqueness), we arrive to

1
2

d
dt

∫
Ω

v(t)2dx+
∫

Ω

|∇v(t)|2dx+
∫

Ω

v(t)α+1dx = λ

∫
Ω

v(t)β+1dx.

Assume now that β = 1. Then, by using the Poincaré inequality

λ1

∫
Ω

v(t)2dx ≤
∫

Ω

|∇v(t)|2dx, (2.22)

we get

1
2

d
dt

∫
Ω

v(t)2dx+
(
1 − λ

λ1

)∫
Ω

|∇v(t)|2dx+
∫

Ω

v(t)α+1dx ≤ 0
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and the result holds exactly as in [2, Proposition 1.1, Chapter 2]. Indeed, by applying the
Gagliardo-Nirenberg inequality,[ ∫

Ω

vrdx
] 1

r ≤ C
[ ∫

Ω

|∇v|2dx
] θ

2
[ ∫

Ω

vdx
]

for any r ∈ [1,+∞) if N ≤ 2 and r ∈
[
1, 2N

N−2

]
if N > 2

(
with θ = 2N(r−1)

r+2N ∈ (0, 1)
)
, we have

that the function

y(t) :=
d
dt

∫
Ω

v(t)2dx

satisfies the inequality

y′(t) + Cyυ(t) ≤ 0

for some C > 0 and υ ∈ (0, 1). If β ∈ (0, 1), then we introduce the change of unknown v = μv̂

getting

μv̂t − μΔv̂ + μαv̂α = λμβ v̂β .

By choosing μ such that

μ <
1

λ
1

β−α

1

,

we can assume without loss of generality that λ < min(λ1, 1). Moreover, since

λ

∫
Ω

v(t)β+1dx ≤ λ

∫
Ω

v(t)2dx+ λ

∫
Ω

v(t)α+1dx,

we get

1
2

d
dt

∫
Ω

v(t)2dx+
(
1 − λ

λ1

) ∫
Ω

|∇v(t)|2dx+ (1 − λ)
∫

Ω

v(t)α+1dx ≤ 0,

and the proof ends as in the precedent case.

Remark 2.1 The assumption (2.21) is optimal if β = 1. Indeed, by the results of [26], we
know that for any λ > λ1, there exists a non-negative nontrivial solution u of the associated
stationary problem SP(α, 1, λ).

In fact, for any λ > 0, the trivial solution u ≡ 0 of the stationary problem SP(α, β, λ) is
asymptotically L∞(Ω)-stable in the sense that it attracts solutions of PP(α, β, λ, v0) in L∞(Ω)
for small initial data v0.

Proposition 2.3 Let v0 ∈ L∞(Ω), v0 ≥ 0. Assume β = 1 or (2.11). Given λ > 0, assume
that

‖v0‖L∞(Ω) < λ−
1

β−α .

Then v(t) → 0 in L∞(Ω) as t→ +∞.

Proof Use the solution of the associated ODE (with ‖v0‖L∞(Ω) as initial datum) as super-
solution.

Concerning non-uniformly bounded trajectories we have the following proposition.
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Proposition 2.4 Let v0 ∈ L∞(Ω), v0 ≥ 0, such that

0 < uλ(x) + ε0 ≤ v0(x) a.e. x ∈ Ω (2.23)

for some ε0 > 0 and uλ being the solution of the associated stationary problem SP(α, β, λ) such
that

meas{x ∈ Ω : uλ(x) + ε0 > λ−
1

β−α } > 0.

Assume β = 1 or (2.11). Then ‖v(t)‖L∞(Ω) ↗ +∞ as t→ +∞.

Proof Since obviously uλ is a solution of PP(α, β, λ, uλ), we first get, by Theorem 2.1,
that uλ(x) ≤ v(t, x) for any t ∈ [0,+∞) and a.e. x ∈ Ω. Moreover, uλ(x) > λ−

1
β−α > 0 on

a positively measured subset Ωλ of Ω, where we can apply the strong maximum principle to
conclude that uλ(x) < v(t, x) for any t ∈ [0,+∞) and a.e. x ∈ Ωλ. Since uλ ∈ C(Ω), there
exists xλ ∈ Ωλ such that

uλ(xλ) = min
Ωλ

uλ.

Taking now U(t) as the solution of the ODE

ODE(α, β, λ, uλ(xλ) + ε0)
{
Ut + Uα = λUβ , in (0,+∞),
U(0) = uλ(xλ) + ε0,

(2.24)

by the standard comparison principle (noticing that now the involved nonlinearities are Lipschitz
continuous on this set of values), we get that for any t ∈ [0,+∞),

U(t) ≤ v(t, x) a.e. x ∈ Ωλ.

Finally, since we know that U(t) ↗ +∞ as t→ +∞, we get the result.

3 Critical Exponents Curve on the Plane (α, β)

In this section, using Pohozaev’s identity (see [49]) and developing the spectral analysis with
respect to the fibering procedure [39], we introduce the critical exponents curve C(N) on the
plane (α, β) and study its main properties.

From now on, we will use the notations

T (u) =
∫

Ω

|∇u|2 dx, A(u) =
∫

Ω

|u|α+1 dx, B(u) =
∫

Ω

|u|β+1 dx.

Then

Eλ(u) =
1
2
T (u) +

1
α+ 1

A(u) − λ
1

β + 1
B(u). (3.1)

Case 0 < α < β < 1 Assume that 0 < α < β < 1. Then for any fixed u ∈ H1
0(Ω) \ {0},

the equation

E′
λ(ru) = 0 (3.2)
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may have at most two roots rmax(u), rmin(u) ∈ R
+ such that rmax(u) ≤ rmin(u). Furthermore,

rmax(u) < rmin(u) if and only if

E′′
λ(rmax(v) · v)(v, v) < 0 and E′′

λ(rmin(v) · v)(v, v) > 0,

and rmax(v) = rmin(v) =: rs(v) if and only if E′′
λ(rs(v) · v) = 0 (see Figure 2).

