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Abstract In this survey on extremum problems of Laplacian-Dirichlet eigenvalues of
Euclidian domains, the author briefly presents some relevant classical results and recent
progress. The main goal is to describe the well-known conjecture due to Polya, its connec-
tions to Weyl’s asymptotic formula for eigenvalues and shape optimizations. Many related
open problems and some preliminary results are also discussed.
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1 Introduction

This write up covers the author’s mini-course consisting of three lectures at the 6th-sympo-
sium on Analysis and PDEs at the Purdue University, June 1st–4th, 2015. A somewhat detailed
expositions on the relevant works were given in a special graduate course of the author (which
was first given at the Courant Institute in the spring of 2014 and then in the fall 2014 at the
NYU/Shanghai). My goal here is to give a rather brief survey of some extremum problems
for Laplacian eigenvalues on bounded domains in Euclidean spaces with the zero Dirichlet
boundary condition. I also want to explain how the solvability (existence and regularity) of
these extremum problems is related to (a stronger version) a generalized version of the Polya
conjecture.

It is with the deep respect and admiration that I write this article dedicating to Professor
Haim Brezis.

2 Some Classical Results

2.1 Weyl’s asymptotic formula and Polya’s conjecture

Let us start with the following simplest examples of eigenvalues and eigenfunctions.

Example 2.1 Given an ODE,{−uxx(x) = λu(x), x ∈ [0, 1],
u(0) = u(L) = 0.
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One has a set of (properly normalized) eigenfunctions

uk(x) = sin
(kx

L

)
and eigenvalues

λk =
π2

L2
k2, k = 1, 2, · · · .

If we denote

CN =
(2π)2

V
2
N

N

, N = 1, 2, · · · .

Here VN is the volume of the unit ball BN
1 (0) in R

N , then λk = π2

L2 k2 can be written as, for the

dimension N = 1, that λk = (2π)2

V
2
N

N

k
2
N

L
2
N

.

Example 2.2 Let Q be the unit square in R
2, and we consider{−Δu ≡ −(uxx + uyy) = λu(x, y), (x, y) ∈ Q,

u = 0 on ∂Q.

We again have a set of eigenfunctions: uk(x, y) = sin(mx) sin(ny), and corresponding eigen-
values λk = π2(m2 + m2). Here k = N(λ) is the number of lattice points in {(m, n) ∈
N

2 π2(m2 + n2) ≤ λ} ≈ λ
4π . One notices that for N = 2, C2 = 4π2

π = 4π, and
(

k
|Q|

) 2
N = k.

Thus one has λk ≈ 4πk = CN

(
k
|Q|

) 2
N when N = 2.

What we have described in the above examples are nothing but special cases of the well-
known Weyl’s asymptotic formula (see, e.g., [1, 5, 16, 19, 25–26] and references therein).

Let Ω be a bounded domain in R
N . The eigenvalue problems{−Δu = λu in Ω,

u = 0 on ∂Ω

has a sequence of (normalized) eigenfunctions: {uk(x)} that it forms an orthonormal basis of
L2(Ω). In particular, ˆ

Ω

u2
k(x)dx = 1

and {−Δuk = λkuk in Ω,
uk = 0 on ∂Ω.

The corresponding sequence of eigenvalues {λk} satisfies in addition that 0 < λ1 < λ2 ≤
λ3 ≤ · · · . Weyl’s asymptotic formula then implies that

λk ≈ CN

( k

|Ω|
) 2

N

as k → +∞. (�)

Here |Ω| is the volume of Ω and N is the dimension of Ω. Weyl’s formula can be further
improved (as conjectured by Weyl himself) (see [1, 16, 25] and references therein):

N(λ) = (2π)−Nλ
N
2 |Ω| ∓ 1

4
(2π)1−Nλ

N−1
2 |∂Ω| + · · · .
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Here N(λ) denotes number of eigenvalues ≤ λ (the minus sign in the formula is for the Dirichlet
eigenvalues, and the plus sign corresponds to the eigenvalues with zero Neumann boundary
conditions or we simply call them the Neumann eigenvalues).

Thus for a fixed domain Ω of finite perimeter in R
N , one has for the Dirichlet eigenvalues

that

λk(Ω) ≥ CN

( k

|Ω|
) 2

N

+ D(N, |∂Ω|, |Ω|)k 1
N as k → +∞,

where D(N, |Ω|, |∂Ω|) is a positive constant depending on N , |Ω| and |∂Ω|. This leads also
naturally to the well-known Polya’s conjecture (for the Dirichlet eigenvalues on a bounded
domain Ω ⊆ R

N ).
Polya’s conjecture (see [27]) is as follows:

λk(Ω) ≥ CN

( k

|Ω|
) 2

N

(��)

for every bounded domain in R
N and every positive integer k.

We note that, using the further improved expansions of Weyl’s formula, if k and |Ω| are
fixed, then the optimal shape, that is, the right-hand side reaches the minimum value, of the
domain Ω is a ball. Weak versions of Polya’s conjectured lower bound for Dirichlet eigenvalues
are due to Berezin [4] and Li and Yau [23], with developments later by Laptev [22] and others
using Riesz means and “universal” inequalities (see for example a survey article by Ashbaush
[2]). Polya [27] proved the conjecture (��) for planar tiling domains (see also [22]).

On the other hand, if we fix a k (sufficient large) and if the Weyl asymptotic formula (�)
is valid (uniformly in Ω), which is obviously an unknown issue, then one would expect, as k

becomes larger and larger, that the “optimal” domain Ω of a fixed volume, which realizes the
least value for the tight hand side of (�), would converge to a ball which solves the isoperimetric
(inequality) problem. We shall come back to this interesting and difficult point later.

