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Abstract This paper records for the Hamiltonian H = %[p|* + W (z) some old and new
identities relevant for the PDE/variational approach to weak KAM theory.
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1 Introduction

1.1 Weak KAM for a model Hamiltonian

This is a follow-up to two of my earlier papers [2-3] that propose a PDE /variational approach
to weak KAM theory, originating with Mather and Fathi (see [5-6, 10-11], etc.). In this paper,
we specialize to the classical Hamiltonian

1
Hp,) = 5ol + W(a), (11)
where the potential W is smooth and T"-periodic, where T™ = [0, 1]™ denotes the unit cube
with opposite faces identified. Given a vector P = (Py,---, P,) € R", the corresponding cell
PDE reads
1 —
§|P+DU|Q+W:H(P) in T", (1.2)

where H : R” — R is the effective Hamiltonian corresponding to H, as introduced in the
important, but unpublished, paper of Lions-Papanicolaou-Varadhan [9]. Here v = v(P,z)
denotes a T™-periodic viscosity solution. As shown for instance in [2], there exists also a Radon
probability measure o on T™ solving the transport PDE

div(o(P + Dv)) =0 inT" (1.3)

in an appropriate weak sense.
A central goal of weak KAM theory is developing a nonperturbative methods to identify
“integrable structures” within the otherwise possibly chaotic dynamics generated by a given
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Hamiltonian H = H(p,z), and in particular to understand if and how the effective Hamilto-
nian H encodes such information. The PDE approach to weak KAM aims at extracting such
information from the two coupled PDE (1.2)—(1.3).

This paper extends previous work by discovering for the particular case of the Hamiltonian
(1.1) several new integral identities, especially for the variational approximations introduced
below. We also record how some previously derived general formulas simplify in this case, and
provide in Section 4 some applications.

1.2 Variational approximation

We consider for fixed € > 0 the problem of minimizing the functional

I.[v] ::/ R dez,

among Lipschitz continuous functions v : T" — R with mean zero: an vde = 0. We write
D = D, to denote the gradient in the variables z. PDE and calculus of variations theory (see
[2]) implies that this problem has a unique, smooth minimizer v = v*(P,x), which satisfies
therefore the Euler-Lagrange PDE

H(P+Dv®,x)

divie™ = (P+Dv%))=0 inT". (1.4)

Standard regularity theory shows that v¢ is a smooth function of z and also of the parameters
eand P = (P, -+, P,).
It is convenient to change notation, writing

1
H®:= H(P+ Dv¥,z) = 5|P+Dv€|2 + W,

H(P) :=¢clog (/ o't dx), (1.5)

c HE —H®(P)
g =€ €

Theorem 1.1 (i) We have o€ > 0,
/ o¢dr =1, (1.6)
div(e®(P + Dv®)) =0 (1.7)
and
(P + Dv°) - DH® +eAv® = (P; + v, )(Pj + 05 )vg, o, + (P + 05 )Wa, +€A0° = 0. (1.8)
(ii) Furthermore,
H° (P)<H(P), PeR" (1.9)

for each € > 0, and
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As above, D = D, means the first derivatives in x, and D? = D? the second derivatives in
x. Likewise, A = A, means the Laplacian in the z-variables.

Proof The term H (P) is introduced to achieve the normalization (1.6). The PDEs (1.7)
and (1.8) are the Euler-Lagrange equation (1.4) rewritten in respective divergence and non-
divergence forms respectively.

The assertion (1.9) follows upon our using a solution of (1.2) in the variational principle,
and the limit (1.10) is demonstrated in [2].

Remark 1.1 As shown in [2], we have the uniform estimates
max{|Dyv7], [v%|} < €
for a constant C' independent of . Hence we can extract a subsequence, such that
v®% — v uniformly on T", o — o weakly as measures.

A main assertion of [2] is that v, o solve the transport equation (1.3) and the cell PDE (1.2) on
the support of ¢. In particular, Dv makes sense o-almost everywhere, even if o has a singular
part with respect to Lebesgue measure.

See also Bernardi-Cardin-Guzzo [1], Gomes-Sanchez Morgado [8], Gomes-Iturriaga-Sanchez
Morgado-Yu [7], etc. for more on this variational method.