In [42], it was introduced the following characteristic (nonlinear fibering eigenvalue):

Λ0 = inf
u∈H1

0 (Ω)\{0}
λ0(u), (3.3)

where

λ0(u) = cα,β0 λ(u),

cα,β0 =
(1 − α)(1 + β)
(1 − β)(1 + α)

( (1 + α)(1 − β)
2(β − α)

)β−α
1−α

and

λ(u) =
A(u)

1−β
1−αT (u)

β−α
1−α

B(u)
. (3.4)

Note that by the Gagliardo-Nirenberg inequality (see [42, Proposition 2]) it follows that 0 <
Λ0 < +∞. In [42], the following proposition was proved.

Proposition 3.1 If λ ≥ Λ0, then there exists u ∈ H1
0 (Ω) \ {0}, such that E′

λ(u) = 0 and
Eλ(u) ≤ 0, E′′

λ(u) > 0.

We also need the following characteristic value from [42]:

Λ1 = inf
u∈H1

0\{0}
λ1(u), (3.5)

where

λ1(u) = cα,β1 λ(u), (3.6)

where

cα,β1 =
1 − α

1 − β

( 1 − β

β − α

) β−α
1−α

. (3.7)

As before, we have 0 < Λ1 < +∞. Furthermore, 0 < Λ1 < Λ0 < +∞ (see [42, Claim 2]) and
we have the following proposition (see also [42]).

Proposition 3.2 If λ > Λ1, then there exists u ∈ H1
0(Ω)\{0}, such that E′

λ(u) = 0, whereas
if λ < Λ1, then E′

λ(u) > 0 for any u ∈ H1
0(Ω) \ {0}.

Let u ∈ H1
0(Ω) be a weak solution of (1.2). Standard regularity arguments show that

u ∈ C1,γ(Ω) ∩ C2(Ω) for some γ ∈ (0, 1). Note that by the assumption, ∂Ω is a C1-manifold.
Therefore, Pohozaev’s identity holds (see [43, 49]), namely,

Pλ(u) +
1

2N

∫
∂Ω

∣∣∣∂u
∂ν

∣∣∣2 x · ν ds = 0, (3.8)
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where

Pλ(u) :=
N − 2
2N

T (u) +
1

α+ 1
A(u) − λ

1
β + 1

B(u), u ∈ H1
0(Ω).

Note that if Ω is a star-shaped (strictly star-shaped) domain with respect to the origin of
R
N , then x · ν ≥ 0 (x · ν > 0) for all x ∈ ∂Ω. Thus we have the result as follows.

Proposition 3.3 Assume that Ω is a star-shaped domain with respect to the origin of R
N ,

then Pλ(u) ≤ 0 (Pλ(u) = 0) for any weak (flat or compactly supported) solution u of (1.2). If,
in addition, Ω is strictly star-shaped, then a weak solution u of (1.2) is flat or it has compact
support if and only if Pλ(u) = 0.

Let us study the critical exponent curve C(N) (see (1.9)) and prove Lemma 1.1. Consider
the system (see [42])⎧⎪⎪⎪⎨⎪⎪⎪⎩

E′
λ(u) := T (u) +A(u) − λB(u) = 0,

Pλ(u) :=
N − 2
2N

T (u) +
1

α+ 1
A(u) − λ

1
β + 1

B(u) = 0,

E′′
λ(u) := T (u) + αA(u) − λβB(u) = 0.

(3.9)

This system is solvable with respect to the variables T (u), A(u), B(u), if the corresponding
determinant

D =
(β − α)(2(1 + α)(1 + β) −N(1 − α)(1 − β))

2N(1 + α)(1 + β)
(3.10)

is non-zero.
On the other hand D = 0 if and only if (α, β) ∈ C(N).

Proof of Lemma 1.1 Let Ω be a star-shaped domain with respect to the origin of R
N .

Then by Proposition 3.3, we have Pλ(u) = 0 for any flat or compactly supported solution u of
(1.2). Note also that E′

λ(u) = 0. Thus, in case (α, β) ∈ C(N), i.e., when the determinant of
system (3.9) is equal to zero one has E′′

λ(u) = 0 and we get the proof of the statement (1) of
Lemma 1.1. Observe that

D · 2N(1 + α)
(1 − α)[−2(1 + α) − N(1 − α)]

B(u)

=
1

1 − α
(E′′

λ(u) − E′
λ(u)) − 2N(1 + α)

(N − 2)(1 + α) − 2N

(
Pλ(u) − N − 2

2N
E′
λ(u)

)
.

Thus if (α, β) ∈ Eu(N) and Pλ(u) = 0, E′
λ(u) = 0, then

E′′
λ(u) = −D · 2N(1 + α)

(1 − α)[2(1 + α) +N(1 − α)]
B(u) < 0,

and we obtain the proof of the statement (2) of Lemma 1.1.
Under the assumption (3) of Lemma 1.1, for a weak solution u of (1.2), we have Pλ(u) ≤ 0

(see Proposition 3.3) and therefore (3) yields

E′′
λ(u) ≥ −D · 2N(1 + α)

(1 − α)[−2(1 + α) −N(1 − α)]
B(u) > 0,
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since D > 0 for (α, β) ∈ Es(N). This completes the proof of Lemma 1.1.

Case β = 1 Recall some results from [27]. In what follows, (λ1, ϕ1) denotes the first
eigenpair of the operator −Δ in Ω with zero boundary conditions. Let u ∈ H1

0(Ω). The fibering
mapping in this case is defined by

Φu(r) = Eλ(ru) =
r2

2
Hλ(u) +

r1+α

1 + α
A(u),

where we denote

Hλ(u) :=
∫

Ω

|∇u|2 dx− λ

∫
Ω

|u|2 dx.

Then

Φ′
u(r) = E′

λ(ru) = rHλ(u) + rαA(u)

and the equation Φ′
u(r) = 0 has a positive solution only, if both terms in Φ′

u(r) have opposite
sign, that is, if and only if Hλ(u) < 0. Note that there is u ∈ H1

0(Ω) such that Hλ(u) < 0 if and
only if λ > λ1. It turns out that the only point r(u), where Φ′

u(r) = 0 is given by

r(u) =
( A(u)
−Hλ(u)

) 1
1−α

. (3.11)

Furthermore, E′′
λ(r(u)u)(u, u) < 0 and

Eλ(r(u)u) = max
r>0

Eλ(ru). (3.12)

Substituting (3.11) into Eλ(ru), we obtain

Jλ(u) := Eλ(rλ(u)u) =
(1 − α)
2(1 + α)

A(u)
2

1−α

(−Hλ(u))
1+α
1−α

. (3.13)

Consider

Êλ = min{Jλ(u) : u ∈ H1
0(Ω) \ {0}, Hλ(u) < 0}. (3.14)

It follows directly

Proposition 3.4 A point u ∈ H1
0(Ω) is a minimizer of (3.14) if and only if ũ = r(u)u is a

ground state of (5.1).

