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1 Introduction

This note addresses a question raised to the author by Haim Brezis, in connection with his
solution to a conjecture of Serrin concerning divergence form second order elliptic equations
(see [1] and [2]). If the coefficients of the equations (or systems) are Hölder continuous, then H1

solutions are known to have Hölder continuous first derivatives. The question is what minimal
regularity assumption of the coefficients would guarantee C1 regularity of all H1 solutions. See
[3] for answers to some other related questions of Haim.

Consider the elliptic system for vector-valued functions u = (u1, · · · , uN),

∂α(Aαβ
ij (x)∂βu

j) = 0 in B4, i = 1, 2, · · · , N,

where B4 is the ball in R
n of 4 centered at the origin. The coefficients {Aαβ

ij } satisfy, for some
positive constants Λ and λ,

|Aαβ
ij (x)| ≤ Λ, x ∈ B4, (1.1)∫

B4

Aαβ
ij (x)∂αη

i∂βη
j ≥ λ

∫
B4

|∇η|2, ∀ η ∈ H1
0 (B4,R

N ) (1.2)

and ∫ 1

0

r−1ϕ(r)dr <∞, (1.3)
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where

ϕ(r) := sup
x∈B3

(∫
−

Br(x)

|A−A(x)|2
) 1

2
. (1.4)

Main Theorem Suppose that {Aαβ
ij } satisfy the above assumptions, and u ∈ H1(B4,R

N )
is a solution of the elliptic system. Then u is C1 in B1.

Remark 1.1 For elliptic equations with coefficients satisfying α-increasing Dini conditions,
a proof of the C1 regularity of u can be found (see, e.g., [6, Theorem 5.1] as pointed out in
[1–2]).

Question 1.1 If we replace ϕ in (1.3) by

ϕ̂(r) := sup
x∈B3

(∫
−

Br(x)

|A− ABr(x)|2
) 1

2
(1.5)

with ABr(x) :=
∫
−

Br(x)

A, does the conclusion of the main theorem still hold?

2 Main Results and Proofs

Let Br(x) ⊂ R
n denote the ball of radius r and centered at x. We often write Br for Br(0),

and rB1 for Br. Consider elliptic systems

∂α(Aαβ
ij (x)∂βu

j) = hi + ∂βf
β
i in B4, i = 1, · · · , N, (2.1)

where α, β are summed from 1 to n, while i, j are summed from 1 to N . The coefficients {Aαβ
ij },

often denoted by A, satisfy, for some positive constants Λ and λ, (1.1)–(1.3), with ϕ given by
(1.4).

Theorem 2.1 For B4 ⊂ R
n, n ≥ 1, let A, Λ, λ, ϕ be as above, {hi}, {fβ

i } ∈ Cα(B4)
for some α > 0, and let u ∈ H1(B4,R

N ), N ≥ 1, be a solution to (2.1). Then u ∈ C1(B1).
Moreover, the modulus of continuity of ∇u in B1 can be controlled in terms of ϕ, n, N , Λ, λ,
α, ‖h‖Cα(B2) and [f ]Cα(B2).

Remark 2.1 Assumption (1.3) is weaker than A being Dini-continuous.

Remark 2.2 The conclusion of Theorem 2.1 still holds (the dependence on α, ‖h‖Cα(B2)

and [f ]Cα(B2) is changed accordingly), if {hi} ∈ Lp(B4) for some p > n, and f satisfies

∫ 1

0

r−1ψ(r)dr <∞, where ψ(r) := sup
x∈B3

(∫
−

Br(x)

|f − f(x)|2
) 1

2
.

Remark 2.3 This note was written in 2008. It was intended to be published after having
an answer to the question raised above.

Theorem 2.1 follows from the following two propositions.
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Proposition 2.1 For B4 ⊂ R
n, n ≥ 1, let Λ, λ, N be as above, and let A satisfy (1.1)–(1.2),

and (∫
−

Br

|A−A(0)|2
) 1

2 ≤ ϕ(r), 0 < r < 1 (2.2)

for some non-negative function ϕ on (0, 1) satisfying, for some μ > 1,

max
r/2≤s≤2r

ϕ(s) ≤ μϕ(r),
∫ 1

0

r−1ϕ(r)dr <∞. (2.3)

Assume that h, f ∈ Cα(B4) for some α > 0, and u ∈ H1(B4,R
N ) is a solution to (2.1). Then

there exist a ∈ R and b ∈ R
n, such that∫

−
Br

|u(x) − [a+ b · x]|dx ≤ rδ(r)[‖u‖L2(B2) + ‖h‖Cα(B2) + [f ]Cα(B2)], ∀ 0 < r < 1, (2.4)

where δ(r), depending only on ϕ, n, λ,Λ, N, μ, α, satisfies lim
r→0

δ(r) = 0.

