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Abstract This paper deals with representations of groups by “affine” automorphisms of
compact, convex spaces, with special focus on “irreducible” representations: equivalently
“minimal” actions. When the group in question is PSL(2, R), the authors exhibit a one-
one correspondence between bounded harmonic functions on the upper half-plane and a
certain class of irreducible representations. This analysis shows that, surprisingly, all these
representations are equivalent. In fact, it is found that all irreducible affine representations
of this group are equivalent. The key to this is a property called “linear Stone-Weierstrass”
for group actions on compact spaces. If it holds for the “universal strongly proximal space”
of the group (to be defined), then the induced action on the space of probability measures
on this space is the unique irreducible affine representation of the group.
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1 Introduction

The classical theory of group representations deals with representing a group as automor-
phisms of vector spaces. In principle, one can take any category with its morphisms and study
representing a group by automorphisms of objects in this category. In what follows, we shall do
this for the category of compact convex spaces with morphisms preserving the affine structure.
There is particular interest in the “irreducible” representations where no proper “subobject”
is invariant under the action. A pleasant aspect of this theory is that for any group, there is
a “universal” irreducible representation from which all others can be derived. Moreover, for
many groups, the universal irreducible representation can be described explicitly. Following
our preliminary discussion, we focus on the group PSL(2,R), or equivalently, on the Möbius
group of analytic maps preserving the unit disc of the complex plane. Denote the latter group
by G. We show, following [3], that each bounded harmonic function on the disc leads to an
irreducible representation of G on a compact, convex subset of L∞(G). Since there is an abun-
dance of bounded harmonic functions on the disc, we might expect to find a great variety of
non-equivalent irreducible representations of PSL(2,R). This was our initial guess and the
motivation for the ensuing research. As it turns out, the universal irreducible representation
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of the Möbius group is given by the natural action on probability measures on the unit cir-
cle. Moreover, we show that this representation is “prime”, meaning that no other irreducible
representation can be derived from this one. This means, in particular, that all non-constant
harmonic functions lead to equivalent irreducible representations.

In Section 2, we develop the rudiments of the theory of irreducible affine dynamical systems
and introduce the notion of an affinely prime dynamical system. In Section 3, we consider
the group G of Möbius transformations preserving the unit disk D ⊂ C, which is topologically
isomorphic to the group PSL(2,R). As was shown in [3], the action of G on the boundary
S1 of D is minimal and strongly proximal, and moreover the system (S1, G) is the universal
minimal and strongly proximal G-action, denoted as Πs(G). This is the same as saying that
the induced action of G on the space M(S1) of probability measures on S1 is the universal
irreducible affine action of G. We prove that in fact, up to affine isomorphism, the irreducible
affine system (M(Πs(G)), G) = (M(S1), G) is the unique irreducible affine G-system. In the
last section we show, following [3], that there is a one-to-one correspondence between bounded
harmonic functions h on the unit disk D ∼= G/K (where K ⊂ G is the subgroup of rotations
of D) and irreducible affine systems (Qh, G) in L∞(G), where each such irreducible system
contains a unique K invariant function which is the lift of h from G/K to G. Moreover, as a
consequence of the analysis of the previous section, all the affine systems Qh are isomorphic to
the universal irreducible affine system (M(S1), G) = (M(Πs(G)), G).

We thank David Kazhdan and Erez Lapid for several helpful conversations that, eventually,
led us to a simpler and more elegant proof of Theorem 3.1.

2 Affinely Prime Dynamical Systems

A dynamical system (X,G,ψ) is a triple consisting of a compact metric space X , a topo-
logical group G and a continuous homomorphism ψ : G → Homeo(X), the Polish group of
homeomorphisms of X equipped with the compact open topology. As a rule, we will suppress
the homomorphism ψ and, given x ∈ X and g ∈ G, write gx for ψ(g)(x). A dynamical sys-
tem is nontrivial when it contains more than one point. Given two G dynamical systems, a
homomorphism π : (X,G) → (Y,G) is a continuous map of X into Y which intertwines the
G-actions. When π is surjective we say that it is a factor map and that Y is a factor of X . A
dynamical system (X,G) is prime if every factor map π : (X,G)→ (Y,G) with Y nontrivial is
one-to-one.