2.2 Min-Max principle and nodal domains

Let us recall the classical min-max principle for Laplacian eigenvalues [14]:
(1)

λk = min
Ek⊂H1

0 (Ω)
max

u∈Ek\{0}
R(u).

(2)

λk = max
Ek−1⊂H1

0 (Ω)
min

u⊥Ek−1,u�=0
R(u).

Here

R(u) =

´
Ω
|∇u|2dx´
Ω

u2dx
, 0 �= u ∈ H1

0 (Ω)

is the Rayleigh quotient, and Ej ’s are j-dimensional subspaces.
One of the uses of (1) and (2) is to obtain estimates for both upper bounds (via (1)) and

lower bounds (via (2)).
In particular, λ1 = inf{R(u) : 0 �= u ∈ H1

0 (Ω)} and λk = inf{R(u) : 0 �= u ⊥ Span{u1, u2,

· · · , uk−1}} for k = 2, 3, · · · .
Next, we have the nodal domains theorem of Courant.
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Theorem 2.1 Let u be a k-th eigenfunction, i.e., Δu+λku = 0 in Ω and u �= 0 (identically)
in Ω with u |DΩ= 0, then the number of nodal domains of u ≤ k. Here an open connected subset
D of Ω is called a nodal domain of u if u never vanishes on D and if u ≡ 0 on ∂D.

When N = 1, then the above nodal domain theorem is an easy consequence of the Sturm-
Liouville theory. Moreover, in the latter case, the number of nodal domains (intervals) of a
k-th eigenfunction is exactly k. A simple proof of the Courant’s nodal domain theorem can be
deduced from the min-max principle.

Proof of Courant’s Nodal Domain Theorem Suppose that u is a k-th eigenfunction.
Let us denote all eigenfunctions with eigenvalue λk by E(λk) \ {0} (one has to eliminate the

trivial zero function). If u has more than k nodal domains, then Ω =
m∐

j=1

Ωj , m > k, here

each Ωj is a nodal domain (and the union means that they have no intersecting interior). Since
vj = u |Ωj does not change the signs, hence a first eigenfunction of the Laplacian on Ωj with the
zero Dirichlet boundary condition vj = 0 on ∂Ωj (see [14]). We extend each vj , j = 1, 2, · · · , k,

to be 0 outside Ωj , and consider v =
k∑

j=1

cjvj ∈ H1
0 (Ω), such that v ⊥ Span{u1, · · · , uk−1}, and

that
´
Ω

v2dx =
k∑

j=1

c2
j(
´
Ωj

v2
j dx) = 1. It is obvious that one can find (c1, · · · , ck) ∈ R

k \ {0},
such that these conditions are valid. A direct computation yields that

R(v) =

´
Ω
|∇v|2dx´
Ω v2dx

= λk,

and hence, via min-max principle, one has v ∈ E(λk) \ {0}. Consequently, Δv + λkv = 0 in

Ω,
´
Ω

v2dx = 1 and spt(v) ⊆
k⋃

j=1

Ωj . Therefore v vanishes on a nonempty open subset ⊆ Ω.

The latter is impossible by the analyticity of v in Ω (see [14]) or by the unique continuation
theorem.

Corollary 2.1 Suppose u ∈ E(λ2)\ {0}. Then the number of nodal domains of u is exactly
2.

Proof We have shown the number of nodal domains of a second eigenfunction u2 ≤ 2. On
the other hand, since u1 has only one sign on Ω (an easy exercise) and

´
Ω

u1u2dx = 0, u2 has
to change signs on Ω.

2.3 Partitions of a domain

In general, we let u ∈ E(λk) \ {0} be a k-th eigenfunction of the Laplacian on Ω with
Dirichlet boundary condition. Let μ(u) be the number of nodal domains of u. We say there is
an m-nodal partition of Ω if there is an eigenfunction u ∈ E(λk) \ {0} (for some k ≥ m) such
that m = μ(u) (see also [17] for related discussion). A natural question is how large μ(u) can
be, for a u ∈ E(λk) \ {0}. Courant’s nodal domain theorem says that, for any u ∈ E(λk) \ {0},
μ(u) ≤ k. It turns out that μk = max{μ(u) : u ∈ E(λk) \ {0}} is definitely smaller than k, for
k large. The following elegant theorem was due to Pleijel.

Theorem 2.2 (Pleijel)

lim sup
k→∞

μk

k
= η0(N) < 1
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for any bounded domain Ω in R
N . Here μk is defined above.

Proof Suppose that u ∈ E(λk)\ {0} has μk nodal domains so that Ω =
∐

1≤j≤μk

Ωj , each Ωj

is a nodal domain. Then there is at least one of the nodal domain, say Ωj, satisfies |Ωj | ≤ |Ω|
μk

.
Note, by Courant’s theorem, μk ≤ k.

Next, we apply the Faber-Krahn inequality (see discussions below) to Ωj to obtain (since
Ωj is a nodal domain of u ∈ E(λk) \ {0}) that λk(Ω) ≡ λ1(Ωj) ≥ λ1(Bj), where Bj is a ball in
R

N with |Bj | ≡ |Ωj | ≤ |Ω|
μk

. To proceed, one examines, for example, the case N = 2. Then one
has

λ1(Bj) ≥ μk

|Ω|πj2
0 ≥ (2.4)2π

μk

|Ω|

(here j0 = 2.4 is the first positive zero of the 0-th order Bessel function).
On the other hand, Weyl asymptotic formula implies that λk(Ω) ≈ 4πk

|Ω| when N = 2. Hence
(2.4)2μk ≤ 4k or lim sup

k→∞
μk

k ≤ η0(2) = 4
(2.4)2 < 1 when N = 2.

Finally, the cases N > 2 can be handled in the same way, and the conclusion of the theorem
follows.

