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Abstract This paper deals with a non-local parabolic equation of Lotka-Volterra type that
describes the evolution of phenotypically structured populations. Nonlinearities appear in
these systems to model interactions and competition phenomena leading to selection. In
this paper, the equation on the structured population is coupled with a differential equation
on the nutrient concentration that changes as the total population varies.

Different methods aimed at showing the convergence of the solutions to a moving Dirac
mass are reviewed. Using either weak or strong regularity assumptions, the authors study
the concentration of the solution. To this end, BV estimates in time on appropriate
quantities are stated, and a constrained Hamilton-Jacobi equation to identify where the
solutions concentrates as Dirac masses is derived.
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1 Introduction

We survey several methods developed to study concentration effects in parabolic equations
of Lotka-Volterra type. Furthermore, we extend the theory to a coupled system motivated by
models of chemostat, where we observe very rare mutations for a long time. These equations
were established with the aim of describing how speciation occurs in biological populations,
taking into account competition for resources and mutations in the populations. There is a
large literature on the subject where the mutation-competition principles are illustrated in
various mathematical terms: for instance, in [23, 28, 35] for an approach based on the study
of the stability of differential systems, in [29–30, 45] for the evolutionary games theory, in [14]
for the study of stochastic individual based models, or in [6, 36, 42] for the study of integro-
differential models. We choose here the formalism using parabolic partial differential equations,
widely developed in [5, 7, 21, 41] to describe the competition dynamics in a chemostat.

The chemostat is a bioreactor to which fresh medium containing nutrients is continuously
added, while culture liquid is continuously removed to keep the culture volume constant. This
device is used as an experimental ecosystem in evolutionary biology to observe mutation and
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selection processes driven by competition for resources. From the mathematical point of view,
the theoretical description of the population dynamics in a chemostat leads to highly nonlinear
models and questions of long term behaviour and convergence to an evolutionary steady state
naturally arise (see [1, 19, 24, 39, 44]).

Our aim is to study a generalization of the chemostat model introduced in [34] with a
representation of mutations by a diffusion term. In this model, each individual in the population
is characterized by a quantitative phenotypic trait x ∈ R

d, and nε(t, x) denotes the population
density at time t with the trait x. We study the following equations:

ε∂tnε(x, t) = nεR(x, Sε(t)) + ε2Δnε(x, t), x ∈ R
d, t ≥ 0, (1.1)

εβ
d
dt
Sε(t) = Q(Sε(t), ρε(t)), (1.2)

ρε(t) :=
∫

Rd

nε(x, t)dx,

where the function R(x, Sε) represents a trait-dependent birth-death rate and Sε denotes the
nutrient concentration which changes over time with rate Q. Here ε is a small parameter
which allows to consider very rare mutations and large time of order ε−1. The idea of an ε−1

rescaling in the space and time variables goes back to [31–32] to study propagation for systems
of reaction-diffusion PDE. The parameter β, introduced first in [34], gives a time scale which,
as β → 0, leads to the equation Q(ρ, S) = 0. In this case, under suitable assumptions, we
deduce the existence of a function f by implicit function theorem, such that S = f(ρ) and the
concentration results are known to hold (see [7, 33]).

Such models can be derived from stochastic individual based models in the limit of large
populations (see [16–17]).

A possible way to express mathematically the emergence of the fittest traits among the
population is to prove that nε concentrates as a Dirac mass centered on a point x (or a sum
of Dirac masses) when ε vanishes. This means the phenotypic selection of a quantitative trait
denoted by x in long time. The main results of the paper can be summarized as follows.

Theorem 1.1 For well-prepared initial data and two classes of assumptions (monotonic in
one dimension or concavity in multi-dimensions), the solution nε(t, x) concentrates, i.e.,

nε(t, x) −→
ε→0

ρ(t)δ(x − x(t)) in the sense of measure,

where the pair (x(t), ρ(t)) can be determined thanks to a constrained Hamilton-Jacobi equation
given later on.

In order to describe these concentration effects, following earlier works on similar issues
[5, 7, 13], we will use the Hopf-Cole transformation defining uε(t, x) = εlnnε(t, x), and derive
a Hamilton-Jacobi equation. Then we obtain by passing to the limit ε → 0 a constrained
Hamilton-Jacobi equation, whose solutions have a maximum value of 0. The point is that the
concentration locations in the limit ε→ 0 can be identified among the maximum points of these
solutions. This method, introduced in [24] and used for instance in [42–43], is very general and
was extended to various systems (see [18, 33, 41]).