Proposition 2.2 Let u be a Lebesgue integrable function on B1 ⊂ R
n, n ≥ 1, and let δ(r)

be a monotonically increasing positive function defined on (0, 1) satisfying lim
r→0

δ(r) = 0. Assume

that for every x ∈ B 1
4
, there exist a(x) ∈ R, b(x) ∈ R

n, such that

∫
−

Br(x)

|u(x) − [a(x) + b(x) · (x− x)]|dx ≤ rδ(r), ∀ 0 < r <
1
2
. (2.5)

Then u, after changing its values on a zero Lebesgue measure set, belongs to C1(B 1
4
), with

u ≡ a and ∇u ≡ b. Moreover, for some dimensional constant C,

|∇u(x) −∇u(y)| ≤ Cδ(4|x− y|), ∀x, y ∈ B 1
4
. (2.6)

Similar results hold for Dirichlet problem: Let Ω ⊂ R
n (n ≥ 1) be a domain with smooth

boundary, let Λ and λ be positive constants, and let A satisfy, for N ≥ 1,

|Aαβ
ij (x)| ≤ Λ, x ∈ Ω,∫

Ω

Aαβ
ij (x)∂αη

i∂βη
j ≥ λ

∫
Ω

|∇η|2, ∀ η ∈ H1
0 (Ω,RN ),

∫ 1

0

r−1ψ(r)dr <∞,

where

ψ(r) := sup
x∈Ω

(∫
−

Br(x)∩Ω

|A−A(x)|2
) 1

2
.

Consider

∂α(Aαβ
ij (x)∂βu

j) = hi + ∂βf
β
i in Ω, i = 1, · · · , N,

u = g on ∂Ω.

Theorem 2.2 (see [4]) Assume the above, and let h, f ∈ Cα(Ω) and g ∈ C1,α(∂Ω) for
some α > 0. Then an H1(Ω,RN ) solution u to the above Dirichlet problem is in C1(Ω).
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Our proof of Proposition 2.1, based on the general perturbation in Lemma 3.1 in [5], is
similar to that of Proposition 4.1 in [5].

Proof of Proposition 2.2 For any x ∈ B1, we see from (2.5) that as r → 0,∫
−

Br(x)

|u(x) − a(x)|dx ≤
∫
−

Br(x)

|u(x) − [a(x) + b(x) · (x− x)]|dx

+
∫
−

Br(x)

|b(x) · (x− x)|dx→ 0.

Thus, by a theorem of Lebesgue, a = u a.e. in B1. We now take u ≡ a, after changing
the values of u on a zero measure set. Let x, y ∈ B 1

4
satisfy, for some positive integer k,

2−(k+1) ≤ |x− y| ≤ 2−k. By (2.5), we have, for some dimensional constant C,

|u(x) − [u(y) + b(y) · (x− y)]|
=

∣∣∣∫−
B2−k (x)

{[u(x) + b(x) · (x− x)] − [u(y) + b(y) · (x− y)]}dx
∣∣∣

≤
∫
−

B2−k (x)

|u(x) − [u(x) + b(x) · (x− x)]|dx

+
∫
−

B2−k (x)

|u(x) − [u(y) + b(y) · (x − y)]|dx

≤
∫
−

B2−k (x)

|u(x) − [u(x) + b(x) · (x− x)]|dx

+ 2n

∫
−

B
2−(k−1) (y)

|u(x) − [u(y) + b(y) · (x − y)]|dx

≤ C2−kδ(2−(k−1)) ≤ C|x− y|δ(4|x− y|).

Switching the roles of x and y leads to

|u(y) − [u(x) + b(x) · (y − x)]| ≤ C|y − x|δ(4|y − x|). (2.7)

Thus, by the above two inequalities and the triangle inequality,

|b(x) − b(y)| ≤ 2Cδ(4|x− y|). (2.8)

The conclusion of Proposition 2.2 follows from (2.7)–(2.8).