Remark 3.1 We point out that in both cases, β < 1 and β = 1, the above results can be
extended to the case in which the ground solution of SP(α, β, λ) minimizes the energy on the
closed convex cone

K = {v ∈ H1
0(Ω), v ≥ 0 on Ω}.

Indeed, we introduce the modified energy functional

E+
λ (u) = Eλ(u) +

∫
Ω

j(u)dx,
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where

j(u) =
{

0, if u ∈ K,
+∞, otherwise.

Notice that j(ru) = j(u) for any r > 0. Obviously, E+
λ (u) = Eλ(u) if u ∈ K. Moreover the

additional term arising in the associated Euler-Lagrange equation, given by the subdifferential
of the convex function

∫
Ω
j(u)dx, vanishes when the ground state solution of SP(α, β, λ) is

non-negative.

4 Existence of Ground State

In this section, we prove the first parts of Theorems 1.1–1.2.

Proof of Theorem 1.1(1) Assume β < 1. In this case, the existence of a ground state of
(1.2) when (α, β) ∈ Es(N) was proved in [42]. The proof for the points (α, β) ∈ E \ Es(N) can
be obtained in a similar way. However, for the sake of completeness, we present a summary of
the proof.

Consider the constrained minimization problem of Eλ(u) on the associated Nehari manifold{
Eλ(u) → min,

E′
λ(u)(u) = 0.

(4.1)

We denote by

Nλ := {u ∈ H1
0 (Ω) : E′

λ(u) = 0}

the admissible set of (4.1), i.e., the corresponding Nehari manifold. Denote also

Êλ := min{Eλ(u) : u ∈ Nλ}

the minimum value in this problem. Note that by Proposition 3.2, Nλ �= ∅ for any λ > Λ1.
Furthermore, by Sobolev’s inequalities, we have

Eλ(u) ≥ 1
2
‖u‖2

1 − c1‖u‖1+β
1 → ∞

as ‖u‖1 → ∞, since 2 > 1 + β. Thus Eλ(u) is a coercive functional on H1
0(Ω). Using this it is

not hard to prove the following proposition (see also [42, Lemma 9]).

Proposition 4.1 Let (α, β) ∈ E. Then for any λ ≥ Λ1, (4.1) has a minimizer uλ ∈
H1

0(Ω) \ {0}, i.e., Eλ(uλ) = Êλ and uλ ∈ Nλ.

Let λ ≥ Λ1 and uλ ∈ H1
0(Ω)\ {0} be a minimizer of (4.1). Then by the Lagrange multipliers

rule, there exist μ1, μ2 such that

μ1DEλ(uλ) = μ2DE
′
λ(uλ)(uλ), (4.2)

and |μ1| + |μ2| �= 0. Thus, if μ2 = 0, then uλ is a weak solution of (1.2).
This condition is satisfied under the assumptions of the following result.

Proposition 4.2 Let (α, β) ∈ E. Then for any λ ≥ Λ0, (1.2) has a ground state uλ which
is non-negative, u ∈ C1,γ(Ω) ∩ C2(Ω) for some γ ∈ (0, 1) and E′′

λ(uλ)(uλ, uλ) > 0.
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Proof Since 0 < Λ1 < Λ0, then by Proposition 4.1, for anyλ ≥ Λ0, there exists a minimizer
uλ ∈ H1

0(Ω) \ {0} of (4.1). Lemma 3.1 implies that there is u ∈ Nλ such that Eλ(u) ≤ 0, and
therefore Eλ(uλ) ≤ Eλ(u) ≤ 0. This implies that E′′

λ(uλ)(uλ, uλ) > 0. Let us test (4.2) by uλ.
Then

μ1E
′
λ(uλ)(uλ) = μ2(E′′

λ(uλ)(uλ, uλ) + E′
λ(uλ)(uλ)).

Since E′
λ(uλ)(uλ) = 0, this yields that μ2E

′′
λ(uλ) = 0. But E′′

λ(uλ)(uλ, uλ) �= 0, and therefore
μ2 = 0. Thus, by (4.2), we obtain DEλ(uλ) = 0, i.e., uλ is a weak solution of (1.2). Since any
weak solution wλ of (1.2) belongs to Nλ, (4.1) yields that uλ is a ground state. The rest of the
lemma is proved in a standard way.

From this proposition arguing by contradiction, it is not hard to show that there is an
interval (Λ0 − ε,+∞) for some ε > 0, such that for any λ ∈ (Λ0 − ε,+∞) the minimizer uλ of
(4.1) satisfies E′′

λ(uλ) > 0. From this, as in the proof of Proposition 4.2, it follows that uλ is a
ground state of (1.2) which is non-negative and u ∈ C1,γ(Ω) ∩ C2(Ω) for some γ ∈ (0, 1).

Thus we have a proof that there exists λ∗ ∈ (Λ1,Λ0), such that for all λ > λ∗ (1.2) has
a ground state uλ, which is non-negative in Ω, u ∈ C1,γ(Ω) ∩ C2(Ω) for some γ ∈ (0, 1) and
E′′
λ(uλ)(uλ, uλ) > 0. This completes the proof of the statement (1) of Theorem 1.1.

Proof of Theorem 1.2(1) The existence of a ground state is obtained from the constrained
minimization problem (3.14) and then using Proposition 3.4. The implementation of this proof
was done in [27, Theorem 2.1, p. 6].

5 Existence of Ground State Flat Solutions in Case β = 1

In this section, we prove the statement (1) in Theorem 1.4. Consider now the following
auxiliary problem on the whole space R

N :{
−Δu+ uα = u in R

N ,
u ≥ 0 on R

N .
(5.1)

Here and subsequently, H1(RN ) denotes the standard Sobolev space with the norm

‖u‖1 =
( ∫

RN

|u|2 dx+
∫

RN

|∇u|2 dx
) 1

2
.