A closely related concept to the nodal partition of a domain Ω is the following notion of

the spectral equal partition. A partition of Ω =
m∐

j=1

Ωj is called a spectral equal partition, if

λ1(Ωj)’s for j = 1, 2, · · · , m, are all equal. Thus a nodal partition is surely a spectral equal
partition. But the converse is not true in general. For example, for a disc D in R

2 centered
at the origin, one can divide D into three equal (up to rotations) circular sectors (each of 120◦

opening) Ωj , j = 1, 2, 3, then λ1(Ωj)’s are all equal. However, there is no eigenfunction u of
the Laplacian on D with nodal set N(u) = {x ∈ D : u(x) = 0} consisting of E = {(r, θ) :
0 ≤ r ≤ r0, θ = θi = 2πi

3 for i = 1, 2, 3} (it is an easy exercise). E cannot be a zero set of an
analytic function on D (an analytic variety). On the other hand, it is somewhat no trivial that

D =
3∐

j=1

Ωj is in fact a minimal partition (see discussions below).

As in [17], one can introduce the so-called lp-minimal partitions: A partition of Ω =
m∐

j=1

Ωj

is called an lp-minimal partition, if for “any partition” of Ω into m-subsets, Ω =
m∐

j=1

Ω′
j , then

( m∑
j=1

λp
1(Ωj)

) 1
p ≤

( m∑
j=1

λp
1(Ω

′
j)

) 1
p

.

We remark that
(a) Any l∞-minimal partition is a spectral equal partition (this may be viewed as an inter-

esting exercise).
(b) The existence, regularity and regularity of free interfaces of minimal partition have been

studied by many authors (see, for example, the survey article [17], and also [11–12]).
In [11], we also conjectured, in the case N = 2, that
(i) lim

m→∞L1
m(Ω) = c0 exists, and it is independent of Ω.

(ii) lim
m→∞L1

m(Ω) = λ1 (Hexa).
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Here L1
m(Ω) =

m∑
j=1

λ1(Ωj)

m2 , Ω =
m∐

j=1

Ωj ⊆ R
2 is a bounded domain with |Ω| = 1 and where

λ1 (Hexa) is the first Dirichlet eigenvalue of a regular Hexagon in R
2 with area 1. We also note

that the first item in the above conjecture has been established by the author a few years ago
(to be published). Similar conjectures for l∞-minimal partitions were also proposed in [17].

3 Extremum Problems

3.1 Special cases

One of the main purposes of this article is to address the following extremum problem:

inf{λk(Ω) : Ω ⊆ R
N with |Ω| = 1} (EP)

for a positive integer k and N ≥ 2. Here λk(Ω) is the k-th Dirichlet eigenvalue of the Laplacian
on Ω ⊆ R

N . It is already unclear, at the first look, that what type of measurable subsets Ω in
R

N with volume 1, so that λk(Ω) would be well-defined.
When k = 1, we have the following well-known Faber-Krahn inequality:

λ1(B) ≤ inf{λ1(Ω) : Ω ⊆ R
N with |Ω| = 1},

where B is a ball in R
N with |B| = 1. Here infimum is taking among any measurable sets Ω

in R
N with |Ω| = 1, so that λ1(Ω) is defined. For example, Ω being a bounded, open subset

of R
N will work. This inequality may be proved by many arguments including the classical

symmetrization method (see [3, 13, 15, 18, 28]).
The case k = 2 is already drastically different from the case k = 1. In fact, there is no

connected open set Ω that could solve the extremum problem (EP) when k = 2. Indeed, let
us assume that Ω∗ ⊆ R

N solves (EP) with k = 2, and let u2 be the corresponding second
eigenfunction: {−Δu2 = λ∗

2u2 in Ω∗,
u2 = 0 on ∂Ω∗

with
´
Ω

u2
2dx = 1, |Ω∗| = 1, and λ∗

2 be the infimum value for (EP) when k = 2. By the
min-max principle, u2 has exactly two nodal domains: Ω1, Ω2 so that Ω = Ω1

∐
Ω2. Hence

|Ω| = |Ω1|+ |Ω2|, and u2 restricted to both Ω1 and Ω2 are the Dirichlet first eigenfunctions with
eigenvalue λ∗

2. We let balls B1, B2 ⊆ R
N be such that |B1| = |Ω1|, |B2| = |Ω2|, then Rayleigh-

Faber-Krahn inequality implies that λ1(B1) ≤ λ∗
2, λ1(B2) ≤ λ∗

2 (with equality if and only if the
domains Ω1 and Ω2 are also balls). Now it is clear, then one must have |B1| = |B2| = 1

2 |Ω|. For
otherwise, say |B1| < |B2|, by a simple scaling and by the monotonicity of the first eigenvalues
depending on domain inclusions, one has λ1(B2) < λ∗

2. Thus one can scale up B1 by a factor
> 1 and B2 by a factor < 1, so that the resulting balls B̃1, B̃2 would satisfy |B̃1|+|B̃2| = |Ω| = 1
and that λ1(B̃2) < λ∗

2 remains to be true while λ1(B̃1) < λ1(B1) ≤ λ∗
2. Therefore, the new

domain Ω̃ = B̃1

∐
B̃2 would satisfy the properties that |Ω̃| = 1 and λ2(Ω̃) < λ∗

2. We obtain a
contradiction.

The above argument has showed also that the solution to (EP) when k = 2 is given by a
disjoint union of two balls of the equal volume 1

2 .
These preliminary observations lead to a couple rather basis questions:
(Q1) What type sets Ω would be admissible for the extremum problem (EP)?
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(Q2) How one can handle the usual “concentration compactness” problems when a mini-
mizing sequence {Ωj} of (EP) in R

N may be stretched and splitted to infinitely?
(Q3) Is it possible to find minimizers Ω of (EP) such that Ω would be open and connected?
There were numerous works addressing the first two questions. Much of discussion of these

may be find in the excellent monograph by Henrot [18] and references therein. Here we shall
be concentrated mainly on the third question and to discuss some recent progress on it. Before
we do so, let us discuss a couple more specific cases.