Singular perturbation problems in PDEs is a classical subject that was studied from different
viewpoints. For instance, a seminal paper on parabolic equations involving measures is [11].
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Also the above rescaling in parabolic equations or systems was deeply studied in reaction-
diffusion equations (see [4, 25]) leading to front propagation where a state invades another as
in the Fishher-KPP equation where the stable state nε = 1 invades the unstable state nε = 0.
This is also the case of Ginzburg-Landau equations (see [8]), where the quadratic observable
nε = |uε|2 takes asymptotically the value 1. This is different from our case, as one can see in
the above theorem and since we essentially derive L1 bounds from the presented model.

To prove the main convergence results of this paper, we adapt the method introduced in [5,
7, 34] to find BV estimates for the appropriate quantities as a first step. Then we use the theory
of viscosity solutions to Hamilton-Jacobi equations (see [2–3, 20, 27] for general introduction
to this theory) to obtain the Dirac locations. In the first part, we proceed with assumptions
of weak regularity of the growth rate in a first instance, and then we resume the study under
concavity assumptions.

This paper is organized as follows. We first state (see Section 2) the framework of the
general weak theory and its main results. We start the study by establishing BV estimates on
ρ2

ε and Sε in Section 3. Section 4 is devoted to the analysis of the solutions to the constrained
Hamilton-Jacobi equations. We first prove some regularity results for uε. Then we study the
asymptotic behaviour of uε and deduce properties of the concentration points. In Section 5, we
set the simple case of our results when the dimension d equals 1 and prove concentration effects.
In Section 6, we review the d-dimensional framework where we assume uniform concavity of the
growth rate and initial conditions. We establish again the BV estimates in this specific case
and prove the uniform concavity of uε. The regularity obtained for uε allows us to derive the
dynamics of the concentration points in the form of a canonical equation. We complete these
results by numerics in Section 7.

2 The Weak Theory: Assumptions and Main Results

First of all, we give assumptions to set a framework for the general weak theory. We use
the same assumptions as in [34].

For the Lipschitz continuous functions R and Q, we assume that there are constants S0 > 0,
KQ > 0, K1 > 0 and K1 > 0, such that

Q(0, ρ) > 0, max
ρ≥0

Q(S0, ρ) = 0, QS(S, ρ) ≤ −KQ, Qρ(S, ρ) ≤ −KQ, (2.1)

0 < K1 ≤ RS(x, S) ≤ K1, (2.2)

sup
0≤S≤S0

‖R(·, S)‖W 2,∞(Rd) ≤ K2. (2.3)

We complete the system with the initial conditions S0
ε , n0

ε, such that

Sm < S0
ε < S0, n0

ε(x) > 0, ∀x ∈ R
d, 0 < ρm ≤ ρ0

ε :=
∫

Rd

n0
ε(x)dx ≤ ρM , (2.4)

where ρm, ρM and Sm are defined below.

We add to these assumptions a smallness condition on β which can be written as

min
0≤ρ≤ρM

Sm≤S≤S0

|QS |
|Qρ| ≥ 4β max

0≤ρ≤ρM

Sm≤S≤S0

K1ρM

|QS | (2.5)
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with the definition of ρM stated below.
Note that from (2.1), we directly obtain the bounds

nε(t, x) > 0, 0 < Sε(t) ≤ S0. (2.6)

First we recall the following lemma, whose proof is given in [34].

Lemma 2.1 Under the assumptions (2.1)–(2.4), there are constants ρm, ρM and Sm > 0,
such that

0 < ρm ≤ ρε(t) ≤ ρM , Sm ≤ Sε(t) ≤ S0,

where the value Sm < S0 is defined by Q(Sm, ρM ) = 0.

This result is required to prove the following theorem.

Theorem 2.1 Assuming also (2.5), ρε(t) and Sε(t) have locally bounded total variation
uniformly in ε. Consequently, there are limit functions ρm ≤ ρ ≤ ρM , Sm ≤ S ≤ S0, such that
after extraction of a subsequence, we have

Sεk
(t) −→

εk→0
S(t), ρεk

(t) −→
εk→0

ρ(t) a.e.

and
Q(ρ, S) = 0 a.e.