Then (5.1) has a variational form with the Euler-Lagrange functional

E(u) =
1
2
H(u) +

1
α+ 1

A(u), u ∈ W1,2(RN ),

where

H(u) =
∫

RN

|∇u|2 dx−
∫

RN

|u|2 dx, A(u) =
∫

RN

|u|α+1 dx.

As above, we call a nonzero weak solution uλ of (5.1) a ground state of (5.1), if it holds

E(uλ) ≤ E(wλ)

for any nonzero weak solution wλ of (5.1). The fibering map in this case is given as follows:

Φu(r) := E(ru) =
r2

2
H(u) +

r1+α

α+ 1
A(u), u ∈ H1(RN ), t ∈ R

+,
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and for fix u ∈ H1(RN ), the equation

Φ′
u(r) ≡ rH(u) + rαA(u) = 0, r ∈ R

+

has only one root

r(u) =
( A(u)
−Hλ(u)

) 1
1−α

, (5.2)

which exists if and only if H(u) < 0.
As above, substituting this root into Eλ(ru), we obtain a zero-homogeneous functional

J(u) := E(r(u)u) =
(1 − α)
2(1 + α)

A(u)
2

1−α

(−H(u))
1+α
1−α

, (5.3)

and we consider

Ê∞ = min{J(u) : u ∈ H1(RN) \ {0}, H(u) < 0}. (5.4)

As above, it follows directly the proposition below.

Proposition 5.1 We have that u is a minimizer of (5.4) if and only if ũ = r(u)u is a
ground state of (5.1).

In Appendix below, using (5.4), we prove the following lemma.

Lemma 5.1 Assume 0 < α < 1. Then (5.1) has a classical non-negative solution u ∈
H1(RN ) which is a ground state.

The following result can be found in [51].

Lemma 5.2 Assume 0 < α < 1. Then any classical solution u of (5.1) has a compact
support. Furthermore, if we define

Θ := {x ∈ R
N : u(x) > 0},

then for every connected component Ξ of Θ, we have that
(1) Ξ is a ball;
(2) u is radially symmetric with respect to the centre of the ball Ξ.

Lemmas 5.1–5.2 yield the following corollary.

Corollary 5.1 Assume 0 < α < 1. Then there is a radius R∗ > 0, such that (5.1) has a
ground state u∗ which is a flat classical radial solution and

supp(u∗) = BR∗ .

Let us return to (1.2). From Corollary 5.1, we have the following result.

Corollary 5.2 Assume that BR∗ ⊂ Ω. Then the ground state uλ of (1.2) with λ = 1
coincides with the ground state u∗ of (5.1), that is, uλ|λ=1 is a compact support classical radial
solution and

supp(uλ)|λ=1 ≡ Θ = BR∗ .
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Proof Any function w from H1
0(Ω) can be extended to R

N as{
w̃ = w in Ω,
w̃ = 0 in R

N \ Ω. (5.5)

Then w̃ ∈ H1(RN ), and in this sense, we may assume that H1
0(Ω) ⊂ H1(RN ). Therefore,

Ê∞ ≤ Ê1 ≡ min{J1(v) : v ∈ H1
0(Ω) \ {0}, v ≥ 0, H1(v) < 0}.

Note that u∗ ∈ K ⊂ H1
0(BR∗) ⊂ H1

0(Ω). This yields Ê∞ = E(u∗) = Ê1 and we get the proof.

Assume now that Ω is a star-shaped domain in R
N , with respect to some point z ∈ R

N ,
which without loss of generality, we may assume coincides with the origin 0 ∈ R

N .
Let uλ be a ground state of (1.2). By making a change of variable vλ(κ)(y) = κ−

2
1−αuλ(κy),

y ∈ Ωκ, with κ > 0, we get{
−Δvλ(κ) = λ(κ)vλ(κ) − vαλ(κ) in Ωκ,

vλ(κ) = 0 on Ωκ,
(5.6)

where λ(κ) = λκ2, Ωκ = {y ∈ R
N : y = x

κ , x ∈ Ω}. Since uλ is a ground state of (1.2), it

is easy to see that vλ(κ) is also a ground state of (5.6). Note that if κ =
√

1
λ then λ(κ) = 1.

On the other hand, if κ is sufficiently small then BR∗ ⊂ Ωκ. Hence, by Corollary 5.1, there is
a sufficiently large λ∗, such that for any λ > λ∗ the ground state vλ(κ) with λ(κ) = λ · (κ)2,

κ =
√

1
λ is a flat or compactly supported classical radial solution of (5.6) which coincides with

the ground state u∗ of (5.1). Thus we complete the proof.

Corollary 5.3 Assume 0 < α < 1. Then there exists λ∗ > 0, such that for any λ ≥ λ∗,
(1.2) has a ground state uλ which is a flat classical radial solution. Furthermore, uλ∗(x) =

κ
2

1−αu∗
(
x
κ

)
, where κ =

√
1
λ and u∗ is a flat classical radial ground state of (5.1).

Note that by [27, Lemma 3.3],

λ∗ > λc =
(
1 +

2(1 + α)
N(1 − α)

)
· λ1(Ω).

Furthermore, for any λ ∈ (λ1(Ω), λc), (1.2) cannot have flat solutions in C1(Ω).

6 Lyapunov Stability of Flat Ground States

In this section, first we prove the statement (2) of Theorem 1.1 and then prove Theorem
1.3(III).

To prove the stability, we will use the Lyapunov function method. Let uλ be a ground state
of (1.2), such that E′′

λ(uλ)(uλ, uλ) > 0. For δ > 0, denote

Uδ(uλ) := {v ∈ H1
0(Ω) : ‖uλ − v‖ < δ}.

Observe that Eλ, E′′
λ : H1

0(Ω) → R are continuous maps. Hence there exists δ0 > 0, such that
E′′
λ(u)(u, u) > 0 for all u ∈ Uδ(uλ) if 0 < δ < δ0.