If (X,G) is a dynamical system and Y ⊂ X is an invariant closed subset, we say that (Y,G),
the restriction of the action of G to Y , is a subsystem. When (X,G) has no proper subsystems,
we say that it is minimal. This is of course the case if and only if the orbit Gx of every point
x ∈ X is dense. We say that two points x, y in a system X are proximal, if there exists a point
z ∈ X and a sequence gn ∈ G such that lim gnx = lim gny = z. The system (X,G) is proximal,
if every pair of points in X is proximal.

Lemma 2.1 A nontrivial prime dynamical system is either minimal, or it has a unique
fixed point, and every other point has a dense orbit.
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Proof Let (X,G) be a nontrivial prime dynamical system. If X properly contains a closed
G-invariant subset Y � X , which contains more than one point, form the set

R = (Y × Y ) ∪ {(x, x) : x ∈ X} � X ×X.

This is an icer (i.e., an invariant closed equivalence relation) on X , and the corresponding
homomorphism π : X → X/R is non-trivial, contradicting primality.

Thus every proper closed invariant subset of X is a singleton. It follows that if X is not
minimal, then it has a unique fixed point, and every other point has a dense orbit, as claimed.

The space M(X) of probability measures on X will be equipped with its natural weak∗

topology which is inherited from C(X)∗ where a measure is identified with the corresponding
linear functional on C(X), the Banach algebra of real valued continuous functions on X . The
compact metric space M(X) also supports an affine structure and the G-action on X induces
a continuous affine action of G on M(X). In general, if Q is a compact convex metrisable
subset of a locally convex topological vector space, and G acts on Q as a group of continuous
affine maps (i.e., each g ∈ G preserves convex combinations), we say that (Q,G) is an affine
dynamical system.

For more details on the notions and results introduced below, see, e.g., [6].

Definition 2.1 (1) Let (X,G) be a dynamical system and (Q,G) be an affine dynamical
system. We say that Q is an affine compactification of X, if there is a homomorphism φ : X →
Q such that co(φ(X)) = Q, where for A ⊂ Q, co(A) denotes the closed convex hull of the set
A. When φ is one-to-one, we say that it is faithful (or that it is an affine embedding).

(2) An affine dynamical system (Q,G) is irreducible, if it does not contain properly any
affine subsystem, i.e., if whenever Q′ ⊂ Q is a closed convex and G-invariant subset, then
Q′ = Q.

(3) An affine dynamical system (Q,G) is affinely prime, if it does not admit any proper
factor affine system, i.e., if whenever π : Q → Q′ is an affine surjective homomorphism with
Q′ nontrivial, then π is one-to-one.

(4) A dynamical system (X,G) is affinely prime, if with respect to the canonical faithful affine
compactification φ : X →M(X) given by φ(x) = δx, the associated affine system (M(X), G) is
affinely prime.

(5) A dynamical system (X,G) is strongly proximal, if for every μ ∈ M(X), there is a
sequence of elements gn ∈ G and a point x ∈ X such that lim gnμ = δx, the point mass at x.

The next proposition follows easily from Choquet’s theory (see, e.g., [8]).

Proposition 2.1 (1) If Q is an affine dynamical system and X = ext (Q) (where ext (Q)
denotes the set of extreme points of Q), then Q is a faithful affine compactification of X.

(2) For a dynamical system (X,G), the canonical affine compactification defined on (M(X),
G) is universal, i.e., for any affine compactification φ : X → Q, there is a uniquely defined
(barycenter) map β : M(X)→ Q with β(δx) = φ(x) for every x ∈ X.
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Lemma 2.2 If (Q,G) is an irreducible affine system and A ⊂ Q is any closed G-invariant
subset, then A contains ext (Q).