2 Identities and Estimates

The ideas are to extract useful information from the two forms (1.7)-(1.8) of the Euler-
Lagrange PDE. This section records various relevant integral identities, mostly derived by
differentiating with respect to different variables. Some of the resulting formulas are special
cases of those in [2-3] and some are new.

2.1 Differentiations in x

We start by differentiating with respect to xx for k=1,---  n.

Theorem 2.1 We have the identities

s DWo®dzx =0, / Aveofdz =0 (2.1)
and
/ [(|D%€|2 +AW)o® + e@} dz =0 (2.2)
Proof In view of (1.1) and (1.5), we have
%|P+DUE|Q+W:FE(P)+€1ogU€. (2.3)

Differentiating in xj once, and then twice, we learn that

€

0’1}
(P + vz )50y, + W, =¢ . k (2.4)

g
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and

(P + Dvf) - D(AF) + |D*o° |2 + AW = e div, (Z” ) (2.5)

Multiply (2.4) by o¢, integrate by parts and recall (1.7) to derive the first identity in (2.1). The
second follows upon our multiplying (1.8) by ¢¢ and integrating. To get (2.2), multiply (2.5)
by o° and integrate.

emark 2.1 As Do® = = o, we obtain from (2.2) the estimate
R k As Do*¢ iDHE °, btain f (2.2) th i
1
/ (1072 + LDHP)o* da < (2.6)

for a constant C' independent of £. Recall that we write DH® = D, H°®.
We next generalize Theorem 2.1.

Theorem 2.2 For each smooth function ¢ : R — R, we have the identity

/ [ID*0F26(0%)0" + (Av*)?¢/ (0%)(0)?] dw
1 £12 e\ € /(€ £)2
+5/Tn IDHP[8(0°)0" + ¢/ (0°)(0°)?] da
_ _/ AW $(0%)o° dz. (2.7)

Proof (1) We multiply the Euler-Lagrange equation (1.7) by div(¢(c®)(P + Dv®)) and
integrate by parts over T" as follows:

0= [ (0P + 2 )a (607N (P 445, ), do
= [ (P4 ), (000 )P 405, ), o
= [ (05, (P ) 00 ) (002, (P 4 05,) + 6(0%)05 ) o
= [ D% Po(o%)0* + ¢/ (07) Do - (P + Due)?

Tn
+[0(0%) + 06 (0°)5,, (P + 05 )05, } da.

Now Do® - (P + Dv®) = —o°Av®, according to (1.7), and furthermore v , (P + vi )
= H; — W,,. We can therefore simplify, obtaining the identity

0= [ {ID* o)™ + 8 (0) (0 2(A0°)? + [6(0%) + %6/ (0°)|(DH — DW) - D7) da.
T’!L
Since Do® = %DHEUE7 it follows that
1070 Polat)a + (a0 Pa (oo Plda+ £ [ IDHFloto%)o" + o (0°) (0" o

= /n [6(0°) 4+ 0°¢/ (0°)|DW - Do da = —/ AW (o) dx.

n
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2.2 Differentiations in P
We next differentiate with respect to the parameters Py, for k = 1,---  n. In the following
expressions, we write

Ve .= DH (P). (2.8)

Hereafter Dp means the gradient in P, and Dﬁj p means the mixed second derivatives in = and
P. To minimize notational clutter, we can safely write DH" = DpH and D*H" = D%FE,

since H = H (P) does not depend upon .