In the next two lemmas, we show that Eλ is a Lyapunov function in the neighborhood
Uδ(uλ) if 0 < δ < δ0.
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Lemma 6.1 Assume (U). Let λ > λ∗ and uλ be a ground state of (1.2), such that E′′
λ(uλ) >

0. Then for any δ ∈ (0, δ0), it satisfies

Eλ(u) > Eλ(uλ) = Êλ, ∀u ∈ Uδ(uλ) \ {uλ}. (6.1)

Proof Suppose contrary to our claim that for every δ ∈ (0, δ0) there exists uδ ∈ Uδ(uλ) \
{uλ}, such that Eλ(uδ) ≤ Eλ(uλ). This implies that there exists a sequence un ∈ Uδ0(uλ), such
that un → uλ in H1

0(Ω) as n→ ∞ and

Eλ(un) ≤ Eλ(uλ), n = 1, 2, · · · . (6.2)

Note that by property (U), we may assume that the point un for any n = 1, 2, · · · , is not a
ground state of (1.2). Furthermore, rmin(uλ) = 1 since E′′

λ(uλ) > 0. Thus by (4.1), we have

Eλ(rmin(un)un) > Eλ(uλ), n = 1, 2, · · · .

Moreover, this and (6.2) yield that

1 < rmax(un) < rmin(un). (6.3)

Note that rmax(·), rmin(·) : H1
0(Ω) → R are continuous maps. Hence

rmin(un) → rmin(uλ) = 1 as n→ ∞,

since un → uλ in H1
0(Ω) as n→ ∞. Then by (6.3), we have also

rmax(un) → rmin(uλ) = 1 as n→ ∞.

From this and since E′′
λ(rmax(un)un) ≤ 0 and E′′

λ(rmin(un)un) ≥ 0, we conclude that

E′′
λ(uλ) = 0.

But this is impossible by the assumption. This contradiction completes the proof.

Lemma 6.2 Let v(t), t ∈ [0, T ) be a weak solution of (1.1). Then

∂

∂t
Eλ(v(t)) ≤ 0 in (0, T ). (6.4)

Proof By the additional regularity obtained in Section 2, there exists ∂
∂tEλ(v(t)) in (0, T )

and

∂

∂t
Eλ(v(t)) = DuEλ(v(t))(vt(t)) = 〈−Δv(t) − λ|v|β−1v + |v|α−1v, vt(t)〉 = −‖vt(t)‖2

L2 ≤ 0.

Thus we get the result.

The proof of Theorem 1.1(2) will follow from the following lemma.

Lemma 6.3 Assume (U). Let λ > λ∗ and uλ be a ground state of (1.2) such that E′′
λ(uλ) >

0. Then for any given ε > 0, there exists δ ∈ (0, δ0) such that

‖uλ − v(t;w0)‖1 < ε for any w0 ≥ 0 such that ‖uλ − w0‖1 < δ, ∀t > 0. (6.5)
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Proof Without loss of generality, we may assume that ε ∈ (0, δ0). Consider

dε := inf{Eλ(w) : w ∈ H1
0(Ω), ‖uλ − w‖1 = ε}. (6.6)

Then dε > Êλ. Indeed, assume the opposite, that there is a sequence wn ∈ K, ‖uλ −wn‖1 = ε

and Eλ(wn) → Êλ. Hence, (wn) is bounded in H1
0(Ω), and therefore by the embedding theorem,

there exists a subsequence (again denoted by (wn)), such that wn → w0 weakly in H1
0(Ω) and

strongly in Lp, 1 < p < 2∗ for some w0 ∈ H1
0(Ω). Since ‖u‖2

1 is a weakly lower semi-continuous
functional on H1

0(Ω), one has Êλ ≥ Eλ(w0) and ‖uλ−w0‖1 ≤ ε. By Lemma 6.1, this is possible
only if w0 is a ground state of (1.2), i.e., a minimizer of (4.1). But then Êλ = Eλ(w0) implies
that wn → w0 strongly in H1

0(Ω). From here we have ε = ‖uλ − wn‖1 → ‖uλ − w0‖1. Thus
w0 ∈ Uδ0(uλ) and uλ �= w0. Since by property (U), uλ is the unique non-negative solution of
(1.2) in Uδ0(uλ), we get a contradiction.

Let σ > 0 be an arbitrary value such that dε − σ > Êλ. Then by continuity of Eλ(w), one
can find δ ∈ (0, ε), such that

Eλ(w) < dε − σ, ∀w ∈ Uδ(uλ) ⊂ Uε(uλ). (6.7)

We claim that for any w0 ∈ Uδ(uλ), the solution v(t, w0) belongs to Uε(uλ) for all t > 0.
Indeed, suppose the opposite, since v(t, w0) ∈ C((0, T ),H1

0(Ω)), there exists t0 > 0 such that
‖uλ − v(t0, w0)‖1 = ε. This implies that

dε ≤ Eλ(v(t0, w0)).

On the other hand, by Lemma 6.3, we have Eλ(v(t0, w0)) ≤ Eλ(w0). Thus by (6.7), one gets

dε ≤ Eλ(v(t0, w0)) ≤ Eλ(w0) < dε − σ.

This contradiction proves the claim.

Proof of Theorem 1.3(III) Assume that N ≥ 3, (α, β) ∈ Es(N) and Ω is a strictly
star-shaped domain with respect to the origin. By [42, Corollary 15], it follows that there exists
λ∗ > 0 such that (1.2) has a flat ground state uλ∗ which uλ∗ ≥ 0 and uλ∗ ∈ C1,γ(Ω)∩C2(Ω) for
some γ ∈ (0, 1). Now applying Theorem 1.1(2), we conclude that uλ∗ is a stable non-negative
stationary solution of the parabolic problem (1.1).

Remark 6.1 Related linearized stability results were obtained in [5] working in Sobolev
spaces in the framework of degenerate parabolic equations of porous media type.

7 Linearized Unstability

In this section, we prove statements (I)–(II) of Theorem 1.3.

Lemma 7.1 Let uλ be a non-negative weak solution of (1.2) such that E′′(uλ) < 0. Then
uλ is unstable stationary solution of (1.1) in the sense that λ1(−Δ − λβuβ−1

λ + αuα−1
λ ) < 0.

Proof Let uλ be a non-negative weak solution of SP(α, β, λ). Then the corresponding
linearized problem at uλ is{

−Δψ − (λβuβ−1
λ − αuα−1

λ )ψ = μψ in Ω,
ψ = 0 on ∂Ω.