The first special class of subsets Ω ⊆ R
N one would consider is the class of convex domains.

We have the following.

Theorem 3.1 There is a convex domain that solves the (EP):

inf{λk(Ω) : Ω ⊆ R
N is convex and |Ω| = 1}

for every positive integer k.

Proof Let {Ωn} be a minimizing sequence. Since Ωn’s are convex and |Ωn| = 1, one
has that either Ωn converges in the Hausdorff distance to a bounded convex domain Ω∗ with
|Ω∗| = 1, or there is a subsequence of {Ωn′} such that Ωn′ would be contained in strips (after
suitable rotations and translations) of form [0, δn] × [−Ln, Ln]N−1, such that δn → 0+ while
Ln → +∞. If the latter is the case, then an easy calculation of the first eigenvalues of the
regions of the form Qn = [0, δn] × [−Ln, Ln]N−1 yields that λ1(Qn) ≥ π2

δ2
n

(no matter what are
the sized of Ln’s). In particular,

λk(Ωn′) ≥ λ1(Ωn′) ≥ λ1(Qn) ≥ π2

δ2
n

→ +∞

as n tends to infinite. This would contradict to the fact that λk(Ωn′) converge to the value

inf{λk(Ω) : Ω ⊆ R
N is convex and |Ω| = 1},

and hence the latter is not possible. For the former case, an easy fact in the convex geometry
implies that if Ωn’s converges to Ω∗ (convex) with |Ω∗| = 1 in the Hausdorff distance, then
Ωn’s are uniformly Lipschitz domains. Moreover, λk(Ωn) converges to λk(Ω∗) as n → ∞ can
be easily established. Hence the conclusion of the theorem follows.

The second class of subsets Ω ⊆ R
N we would discuss here are bounded sets. Here is one of

the basis existence result (see [7–9, 18] and references therein).

Theorem 3.2 There is a quasi-open set Ω∗ ⊆ B that solves the following constrained
extremum eigenvalue problem:

inf{λk(Ω) : Ω is a quasi-open subset of B with |Ω| = 1}. (EPc)

Here B is a large ball (or any bounded, Lipschitz domain with |B| > 1).

The proof of the above theorem is contained in the references [7–9, 18], and it takes some
pages to describe it. Here we shall discuss the relevant notion of quasi-open sets and some prop-
erties of such sets in the next section as these would be important to other parts of discussions
in the paper.
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3.2 Quasi-open sets

Let f(x) be a real valued continuous function on R
N . Then for any c ∈ R, O = {x ∈

R
N : f(x) > c} is an open set. The converse is also true, that is, if O is open in R

N , then
there is a (smooth) continuous function on R

N such that O = {x ∈ R
N : f(x) > 0}. To

define quasi-open subsets of R
N , we introduce the notion of quasi-continuous functions. A

real valued function f(x) is called quasi-continuous if and only if, ∀ε > 0, there is a subset
Ωε ⊂ R

N , such that f is continuous on Ωε and that the classical capacity of R
N \ Ωε is less

than ε. A subset Ω of R
N is called quasi-open, if there is a quasi-continuous function f such

that Ω = {x ∈ R
N : f(x) > 0} (which is defined upto zero capacity sets). One can check that

a set Ω is quasi-open, if, ∀ε > 0, ∃ an open set Oε such that cap(ΩΔOε) < ε. Equivalently, a
set Ω is quasi-open, if there is a sequence of open sets {Ωn}, such that, Ωn ⊇ Ωn+1 ⊇ · · · ⊇ Ω
and that cap(Ωn \ Ω) → 0+.

A theorem of Federer-Ziemer says that if f is an H1(RN ) function, then f is quasi-continuous.
It is then not hard to show that a subset Ω ⊆ R

N is quasi-open if and only if there is a non-
negative H1(RN ) function f such that Ω = {x ∈ R

N : f(x) > 0}.
Next, it is necessary to discuss also a few natural topologies on the space of quasi-open

subsets in R
N in order to solve (EP). For conveniences, let us assume that these quasi-open

sets are contained in a fixed bounded domain.

Definition 3.1 Let {Ωn} be a sequence of quasi-open sets in a bounded domain B. We say
that Ωn is γ-convergent to Ω if and only if the associated potential functions of the domains are
convergent, that is, uΩn → uΩ in L2(B) as n → ∞. Here

{−ΔuΩn = χΩn ,
uΩn = 0 in R

N \ Ωn,{−ΔuΩ = χΩ,
uΩ = 0 in R

N \ Ω.

Suppose that uΩn and uΩ are defined as above, and let dγ(Ωn, Ω) =
´

B
|uΩn − uΩ|dx. Then

it is an exercise to check that Ωn ⇒ Ω in the sense of γ-convergence if and only if dγ(Ωn, Ω) → 0
as n converges to infinite. The following theorem is due to Sverak.

Theorem 3.3 (see [29]) Let {Ωn} and Ω be quasi-open sets in B. Then Ωn is γ-convergent
to Ω if and only if, ∀f ∈ L2(B), the solution of

{−Δvn = f in Ωn,
vn = 0 in R

N \ Ωn

converges in L2(B) to v, the solution of

{−Δv = f in Ω,
v = 0 in R

N \ Ω.

We note that v, vn ∈ H1
0 (B). Let us sketch a proof of the above theorem when Ωn and Ω

are open and smooth domains.