The next section is devoted to the proof of Theorem 2.2. Contrary to what we could expect,
the establishment of the BV estimates will be more complicated than in the previous works
(see [7, 33]), where the nutrients are represented by an integral term as

∫
ψ(x)nε(t, x)dx. Here

the main challenge comes from the equation (1.2) that we also have to consider to obtain
BV estimates on Sε. Another difficulty comes from the parameter β. For β large enough, it
seems that we cannot derive BV estimates with our approach, but anyway we do observe the
convergence of the solutions in the numerics we performed. This is not the case for inhibitory
integrate-and-fire models for instance (see [12]), where delays generate periodic solutions.

In the following proofs, C denotes a constant which may change from line to line.

3 BV Estimates on ρ2
ε(t) and Sε(t)

3.1 Bounds for ρε

We follow the lines of [34] to give the bounds ρm and ρM . By integrating the equation (1.1)
and using the assumptions (2.2)–(2.3), we arrive to the inequalities

ε
d
dt
ρε ≤ ρε(K2 +K1Sε)

and
ε

d
dt

lnρε ≤ K2 +K1S0.

Notice that Q(Sε, ρε) ≤ −KQρε+Q(0, 0) from the assumptions in (2.1). By adding the equation
(1.2) to the inequation above, we arrive to

ε
d
dt

(lnρε + βSε) ≤ K2 +K1S0 +Q(0, 0)−KQρε (3.1)

≤ K2 +K1S0 +Q(0, 0)− KQ

eβS0
elnρε+βSε . (3.2)
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It follows that, for C2, the root in lnρε + βSε of the right-hand side,

lnρε ≤ lnρε + βSε ≤ max(lnρ0
M + βS0, C2).

Hence we have the upper bound ρM for ρε(t).

Thanks to this upper bound, we obtain the lower bound Sm on Sε(t), since, by using the
assumption (2.1) on Q, we remark that

εβ
d
dt
Sε(t) = Q(Sε(t), ρε(t)) ≥ Q(Sε(t), ρM ).

Then there is a unique value Sm such that Q(Sm, ρM ) = 0, and from the initial conditions (2.4),
we deduce that Sm ≤ Sε(t) for t ≥ 0.

Next, let us look for the lower bound. It follows, from the integration of (1.1) as above, that
we have

ε
d
dt

lnρε ≥ −K2 +K1Sm.

By subtracting (1.2) and still using (2.1), we obtain

ε
d
dt

(lnρε − βSε) ≥ −K2 +K1Sm −Q(Sε, ρε)

≥ −K2 −Q(0, 0) +KQρε

≥ −K2 −Q(0, 0) +KQelnρε−βSεeβSm . (3.3)

Taking C3 the root in lnρε − βSε of the right-hand side in (3.3), we have the lower bound

ρε(t) ≥ min(ρ0
m, C3),

which ends the proof of Lemma 2.1.

3.2 Local BV estimates

To find local BV bounds for ρε and Sε which are uniform in ε > 0, we apply the method
described in [34] that we explain in detail in this section.

Let us first define Jε := Ṡε and Pε := ρ̇ε. With these definitions, we have the equations

εPε =
∫
nεR(x, Sε(t)) dx, εβJε = Q(ρε(t), Sε(t)). (3.4)

Defining αε and γε as

αε(t) :=
∫
nεRS(x, Sε(t)) dx and γε(t) :=

∫
nεR

2 dx,

respectively, we differentiate both equations above, then we obtain the following equations on
Jε and Pε:

εṖε = Jε

∫
nεRS(x, Sε(t)) dx +

∫
∂tnεR(x, Sε(t)) dx

= αε(t)Jε + ε

∫
nεΔRdx+

1
ε
γε(t), (3.5)

εβJ̇ε = QSJε +QρPε. (3.6)
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However, at this stage, we cannot obtain directly the BV bounds on ρε and Sε which we
expect. Thus we consider a linear combination of Pε and Jε. Let με(t) be a function which we
will determine later. By combining the equalities above, we obtain the following equation on
Pε + μεJε:

ε
d
dt

(Pε + βμεJε) = αεJε + ε

∫
nεΔRdx+ βμ̇εJε + με(QSJε +QρPε) +

1
ε
γε

= μεQρ(Pε + βμεJε) + (εβμ̇ε − βQρμ
2
ε + μεQS + αε)Jε

+ ε

∫
nεΔRdx+

1
ε
γε. (3.7)

First we prove the following result.

Lemma 3.1 Considering the solution με of the differential equation

εβμ̇ε = −β|Qρ|μ2
ε + με|QS | − αε,

there exist constants 0 < μm < μM , such that, choosing initially μm < με(0) < μM , we have

μm ≤ με(t) ≤ μM , ∀t ≥ 0.