Proof The barycenter map takes M(A) onto Q, so, in particular, each extremal is the
barycenter of a measure on A which by extremality must be the corresponding point mass.

Lemma 2.3 For a dynamical system (X,G), the affine compactification M(X) is irreducible
if and only if (X,G) is minimal and strongly proximal.

Proof If Y ⊂ X is a proper closed invariant subset, then M(Y ) � M(X). Thus irreducibil-
ity of M(X) implies minimality of X . Given any element μ ∈M(X), let Zμ = {gμ : g ∈ G} and
Qμ = co(Zμ). The latter is an affine sub-system of M(X). If M(X) is irreducible, it follows
that Qμ = M(X). From Lemma 2.2, we have Zμ ⊃ ext (M(X)) = {δx : x ∈ X}, whence X is
strongly proximal.

Conversely, if (X,G) is minimal and strongly proximal, then it is easy to see that every
Qμ = M(X), i.e., M(X) is irreducible.

In the following lemma, we recall some basic facts about affine systems and also provide the
short proofs.

Lemma 2.4 (1) A proximal system contains exactly one minimal subsystem.

(2) A minimal proximal system admits no endomorphisms other than the identity automor-
phism.

(3) A system (X,T ) is strongly proximal if and only if the system (M(X), G) is proximal.
In particular, a strongly proximal system is proximal.

(4) For an affine irreducible system (Q,G), let X denote the closure of the extreme points of
Q. Then X is the unique minimal subsystem of Q and the system (X,G) is strongly proximal.

(5) If there is a homomorphism π : Q → P , where (Q,G) and (P,G) are irreducible affine
systems then it is unique. In particular, the only affine endomorphism of an irreducible affine
system is the identity.

Proof (1) By Zorn’s lemma, every dynamical system contains at least one minimal sub-
system. But if x, y ∈ X belong to two distinct minimal subsystems, they can not be proximal.

(2) Suppose that (X,G) is minimal and proximal, and that φ : X → X is an endomorphism.
Since the pair (x, φ(x)) is proximal, there is a sequence gn ∈ G with lim gn(x, φ(x)) = (z, z) for
some z ∈ X , whence z = φ(z). Since X is minimal, this implies that φ = id.

(3) Clearly proximality of M(X) implies strong proximality of X . Conversely, let (X,G) be
a strongly proximal system. Given x, y ∈ X , form the measure μ = 1

2 (δx + δy). There exists a
point z ∈ X and a sequence gn ∈ G with lim gnμ = δz, and, as δz is an extreme point of M(X),
it is easy to see that this implies that lim gnx = lim gny = z. Thus any two points in X are
proximal, i.e., X is a proximal system. It is now easy to see that M(X) is also proximal.

(4) By Proposition 2.1 there is an affine surjective homomorphism β : M(X) → Q. Given
μ ∈M(X), let Zμ = {gμ : g ∈ G} and Qμ = co(Zμ). Then, by the irreducibility of Q, we have
β(Qμ) = Q. In particular, for every extreme point w ∈ ext (Q) ⊂ X , there is ν ∈ Qμ with
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β(ν) = w. As w is an extreme point, this implies that ν = δw ∈ X . It follows that X ⊂ Qμ,
whence Qμ = M(X). Thus M(X) is also irreducible and an application of Lemma 2.3 concludes
the proof.

(5) Suppose that π : Q→ P and σ : Q→ P are two affine homomorphisms. Let X = ext (Q)
and Y = ext (P ). We know that both X and Y are proximal and minimal systems. For every
x ∈ X , we consider the pair (π(x), σ(x)). This is a proximal pair in Y and thus for some
sequence gn ∈ G, we have lim(gnπ(x), gnσ(x)) = (y, y) for some y ∈ Y . However, we can also
assume that the limit lim gnx = z ∈ X exists, and then (y, y) = (π(z), σ(z)), hence π(z) = σ(z).
X being minimal, this implies that π(z′) = σ(z′) for every z′ ∈ X , and finally, as π and σ are
affine maps, this leads to the conclusion that π = σ.

