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Abstract This paper first shows the exact boundary controllability for a coupled system of
wave equations with Neumann boundary controls. In order to establish the corresponding
observability inequality, the authors introduce a compact perturbation method which does
not depend on the Riesz basis property, but depends only on the continuity of projection
with respect to a weaker norm, which is obviously true in many cases of application. Next,
in the case of fewer Neumann boundary controls, the non-exact boundary controllability
for the initial data with the same level of energy is shown.
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1 Introduction

Since the pioneering work of Russell [25], and the celebrated paper of Lions [19] in which a
systematic approach, the so-called Hilbert Uniqueness Method, was developed, the control of
wave equations has undergone a significant progress. In the last decades, the control of systems
has become a very challenging issue. The aim of this paper is to investigate the exact boundary
controllability and the non-exact boundary controllability for the following coupled system of
wave equations with Neumann boundary controls:⎧⎪⎪⎨

⎪⎪⎩
U ′′ − ΔU + AU = 0 in (0, +∞) × Ω,
U = 0 on (0, +∞) × Γ0,
∂νU = DH on (0, +∞) × Γ1,
t = 0 : U = U0, U ′ = U1 in Ω,

(1.1)

where Ω ⊂ R
n is a bounded domain with smooth boundary Γ = Γ1 ∪ Γ0 such that Γ1 ∩ Γ0 = ∅,

∂ν denotes the outward normal derivative on the boundary, A is a matrix of order N with
constant elements, D is a full column-rank matrix of order N × M (M ≤ N) with constant
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E-mail: bopeng.rao@math.unistra.fr

∗This work was supported by the National Basic Research Program of China (No. 2013CB834100) and
the National Natural Science Foundation of China (No. 11121101).



474 T.-T. Li and B. P. Rao

elements, U = (u(1), · · · , u(N))T and H = (h(1), · · · , h(M))T denote the state variables and
the boundary controls, respectively. Here, the introduction of the boundary control matrix D

makes the discussion on the control problem more flexible.
Let us denote

H0 = (L2(Ω))N , H1 = (H1
Γ0

(Ω))N , (1.2)

where H1
Γ0

(Ω) is the subspace of H1(Ω) composed of functions with null trace on Γ0. We will
show the exact boundary controllability of (1.1) for any given initial data (U0, U1) ∈ H1 ×H0

via the HUM approach. To this end, we first establish the following theorem.

Theorem 1.1 There exist positive constants T > 0 and C > 0 independent of initial data,
such that the following observability inequality

‖(Φ0, Φ1)‖2
H0×H−1

≤ C

∫ T

0

∫
Γ1

|Φ|2dΓdt (1.3)

holds for all solutions Φ to the corresponding adjoint problem:⎧⎪⎪⎨
⎪⎪⎩

Φ′′ − ΔΦ + ATΦ = 0 in (0, T )× Ω,
Φ = 0 on (0, T )× Γ0,
∂νΦ = 0 on (0, T )× Γ1,
t = 0 : Φ = Φ0, Φ′ = Φ1 in Ω,

(1.4)

where Φ = (φ(1), · · · , φ(N))T denotes the adjoint variables, H−1 is the dual space of H1, and
the initial data (Φ0, Φ1) is taken in a subspace F ⊂ H0 ×H−1.

Recall that without any assumption on the coupling matrix A, the usual multiplier method
can not be applied directly. The absorption of coupling lower terms is a delicate issue even for
a single wave equation (see [9, 13]). In order to deal with the lower order terms, we propose
a method based on the compactness-uniqueness argument that we formulate in the following
lemma.

Lemma 1.1 Let F be a Hilbert space endowed with the p-norm. Assume that

F = N ⊕ L, (1.5)

where ⊕ denotes the direct sum and L is a finite co-dimensional closed subspace in F . Assume
that q is another norm in F such that the projection from F into N is continuous with respect
to the q-norm. Assume furthermore that

q(y) ≤ p(y), ∀y ∈ L. (1.6)

Then there exists a positive constant C > 0 such that

q(z) ≤ Cp(z), ∀z ∈ F . (1.7)

Following the above lemma, we have to first show the observability inequality for the initial
data with higher frequencies in L. In order to extend it to the whole space F , it is sufficient
to verify the continuity of the projection from F into N for the q-norm. In many situations, it
often occurs that the subspaces N and L are mutually orthogonal with respect to the q-inner
product, and this is true in the present case. This new approach turns out to be particularly
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simple and efficient for getting the observability of some distributed systems with lower order
terms.

As for the Dirichlet boundary problem (see [15–16]), we show the non-exact boundary
controllability for the Neumann boundary problem (1.1) in the case of fewer boundary controls,
i.e., M < N (see Theorem 4.2). Roughly speaking, in the framework that all the components of
initial data are in the same energy space, a coupled system of wave equations with Dirichlet or
Neumann boundary controls is exactly controllable if and only if one applies the same number
of boundary controls as the number of state variables or wave equations.