Proof It suffices to verify that if Ωn is γ-convergent to Ω, then vn → v in L2(B). For
this purpose, we consider first that 0 ≤ f ≤ M , for a large constant M . Then the maximum
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principle implies that 0 ≤ v ≤ MuΩ and 0 ≤ vn ≤ MuΩn . A simple calculation yields

0 =
ˆ

B

Δ(|vn − v|)2dx

= 2
ˆ

B

|∇(vn − v)|2dx −
ˆ

(∂Ωn)∩Ω

v
∣∣∣Dvn

Dνn

∣∣∣ − ˆ
(∂Ω)∩Ωn

vn

∣∣∣Dv

Dν

∣∣∣
−
ˆ

Ωn\Ω
2fvn dx −

ˆ
Ω\Ωn

2fv dx.

One notices that the same formula is valid also for uΩ and uΩn . Since Ωn is γ-convergent to
Ω, hence uΩn → uΩ in L2(B). Consequently,

´
B |uΩn − uΩ|dx → 0 as n → ∞. Therefore, the

followings are true:
(i)

´
Ωn\Ω uΩndx = on(1),

´
Ω\Ωn

uΩdx = on(1);
(ii)

´
B |∇uΩn |2dx − ´

B |∇uΩ|2dx = on(1);
(iii)

ˆ
(∂Ωn)∩Ω

uΩ

∣∣∣DuΩn

Dνn

∣∣∣ +
ˆ

(∂Ω)∩Ωn

uΩn

∣∣∣DuΩ

Dν

∣∣∣ = on(1).

Note the second item above, which follows from (i) and an integration, implies that uΩn

→ uΩ in H1
0 (B). Now (i) and the maximum principle imply also that

0 ≤
ˆ

Ωn\Ω
vnfdx ≤ M2

ˆ
Ωn\Ω

uΩndx → 0,

0 ≤
ˆ

Ω\Ωn

vfdx ≤ M2

ˆ
Ω\Ωn

uΩdx → 0

and that ˆ
(∂Ωn)∩Ω

v
∣∣∣Dvn

Dνn

∣∣∣ +
ˆ

(∂Ω)∩Ωn

vn

∣∣∣Dv

Dν

∣∣∣ ≤ M2 × (iii) → 0.

Thus vn → v in H1
0 (B) in this case.

Now for any f ∈ L2(B) (or H−1(B)), one can find fM ∈ L2(B) with |fM | ≤ M . Let the
corresponding solutions be vM

n and vM , then the above arguments yields ‖vM
n − vM‖L2(B) → 0

as n → ∞. On the other hand, standard elliptic estimates imply that ‖vM
n − vn‖L2(B) + ‖v −

vM‖L2(B) ≤ c‖f − fM‖H−1(B) → 0 as M → +∞. We conclude vn → v in L2(B).

Let us also introduce a convergence of Hilbert spaces, H1
0 (Ωn) to H1

0 (Ω), in the sense defined
by Mosco (see [7]), here Ωn, Ω ⊆ B. A sequence H1

0 (Ωn) is called to be convergent to H1
0 (Ω)

in the sense of Mosco, if the following two statements are held:
(a) ∀v ∈ H1

0 (Ω), there is a sequence {vn} ⊂ {H1
0 (Ωn)} such that vn → v in H1

0 (B).
(b) If {vn} ⊂ {H1

0 (Ωn)} such that there is a subsequence {vnk
} with vnk

⇀ v in H1
0 (B),

then v ∈ H1
0 (Ω).

It is not hard to show, via min-max principle, that the statement (a) above implies that

lim sup
n

λk(Ωn) ≤ λk(Ω).

On the other hand, the statement (b) would imply that

lim inf
n

λk(Ωn) ≥ λk(Ω).
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Though the γ-convergence (and convergence in the sense of Masco defined above) would
imply the convergence of Laplacian eigenvalues with the zero Dirichlet boundary condition,
they are in a way strong convergences. Consequently, it is not easy to work with for our
extremum problems. The following weak-convergence of domains would be more suitable to
solve the variational problems in shape optimizations.

Definition 3.2 A sequence of quasi-open domains Ωn ⊆ B is said to converge to Ω weakly
with Ω ⊂ B, if uΩn → w in L2(B), and Ω = {x ∈ B : w(x) > 0}.

We note that w in general is not equal to uΩ. One also notices that potential functions are
continuous from the De Girogi elliptic regularity theory. The following proposition is trivial.

Proposition 3.1 (Compactness) Let {Ωn} be a sequence of quasi-open subdomains in B.
Then there is a subsequence {Ωnk

} that converges weakly to Ω, a quasi-open subdomain in B.

With this easy compactness result, one can show the constrained extremum-problem (EPc
for short) has a solution (see [8–9]). For example, when k = 1, if {Ωn} converges weakly to
Ω∗ in B, then it is easy to show that λ1(Ω∗) ≤ lim inf

n
λ1(Ωn). This latter fact can be easily

deduced by considering the Rayleigh quotients that characterizing eigenvalues, as the lower
semicontinuity of the Dirichlet integral along with the fact that the L2 norms eigenfunctions
are conserved under the weak convergence in H1

0 (B). Moreover, |Ω∗| ≥ 1 (indeed, if |Ω∗| < 1,
then it would contradict to λ1(Ω∗) ≤ inf{λ1(Ω) : Ω ⊂ B quasi-open with |Ω| = 1}). On the
other hand, if |Ω∗| > 1, then for small σ > 0 such that |Ω∗| ≈ |{u∗ > σ}|, u∗ is the positive first
Dirichlet eigenfunctions on Ω∗. Let un be the first Dirichlet eigenfunction on Ωn, then un → u∗
in L2(B) (by taking subsequence if needed). Thus

|{u∗ > σ}| ≤
∣∣∣{un >

σ

2

}∣∣∣ ≤ |Ωn| = 1,

and we would also obtain a contradiction. For general k-th, k > 1, eigenvalues, it could be also
verified in the same way using the min-max principle and an induction on k.