For any topological group G there exists a universal minimal strongly proximal system
which we denote by Πs(G). Recalling the fact that a group G is amenable if and only if every
compact dynamical system (X,G) admits an invariant probability measure, we see that a group
G is amenable if and only if the space Πs(G) is a trivial one point space. The following is a
consequence of (4).

Corollary 2.1 The affine dynamical system (M(Πs(G)), G) is irreducible and it is the
universal affine system for irreducible affine G systems, i.e., for any irreducible affine G system
Q, there is a unique surjective affine homomorphism Θ : M(Πs(G)) → Q. In particular, if
Πs(G) is affinely prime, then M(Πs(G)) is the only nontrivial irreducible affine G-system.

The next definition is reminiscent of the classical Stone-Weierstrass theorem.

Definition 2.2 We say that a dynamical system (X,G) has the linear Stone-Weierstrass
property (LSW), if for every non-constant function f ∈ C(X) the uniformly closed linear span
Vf of the set {fg : g ∈ G} ∪ {1} is all of C(X) (here fg(x) = f(gx)).

Proposition 2.2 A dynamical system has LSW if and only if it is affinely prime.

Proof For a function f ∈ C(X), we denote by f̂ ∈ Aff(M(X)) the map

μ �→
∫
f dμ, μ ∈M(X).

Suppose first that X has the LSW property, and let π : M(X)→ Q be an affine homomorphism
with nontrivial Q. Let Aff(Q) denote the collection of continuous affine real valued functions
on Q, and let

A(Q) = {f ∈ C(X) : f̂ = F ◦ π, for some F ∈ Aff(Q)}.
The LSW property implies that A(Q) = C(X). Suppose now that π(μ) = π(ν) and μ 
= ν.
Then there is f ∈ C(X) with f̂(μ) 
= f̂(ν), and, as f̂ = F ◦ π, for some F ∈ Aff(Q), we have
f̂(μ) = F ◦ π(μ) = F ◦ π(ν) = f̂(ν), a contradiction. Thus π is indeed one-to-one.

Conversely, suppose that (X,G) is affinely prime, and let f be a non-constant function in
C(X). Let Vf be as in Definition 2.2. If Vf is a proper subspace of C(X), then the restriction
map μ→ μ � Vf , M(X)→ Q, where the latter is

Q = S(Vf ) = {ξ ∈ V ∗
f , ξ ≥ 0 on non-negative functions, and ξ(1) = 1},
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the state space of Vf , yields a non-injective affine homomorphism of M(X).

Proposition 2.3 If (X,G) is affinely prime, then it is prime, whence it is either minimal
or it has a unique fixed point and every other point has a dense orbit.

Proof Observe that if π : (X,G)→ (Y,G) is a surjective but non-injective factor map, then
the induced map π∗ : M(X) → M(Y ) is a surjective but non-injective affine homomorphism.
Thus an affinely prime system is prime. The rest follows from Lemma 2.1.

Definition 2.3 We say that a dynamical system (X,G) is completely uniquely ergodic, if
it admits a unique G-invariant probability measure, say η, and {η} is the only irreducible affine
subsystem of M(X).

Proposition 2.4 If (X,G) is affinely prime, then the dynamical system (X,G) satisfies
(1) It is prime;
(2) It is either minimal, or it has a unique fixed point, and every other point has a dense

orbit;
(3) It is either completely uniquely ergodic, or it is strongly proximal;
(4) For a minimal affinely prime system which is not completely uniquely ergodic, M(X) is

irreducible.

Proof (1) Observe that if π : (X,G)→ (Y,G) is a surjective but non-injective factor map,
then the induced map π∗ : M(X) → M(Y ) is a surjective but non-injective affine homomor-
phism. Thus an affinely prime system is prime.

(2) This now follows from Lemma 2.1.
(3) Assume that X is not strongly proximal. Then there is a probability measure ξ ∈M(X)

whose orbit closure Zξ = (Gξ) does not meet X . It follows that Qξ = co (Zξ) � M(X) is a
nonempty closed convex and G-invariant proper subset of M(X).