Let us comment the related literatures. The exact boundary controllability and the approx-
imate boundary controllability for a coupled system of wave equations with Dirichlet boundary
controls were established by Li and Rao in [14–16]. Moreover, in the case of fewer boundary
controls, the authors also obtained various results on the exact boundary synchronization and
the approximate boundary synchronization for the same system. Using Carleman estimates,
Duyckaerts, Zhang and Zuazua studied in [7] the observability inequality for a coupled system
of wave equations with Dirichlet boundary condition by means of internal or boundary obser-
vation. The optimality of the observability inequality was proved in even space dimensions. In
a similar work [27], Zhang and Zuazua established the sharp observability inequality for Kirch-
hoff plate systems in any space dimensions. In a recent work [6], Dehman, Le Rousseau and
Léautaud established the controllability of two coupled wave equations on a compact manifold
with only one local distributed control. The optimal time of controllability and the controllable
spaces were given in the cases that the waves propagate with the same speed or with different
speeds. Using the Riemannian geometry method, Yao established in [26] the controllability
of wave equation with variable coefficients for Dirichlet or Neumann boundary condition. We
finally mention the work of Hu, Ji and Wang [8] for the exact boundary controllability of one
space-dimensional quasilinear system of wave equations with various boundary controls.

The non-exact boundary controllability for a coupled system of wave equations depends on
the level of energy and the property of controllability. In fact, if the components of initial
data are allowed to have different levels of energy, then the exact boundary controllability for
a system of two wave equations was established by means of only one boundary control in
[1, 21, 24], or more recently, for a cascade system of N wave equations by means of only one
boundary control in [2]. In contrast with the exact boundary controllability, the approximate
boundary controllability for a coupled system of wave equations is more flexible with respect
to the number of boundary controls. It was recently shown in [17] that for Dirichlet boundary
controls, this property could be characterized by means of the famous Kalman’s criterion on
the rank of an enlarged matrix composed of the coupling matrix A and the boundary control
matrix D.

Differently from the hyperbolic systems, the exact boundary null controllability of coupled
systems of parabolic equations can be realized in the case of fewer controls for the initial data
with the same level of energy. There are a number of works on this topic. We only quote [3]
and the references therein for the null controllability of coupled systems of parabolic equations
with a local distributed control or with a boundary control.

The paper is organized as follows. In Section 2, we give the proof of the basic lemma of
compact perturbation. Section 3 is devoted to the proof of Theorem 1.1. In order to clarify the
idea, we divide the proof into several propositions. In Section 4, we prove the exact boundary
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controllability (see Theorem 4.1) and the non-exact boundary controllability (see Theorem 4.2)
for a system of wave equations with Neumann boundary condition.

2 Proof of Lemma 1.1

Assume that (1.7) fails, then there exists a sequence zn ∈ F such that

q(zn) = 1 and p(zn) → 0 as n → +∞. (2.1)

Using (1.5), we write zn = xn + yn with xn ∈ N and yn ∈ L. Since the projection from F into
N is continuous with respect to the q-norm, there exists a positive constant c > 0 such that

q(xn) ≤ cq(zn) ≤ c, ∀n ≥ 1. (2.2)

Since N is of finite dimension, we may assume that there exists x ∈ N such that xn → x in N .
Then, since the second relation of (2.1) means that zn → 0 in F , we deduce that yn → −x in
L for the p-norm. Therefore, we get x ∈ L ∩ N , which leads to x = 0. Then, we have

q(xn) → 0 and p(yn) → 0 as n → +∞. (2.3)

Then using (1.6), we get a contradiction:

1 = q(zn) ≤ q(xn) + q(yn) ≤ q(xn) + p(yn) → 0 as n → +∞. (2.4)

The proof is then complete.

Remark 2.1 Noting that L is not necessarily closed with respect to the weaker q-norm,
so, a priori, the projection z → x is not continuous with respect to the q-norm (see [5]).

3 Proof of Theorem 1.1

Theorem 1.1 will be proved at the end of this section. We first start with some useful
preliminary results.

Let Ω ⊂ R
n be a bounded open set with smooth boundary Γ. Let Γ = Γ1 ∪ Γ0 be a

partition of Γ such that Γ1 ∩ Γ0 = ∅. Throughout this paper, we assume that Ω satisfies the
usual geometric control condition (see [4]). More precisely, assume that there exists x0 ∈ R

n,
such that setting m = x − x0, we have

(m, ν) ≤ 0, ∀x ∈ Γ0; (m, ν) > 0, ∀x ∈ Γ1, (3.1)

where (·, ·) denotes the inner product in R
n.

Let
Φ = (φ(1), · · · , φ(N))T. (3.2)

We consider the following homogenous adjoint problem:⎧⎪⎪⎨
⎪⎪⎩

Φ′′ − ΔΦ + ATΦ = 0 in (0, +∞) × Ω,
Φ = 0 on (0, +∞) × Γ0,
∂νΦ = 0 on (0, +∞) × Γ1,
t = 0 : Φ = Φ0, Φ′ = Φ1 in Ω.