4 Connected Minimizers

The existence of minimizers of (EP) without boundedness constraint has been established
recently in the work of Mazzoleni and Pratelli [24] and Bucur [6]. In fact, in [24] a more general
class of extremum problems for Laplacian-Dirichlet eigenvalues was considered, and existence
of bounded minimizers was proven. As a consequence of their proofs, they also showed that
for any quasi-open set A ⊆ R

N , one has λk(A) ≤ M(k, N)λ1(A). In [6], Bucur proved that
minimizers of (EP) exists. Moreover, he showed every minimizer is bounded and has a finite
perimeter. The last result will be discussed in the final section of this paper. The aim of
this section is to study when such minimizers are connected domains. We should also point
out that in another recent work, by Bucur-Mazzoleni-Pratelli-Velichkov [10], it was shown that
minimizers are open sets.

4.1 Splitting (in)equality

Theorem 4.1 Assume that there is a multiply connected domain Ω∗
k that solves, for given

k, the following problem:

inf{λk(Ω) : Ω ⊆ R
N is quasi-open with |Ω| = 1}. (EP)
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Denote the infimum value of above extremum problem by Λ(k, N). Then, for some 1 ≤ m ≤ k,

Λ(k, N)
N
2 =

m∑
j=1

Λ(kj , N)
N
2 .

Here Ω∗
k can be decomposed into mutually disjoint subdomains Ωk1 , · · · , Ωkm , such that Ω∗

k =
m∐

j=1

Ωkj , and
m∑

j=1

|Ωkj | = 1, and that the positive integers k1, k2, · · · , km satisfy k1+k2+· · ·+km =

k. And each Ωkj can be scaled properly (so that its volume becomes 1) to solve (EP) with k = kj .

This result may be viewed as an extension of a theorem due to Keller-Wolf [20], and we
shall see that it is an easy consequence of the min-max principle. On the other hand, using
arguments from the proofs of concentration-compactness (see [8]), one may derive a similar
statement for minimizing sequences.

Theorem 4.2 For any positive integer k, there is a minimizing sequence {Ωn} of the prob-

lem (EP) and an integer m with 1 ≤ m ≤ k such that Ωn =
m∐

j=1

Ωn,kj ,
m∑

j=1

kj = k, for some

positive integers kj’s, j = 1, 2, · · · , m. Moreover, each sequence {Ωn,kj} after suitable scalings
would itself form a minimizing sequence for (EP) when k = kj . In particular,

Λ(k, N)
N
2 ≥

m∑
j=1

Λ(kj , N)
N
2 .

Let us sketch a proof of Theorem 4.1.

Proof of Theorem 4.1 Assume that Ω∗
k is not connected, and we write Ω∗

k = Ω1

∐
Ω2,

a union of two subdomains (which are not necessarily connected) such that |Ωi| > 0 (i = 1, 2)
and |Ω1| + |Ω2| = 1. Let u∗

k be an eigenfunction of the Dirichlet-Laplacian on Ω∗
k. Then

u∗
k |Ωi (i = 1, 2) are eigenfunctions of the Dirichlet-Laplacian on Ωi also. Assume that u∗

k is
the j1-th eigenvalue on Ω1 (with j1 is the maximum so that λj1(Ω1) = λk(Ω∗

k) = Λ(k, N)). We
claim first that j1 < k. Indeed, otherwise, we may choose u∗

k to be zero on Ω2 and u∗
k will

be a k-th Dirichlet eigenfunction on Ω1. But the latter is not possible as |Ω1| < |Ω∗
k| = 1, so

that one can properly scaled up Ω1 to obtain a new domain of volume 1 but strictly less k-th
eigenvalue, and hence it contradicts to the fact that λk(Ω∗

k) = Λ(k, N) solves (EP).
Next, we claim that there are at least (k − j1) eigenvalues of Ω2 which are smaller than

Λ(k, N). Otherwise, for λk−j1 (Ω2) > Λ(k, N) (while λj1 (Ω1) = Λ(k, N)), the min-max prin-
ciple (here we may choose the k − 1 dimensional subspace of H1

0 (Ω∗
k) to be spanned by j1

eigenfunctions on Ω1 and the first k − 1 − j1 eigenfunctions on Ω2) is as follows:

λk(Ω∗
k) = max

Ek−1⊂H1
0 (Ω∗

k)
min

u⊥Ek−1\{0}
R(u) ≥ min(λk−j1 (Ω2), λj1+1(Ω1)) > Λ(k, N).

The latter is not possible. Thus λk−j1 (Ω2) ≤ Λ(k, N). On the other hand, if λk−j1 (Ω2) <

Λ(k, N), then the other min-max principle

λk(Ω∗
k) = min

Ek⊂H1
0 (Ω∗

k)
max

u∈Ek\{0}
R(u)

would imply λk(Ω∗
k) < Λ(k, N), again impossible.

Finally, if we replace Ω1 by |Ω1| 1
N Ω∗

j1 = Ω̃1 and Ω2 by |Ω2| 1
N Ω∗

k−j1
= Ω̃2. Then we

have |Ω̃1| + |Ω̃2| = 1 (note that |Ω1| = |Ω̃1|, |Ω2| = |Ω̃2|) and λj1(Ω̃1) = |Ω1|− 2
N Λ(j1, N),
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λk−j1 (Ω̃2) = |Ω2|− 2
N Λ(k− j1, N). By the minimality of Λ(k, N), we thus conclude that the last

two inequalities above are equalities. That is,

Λ(k, N)
N
2 = Λ(j1, N)

N
2 + Λ(k − j1, N)

N
2 .

An easy induction leads to the conclusion of Theorem 4.1.

As a byproduct of the above proof, we have the following statement which again follow from
the min-max principle.