Theorem 2.3 These following further identities hold:

DH (P)=V*® = / (P + Dvf)o® da, (2.9)
D?H (P) = /n [(I + D2pv°) @ (I + D2pv°)o + 6%] dz. (2.10)
Remark 2.2 Formula (2.10) means that for k,l =1,--- ,n,
— 0p 0h
Hop p (P) = / [(@k 405, p ) (G + 05, p )0 + 60—} da.
Therefore, & - D?H(P)¢ = F;kpl (P)ép& > 0 for all € = (&1, , &), and hence
P — H (P) is convex. (2.11)
Proof (1) Differentiating (2.3) in Py, and then in P, we find
(P +02,) 0k + 05, p ) = T, + a(;P , (2.12)
(Ps + 0205, pop + (G + 05, ) (G + 05, p) = Hopy py + E(UUP )p,' (2.13)

(2) Since [}, 0°dz = 1, we have

O—/ of dx—/ ﬁJde (2.14)
- Pk - c . .

ag

We now multiply (2.12) by 0 and integrate, using (1.6)—(1.7) and (2.14) to derive (2.9).
In addition, (2.14) implies

15 15 15
o op T
P P.oP
( . ) ofdr = — ——L dz.
n \0¢ /P n OF

So the identity (2.10) follows, if we multiply (2.13) by o¢ and integrate.

Remark 2.3 It follows from (2.10) that
|Dpoc|?
€

tr(D?H (P)) = / <|I + D2 pvf?0° + Ei)dx
’ o

1
:/ (|I+D§7Pv5|2+g|(P+Dv€)(I+D§’Pv5)—V€|2)05dx, (2.15)

where “tr” means trace.
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2.3 Differentiations in

In the following, subscripts & denote derivatives with respect to e.

Theorem 2.4 We have

. H*—H (P
H_(P)= —/ o°logo®dr = — f()(f dez, (2.16)
n T’!L
and so
Heo®dx = H (P) —cH.(P). (2.17)
’]T’IL
In addition,
T7e €l2,.€ O—§|2
He (P)= | [Dvg|"0® +e=—=—dz
. 1 H* —H (P)+cH_(P)? (218)
:/ (|Dv§|2+g‘(P+Dv€)-DU§— —H €)+E e )‘ )Uedx.
Remark 2.4 The identity (2.18) implies that
e — H (P) is convex. (2.19)
Differentiating in x and then in P, we can likewise show that
(P,e) — H (P) is jointly convex. (2.20)
Proof (1) We differentiate (2.3) twice in ¢, to learn that
(P + Dv°) - Dot = To(P) + log 0° + e 2=, (2.21)
o
and then
—¢ o: o:
(P + Dvf) - Dug, +|DoEf? = Ao (P) + 22 + g(—) . (2.22)
o o €

Multiply (2.21) by ¢¢ and recall (1.7), to derive (2.16).
(2) Next multiply (2.22) by 0. We observe that

O.E
0= ot dr = —<0°du,
n Tn o€

e £12
/ (ﬁ) aedx:—/ de.
Tn N0 /€ n OF
n (2.18

), and the second follows when we explicitly calculate o€.

and thus

This gives the first equality i

2.4 Estimates for Du® — Du

A key question is how well v¢ and ¢° approximate as € — 0 particular solutions v, o of the
weak KAM PDE (1.2)—(1.3).

Now let v be a viscosity solution of (1.2) and ¢ a corresponding weak solution of (1.3). To
allow for changes in P we also assume, for this subsection only, that v® solves the variational
problem for the vector P°. Consequently, we have

1 —
517 + Do+ W =H (P°) +¢clogo®.
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Theorem 2.5 These following identities hold:

%/ |(P? 4+ Dv®) — (P + Dv)|?¢° dz
=TI(P) =T (P*) + cH(P*) + DI (P*) - (P° = P) (2.23)
and
%/n |(P€ + D’UE) _ (P+Dv)|2 do = . HE do —F(P) + DF(P) . (P o Ps). (2.24)

Observe that right-hand sides involve Taylor expansions of H and H. Thus if H approx-
imates H sufficiently well for small ¢ and if P* is close to P, then |Dv® — Dv| is small on the
support of o¢.