(7.1)
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Then there is a first eigenvalue μ1 to (7.1) with a positive eigenfunction ψ1 > 0 such that
ψ1 ∈ C2(Ω) ∩ C1

0(Ω). The existence of μ1 is a particular case of the results in [28], using the
estimates on the boundary behavior of uλ obtained in [23–24], namely that

Kd(x)
2

1−α ≤ uλ(x) ≤ Kd(x)
2

1−α for any x ∈ Ω (7.2)

for some constants K > K > 0. We shall sketch the argument for the reader’s convenience.
From this estimates, it follows that, roughly speaking, uλ(x)α−1 “behaves like” d(x)−2 and
uλ(x)β−1 as d(x)

−2(1−β)
1−α with γ := 2(1−β)

1−α < 2 from α < β. Then from the used monotonicity
properties of eigenvalues, it is enough to show that a first eigenvalue of the problem⎧⎨⎩−Δw +

α

d(x)2
w − λβ

d(x)γ
w = μw in Ω,

w = 0 on ∂Ω
(7.3)

is well-defined and has the usual properties. This is carried by reducing the problem to an
equivalent “fixed point” argument for an associated (linear) eigenvalue problem. Assume first
that μ > 0. Then (7.3) is equivalent to the existence of μ such that r(μ) = 1, where r(μ) is the
first eigenvalue for the associated problem⎧⎨⎩−Δw +

α

d(x)2
w = r

( λβ

d(x)γ
w + μw

)
in Ω,

w = 0 on ∂Ω.
(7.4)

That r(μ) > 0 is well-defined follows by showing that (7.4) is equivalently formulated as Tw =
rw with T = i ◦ P ◦ F , where F : L2(Ω, dγ) → H−1(Ω) defined by

F (w) =
λβ

d(x)γ
w + μw,

P : H−1(Ω) → H1
0(Ω) is the solution operator for the linear problem{

−Δz +
α

d(x)2
z = h(x) in Ω,

w = 0 on ∂Ω
(7.5)

for h ∈ H−1(Ω), and i : H1
0(Ω) → L2(Ω, dγ) is the standard embedding. It is possible to prove

that F and P are continuous, and i is compact by using Hardy’s inequality and the Lax-Milgram
lemma (see [5, 28]). Since T is an irreductible compact linear operator, by applying the weak
maximum principle, it is possible to apply Krein-Rutman’s theorem in the formulation in [18].
We have the variational formulation

r(μ) = inf
w∈H1

0(Ω)\{0}

∫
Ω

(
|∇w|2 +

α

d(x)2
w2

)
dx

λβ

∫
Ω

w2

d(x)γ
dx+ μ

∫
Ω

w2dx
. (7.6)

Hence a positive eigenvalue exists if and only if there is a μ > 0 such that r(μ) = 1. A
completely analogous argument gives the formulation for μ < 0, namely with

r1(μ) = inf
w∈H1

0(Ω)\{0}

∫
Ω

(
|∇w|2 +

α

d(x)2
w2 + μw2

)
dx

λβ

∫
Ω

w2

d(x)γ
dx

. (7.7)
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Notice that r(μ) (resp. r1(μ)) is decreasing (resp. increasing) in μ. Then

r(0) = r1(0) = inf
w∈H1

0(Ω)\{0}

∫
Ω

(
|∇w|2 +

α

d(x)2
w2

)
dx

λβ

∫
Ω

w2

d(x)γ
dx

,

and there exists a positive eigenvalue if r(0) > 1 and a negative one if r(0) < 1.
Coming back to our instability analysis, by Courant minimax principle, we have

μ1 = inf
ψ∈H1

0(Ω)\{0}

∫
Ω

(|∇ψ|2 − (λβuβ−1
λ − αuα−1

λ )ψ2) dx∫
Ω

|ψ|2 dx
. (7.8)

Let us put ψ = uλ in the minimizing functional of (7.8). Then we get∫
Ω

(|∇uλ|2 − (λβuβ−1
λ − αuα−1

λ )u2
λ) dx∫

Ω

|uλ|2 dx
=

E′′
λ(uλ)∫

Ω

|uλ|2 dx
< 0,

by the assumption E′′(uλ) < 0. This yields by the definition (7.8) that λ1(−Δ − λβuβ−1
λ +

αuα−1
λ ) := μ1 < 0. Thus we get unstability.

Proof of Theorem 1.3(I)–(II)
(I) Assume N = 1, 2 and (α, β) ∈ E . Let uλ be a free boundary solution of (1.2). Since

E = Eu(N), Lemma 1.1(2) implies that E′′
λ(uλ) < 0. However, this yields by Lemma 7.1 that

uλ is a linearized unstable stationary solution of the parabolic problem (1.1).
(II) Assume N ≥ 3 and (α, β) ∈ Eu(N). Let uλ be a free boundary solution of (1.2). Then

by Lemma 1.1(2), we have E′′
λ(uλ) < 0. This yields as above by Lemma 7.1 that uλ is a

linearized unstable stationary solution of the parabolic problem (1.1).

8 Globally Unstable Ground State of (1.1) in Case β = 1

In this section, we prove Theorem 1.4(2).
Let us introduce the so-called exterior potential well (see [48])

W := {u ∈ H1
0(Ω) : Eλ(u) < Êλ, E

′
λ(u) < 0}. (8.1)

The proof of the theorem will be obtained from the following lemma.

Lemma 8.1 If v0 ∈ W, then ‖v(t, v0)‖L2(Ω) → ∞ as t→ +∞.

Proof First we show that W is invariant under the flow (1.1). Let v(t, v0) be a weak
solution of (1.1). Then using the additional regularity obtained in Section 2, we have

Eλ(v(t)) ≤
∫ t

0

‖vt‖2
L2ds+ Eλ(v(t)) ≤ Eλ(v0) < Êλ

for all t > 0. Thus v(t) may leave W only if there is a time t0 > 0 such that rλ(v(t0)) = 1
(since, formally, E′

λ(v(t0)) = 0). But then, by (3.12), we have

Eλ(v(t0)) = max
r>0

Eλ(rv(t0)) ≥ Êλ.
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Thus we get a contradiction and indeed

Eλ(v(t, v0)) < Êλ, E′
λ(v(t, v0)) < 0, ∀t > 0 (8.2)

for any v0 ∈ W .

Furthermore, we have the following proposition.