Proposition 4.1 Let Ω be a bounded open set in R
N , and assume that Ω has m connected

components Ω1, Ω2, · · · , Ωm. Suppose that u is the k-th eigenfunction of the Laplacian on Ω
with the Dirichlet boundary condition. Then u |Ωj are eigenfunctions of Dirichlet-Laplacian on
Ωj’s, j = 1, 2, · · · , m (unless that u vanished identically on some of Ωj’s). Let kj be positive

integers (or zero if u |Ωj≡ 0), such that u |Ωj is a kj-th eigenfunction. Then
m∑

j=1

kj = k.

There are a few simple consequence of the above proposition.

Corollary 4.1 The minimization problem (EP) has a solution Ω∗
k which, in general, would

have at most m connected components with m ≤ c0k for some c0 < 1.

Proof Suppose that Ω∗
k has m connected components. Then one of the component, say Ωk1 ,

must have its volume ≤ 1
m . If u∗

k is a k-th eigenfunction on Ω∗
k with the Dirichlet boundary

condition, then u∗
k is a k1-th eigenfunction on Ωk1 . Thus Λ(k, N) = λk1(Ωk1) ≥ λ1(Ωk1) ≥

λ1(B̃) ≥ (1 + δN )CNm
2
N (by Faber-Krahn inequality), where B̃ is a ball of volume 1

m . On the
other hand, Λ(k, N) ≤ λk(B), for ball B of volume 1. Weyl’s asymptotic formula implies that
λk(B) = CNk

2
N . We thus conclude that

m ≤ 1
(1 + δN )

2
N

k ≤ c0k.

We note that the above proof is very similar in the spirit to the proof of Pleijel’s theorem.

Corollary 4.2 For every N ≥ 2, (EP) has a solution for some k ≥ 3, which is a connected
open set.

Proof The existence of a bounded (depending on N and k) minimizer which is also an
open set in R

N for the (EP) was known (see [6, 10, 24]). To show, for some k, it is connected,
we assume, to the contrary, that Ω∗

k for all k ≥ 3 are disconnected. Then by discussions in
this section, one would conclude that Ω∗

k must consist of exactly k connected components. The
latter is not possible by Corollary 4.1.

For k = 3 and N = 2 or 3, Keller-Wolf [20] observed earlier that solutions of (EP) are
connected. Indeed, for N = 2, k = 3, if Ω∗

3 is disconnected, then one would conclude that
Λ(3, 2) = 3Λ(1, 2), i.e., Ω∗

3 is consisting of 3 disjoint equal balls of volume 1
3 each. As Λ(1, 2) =

πj2
0 ≥ 18, and Λ(3, 2) ≤ λ3(D) = 46 (here D is a disc in R

2 of area 1), one sees that it is not
possible.

For N = 3, k = 3, one calculates Λ(1, 3) ≤ 26, and λ3(B)
3
2 = 380 (here B is a ball in R

3 of
volume 1). We thus have Λ(3, 3)

3
2 = 3Λ(1, 3)

3
2 ≥ 389, and again it is not possible.

4.2 Generalized Polya’s conjecture

The classical Polya’s conjecture can be stated as follows.
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Conjecture 4.1

Λ(k, N) ≥ CNk
2
N .

Polya proved for any planar tilling domain Ω of area 1, λk(Ω) ≥ C2k ≡ 4πk for k = 1, 2, · · · .
In fact, one can see, for any finite k ∈ N, the strict inequality is true from Polya’s proof. We
believe the following conjecture may be also valid.

Conjecture 4.2 (Generalized Polya’s Conjecture)

Λ(k, N) ≥ (1 + δk,N )
2
N CNk

2
N

for all N > 2 and k > 1. Here δk,N are positive numbers depending only on N and k.

Proposition 4.2 Assume that the generalized Polya’s conjecture is true, then there are
infinitely many k’s, such that the extremum problem has a solution Ω∗

k which is a connected
open set.

Proof Suppose that the conclusion of the above proposition is not true. Then for any
k ≥ k0, one has

Λ(k, N)
N
2 =

m∑
j=1

Λ(kj , N)
N
2 ,

such that 1 ≤ kj ≤ k0 and that
m∑

j=1

kj = k. Note that this implies in particular that m ≥ c1k,

c1 > 0 for all k large. It is clear that

lim sup
k→∞

Λ(k, N)
N
2

k
≤ C

N
2

N .

On the other hand,

Λ(k, N)
N
2 =

k0∑
j=1

mj Λ(kj , N)
N
2

≥
k0∑

j=1

kjmj (1 + δkj ,N )C
N
2

N

≥
( k0∑

j=1

kjmj

)
(1 + δ0)C

N
2

N

= k(1 + δ0)C
N
2

N .

Here mj is the number of times of Λ(kj , N) appeared in the summation of the splitting equality,
where δ0 = min{δk,N : 1 ≤ k ≤ k0} > 0. We therefore obtain an contradiction, when k is
sufficiently large.

4.3 Regularity of minimizers

The regularity of minimizers, Ω∗
k, of the extremum problem (EP) is a challenging problem.

We are going to describe a work (in progress) of the author with Dennis Kriventsov. Before we
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do so, let us describe a recent interesting work of Bucur [6] in which he proved that Ω∗
k’s are

bounded and of finite perimeter.
We let Ω∗

k be a minimizer of the problem (EP). For quasi-open set Ω ⊂ R
N , we define uΩ

be the potential function of Ω: {−ΔuΩ = 1 in Ω,
uΩ = 0 in R

N \ Ω.

For A1, A2 quasi-open and bounded sets, we define

dγ(A1, A2) =
ˆ

RN

|uA1 − uA2 | dx.

It is easy to see that a sequence {Ωn} of quasi-open sets (contained in a fixed ball), such
that Ωn is γ convergent to Ω, here Ω is a quasi-open subset (of the same ball) if and only if
dγ(Ωn, Ω) → 0 as n → ∞.