Now given any nonempty closed convex and G-invariant proper subset Q of M(X), set
L = w∗-span(Q) ⊂ C(X)∗.

Suppose first that L = C(X)∗. Then in particular, every point mass δx is in L, and there is
a sequence φn ∈ span(Q−Q) such that φn

w∗→ δx. Let φn = anμn − bnνn with μn, νn ∈ Q and
an, bn ≥ 0. It follows that bnνn → 0 and μn → δx. We conclude that Q = M(X). Thus in this
case X is minimal and strongly proximal.

Suppose next that L is a proper subspace of C(X)∗. Fix some φ ∈ C(X)∗ \L. By the Hahn-
Banach separation theorem (see, e.g., [2, Corollary 11, p. 418]), there is a function f ∈ C(X)
such that φ(f) = 1 and ψ(f) ≥ 0 for all ψ ∈ L. Since L is a subspace, it follows that ψ(f) = 0
for all ψ ∈ L.

Thus f is an element of the norm closed G-invariant subspace L⊥ ⊂ C(X) defined by

L⊥ = {h ∈ C(X) : ψ(h) = 0, ∀ψ ∈ L}.

Next define V = L⊥ ⊕ R1, where the latter stands for the space of constant functions. If V is
a proper subspace of C(X), this contradicts the assumption that X has the LSW property. So
we now assume that V = C(X).
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Case 1 There exists Q as above which contains more than one element.
Let ν1, ν2 be two distinct elements of Q, and let F ∈ C(X) be such that ν1(F ) 
= ν2(F ).

We write F = h+ c1 with h ∈ L⊥ and c ∈ R, and then get

ν1(F ) = ν1(h+ c1) = ν1(h) + ν1(c1) = ν1(c1) = c,

ν2(F ) = ν2(h+ c1) = ν2(h) + ν2(c1) = ν2(c1) = c,

a contradiction.
Case 2 Every closed G-invariant convex proper subset of M(X) is a singleton.
In this case, the collection K of G-invariant probability measures is a closed convex G-

invariant subspace of M(X). Now, as we assume that (X,G) is not trivial, the case where K
is not a singleton can be ruled out, as in Case 1 above, and we are left with the case, where
K = Q = {η} is the only closed convex G-invariant subset of M(X), which is, by definition,
the case of complete unique ergodicity.

(4) This follows from part (3) and Lemma 2.3.

The following diagram sums up the various possible situations described in Proposition 2.4.

Table 1 Affinely prime systems

����������X
M(X)

irreducible reducible

minimal minimal strongly
proximal

completely uniquely
ergodic

x0 fixed,
Gx = X ∀x 
= x0

vacuous completely uniquely
ergodic

Remark 2.1 The converse of Proposition 2.4(4), of course, does not hold. There are many
minimal strongly proximal systems (so with M(X) irreducible) which are not even prime (see,
e.g., Examples 3.1 and 3.2 below).

Example 2.1 (1) For every prime p, the map Tx = x+1 (mod p) generates a prime system
(Zp, T ). It is affinely prime (over R) only for p = 2, 3.

(2) Let X be the Cantor set and G = Homeo(X), the group of self-homeomorphisms of X .
The system (X,G) has LSW.

(3) Let X = S2, the two dimensional sphere in R3, and G = Homeo(X), the group of
self-homeomorphisms of X . The system (X,G) has LSW.

(4) Take X = S2 again, but now consider the action of H < G = Homeo(X), the subgroup
consisting of those homeomorphisms which fix the north pole. (X,H) is affinely prime again,
this time strongly proximal with a unique fixed point.

(5) Let X = Z ∪ {∞} be the one point compactification of the integers, and T be the
translation Tx = x+1 on Z which fixes the point at infinity. It is easy to check that X is prime
and strongly proximal. However, it does not have the LSW property.