Proof (1) We have
%|PE + Dv]?+ W =H (P°) 4+ ¢elogo®, %|P + Du|* + W = H(P),
and so
%qpe + Do — |P + Dof?) = B (PF) — H(P) + ¢ log o°. (2.25)
Since |a|? — |b]? = —|a — b]? + 2a - (a — b), we calculate that

1
3 / (|P¢ + Dv¥|? — |P + Dv|?) o° dx

1
= —5/ |(P® + Dv°) — (P + Dv)|?c° da

+ / (P® + Dv®) - ((P® + Dv®) — (P + Dv))o® dz

1
:—5/ |(P€+Dv€)—(P+Dv)|206da:+(P€—P)-/ (P® 4+ Dv®)o® dx

n

= —%/ |(P? + Dv°) — (P + Dv)|>0° dz + (P — P) - DH (P?),

the second equality resulting from (1.7). Consequently, (2.25) implies
1 - —=€ —c
5/ |(P° + Dv®) — (P + Dv)|?0°de = H(P) — H (P°) + (P° — P)- DH (P?)
— 5/ log o°0° du.

The identity (2.23) follows, since H. (P¢) = — Jrn log o°0° dz according to (2.16).
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(2) To prove (2.24), we next integrate (2.25) with respect to the measure o (recall (1.3)),

1

5/’ (|P + Dv|* — |P* 4+ Dv*|*)do
1

:_5/ |(P? + Dv°) — (P + Dv)*do

+ / (P+ Dv) - (P + Dv) — (P + Dv°)) do

:—l/n|(P€+Dv€)—(P+Dv)|2d0+(P—PE)~/ (P+ Dv)do

n

— _% / |(P? 4+ Dv®) — (P + Dv)[*do + (P¢ — P) - DH(P).
Hence, (2.25) gives

%/ |(P* + Dv) — (P + Dv)[>do

_ H(P7) — H(P) + (P* — P) . DH(P) + ¢ / log 0* dor

= | H°do—H(P)+ (P°—P)- DH(P).
’H‘n

3 Linearizations and Adjoints

3.1 Linearizing the PDE

The linearization about v of the Euler-Lagrange equation (1.8) is the operator

defined for smooth, periodic functions w : T — R.

Lemma 3.1 We have the alternative formulas

Lew] = —(P; + v, ) ((P; + U;])wx])xi — Hj wy, —eAw (3.2)
and
1
Lelw] = ——([(Ps + v5,)(Pj + v, + €dijlowa, ), (3.3)

Proof (1) Formula (3.2) follows immediately from (3.1).
(2) Recall from (1.7) that div((P + Dv®)o®) = 0. Consequently, the expression on the
right-hand side of (3.3) equals

)

oc.
_(Pi + ’U;i)((Pj + U.’ij)wxj)xi - Eo__gwxaz —eAw.

But this is the formula (3.2) for L.[w], since 0 = e

The linearization L. is useful, as it appears when we differentiate the nonlinear PDE (1.8).
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Theorem 3.1 These following identities hold:

o] = =2(P; + vz, vz, 050, + PiWa,, (
vy, ] = (P +v;, Wae,, k=1,---,n, (
e, =2(P + v )05, T We,, k=1,---,n, (
[xk] = —2(P; + v v —Wa, k=1, ,n, (
[ (
[ (

€
TiTp

Proof (1) According to (3.1) and (1.8),

LE[UE] = _(P)z + ’U;1)(P] + ’U;J,)'U;ixj - gAUE - (Z(P] + ’U;J,)'U;ixj + Wx7)’U;7
= PWa, = 2(Pj + v, )vg, 4, V5

TiTj T

This is (3.4).

(2) We obtain (3.5) upon differentiating (1.8) with respect to x5: The left-hand side appears
when the differentiation falls upon v® and the right-hand side appears when the differentiation
falls upon the term involving the potential W.

Similarly, (3.6) results from our differentiating (1.8) with respect to Py, and (3.8) from our
differentiating in . We directly compute from the definition (3.1) that (3.9) is also valid.

Remark 3.1 We observe from (3.6)—(3.7) that
L[zp +v5]=0, k=1,---,n (3.10)
But note also that x + Dpv® is not T™-periodic. We will return to this point in Subsection 4.2.

3.2 The adjoint operator

We introduce next the adjoint L of L. with respect to the standard inner product in L?(T™),
so that

[ rngas= [ sriigids (3.11)

Tn

for all smooth, T™-periodic functions f and g.