Furthermore, we have the following estimate concerning the negative part of the linear combi-
nation:

(Pε(t) + βμ(t)Jε(t))− ≤ (Pε(0) + βμ(0)Jε(0))−e
−KQμm

ε t + εC(1 − e
−KQμm

ε t). (3.8)

Proof Our goal is to choose a function με(t) which solves the differential equation

εβμ̇ε = −β|Qρ|μ2
ε + με|QS | − αε. (3.9)

We use the same argument as in [34]. Therefore, we concentrate on the main ideas.
Note that, because the solution might blow up to −∞ in finite time, we need to prove that

solutions of (3.9) remain strictly positive for all time. To do so, we first notice that the zeroes
of −β|Qρ|μ2

ε + με|QS | − αε are

με,±(t) :=
1

2β|Qρ|
(
|QS| ±

√
Q2

S − 4αεβ|Qρ|
)
,

and from the smallness condition (2.5), both zeros are positive.
We need to find two constants 0 < μm < μM , such that, choosing initially μm < με(0) < μM ,

then we have for all time,

0 < μm ≤ με(t) ≤ μM . (3.10)

This condition is satisfied with the following constants:

μM :=
1
β

max
ρm≤ρ≤ρM

Sm≤S≤S0

|QS |
|Qρ| , (3.11)

and μm defined as

max
t
με,−(t) ≤ μm := min

t
με,+(t), (3.12)
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which defines a positive constant because of the smallness condition for β (2.5).
Coming back to (3.7), we arrive to

ε
d
dt

(Pε + βμJε) ≥ −μ |Qρ| (Pε + βμJε) + ε

∫
nεΔRdx ≥ −μ|Qρ|(Pε + βμJε) − εC,

and we conclude that, for all t ≥ 0,

(Pε(t) + βμ(t)Jε(t))− ≤ (Pε(0) + βμ(0)Jε(0))−e
−KQμm

ε t + εC(1 − e
−KQμm

ε t), (3.13)

which concludes the proof of Lemma 3.1.

From the estimate of the Lemma 3.1, we can deduce the local BV bounds uniform in ε. We
start with Pε. Adding αε

Pε

βμε
to (3.5) and using (2.3) and Lemma 2.1, we find

ε
d
dt
Pε + αε

Pε

βμε
= αε

(
Jε +

Pε

βμε

)
+ ε

∫
nεΔRdx+

1
ε
γε ≥ −αε

(
Jε +

Pε

βμε

)
−
− Cε.

Notice that 0 < K1ρε(t) ≤ αε(t) ≤ K1ρM . By considering the negative parts of Pε and using
(2.2) and (3.8), we arrive to the inequality

ε
d
dt

(Pε)− + αε
(Pε)−
βμε

≤ αε

(
Jε +

Pε

βμε

)
−

+ Cε

≤ αε(Pε(0) + βμε(0)Jε(0))−
e

−μmKQ
ε t

βμm
+ εαεC(1 − e

−μmKQ
ε t) + Cε

≤ K1ρM (Pε(0) + βμε(0)Jε(0))−
e

−μmKQ
ε t

βμm
+ Cε. (3.14)

With this inequality, the BV bounds follow. Since εPε is bounded, by integrating the inequality
above, we have ∫ T

0

αε(t)(Pε(t))−dt ≤ C1(T ) + εC2(T ), ∀T ≥ 0.

Consequently, we obtain

K1

∫ T

0

ρε

( d
dt
ρε

)
−

dx =
K1

2

∫ T

0

( d
dt
ρ2

ε

)
−

dx ≤ C1(T ) + εC2(T )
2

, ∀T ≥ 0.

Since ρε(t) is bounded, we have finally that ρ2
ε has local bounded variations. Therefore, up to

an extraction, there exists a function ρ on (0,∞) satisfying

ρε −→ ρ in L1
loc(0,∞).

Since we have the lower bound ρε ≥ ρm by Lemma 1.1, we obtain the bound for the negative
part of the derivative of ρε ∫ T

0

( d
dt
ρε

)
−

dx ≤ C1 + C2ε

2K1ρm
.