Proof (1) It is clear when one considers the associated Koopman representation on C(Zp) ∼=
Rp.
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(2) Let f be a non-constant function in C(X). Rescaling we can assume that 0 ≤ f(x) ≤ 1
for every x ∈ X , and that the values 0 and 1 are attained, say f(x0) = 0 and f(x1) = 1.

Suppose

Vf = span({fg : g ∈ G} ∪ {1}) � C(X).

Then there exists a functional 0 
= μ ∈ C(X)∗ such that μ(h) = 0 for every h ∈ Vf . We think
of μ as a signed measure and write μ = μ0 − μ1, where μ0 and μ1 are non-negative measures,
such that for some Borel set B ⊂ X , μ0(B) = μ0(X) and μ1(X \ B) = μ1(X). Since 1 ∈ Vf ,
we have μ(X) = μ0(X)− μ1(X) = 0, whence μ0(X) = μ1(X) = a > 0. Again without loss of
generality, we assume that μ0(X) = μ1(X) = a = 1.

Given 0 < ε < 1
8 , we can find closed subsets K0 ⊂ B and K1 ⊂ X \B, such that μi(Ki) >

(1− ε), i = 0, 1.

Next choose a sequence gn ∈ G, such that gn(Ki)→ xi, i = 0, 1, in the sense that for every
two open neighbourhoods Ui of xi, there is n0 with gnKi ⊂ Vi for all n ≥ n0.

We also assume, as we may, that the limits gnμi → νi (i = 0, 1) exist, and that νi =
ciδxi + (1− ci)ν′i, where (1 − ε) < ci ≤ 1 and the measures ν′i are probability measures.

Now ∫
f dgnμ0 → c0f(x0) + (1− c0)ν′0(f) = (1− c0)ν′0(f) ≤ ε,∫
f dgnμ1 → c1f(x1) + (1− c1)ν′1(f) = c1 + (1 − c1)ν′1(f) ≥ 1− ε.

But, as f ∈ Vf , these two limits are equal, and we arrive at the absurd inequality 7
8 < 1 − ε ≤

ε < 1
8 .

(3) As in the previous proof, given f a non-constant function is C(X), we rescale f , form
the space Vf and proceed as above. When we choose the closed disjoint sets K0,K1, we can
assume that they are Cantor sets. We claim that there is a smooth closed simple Jordan curve
with A ⊂ ins(γ) and B ⊂ out(γ). In fact, this follows easily e.g. from [1, Proposition 1.8, p. 4].
Now we again proceed as in part (2) above, and choose the homeomorphisms gn, so that their
restriction to a sufficiently small neighborhood of γ is the identity. The rest of the proof goes
verbatim as in part (2).

(4) A similar argument.

(5) In order to see this observe first that C(X) ∼= c(Z), the Banach space of converging
sequences in RZ. It is now sufficient to show that the closed Banach subspace c0(Z) (consisting
of those sequences whose limit is zero) contains a closed T -invariant proper subspace. However,
such (even symmetric, i.e., S∞(Z)-invariant) subspaces exist in abundance (see, e.g., [4–5]).

Remark 2.2 (1) For the case where X = S1 and G = Homeo(S1), see Corollary 3.2 below.

(2) With some more work, one can show that, with X = Sn, n = 3, 4, · · · , or X = Q, the
Hilbert cube, the systems (X,Homeo(X)) are affinely prime.

Problem 2.1 Is there a non-trivial, minimal, weakly mixing, uniquely ergodic cascade
(X,T ) which is affinely prime?
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Remark 2.3 We note that if a cascade (X,T ) as in Problem 2.1 exists and μ is its unique
invariant measure, then the ergodic measure preserving system (X,μ, T ) has necessarily simple
spectrum.

3 The Group of Möbius Transformations Preserving the Unit Disc

Let G be the group of Möbius transformations preserving the unit diskD = {z ∈ C : |z| < 1}
(see, e.g., [7, p. 72]),

G =
{
z �→ az + c

cz + a
: aa− cc = 1

}
.