Theorem 3.2 (i) We have

Lifw] = = ([(P: + 05, )(Py +v5,) + £0)0° (Uﬂ)m)x (3.12)
(ii) Therefore
Lilo*w] = 0° L [w)] (3.13)
and

L:[0°] = 0. (3.14)

g
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Proof The identity (3.12) follows from (3.3) and an integration by parts.

Remark 3.2 It follows from (3.13) (or (3.3)) that the operator L., acting on smooth
functions, is symmetric with respect to the L? inner product weighted by o°:

/’ L.[flgo® dx = fL:[g) of dz (3.15)

Tn

for smooth, T"-periodic functions f, g. Perhaps the spectrum of L. contains useful dynamical

information in the limit € — 0.

3.3 More identities

We can employ the foregoing formulas to rewrite some of the expressions from Section 2.

Theorem 3.3 We have the identity

etr(D*H (P)) = en +/ (|P 4+ Dv® — VE|? — |(P + Dv) - D2 pvf|?

n

—¢|D? pvf|?)oc da (3.16)

and consequently the estimate

n

/ (I(P+ Dvf) - D22 + £| D2 po 2)o® dz < em +/ P4+ Dt — VePPofda.  (3.17)
Proof (1) Owing to (3.6), we have
L[ 51000 P] = vy (2(H)s, — W) — |(P+ Do) - D22 — | D2
We multiply by ¢ and integrate, recalling from (3.14) that L*[o°] = 0,
[P+ D) D22 4 el D27 o d

z/nv%k( (P + 03, )vg,p, + Wa,)o® da
— [ R (Pt v )05, HE Do do
= / vp, (P +v5,)v5,,,0°de +¢ /T" Vp, Oy, d
:—/ Voo, (P + 05, V5, 0 dx—a/T Vp 0 dz
= - / Vp o, (P +05,) (P + 05, — Vi )o® do — E/T" Vp, 0 d. (3.18)

The last equality follows from (1.7).
(2) In view of (2.15),

etr(D?H" (P)) = / (el + D2 pv°|* + |(P + Dv) D2 pv | + |P + Dv° — V=[*)o® da

+ 2/ (P + Dv*)D2 pv® - (P + Dv® — V¥)o© da.
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We use (3.18) to see that the second term equals

_2/ (|(P+Dv5).Dﬁpv€|2+5|D3Pv€|2)aedx—2€/ Vp 0" d.

n

Therefore

etr(D*H (P)) = / (el + D2 pv° | + |(P + Dv*)DZ pv°|> + |P 4+ Dv° = VE|?)o® dw

n

—2/ (|(P 4 Dv®) - D2pv° | 4 €| D% pv°|?)o® dx—2z—:/ Vp 0" d

n

= / (|P + Dv® — V|2 — |(P + DvE)D;Pvﬂ2 +€lI]? - <€|ch,Pv€|2)a6 dz.

The formula (3.16) follows, as does the inequality (3.17), since tr(D*H (P)) > 0.
Theorem 3.4 We have

e 7t T7e 2
ey = [ (HT T

—|UD+I%f)'DvQQ—EUM§F)JEd% (3.19)

and therefore

|H® — H (P) + eH_(P)|?
" g2

/ (|(P 4 Dv®) - DvE|* + e| DvE?)o® da < / o dx. (3.20)

Proof (1) According to (3.8), we have

1
LJ%WF}=@AW—KP+nyD@F—dD@R

€

We multiply by ¢¢ and integrate as follows:

/ (|(P 4+ Dv®) - DvE|? + e| DvE[*)of dx = / v Avto® dx. (3.21)
n Tﬂ,

The formula (2.18) implies

e H* —H (P)+cH.(P)
EHEE(P):/ (5|Dv§|2+|(P+Dv5)-Dv§|2+| (6)2+€ ()| )O'de
H® —H (P)+eH/(P
—2/ (P + Dv®) - Du; (5)+E e )O'Edil,'.

Recalling yet again (1.7), we observe that the second integral term equals
DH®
2/ V(P + Dvf) - ——o°dx = —2/ viAvtot de,
" € "
the last equality following from (1.8). We substitute (3.21) and rewrite, obtaining (3.19).