Definition 4.1 A quasi-open set A of finite Lebesgue measure is called a local shape sub-
solution for E(A), if there is an η > 0 and Λ > 0, such that, for all Ã ⊆ A and Ã quasi-open
with dγ(A, Ã) ≤ η, one has

E(A) + Λ|A| ≤ E(Ã) + Λ|Ã|,
where

E(A) = min
u∈H1

0 (A)

{1
2

ˆ
A

|∇u|2 dx −
ˆ

A

u dx
}

=
1
2

ˆ
RN

|∇uA|2 −
ˆ

RN

uA

= −1
2

ˆ
RN

uAdx ≡ −1
2

ˆ
RN

|∇uA|2dx.

Note dγ(A, Ã) =
´

RN (uA − uÃ)dx in this case.

Remark 4.1 If Ω∗
k is a minimizer of (EP), then tΩ∗

k is a minimizer of λk(A) + |A|, where
A quasi-open in R

N , for some dilation constant t > 0. The converse is also true. Indeed, for
any quasi-open set A with 0 < |A| < ∞, one has λk(A) + |A| = |A|− 2

N λk(Ã) + |A| · |Ã|, where
Ã is a homothety of A such that |Ã| = 1. Hence if we let a = |A| ∈ R

+, then λk(A) + |A|
= a + a− 2

N λk(Ã).
If Ω∗

k is a minimizer of (EP), then tΩ∗
k is a minimizer of λk(A) + |A|, where t is the unique

positive critical point of f(a) = a + a− 2
N Λ(k, N). Conversely, if A quasi-open, 0 < |A| < ∞ is

a minimizer of λk(A) + |A|, then Ã is a minimizer of (EP). Here Ã is the homothety of A with
|Ã| = 1.

Theorem 4.3 (Bucur) If A is a quasi-open set that minimizes {λk(B)+|B| : B quasi-open
in R

N with 0 < |B| < ∞}, then A is a local shape subsolution of E(·).
The proof of this statement is based on the fact that∣∣∣ 1

λk(A)
− 1

λk(Ã)

∣∣∣ ≤ ‖RA − RÃ‖ ≤ ck,N (A)dγ(A, Ã) = ck,N (A)(E(Ã) − E(A)),

where RA, RÃ are resolvent operators of Laplacian on A and Ã, respectively, with the zero
Dirichlet boundary condition, and where c̃k,N is a constant depending only on k and N . Thus
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λk(Ã) − λk(A) ≤ c̃k,N (E(Ã) − E(A)). On the other hand, |A \ Ã| ≤ λk(Ã) − λk(A) (see the
remark above), thus one has proven that Ω∗

k is a local shape subsolution of the energy E(·).
Theorem 4.4 (Bucur) If A is a local shape subsolution of the energy E(·), then A is

bounded and χA ∈ BV . That is, A is a set of finite perimeter.

Proof Let u = uA, uε = (u − ε)+ and Ã = {uε > 0}.

E(A) + Λ|A| =
1
2

ˆ
|∇u|2dx −

ˆ
u dx + Λ{u > 0}

≤ 1
2

ˆ
|∇uε|2dx −

ˆ
uε dx + Λ|{uε > 0}.

Note that as ε → 0, dγ(Ã, A) → 0. Thus we obtain

1
2

ˆ
0≤u≤ε

|∇u|2dx + Λ|{0 < u ≤ ε}| ≤
ˆ

(u − uε)dx =
ˆ

0≤u≤ε

u dx + ε|{u > ε}| ≤ ε|A|.

Consequently,

ˆ
0≤u≤ε

|∇u|dx ≤
(ˆ

0≤u≤ε

|∇u|2dx + |{0 < u ≤ ε}|
) 1

2 ≤
√

2
Λ

ε|A|.

Co-area formula implies that there is a sequence {εn}, εn → 0+, such that HN−1(D∗{u >

εn}) ≤
√

2
Λ |A|, and HN−1(D∗{u > 0}) ≤

√
2
Λ |A| follows. Finally, a direct construction and

comparison, using the property of “local shape subsolution” of A, yields that for θ ∈ (0, 1),
there is an r0 > 0, c0 > 0 such that for all x0 ∈ R

N , 0 < r < r0, if sup
x∈Bθr(x0)

≤ c0r, then u ≡ 0

in Bθ2r(x0). Here u = uA, A = Ω∗
k.

We claim the latter implies the boundedness of A. Indeed, if there is a sequence {yn} ⊂ A

such that |yn| → +∞. Since yn ∈ A, one has sup
Bθ0r0(y0)

uA ≥ c0r0 > 0. Since uA(x)+ |x−yn|2
2N = v

is subharmonic in R
N ,

c0r0 ≤ C(N)
 

Br0 (yn)

v dx.

For r0 suitably small, one has
´

Br0 (yn) uA dx ≥ c0r
N+1
0 and |yn| → +∞. It contradicts to the

fact that
´

uA dx =
´ |∇uA|2dx < ∞.

Bucur’s results described here provide a starting point for the regularity of ∂∗Ω∗
k. The

following is a statement that would be discussed in the forthcoming work (see [21]): If Ω∗
k is

a non-degenerate minimizer of (EP), then ∂Ω∗
k is almost everywhere analytic. More precisely,

away from an HN−1 measure zero set, it is real analytic. A key point of the proof of this last
result is to reduce it to the case of the study of certain extremum domains that are associated
with their first Dirichlet eigenvalues for the Laplacian. One may ask that if in the 2D case,
the boundary of Ω∗

k consists of at most c(k) analytic arcs. In general, one obviously has to
understand much better the property of Ω∗

k in order to study the asymptotics of these minimizers
as k becomes very large. In particular, it may be closely related to both the generalized Polya
conjecture and the optimal partition problems.
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