(3.3)
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Let
H0 = (L2(Ω))N . (3.4)

We define the linear unbounded operator −Δ in H0 by

D(−Δ) = {Φ ∈ H2(Ω)N : Φ|Γ0 = 0, ∂Φν |Γ1 = 0}. (3.5)

Clearly, −Δ is a densely defined self-adjoint and coercive operator with a compact resolvent in
H0. Then we can define the power operator (−Δ)

s
2 for any given s ∈ R (see [18]). Moreover,

the domain Hs = D((−Δ)
s
2 ) endowed with the norm ‖Φ‖s = ‖(−Δ)

s
2 Φ‖0, ‖ ·‖0 being the norm

of H0, is a Hilbert space, and its dual space with respect to the pivot space H0 is H′
s = H−s.

In particular, we have

H1 = D(
√−Δ) = {Φ ∈ H1(Ω)N : Φ = 0 on Γ0}. (3.6)

Then we formulate (3.3) into an abstract evolution problem:{
Φ′′ − ΔΦ + ATΦ = 0,
t = 0 : Φ = Φ0, Φ′ = Φ1.

(3.7)

Clearly, the problem (3.7) generates a C0-semigroup in the space Hs × Hs−1. Moreover, we
have the following result (see [18, Chapter III-8] and [23, Chapter III]).

Proposition 3.1 For any given initial data (Φ0, Φ1) ∈ Hs ×Hs−1 with s ∈ R, the problem
(3.7) admits a unique weak solution in the sense of C0-semigroups, such that

Φ ∈ C0([0, +∞);Hs) ∩ C1([0, +∞);Hs−1). (3.8)

Now let em be the normalized eigenfunction defined by⎧⎨
⎩
−Δem = μ2

mem in Ω,
em = 0 on Γ0,
∂νem = 0 on Γ1,

(3.9)

where the sequence of positive terms {μm}m≥1 is increasing so that μm → +∞ as m → +∞.

Clearly, {em}m≥1 is a Hilbert basis in L2(Ω).
For each m ≥ 1, we define the subspace Zm by

Zm = {αem : α ∈ R
N}. (3.10)

It is clear that the subspaces Zm (m ≥ 1) are invariant with respect to AT. Moreover, for any
given integers m �= n and any given vectors α, β ∈ R

N , we have

(αem, βen)Hs = (α, β)((−Δ)
s
2 em, (−Δ)

s
2 en)L2(Ω)

= (α, β)μs
mμs

n(em, en)L2(Ω)

= (α, β)μs
mμs

nδmn. (3.11)

Then the subspaces Zm (m ≥ 1) are mutually orthogonal in the Hilbert space Hs with any
given s ∈ R and in particular, we have

‖Φ‖Hs =
1

μm
‖Φ‖Hs+1, ∀Φ ∈ Zm. (3.12)
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Let m0 ≥ 1 be an integer. We denote by
⊕

m≥m0

(Zm × Zm) the linear hull of the subspaces

Zm × Zm for m ≥ m0. In other words,
⊕

m≥m0

(Zm × Zm) is composed of all finite linear

combinations of elements of Zm × Zm for m ≥ m0.

Proposition 3.2 Let Φ be the solution to the problem (3.7) with the initial data (Φ0, Φ1) ∈
H1 ×H0, which satisfies an additional condition:

Φ ≡ 0 on [0, T ]× Γ1 (3.13)

for T > 0 large enough. Then, we have Φ0 ≡ Φ1 ≡ 0, i.e., Φ ≡ 0.

Proof By Schur’s theorem, we may assume that A is an upper triangular matrix so that
the problem (3.7) with the additional condition (3.13) can be rewritten as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(φ(k))′′ − Δφ(k) +
k∑

p=1
apkφ(p) = 0 in (0, +∞) × Ω,

φ(k) = 0 on (0, +∞) × Γ,

∂νφ(k) = 0 on (0, +∞) × Γ1,

t = 0 : φ(k) = φ
(k)
0 , (φ(k))′ = φ

(k)
1 in Ω

(3.14)

for k = 1, · · · , N . Then using Holmgren’s uniqueness theorem (see [20, Chapter I-8]), there
exists a positive constant T > 0 large enough and independent of the initial data (φ(1)

0 , φ
(1)
1 ),

such that φ(1) ≡ 0. Then, we get successively φ(k) ≡ 0 for k = 1, · · · , N . The proof is then
complete.

Proposition 3.3 Let m0 ≥ 1 be an integer and Φ be the solution to the problem (3.7) with
the initial data (Φ0, Φ1) ∈

⊕
m≥m0

(Zm × Zm). Define the energy by

E(t) =
1
2

∫
Ω

(|Φ′|2 + |∇Φ|2)dx. (3.15)

Let σ denote the Euclidian norm of the matrix A. Then we have the following energy estimates:

e
−σt
μm0 E(0) ≤ E(t) ≤ e

σt
μm0 E(0), t ≥ 0 (3.16)

for all (Φ0, Φ1) ∈
⊕

m≥m0

(Zm × Zm).