4 Some Applications

We collect in the concluding section some applications of the foregoing formulas, of which
those in Subsection 4.2 concerning nonresonance are the most interesting.
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41 H ase —0

An overall goal is understanding how H and its approximations H for small e > 0 provide
analytic control of v*, ¢, and thus in the limit of v, o.

As an illustration, we show next that if H (P) is nice enough as a function of £ near zero,
then we can construct a limit measure o that is absolutely continuous with respect to Lebesgue

measure.

Theorem 4.1 If

(H%(P))% is integrable near € = 0, (4.1)
then

0° — o in L'(T") (4.2)
and o € L*(T™) solves (1.3).

Proof If 0 < 1 < €9, we have

€2
/ |0’€2—0'61|d$§/ / |oZ| dade
']I’IL £1 n
< [([
ey n OF
==
<[ ()
— 3
€1 €

according to (2.18). Consequently, (4.1) implies that {o°}.~¢ is a Cauchy sequence in L(T")

1

(/ o dx)§d€

=

as € — 0.

4.2 Nonresonance phenomena

We assume hereafter that we can select P¢ so that

V := DH (P*) (4.3)
does not depend upon . Write V = (Vi,--- ,V,,). We suppose also the nonresonance condition
that for some constant ¢ > 0,

|V - k| > ﬁ for all vectors k € Z™, k # 0. (4.4)

Next, take g : T™ — R to be smooth and have zero mean

/ g(X)dX =0.

Then using a standard Fourier series representation and the nonresonance condition (4.4), we
have the following lemma.

Lemma 4.1 There exists a smooth T™-periodic solution f = f(X) of the linear elliptic
PDE

_VkaXle =g i T™. (45)
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Furthermore, we have for each s > 0 the estimate

£ zrscrmy < Csllgll s (rn) (4.6)
for a constant Cs.

Theorem 4.2 Assume that
e tr(D*H (P?)) = o(1) ase— 0. (4.7)
Then for each smooth function g : T" — R, we have

lim g(x + Dpv®)o®dx = / g(X)dX. (4.8)

e—0 Tn

n

Remark 4.1 This is a variant of a theorem in [2]. The formal interpretation is that under

the symplectic change of variable
(z,p) = (X, P),

defined implicitly by the formulas p = P + D, v, X = 2 + Dpv the dynamics become linear:
X(t) = Xog+tV fort > 0. Since V-k # 0 for all k € Z"—{0}, the flow is therefore asymptotically
equidistributed with respect to Lebesgue measure. The rigorous assertion (4.8) is consistent
with this picture.

Proof (1) Subtracting a constant if necessary, we may assume that the average of g is zero.
Now let f solve the linear PDE (4.5), and define

f(z) := f(x+ Dpv°).

The function fis T"-periodic, although x + Dpv® is not.
Recalling from (3.10) that L.[x + Dpv°] = 0, we compute

Le[f] = Dxf . LE[:c + DP’UE]
= [(P + vz, ) (P +vg,) +€6i5)(0ik + v, p, ) (051 + 03, p,) fXi X,
= —[(Ps + vz, ) (P + vg,) + €055](Gir + vz, p, ) (G50 + V3, p ) X0 x: -
Here and afterwards f is evaluated at © + Dpv®. It follows that
LE[}T] —i—g(x—i—Dva) =FE + E» (4.9)

for

By = [(P + vz,)(6ir + vz, p, ) (B + 05, ) (650 + 03, p) — ViVil Fxxi
Ey = e(bir + v3, p,) (0t + 03, p) X0 X,

(2) Selecting s large enough, we deduce from (4.6) that || f||c1.1 is bounded. Consequently,
. mmplies the estimate
2.15) implies th i

/ |Ey|of da < C/ (L+|I + D2 pv°|)|(P + Dv*)(I + D2 pv°) — V|0 da
Tn Tn

< C(e tr(D*H" (P?)))? = o(1).
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Likewise,

/’ |Es|of dz < Ce tr(D?*H (P?)) = o(1).

(3) Tt follows now from (4.9) and (3.14) that

/ g(x + Dpv®)o® dz = / (=L.[f] — By — Ey)o® da

- [ Pl e+ o)
o1)

as e — 0.
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