G also acts on the circle S1 = {ζ ∈ C : |ζ| = 1}. As was shown in [3], the system (S1, G) is the
universal minimal strongly proximal G-system, Πs(G). Another representation of this system
is as the group PSL(2,R) acting on the projective line P1 comprising the lines through the
origin in R2.

Theorem 3.1 The system (P1, PSL(2,R)) is affinely prime. Equivalently, the group G of
Möbius transformations preserving the unit disk acting on the circle S1 has the LSW property.

Proof We will work with the version, where G is the Möbius group acting on X = S1.

We begin by analyzing the case of complex valued functions. Let V be a closed linear
subspace of C(S1,C) invariant under G that contains a non-constant function f . For all 0 
=
n ∈ Z, the convolution of f with einθ

∫
einφf(θ − φ) dφ =

∫
ein(θ−ψ)f(ψ) dψ = einθ f̂(n)

is also contained in V . Therefore, if f̂(n) 
= 0, it follows that the function einθ is in V . As f is
not a constant, there is some n 
= 0 for which f̂(n) 
= 0. We fix such an n, and, applying the
transformation eiθ+t

1+teiθ
to einθ, we see that for all t, the function

(
eiθ+t
1+teiθ

)n belongs to V . Upon
differentiating with respect to t at t = 0, we see that the function n(ei(n−1)θ − ei(n+1)θ), and
hence also the functions ei(n−1)θ and ei(n+1)θ, are all in V .

This procedure can be iterated, and we conclude that V contains either

{einθ : n ≥ 0} or {e−inθ : n ≥ 0}, or both.

Of course in the latter case, we have V = C(S1,C).

The first alternative happens when V consists of the boundary values of analytic functions
in D which are continuous on D; the second happens, when V consists of the boundary values
of anti-analytic functions in D which are continuous on D.

Now, for real valued functions, these first two cases do not apply since a non-constant
analytic function cannot map the boundary to the real line. Thus starting with a G-invariant
closed subspace U ⊂ C(S1,R) which contains a non-constant function and considering its
complexification V = C⊗ U , we conclude that U = C(S1,R) as claimed.

From Corollary 2.1, we now get the following result.
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Corollary 3.1 For G = PSL(2,R), the affine system M(Πs(G)) = M(P1) is the only
nontrivial irreducible affine G-system.

Another immediate consequence of Theorem 3.1 is the following.

Corollary 3.2 The dynamical system (S1,Homeo(S1)) is affinely prime.

Example 3.1 As was shown in [3], Πs(G), the universal minimal strongly proximal dy-
namical system for the group G = PSL(3,R) is the flag manifold,

F = {(�, V ) : � ⊂ V ⊂ R3, where � is a line and V a plane in R3}.
The dynamical system (F, G) however is not affinely prime, since it admits (up to conjugacy)
two (isomorphic) proper factors, namely the actions of G on the Grassman varieties Gr(3, 1)
and Gr(3, 2) consisting of the lines and planes through the origin in R3, respectively (both
are copies of the projective plane P2). More generally, the corresponding flag manifold is the
universal minimal strongly proximal dynamical system for all the groups G = PSL(d + 1,R),
d ≥ 2 and a similar situation occurs. See Remark 3.1 below.

Remark 3.1 Let G = PSL(d + 1,R), d ≥ 2 and X = Pd be the projective space. With
the natural action of G on X , the system (X,G) is minimal, strongly proximal and prime. In
fact, we can show that these actions as well are affinely prime. We plan to return to this in a
future work.

Example 3.2 LetX denote the one-sided reduced sequences on the symbols {a, a−1, b, b−1},
and let G = F2, the free group on the symbols a and b, act on X by concatenation and
cancelation. The dynamical system (X,G) is minimal and strongly proximal (see, e.g., [6,
pp. 26, 41] ). However, it is not prime and a fortiori, not affinely prime. To see this, let
x = a∞ = aaa · · · and y = a−∞ = a−1a−1a−1 · · · , and consider the set

R = {(gx, gy), (gy, gx) : g ∈ G} ∪ΔX .