Proof First, a straightforward computation yields

E′(t) = −
∫

Ω

(AΦ′, Φ)dx. (3.17)

Then, using (3.12), we get

∣∣∣ ∫
Ω

(AΦ′, Φ)dx
∣∣∣ ≤ σ‖Φ′‖H0‖Φ‖H0 ≤ σ

μm0

‖Φ′‖H0‖Φ‖H1 ≤ σ

μm0

E(t). (3.18)

It follows that
− σ

μm0

E(t) ≤ E′(t) ≤ σ

μm0

E(t). (3.19)
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Therefore, the function E(t)e
σt

μm0 is increasing, while, the function E(t)e−
σt

μm0 is decreasing,
which implies (3.16). The proof is then complete.

Proposition 3.4 There exist an integer m0 ≥ 1 and positive constants T > 0 and C > 0
independent of initial data, such that the following observability inequality:

‖(Φ0, Φ1)‖2
H1×H0

≤ C

∫ T

0

∫
Γ1

|Φ′|2dΓdt (3.20)

holds for all solutions Φ of the adjoint problem (3.7) with initial data (Φ0, Φ1) ∈
⊕

m≥m0

(Zm×Zm).

Proof First we write (3.7) as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(φ(k))′′ − Δφ(k) +
N∑

p=1
apkφ(p) = 0 in (0, +∞) × Ω,

φ(k) = 0 on (0, +∞) × Γ0,

∂νφ(k) = 0 on (0, +∞) × Γ1,

t = 0 : φ(k) = φ
(k)
0 , (φ(k))′ = φ

(k)
1 in Ω

(3.21)

for = 1, 2, · · · , N. Then, multiplying the k-th equation of (3.21) by

M (k) := 2m · ∇φ(k) + (N − 1)φ(k) with m = x − x0 (3.22)

and integrating by parts over the domain [0, T ] × Ω, we get easily the following identities (see
[9, Chapter III], [20, Chapter III]):∫ T

0

∫
Γ

(∂νφ(k)M (k) + (m, ν)(|(φ(k))′|2 − |∇φ(k)|2)dΓdt

=
[ ∫

Ω

(φ(k))′M (k)dx
]T

0
+

∫ T

0

∫
Ω

(|(φ(k))′|2 + |∇φ(k)|2)dxdt

+
N∑

p=1

∫ T

0

∫
Ω

akpφ
(p)M (k)dxdt, k = 1, · · · , N. (3.23)

Noting the geometrical control condition (3.1), we have⎧⎪⎪⎨
⎪⎪⎩

∂νφ(k)M (k) + (m, ν)(|(φ(k))′|2 − |∇φ(k)|2)
= (m, ν)|∂νφ(k)|2 ≤ 0 on (0, T ) × Γ0,

∂νφ(k)M (k) + (m, ν)(|(φ(k))′|2 − |∇φ(k)|2)
= (m, ν)(|(φ(k))′|2 − |∇φ(k)|2) ≤ (m, ν)|φ′(k)|2 on (0, T ) × Γ1,

(3.24)

then, it follows from (3.23) that∫ T

0

∫
Ω

(|(φ(k))′|2 + |∇φ(k)|2)dxdt ≤
∫ T

0

∫
Γ1

(m, ν)|(φ(k))′|2dΓdt −
[ ∫

Ω

(φ(k))′M (k)dx
]T

0

−
N∑

p=1

∫ T

0

∫
Ω

akpφ
(p)M (k)dxdt, 1 ≤ k ≤ N. (3.25)

Taking the summation of (3.25) with respect to k = 1, · · · , N , we get

2
∫ T

0

E(t)dt ≤
∫ T

0

∫
Γ1

(m, ν)|Φ′|2dΓdt −
[ ∫

Ω

(Φ′, M)dx
]T

0
−

∫ T

0

∫
Ω

(Φ, AM)dxdt, (3.26)
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where M is the vector composed of M (k) (k = 1, · · · , N).
Next, we estimate the last two terms on the right-hand side of (3.26). First, it follows from

(3.22) that
‖M‖H0 ≤ 2R‖∇Φ‖H0 + (N − 1)‖Φ‖H0 ≤ γ‖Φ‖H1, (3.27)

where R = ‖m‖∞ is the diameter of Ω and

γ =
√

4R2 + (N − 1)2. (3.28)

On the other hand, since Zm is invariant with respect to AT, then for all (Φ0, Φ1) ∈
⊕

m≥m0

(Zm×
Zm), the corresponding solution Φ ∈ ⊕

m≥m0

Zm. Then, using (3.12) and (3.27), we have

∣∣∣ ∫
Ω

(Φ, AM)dx
∣∣∣ ≤ σ‖Φ‖H0‖M‖H0 ≤ γσ‖Φ‖H0‖Φ‖H1 ≤ γσ

μm0

‖Φ‖2
H1

≤ 2γσ

μm0

E(t). (3.29)

Similarly, we have∣∣∣ ∫
Ω

(Φ′, M)dx
∣∣∣ ≤ ‖Φ′‖H0‖M‖H0 ≤ γ‖Φ′‖H0‖Φ‖H1 ≤ γE(t). (3.30)