Proposition 8.1 Assume v ∈ L∞(0,+∞ : H1
0(Ω)). Then there exists c0 < 0, which does

not depend on t > 0, such that

E′
λ(v(t)) ≤ c0 < 0 for a.e. t > 0. (8.3)

Proof By regularizing v0, we can assume that E′
λ(v(t)) is continuous in t. Suppose, contrary

to our claim, that there is (tm), such that the sequence vm := v(tm) (m = 1, 2, · · · ) satisfies

E′
λ(vm) → 0 as m→ ∞. (8.4)

Note that by (8.2) we have

Eλ(vm) < Êλ for m = 1, 2, · · · . (8.5)

By assumption (vm) is bounded in H1
0(Ω). Therefore, we have that there are the following

convergences (up choosing a subsequence):

vm → v as m→ ∞ in Lp, 1 < p < 2∗, (8.6)

vm ⇁ v as m→ ∞ weakly in H1
0(Ω), (8.7)

lim
m→∞Eλ(vm) = a (8.8)

for some v ∈ H1
0(Ω) and a ∈ R. Hence by the weakly lower semi-continuity of T (u) in H1

0(Ω),
we have

Eλ(v) ≤ lim
m→∞Eλ(vm) = a, (8.9)

E′
λ(v) ≤ lim

m→∞E′
λ(vm) = 0. (8.10)

Since v ∈ C([0, T ] : H1
0(Ω)), by Proposition 2.1 we have∫ t

0

‖vt‖2
L2ds+ Eλ(v(t)) ≤ Eλ(v(0)). (8.11)

Hence,

a = lim
m→∞Eλ(vm) ≤ Eλ(v0) < Êλ

for any v0 ∈ W , and therefore Eλ(v) < Êλ. Observe that this implies a contradiction in case
that the equality holds in (8.10). Indeed, if E′

λ(v) = 0, then r(v) = 1, and therefore (3.11) and
(3.13)–(3.14) yield Eλ(v) ≥ Êλ.

Suppose that E′
λ(v) < 0. Then there is r ∈ (0, 1) such that E′

λ(rv) = 0. Observe that (8.6)
and (8.8) imply

1
2

lim
m→∞Hλ(vm) = a− 1

1 + α
A(v), (8.12)
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and (8.4) implies

lim
m→∞Hλ(vm) = −A(v). (8.13)

From here, we obtain

Eλ(rv) =
r2

2
Hλ(v) +

r1+α

1 + α
A(v)

≤ r2

2
lim
m→∞Hλ(vm) +

r1+α

1 + α
A(v)

=
1
2

lim
m→∞Hλ(vm) +

1
2
(r2 − 1) lim

m→∞Hλ(vm) +
r1+α

1 + α
A(v)

= a− 1
1 + α

A(v) − 1
2
(r2 − 1)A(v) +

r1+α

1 + α
A(v)

= a+
[
− 1

1 + α
− 1

2
(r2 − 1) +

r1+α

1 + α

]
A(v).

It is easy to see that

max
1≤r≤1

{[
− 1

1 + α
− 1

2
(r2 − 1) +

r1+α

1 + α

]}
= 0.

Thus we get Eλ(rv) ≤ a < Êλ. However, this contradicts the definition of Êλ, since E′
λ(rv) = 0.

This completes the proof of the proposition.

Let us now conclude the proof of the lemma. Suppose, contrary to our claim, that the set
(v(t)), t > 0 is bounded in L2(Ω). Then this set is also bounded in H1

0(Ω), since Hλ(v(t)) :=
T (v(t)) − λG(v(t)) < 0 for all t > 0.

Let us consider

y(t) := ‖v(t)‖2
L2 , t ≥ 0,

where v(t) := v(t, v0). Observe that

‖v(t)‖2
L2 = ‖v0‖2

L2 + 2
∫ t

0

(vt(s), v(s)) ds,

and by (1.1),

(vt(s), v(s)) = (Δv(s) + λv(s) − |v(s)|α−1v(s), v(s)) = −E′
λ(v(s)).

Therefore,

y(t) = ‖v0‖2
L2 − 2

∫ t

0

E′
λ(v(s))ds (8.14)

and

d
dt
y(t) ≡ ẏ(t) = −2E′

λ(v(t)).

Hence, estimate (8.3) of Proposition 8.1 yields ẏ(t) > −2c0 > 0 for all t > 0, and therefore
y(t) = ‖v(t)‖2

L2 → +∞ as t→ ∞. This completes the proof of Lemma 8.1.
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Conclusion of the proof of Theorem 1.4(2) Let uλ be a ground state of (1.1) and give
any δ > 0. Observe that for any r > 1,

Eλ(ruλ) < Êλ, E′
λ(ruλ) < 0.

Thus ruλ ∈ W for any r > 1, and by Lemma 8.1, ‖v(t; v0)‖L2 → +∞ with v0 = ruλ. Therefore,

‖uλ − v(t; v0)‖L2 → +∞ as t→ ∞.

On the other hand, evidently ‖uλ− ruλ‖L2 < δ for sufficiently small |r− 1|. This concludes the
proof of Theorem 1.4.

9 Appendix. Existence of a Ground State Solution of (5.1)

In this section, we prove Lemma 5.1.
Consider

Ê∞ = min{J(v) : v ∈ H1
0(Ω) \ {0}, H(v) < 0}. (9.1)

Lemma 9.1 There exists a minimizer v of (9.1).

Proof Let (vm) be a minimizing sequence of (9.1). Since J(u) is a zero-homogeneous
functional, we may assume that ‖vm‖1 = 1, m = 1, 2, · · · . This implies that

|H(vm)| < C <∞ uniformly on m = 1, 2, · · · . (9.2)

Observe that

‖vm‖2
L2(RN ) ≡

∫
|vm|2dx > c1 > 0 (9.3)

uniformly on m = 1, 2, · · · . Indeed, if we suppose the contrary
∫
|vm|2dx → 0 as m → ∞,

then the assumption ‖vm‖1 = 1 (m = 1, 2, · · · ) implies that
∫
|∇vm|2 dx → 1, and therefore

H(vm) =
∫
|∇vm|2 dx −

∫
|vm|2 dx → 1 as m → ∞. But this is impossible, since by the

construction H(vm) < 0.
Let us show that

A(vm) > c0 > 0 uniformly on m = 1, 2, · · · . (9.4)

Assume the opposite, that A(vm) → 0 as m → ∞. Then
∫
|vm|2dx → 0 as m → ∞, since by

Hölder and Sobolev inequalities∫
|vm|2dx ≤

( ∫
|vm|α+1dx

) κ
α+1

(∫
|vm|2∗

dx
) α+1−κ

α+1 ≤ C0A(vm)
κ

α+1 ‖vm‖2∗ α+1−κ
α+1

1 ,

where κ =
(α + 1)(2∗ − 2)

2∗ − α+ 1
. But this contradicts (9.3).