Proof of Proposition 2.1 For simplicity, we prove it for h = 0, f = 0 (the general
case only requires minor changes). We may assume without loss of generality that ϕ(1) ≤
ε0,

∫ 1

0
r−1ϕ(r)dr ≤ ε0 for some small universal constant ε0 > 0. This can be achieved by working

with u(δ0x) for some δ0 satisfying ϕ(δ0) ≤ ε0 and
∫ δ0

0
r−1ϕ(r)dr < ε0. The smallness of ε0 will

be either obvious or specified in the proof. In the proof, a universal constant means that it
depends only on ϕ, n, λ,Λ, N, μ. We assume that u is normalized to satisfy ‖u‖L2(B2) = ϕ(4−1).
We often write ∂α(Aαβ

ij ∂βu
j) as ∂(A∂u). For k ≥ 0, let

Ak+1(x) = A(4−(k+1)x), A = A(0).
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We will find wk ∈ H1( 3
4k+1B1,R

N ), such that for all k ≥ 0,

∂(A∂wk) = 0 in
3

4k+1
B1, (2.9)

‖wk‖L2( 2
4k+1 B1) ≤ C′4−

k(n+2)
2 ϕ(4−k), ‖∇wk‖L∞( 1

4k+1 B1) ≤ C′ϕ(4−k), (2.10)

‖∇2wk‖L∞( 1
4k+1 B1) ≤ C′4kϕ(4−k), (2.11)

∥∥∥u−
k∑

j=0

wj

∥∥∥
L2(( 1

4 )k+1B1)
≤ 4−

(k+1)(n+2)
2 ϕ(4−(k+1)). (2.12)

An easy consequence of (2.10) is

‖wk‖L∞(4−(k+1)B1) ≤ C′4−kϕ(4−k). (2.13)

Here and in the following, C,C′ and ε0 denote various universal constants. In particular,
they are independent of k. C will be chosen first and will be large, then C′ (much larger than
C), and finally ε0 ∈ (0, 1) (much smaller than 1

C′ ).
By Lemma 3.1 in [5], we can find w0 ∈ H1(3

4B1,R
N ), such that

∂(A∂w0) = 0 in
3
4
B1,

‖u− w0‖L2( 1
2 B1) ≤ Cεγ0‖u‖L2(B1) ≤ 4−

n+2
2 ϕ(4−1).

So
‖w0‖L2( 1

2 B1), ‖∇w0‖L∞( 1
4 B1), ‖∇2w0‖L∞( 1

4 B1) ≤ Cϕ(1) ≤ C′ϕ(1).

We have verified (2.9)–(2.12) for k = 0. Suppose that (2.9)–(2.12) hold up to k (k ≥ 0). We
will prove them for k + 1. Let

W (x) =
[
u−

k∑
j=0

wj

]
(4−(k+1)x),

gk+1(x) = 4−(k+1)
{
[A−Ak+1](x)

k∑
j=0

(∂wj)(4−(k+1)x)
}
.

Then W satisfies
∂(Ak+1∂W ) = ∂(gk+1) in B1.

A simple calculation yields, using (2.3),

‖Ak+1 −A‖L2(B1) =
√
|B1|ϕ(4−(k+1)) ≤ C(n, μ)ϕ(4−(k+2)).

By the induction hypothesis (see (2.10)–(2.12)),
k∑

j=0

|(∇wj)(4−(k+1)x)| ≤ C′
k∑

j=0

ϕ(4−j) ≤ C(n)C′
∫ 1

0

r−1ϕ(r)dr ≤ C(n)C′ε0, x ∈ B1,

k∑
j=0

|(∇2wj)(4−(k+1)x)| ≤ C′
k∑

j=0

4jϕ(4−j), x ∈ B1,

‖W‖L2(B1) ≤ 4−(k+1)ϕ(4−(k+1)) ≤ C(μ)4−(k+2)ϕ(4−(k+2)),

‖gk+1‖L2(B1) ≤ C(n, μ)C′ε04−(k+2)ϕ(4−(k+2)).
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By Lemma 3.1 in [5], there exists vk+1 ∈ H1(3
4B1,R

N ), such that

∂(A∂vk+1) = 0 in
3
4
B1,

and, for some universal constant γ > 0,

‖W − vk+1‖L2( 1
2 B1) ≤ C(‖gk+1‖L2(B1) + εγ0‖W‖L2(B1))

≤ C(C′ε0 + εγ0)4−(k+2)ϕ(4−(k+2)). (2.14)

Let

wk+1(x) = vk+1(4k+1x), x ∈ 3
4k+2

B1.