Thus, setting
T =

μm0

σ
(3.31)

and noting (3.16), we get

∣∣∣[ ∫
Ω

Φ′Mdx
]T

0

∣∣∣ ≤ γ(E(T ) + E(0)) ≤ γ(1 + e)E(0). (3.32)

Inserting (3.29) and (3.32) into (3.26) gives

2
∫ T

0

E(t)dt ≤
∫ T

0

∫
Γ1

(m, ν)|Φ′|2dΓdt + γ(1 + e)E(0) +
2σγ

μm0

∫ T

0

E(t)dt. (3.33)

Thus, we have ∫ T

0

E(t)dt ≤ R

∫ T

0

∫
Γ1

|Φ′|2dΓdt + γ(1 + e)E(0), (3.34)

provided that m0 is so large that
μm0 ≥ 2σγ. (3.35)

Now, integrating the inequality on the left-hand side of (3.16) over [0, T ], we get

μm0

σ

(
1 − e−

σT
μm0

)
E(0) ≤

∫ T

0

E(t)dt, (3.36)

then, noting (3.31), we get

T (1 − e−1)E(0) ≤
∫ T

0

E(t)dt. (3.37)

Thus, it follows from (3.34) and (3.37) that

E(0) ≤ R

T (1 − e−1) − γ(1 + e)

∫ T

0

∫
Γ1

|Φ′|2dΓdt (3.38)
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holds for all (Φ0, Φ1) ∈
⊕

m≥m0

(Zm × Zm), provided that

T >
γe(1 + e)

e − 1
, (3.39)

which is guaranteed by the following choice (see (3.31), (3.35) and (3.39)):

μm0 >
2σγe(1 + e)

e − 1
. (3.40)

The proof is then complete.

Proposition 3.5 There exist an integer m0 ≥ 1 and positive constants T > 0 and C > 0
independent of initial data, such that the following observability inequality:

‖(Φ0, Φ1)‖2
H0×H−1

≤ C

∫ T

0

∫
Γ1

|Φ|2dΓdt (3.41)

holds for all solutions Φ of the adjoint problem (3.7) with initial data (Φ0, Φ1) ∈
⊕

m≥m0

(Zm×Zm).

Proof Noting that Ker(−Δ + AT) is of finite dimension, there exists an integer m0 ≥ 1 so
large that

Ker(−Δ + AT)
⋂ ⊕

m≥m0

Zm = {0}. (3.42)

Let

W =
{ ⊕

m≥m0

Zm

}H0

⊆ H0. (3.43)

Since
⊕

m≥m0

Zm is an invariant subspace of (−Δ+AT), by Fredholm’s alternative, (−Δ+AT)−1

is an isomorphism from W onto W ′. Moreover, we have

‖(−Δ + AT)−1Ψ‖2
H0

∼ ‖Ψ‖2
H−1

, ∀Ψ ∈ W . (3.44)

For any given (Φ0, Φ1) ∈
⊕

m≥m0

(Zm × Zm), let

Ψ0 = (Δ − AT)−1Φ1, Ψ1 = Φ0. (3.45)

We have
‖Ψ0‖2

H1
+ ‖Ψ1‖2

H0
∼ ‖Φ1‖2

H−1
+ ‖Φ0‖2

H0
. (3.46)

Next let Ψ be the solution of the problem (3.7) with the initial data (Ψ0, Ψ1) given by (3.45).
We have

t = 0 : Ψ′ = Φ0, Ψ′′ = (Δ − AT)Ψ0 = Φ1. (3.47)

By the well-posedness, we get
Ψ′ = Φ. (3.48)

On the other hand, since the subspace
⊕

m≥m0

Zm is invariant for (−Δ + AT), we have

(Ψ0, Ψ1) ∈
⊕

m≥m0

(Zm × Zm). (3.49)
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Then, applying (3.20) to Ψ, we get

‖(Ψ0, Ψ1)‖2
H1×H0

≤ C

∫ T

0

∫
Γ1

|Ψ′|2dΓdt. (3.50)

Thus, using (3.46) and (3.48), we get immediately (3.41). The proof is finished.

Finally, we give the proof of Theorem 1.1.
For any given (Φ0, Φ1) ∈

⊕
m≥1

(Zm × Zm), define

p(Φ0, Φ1) =

√∫ T

0

∫
Γ1

|Φ|2dΓdt, (3.51)

where Φ is the solution to the corresponding adjoint problem (3.7). By Proposition 3.2, for
T > 0 large enough, p(·) defines well a norm in

⊕
m≥1

(Zm × Zm). Then, we denote by F
the completion of

⊕
m≥1

(Zm × Zm) with respect to the p-norm. Clearly, F is a Hilbert space.

Moreover, we have F ⊂ H0 ×H−1.

We next define
F = N ⊕L (3.52)

with
N =

⊕
1≤m<m0

(Zm × Zm), L =
{ ⊕

m≥m0

(Zm × Zm)
}p

. (3.53)

Clearly, N is a finite-dimensional subspace and L is a closed subspace in F . In particular,
the observability inequality (3.41) can be extended to all initial data (Φ0, Φ1) in the whole
subspace L.