Observe that (5.3), (9.2) and (9.4) yield

Ê∞ > 0, (9.5)

and we have

0 < c0 < ‖vm‖1+α
L1+α ≡ A(vm) < C1 < +∞ (9.6)

uniformly on m = 1, 2, · · · .
We need the following lemma (see [34, Lemma I.1, p. 231]).
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Lemma 9.2 Let 1 ≤ q < +∞ with q ≤ 2∗ if N ≥ 3. Assume that (wn) is bounded in
H1

0(R
N ) and Lq(RN ), and

sup
y∈RN

∫
y+BR

|wn|qdx→ 0 as n→ ∞, for some R > 0.

Then ‖wn‖Lβ → 0 for β ∈ (q, 2∗).

Let R > 0. Observe that

lim inf
m→∞ sup

y∈RN

∫
y+BR

|vm|1+αdx := δ > 0. (9.7)

Indeed, let us assume that

lim inf
m→∞ sup

y∈RN

∫
y+BR

|vm|1+αdx = 0.

Then by Lemma 9.2, we have ‖vm‖L2 → 0 as m→ ∞. But this contradicts (9.3).
Thus there is a sequence {ym} ⊂ R

N such that∫
ym+BR

|vm|1+αdx >
δ

2
, m = 1, 2, · · · .

Introduce um := vm(· + ym), m = 1, 2, · · · . Then∫
BR

|um|1+αdx >
δ

2
, m = 1, 2, · · · , (9.8)

and {um} is a minimizing sequence of (9.1).
Furthermore, by the zero-homogeneity of J(u), now we may normalize the sequence {um}

(again denoted by {um}), such that

A(um) = 1, m = 1, 2, · · · . (9.9)

Then (9.6) implies that the renormalized sequence {um} will be again bounded in H1(RN ).
Thus by Eberlein-Smulian theorem there is a subsequence of {um} (again denoting {um}) and
a limit point u ∈ H1

0(Ω), such that

um ⇁ u weakly in H1
0(Ω), as m→ ∞. (9.10)

Furthermore,

um → u a.e. on R
N, as m→ ∞, (9.11)

and for 2 < q < 2∗,

um → u in Lqloc as m→ ∞, (9.12)

since by Rellich-Kondrachov theorem, H1
0(BR) is compactly embedded in Lq(BR) for 2 < q < 2∗

and any BR := {x ∈ R
N : |x| ≤ R}, R > 0. Note that (9.8) implies that

u �= 0.

We need the Brezis-Lieb lemma (see [10]).
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Lemma 9.3 Let Ω be an open subset of R
N and let {wn} ⊂ Lq(Ω), 1 ≤ q <∞. If

(a) {wn} bounded in Lq(Ω),
(b) wn → w a.e. on Ω,

then

lim
n→∞

(
‖wn‖qLq − ‖wn − w‖qLq

)
= ‖w‖qLq .

Let us denote ωm := um − u. Then the Brezis-Lieb lemma yields

1 = A(u) + lim
m→∞A(ωm). (9.13)

Observe

H(ωm) = H(u) + H(um) − H′(um)(u). (9.14)

Note that due to the weak convergence (9.10), we have H ′(ωm)(u) → 0 as m→ ∞. Therefore,
H(ωm) < 0 for sufficiently large m, since H(u) < 0 and H(um) < 0 for m = 1, 2, · · · . On the
other hand,

H(um) = H(u) + H(ωm) + H′(ωm)(u),

and therefore

lim
m→∞H(um) = H(u) + lim

m→∞H(ωm). (9.15)

Observe that (9.1) implies that for any v ∈ H1
0(Ω) \ {0} such that H(v) < 0, it holds

−H(v) ≤ kα
A(v)

2
1+α

Ê∞ , (9.16)

where

kα =
( (1 − α)

2(1 + α)

) 1−α
1+α

.

Hence

−H(u) ≤ kα
A(u)

2
1+α

Ê∞

and

−H(ωm) ≤ kα
A(ωm)

2
1+α

Ê∞ (9.17)

for sufficiently large m. Since A(um) = 1, we have

lim
m→∞ kα

1
(−H(um))

= Ê∞.

Hence, we have

kα
1

Ê∞ = lim
m→∞(−H(um))

= −H(u) + lim
m→∞(−H(ωm))

≤ kα
A(u)

2
1+α

Ê∞ + lim
m→∞ kα

A(ωm)
2

1+α

Ê∞

= kα
1

Ê∞ (A(u)
2

1+α + (1 −A(u))
2

1+α ).
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Note since 2
1+α > 1, we have that f(r) := r

2
1+α +(1− r)

2
1+α ≥ 1 for r ∈ [0, 1] and that f(r) = 1

if and only if r = 0 or r = 1. Thus we have

A(u) = 1 or A(u) = 0.

Now taking into account that u �= 0, we get that A(u) = 1. Hence by (9.13), we obtain
A(ωm) → 0 as m→ ∞, and consequently by (9.17), we have (−H(ωm)) → 0 as m→ ∞. From
here, it is not hard to conclude that um → u strongly in H1(RN), and therefore J(u) = Ê∞.
Thus u is a minimizer of (9.1).

Proof of Lemma 5.1 By Lemma 9.1, there exists a minimizer u of (9.1). Since J is an even
functional then |u| is also a minimizer of (9.1). Thus we may assume that u is non-negative
function. By Proposition 3.4, it follows that u = r(u)u is a weak solution of (5.1) which is
non-negative since r(u) > 0. By regularity theory, we derive that u ∈ C2(RN ).
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[1] Álvarez, L. and Dı́az, J. I., On the retention of the interfaces in some elliptic and parabolic nonlinear
problems, Discrete and Continuum Dynamical Systems, 25(1), 2009, 1–17.

[2] Antontsev, S., Dı́az, J. I. and Shmarev, S., Energy methods for free boundary problems, Applications to
Nonlinear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002.
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