It is easy to see that this is a closed G-invariant equivalence relation on X , and consequently
the induced map π : X → X/R yields a proper factor of X .

4 Harmonic Functions and Irreducible Affine Dynamical Systems

Let G be the group of Möbius transformations which preserve the unit disk D = {z ∈ C :
|z| < 1}, as in Theorem 3.1. We let K denote the subgroup of rotations in G. The disk D

can be identified with the quotient G/K by the map g �→ g(0) ∈ D. G is a locally compact,
unimodular group with Haar measure dg, and we can associate G with the Banach spaces L1(G)
and its dual L∞(G). With respect to the weak∗ topology, BR, the ball of radius R centered at
the origin in L∞(G), is compact and metrizable. The group G operates on BR by f �→ g′f ,
where g′f(g) = f(gg′), g, g′ ∈ G.

Recall that a real valued function h on D is harmonic, if it satisfies the mean value property:

h(z) =
∫
S1
h(z + rζ) dζ for every sufficiently small r.



Affinely Prime Dynamical Systems 423

We will show that a harmonic function f(z), z ∈ D, |f(z)| ≤ R induces an irreducible affine
dynamical system (Qf , G) with Qf ⊂ BR. Moreover, we will see that any irreducible affine
subsystem Q ⊂ BR contains a unique function arising from a bounded harmonic function on
D. For more background and details on the topic of this section, see [3].

Given f bounded harmonic on D, define f̃ ∈ L∞(G) by f̃(g) = f(g(0)). That is, f̃ is the
function on G obtained by lifting f from G/K to G. The mean value property of harmonic
functions implies that for z′ ∈ D,

f(0) =
∫
K

f(kz′) dk.

Setting z′ = g′(0), we have

f(0) =
∫
K

f(kg′(0)) dk,

and since for any g ∈ G, f ◦ g is again harmonic

f(g(0)) =
∫
K

f(gkg′(0)) dk,

or

f̃(g) =
∫
K

f̃(gkg′) dk for any g, g′ ∈ G. (4.1)

Now let Qf denote the closed, convex span of {gf̃ : g ∈ G} in L∞(G). Equation (4.1) implies
that for any F ∈ Qf ,

f̃(g) =
∫
K

F (gk) dk.

Thus f̃ belongs to the closed convex span of {kF : k ∈ K} for any F ∈ Qf . This shows that
(Qf , G) is an irreducible affine system.

Now let Q ⊂ L∞(G) be any invariant closed convex subset, such that (Q,G) is irreducible.
The universal minimal strongly proximal space, Πs(G) is the unit circle S1 and so, by Corollary
2.1, (M(S1), G) is the universal irreducible affine system for G. In M(S1), there is a unique K-
invariant measure, and it follows that in Q as well, there is a unique K-invariant point. As Q is
a space of functions on G, its unique K fixed point is a function H(g) satisfying H(gk) = H(g)
for g ∈ G, k ∈ K. Thus H depends on gK and is the pullback of a function h on D. For any
fixed g′ ∈ G, consider the function

H ′(g) =
∫
K

H(gkg′) dk.

We have H ′ ∈ Q and for k ∈ K, H ′(gk) = H ′(g). So H ′ is K-invariant. But this function is
unique. So H ′ = H . We have H(g) =

∫
K
H(gkg′) dk or

h(g) =
∫
K

h(gkz′) dk (4.2)

for any z′ ∈ D. But, in fact, equation (4.2) characterises harmonic functions.
This discussion, combined with Theorem 3.1 proves the following result.
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Theorem 4.1 There is a one-to-one correspondence between bounded (non-constant) har-
monic functions h on D and irreducible affine subsystems (Q,G) of L∞(G). Namely,

h←→ Q = Qh,

where h̃, the lift of h to G, is the unique K-invariant function in Q. Moreover, all the affine sys-
tems Qh are isomorphic to the universal irreducible affine system (M(S1), G) = (M(Πs(G)), G).
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