Now we introduce the q-norm by

q(Φ0, Φ1) = ‖(Φ0, Φ1)‖H0×H−1 , ∀(Φ0, Φ1) ∈ F . (3.54)

By (3.11), the subspaces (Zm×Zm) are mutually orthogonal in H0×H−1 for all m ≥ 1, then the
subspace N is an orthogonal complement of L in H0 ×H−1. In particular, the projection from
F into N is continuous with respect to the q-norm. On the other hand, since the observability
inequality (3.41) holds for all initial data (Φ0, Φ1) in the subspace L, the condition (1.6) is
verified. Then, applying Lemma 1.1, we get the inequality (1.7), which precisely means that
(3.41) can be extended to all (Φ0, Φ1) ∈ F , we then get (1.3). The proof of Theorem 1.1 is now
completed.

Remark 3.1 Without any additional assumptions on the coupling matrix A, the adjoint
system (3.7) is not conservative and the usual multiplier method can not be applied directly.
However, since each subspace Zm is invariant with respect to the matrix AT, for any given initial
data (Φ0, Φ1) ∈ Zm × Zm, the corresponding solution Φ of (3.7) still lies in the subspace Zm.
Then because of the identity (3.12), the coupling term ‖ATΦ‖H0 is negligible comparing with
1

μm
‖Φ‖H1 . Therefore, we first expect the observability inequality (3.15) only for the initial data

(Φ0, Φ1) with higher frequencies lying in the sub-linear hull
⊕

m≥m0

(Zm × Zm) with an integer

m0 ≥ 1 large enough. We next extend it to the closure of the whole linear hull
⊕

m≥1

(Zm × Zm)

by an argument of compact perturbation as shown in Lemma 1.1.



Exact Boundary Controllability with Neumann Boundary Controls 483

Remark 3.2 The compactness-uniqueness arguments are frequently used in the study of
the observability of distributed parameter systems. It turns out that this method is particularly
simple and efficient for dealing with some systems with lower order terms. A natural formulation
is to consider the problem as a compact perturbation of a skew-adjoint operator (see [10, 22]).
This approach requests that the eigen-system of the underlying system forms a Riesz basis in
the energy space. Since the Riesz basis is not stable even for the compact perturbation, this
may cause serious problems in the application. By contrast, the method proposed here does
not require any spectral conditions on the underlying system. In particular, instead of Riesz
basis property, we assume only that the projection from F into N is continuous with respect
to the q-norm. Moreover, it often occurs that the subspaces N and L are mutually orthogonal
with respect to the q-inner product, hence, the continuity of the projection from F into N is
much easier to be checked than the Riesz basis property.

Remark 3.3 The present method can be generalized to a larger class of problems, for
example, to the coupled system of wave equations with different speeds of propagation, which
will be considered in a forthcoming work.

Remark 3.4 As to the optimality of controllability time T , we refer to [6–7, 27] for some
related discussions.

4 Exact Boundary Controllability with Neumann Boundary Controls

Let D be a boundary control matrix of order N × M (M ≤ N) and denote

U = (u(1), · · · , u(N))T, H = (h(1), · · · , h(M))T. (4.1)

We consider the following inhomogeneous problem:⎧⎪⎪⎨
⎪⎪⎩

U ′′ − ΔU + AU = 0 in (0, +∞) × Ω,
U = 0 on (0, +∞) × Γ0,
∂νU = DH on (0, +∞) × Γ1,
t = 0 : U = U0, U ′ = U1 in Ω.

(4.2)

We will first show the exact boundary controllability of (4.2) by a standard application of the
HUM method of Lions [20]. We next show the non-exact boundary controllability in the case
of fewer boundary controls (M < N) by an argument of compactness, which requires more
regularity of the weak solution as indicated in (4.7) below.

Obviously, we have
Hs ⊂ (Hs(Ω))N , s ≥ 0. (4.3)

On the other hand, by (1.3) and the trace embedding Hs(Ω) → L2(Γ1) for all s > 1
2 , we get

the following continuous embedding:

Hs ×Hs−1 ⊂ F ⊂ H0 ×H−1, s >
1
2
. (4.4)

Multiplying the equation in (4.2) by a solution Φ of the adjoint problem (3.7) and integrating
by parts, we get

(U ′(t), Φ(t))H0 − (U(t), Φ′(t))H0

= (U1(t), Φ0)H0 − (U0, Φ1)H0 +
∫ t

0

∫
Γ1

(DH(τ), Φ(τ))dΓdτ. (4.5)
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Taking H0 as the pivot space and noting (4.4), (4.5) can be written as

〈(U ′(t),−U(t)), (Φ(t), Φ′(t))〉H′
s×H′

s−1;Hs×Hs−1

= 〈(U1,−U0), (Φ0, Φ1)〉H′
s×H′

s−1;Hs×Hs−1 +
∫ t

0

∫
Γ1

(DH(τ), Φ(τ))dΓdτ. (4.6)

Definition 4.1 U is a weak solution to the problem (4.2), if

(U ′, U) ∈ C0([0, T ];H′
s ×H′

s−1), (4.7)

such that the variational equation (4.6) holds for any given (Φ0, Φ1) ∈ Hs ×Hs−1 with s > 1
2 .