A change of variables in (2.14) and in the equation of vk+1 yields (2.9) and (2.12) for k + 1. It
follows from the above that

‖∇2vk+1‖L∞( 1
4 B1) + ‖∇vk+1‖L∞( 1

4 B1) ≤ C‖vk+1‖L2( 1
2 B1) ≤ C4−(k+1)ϕ(4−(k+1)).

Estimates (2.10) for k+ 1 follow from the above estimates for vk+1. We have, thus, established
(2.9)–(2.12) for all k.

For x ∈ 4−(k+1)B1, using (2.10)–(2.11), (2.13), (2.3) and Taylor expansion,

∣∣∣ k∑
j=0

wj(x) −
∞∑

j=0

wj(0) −
∞∑

j=0

∇wj(0) · x
∣∣∣

≤
∞∑

j=k+1

(|wj(0)| + |∇wj(0)||x|) +
k∑

j=0

‖∇2wj‖L∞(4−(k+1)B1)|x|2

≤ C
∞∑

j=k+1

(4−jϕ(4−j) + ϕ(4−j)|x|) + C
k∑

j=0

4jϕ(4−j)|x|2

≤ C4−(k+1)

∫ 4−k

0

r−1ϕ(r)dr + C|x|2
∫ 1

|x|
2

r−2ϕ(r)dr. (2.15)

It is easy to see that lim
|x|→0

|x| ∫ 1
|x|
2
r−2ϕ(r)dr = 0, since (2.3) implies lim

r→0+
ϕ(r) = 0.

We then derive from (2.12) and the above, using Hölder inequality, that, for some δ(r) = ◦(1)
(as r → 0), depending only on ϕ, n, λ,Λ, N, μ,

∫
4−(k+1)B1

∣∣∣u(x) −
( ∞∑

j=0

wj(0) +
∞∑

j=0

∇wj(0) · x
)∣∣∣dx

≤
∥∥∥ k∑

j=0

wj(x) −
∞∑

j=0

(wj(0) −∇wj(0) · x)
∥∥∥

L1(4−(k+1)B1)
+

∥∥∥u−
k∑

j=0

wj(x)
∥∥∥

L1(4−(k+1)B1)

= 4−(k+1)(n+1)δ(4−(k+1)).

Proposition 2.1 follows from the above with a =
∞∑

j=0

wj(0) and b =
∞∑

j=0

∇wj(0) · x).
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Proof of Theorem 2.1 Fix a ρ ∈ C∞
c (B4), ρ ≡ 1 on B3, and let

ϕ(r) := sup
x∈B3

(∫
−

Br(x)

|(ρA) − (ρA)(x)|2
) 1

2
.

It is easy to see that for some μ > 1, ϕ satisfies (2.3). Indeed, since it is easily seen that

ϕ(r) ≤ C(ϕ(r) + r),

the second inequality follows. For the first inequality, we only need to show that ϕ(2r) ≤
C(n)ϕ(r), since the rest is obvious. For any x, let x1 = x, x2, · · · , xm, m = m(n), satisfy

B2r(x) ⊂
m⋃

i=1

B r
9
(xi), and |xi − xi+1| ≤ r

9 . Then

(∫
−

B2r(x)

|(ρA) − (ρA)(x)|2
) 1

2

≤ C(n)
m∑

i=1

(∫
−

Br/9(xi)

|(ρA) − (ρA)(x)|2
) 1

2

≤ C(n)
m∑

i=1

{(∫
−

Br/9(xi)

|(ρA) − (ρA)(xi)|2
) 1

2
+ |(ρA)(x) − (ρA)(xi)|

}

≤ C(n)ϕ(r) + C(n)
m−1∑
i=1

|(ρA)(xi) − (ρA)(xi+1)|.

Since

|(ρA)(xi) − (ρA)(xi+1)|
=

∣∣∣∫−
Br/9(xi)

[(ρA) − (ρA)(xi)] −
∫
−

Br/9(xi)

[(ρA) − (ρA)(xi+1)]
∣∣∣

≤ C(n)
(∫
−

Br(xi)

|(ρA) − (ρA)(xi)| +
∫
−

Br(xi+1)

|(ρA) − (ρA)(xi+1)|
)

≤ C(n)ϕ(r),

we have (∫
−

B2r(x)

|(ρA) − (ρA)(x)|2
) 1

2 ≤ C(n)ϕ(r).

Thus ϕ(2r) ≤ C(n)ϕ(r).
For any x ∈ B2, (∫

−
Br(x)

|A−A(x)|2
) 1

2 ≤ ϕ(r), 0 < r <
1
4
.

Thus Theorem 2.1 follows from Propositions 2.1–2.2.
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