Proposition 4.1 For any given H ∈ L2(0, T ; L2(Γ1))M and any given (U1, U0) ∈ H′
s×H′

s−1

with s > 1
2 , the problem (4.2) admits a unique weak solution U . Moreover, the linear map

(U1, U0, V ) → (U ′, U) (4.8)

is continuous with respect to the corresponding topologies.

Proof Define the linear form

Lt(Φ0, Φ1) = 〈(U1,−U0), (Φ0, Φ1)〉H′
s×H′

s−1;Hs×Hs−1

+
∫ t

0

∫
Γ1

(DH(τ), Φ(τ))dΓdτ. (4.9)

By the definition (3.51) of the p-norm and the continuous embedding (4.4), the linear form
Lt is bounded in Hs × Hs−1 for any given t ≥ 0. Let St be the semi-group associated to
the homogeneous problem (3.7) on the Hilbert space Hs ×Hs−1, which is an isomorphism on
Hs × Hs−1. The composed linear form Lt ◦ S−1

t is bounded in Hs × Hs−1. Then, by Riesz-
Frêchet’s representation theorem, there exists a unique element (U ′(t),−U(t)) ∈ H′

s × H′
s−1

such that

Lt ◦ S−1
t (Φ(t), Φ′(t)) = 〈(U ′(t),−U(t)), (Φ(t), Φ′(t))〉H′

s×H′
s−1;Hs×Hs−1

for any given (Φ0, Φ1) ∈ Hs ×Hs−1. Since

Lt ◦ S−1
t (Φ(t), Φ′(t)) = Lt(Φ0, Φ1),

we get (4.6) for any given (Φ0, Φ1) ∈ Hs ×Hs−1. Moreover, we have

‖(U ′(t),−U(t))‖H′
s×H′

s−1
= ‖Lt ◦ S−1

t ‖L(Hs×Hs−1)

≤ CT (‖(U1, U0)‖H′
s×H′

s−1
+ ‖H‖L2(0,T ;L2(Γ1))M ). (4.10)

Then, by a classic argument of density, we get the regularity (4.7). The proof is thus complete.

Definition 4.2 The problem (4.2) is exactly null controllable at the time T in the space H0×
H1, if for any given (U1, U0) ∈ H0×H1, there exists a boundary control H ∈ L2(0, T ; L2(Γ1))M

such that the problem (4.2) admits a unique weak solution U satisfying the final condition

t = T : U = U ′ = 0 (4.11)
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and the continuous dependance

‖H‖L2(0,T ;L2(Γ1))M ≤ C‖(U1, U0)‖H0×H1 . (4.12)

Theorem 4.1 Assume that M = N . Then there exists a positive constant T > 0 such that
the problem (4.2) is exactly null controllable at the time T for any given initial data (U1, U0) ∈
H0 ×H1.

Proof Let Φ be the solution to the adjoint problem (3.7) in Hs ×Hs−1 with s > 1
2 . Let

H = D−1Φ|Γ1 . (4.13)

Because of the first inclusion in (4.4), we have H ∈ L2(0, T ; L2(Γ1))N . Then by Proposition
4.1, the corresponding backward problem⎧⎪⎪⎨

⎪⎪⎩
U ′′ − ΔU + AU = 0 in (0, T )× Ω,
U = 0 on (0, T ) × Γ0,
∂νU = Φ on (0, T ) × Γ1,
t = T : U = 0, U ′ = 0 in Ω

(4.14)

admits a unique weak solution U with (4.7). Accordingly, we define the linear map

Λ(Φ0, Φ1) = (−U ′(0), U(0)). (4.15)

Clearly, Λ is a continuous map from Hs ×Hs−1 into H′
s ×H′

s−1.
Next, using (4.6), it follows that

〈Λ(Φ0, Φ1), (Ψ0, Ψ1)〉H′
s×H′

s−1;Hs×Hs−1 =
∫ T

0

∫
Γ1

Φ(τ)Ψ(τ)dΓdτ,

where Ψ is the solution to the problem (3.7) with the initial data (Ψ0, Ψ1). It follows that

〈Λ(Φ0, Φ1), (Ψ0, Ψ1)〉H′
s×H′

s−1;Hs×Hs−1 ≤ ‖(Φ0, Φ1)‖F‖(Ψ0, Ψ1)‖F .

By definition, Hs ×Hs−1 is dense in F , then the linear form

(Ψ0, Ψ1) → 〈Λ(Φ0, Φ1), (Ψ0, Ψ1)〉H′
s×H′

s−1;Hs×Hs−1

can be continuously extended to F , so that Λ(Φ0, Φ1) ∈ F ′. Moreover, we have

‖Λ(Φ0, Φ1)‖F ′ ≤ ‖(Φ0, Φ1)‖F .

Once again, by the density of Hs ×Hs−1 in F , the linear map Λ can be continuously extended
to F , so that Λ becomes a continuous linear map from F to F ′. Therefore, the symmetric
bilinear form 〈Λ(Φ0, Φ1), (Ψ0, Ψ1)〉H′

s×H′
s−1;Hs×Hs−1 is continuous and coercive in the product

space F × F . By Lax and Milgram’s lemma, Λ is an isomorphism from F onto F ′. Then for
any given (−U1, U0) ∈ F ′, there exists an element (Φ0, Φ1) ∈ F , such that

Λ(Φ0, Φ1) = (−U1, U0). (4.16)

This is precisely the exact boundary null controllability of the problem (4.2) for any given
initial data (U1,−U0) ∈ F ′, in particular, for any given initial data (U1,−U0) ∈ H0 ×H1 ⊂ F ′,
because of the second inclusion in (4.4).
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Finally, from (4.13) and (4.16), we deduce the continuous dependance

‖H‖L2(0,T ;L2(Γ1))N ≤ C‖(Φ0, Φ1)‖F ≤ C‖Λ−1‖L(F ′,F)‖(U1, U0)‖H0×H1 .

The proof is thus complete.

In the case of fewer boundary controls, we have the following negative result.

Theorem 4.2 Assume that M < N . Then the problem (4.2) is not exactly null controllable
for all initial data (U1, U0) ∈ H0 ×H1 at any time T > 0.

Proof Since M < N , there exists a vector e ∈ R
N such that DTe = 0. We choose a special

initial data as
U0 = θe, U1 = 0, (4.17)

where θ ∈ D(Ω) is arbitrarily given. If the problem (4.2) is exactly null controllable, we can
find a boundary control H with the least norm such that

‖H‖L2(]0,T [;L2(Γ1))M ≤ C‖θ‖H1(Ω). (4.18)

Then, by Proposition 4.1, we have

‖U‖L2(0,T ;H1−s(Ω)) ≤ C‖θ‖H1(Ω), ∀s >
1
2
. (4.19)

Now, taking the inner product of e with (4.2) and noting φ = (e, U), we get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ′′ − Δφ = −(e, AU) in (0, T ) × Ω,
φ = 0 on (0, T )× Γ0,
∂νφ = 0 on (0, T )× Γ1,
t = 0 : φ = θ, φ′ = 0 in Ω,
t = T : φ = 0, φ′ = 0 in Ω.

(4.20)

Noting (4.3), by the well-posedness, we get

‖θ‖H2−s(Ω) ≤ C‖U‖L2(0,T ;H1−s(Ω)) ≤ C′‖θ‖H1(Ω) (4.21)

for any given θ ∈ D(Ω). Choosing 1 > s > 1
2 , we have 2 − s > 1. This gives a contradiction.

The proof is then complete.

Remark 4.1 As shown in the proof of Theorem 4.1, a weaker regularity such as (U ′, U) ∈
C0([0, T ];H−1 ×H0) is sufficient to make sense to the value (U ′(0), U(0)), therefore, sufficient
for proving the exact boundary controllability. At this stage, it is not necessary to pay much
attention to the regularity of the weak solution with respect to the space variable. However,
in order to establish the non-exact boundary controllability in Theorem 4.2, this regularity
becomes indispensable for the argument of compact perturbation. In the case of Dirichlet
boundary controls, the weak solution has the same smoothness as the controllable initial data.
This regularity yields the non-exact boundary controllability in the case of fewer boundary
controls (see [14–16]). But for Neumann boundary controls, the direct inequality is much
weaker than the inverse inequality. For example, in Proposition 4.1, we can get only (U ′, U) ∈
C0([0, T ];H−s × H1−s) for any s > 1

2 , while, the controllable initial data (U1, U0) lies in the
space H0 ×H1. Even though this regularity is not sharp in general (see [11, Theorem 1.1] and
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[12, Main Theorems 1.2–1.3]), it is already sufficient for the proof of the non-exact boundary
controllability of the problem (4.2).

Remark 4.2 As for the case of Dirichlet boundary controls discussed in [14–16], we have
shown in Theorems 4.1–4.2 that for Neumann boundary controls the problem (4.2) is exactly
null controllable if and only if the boundary controls have the same number as the state variables
or the wave equations. Of course, the non-exact boundary controllability is valid only in the
framework that all the components of the initial data are in the same energy space. In fact,
if the components of the initial data are allowed to have different levels of finite energy, then
we can realize the exact boundary controllability by means of only one boundary control for a
system of two wave equations (see [1, 21]), or more generally, for a cascade system of N wave
equations (see [2]). On the other hand, in contrast with the exact boundary controllability, the
approximate boundary controllability is more flexible with respect to the number of boundary
controls, and is closely related to the so-called Kalman’s criterion on the rank of an enlarged
matrix composed of the coupling matrix A and the boundary control matrix D (see [15, 17]).
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Paris, 1968.

[19] Lions, J.-L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30,
1988, 1–68.
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