Finally, it remains to study Sε. To do so, we rewrite (3.6) as

εβ
d
dt
Jε = QSJε +QρPε = QSJε +Qρ

˙(ρ2
ε)

2ρε
. (3.15)
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With our assumptions (2.1) on the Lipschitz function Q, we have

εβ
d
dt

(−Jε) = QS(−Jε) −Qρ

˙(ρ2
ε)

2ρ
≤ QS(−Jε) + LQ

| ˙(ρ2
ε)|

2ρm
(3.16)

and

εβ
d
dt

(Jε)− ≤ −KQ(Jε)− + LQ
| ˙(ρ2

ε)|
2ρm

. (3.17)

The term εJε is bounded because of our assumptions on Q. So, integrating this equation, we
have, for T > 0,

∫ T

0

(Jε)−dx ≤ C +
LQ

2ρmKQ

∫ T

0

| ˙(ρ2
ε)|dx, (3.18)

and we deduce that
∫ T

0 (Jε)−dx is uniformly bounded from our previous results on ρ2
ε.

And then, since Sε is uniformly bounded, we conclude that there exists a function S(t),
such that, after extraction of a subsequence,

Sε −→ S in L1
loc(0,∞) and Q(Sε, ρε) −→

ε→0
Q(S, ρ) a.e.

To conclude, it follows that ε d
dtSε converges in measure to 0 as ε vanishes, and thus Q(S, ρ) = 0.

4 Concentration and Constrained Hamilton-Jacobi Equation

In order to prove the concentration of nε in a sum of Dirac masses as ε vanishes, we perform
the change of unknown nε(t, x) = e

uε(t,x)
ε , and study the regularity properties of uε(t, x). With

the definition of uε, we obtain the following equation which is equivalent to (1.1):⎧⎨
⎩
∂tuε(t, x) = |∇uε|2 +R(x, Sε(t)) + εΔuε,

uε(t = 0, x) = u0
ε(x) := εlnn0

ε.
(4.1)

We complete assumption (2.4) on the initial data with

u0
ε(x) ≤ A−K2

√
1 + |x|2, ‖∇u0

ε‖ ≤ B, ∀x ∈ R
d (4.2)

with A,B > 0.
We prove in this section the following result.

Theorem 4.1 Under the assumptions (2.1)–(2.5) and (4.2), then after extraction of a
subsequence (uε)ε converges locally uniformly to a Lipschitz continuous viscosity solution u to
the constrained Hamilton-Jacobi equation⎧⎪⎨

⎪⎩
∂tu(t, x) = |∇u|2 +R(x, S(t)),

max
x∈Rd

u(t, x) = 0, ∀t ≥ 0.
(4.3)

In the simple case, when dimension d is equal to 1 and when R(x, S) is monotonic in x for
all S, n concentrates in one single point.

We first prove that uε is equi-bounded, then the equi-continuity, and finally we explain how
to pass to the limit in (4.1).



Dirac Concentrations in a Chemostat Model of Adaptive Evolution 521

4.1 Local bounds and equi-continuity in space

We first set the upper bound for uε. Let T > 0 be given. Defining u(t, x) = A + Ct −
K2

√
1 + |x|2 with C = K2(1 +K2), we have

∂tu− εΔu− |∇u|2 −R(x, Sε(t)) ≥ C + εK2
d− 1√
1 + |x|2 −K2

2 −K2 ≥ 0.

Since u(0, x) ≥ u0
ε(x) from initial data (4.2), we conclude that u is a super-solution and

uε(t, x) ≤ A+ CT −K2

√
1 + |x|2 for all t ∈ [0, T ].

Next we prove that uε is uniformly Lipschitz continuous in space on [0, T ]× R
d. We define

for h small enough, wε(t, x) = uε(t, x+h)−uε(t, x). Since the initial condition u0
ε are uniformly

continuous, given δ > 0, for h small enough, we have |wε(0, x)| < δ
2 . From (4.1), we arrive to

∂twε(t, x) − εΔwε(t, x) − (∇uε(t, x+ h) + ∇uε(t, x)) · ∇wε(t, x)

= R(x+ h, Sε(t)) −R(x, Sε(t)) ≤ K2h. (4.4)

Thus by the maximum principle, we deduce that

|wε(t, x)| ≤
∣∣∣max

Rd
wε(0, x)

∣∣∣ +K2|h|t ≤ (‖∇u0
ε‖L∞(Rd) +K2t)|h|.

We conclude that uε is uniformly Lipschitz in space on [0, T ]× R
d, and set

L(t) = sup
ε≤ε0

0≤s≤t

x∈R
d

‖∇uε(s, x)‖L∞ . (4.5)

To conclude, we show that uε is also uniformly bounded from below on compact subsets
of [0,∞) × R

d. Let 0 < T and r > 0. For all t ∈ [0, T ] and x ∈ B(0, r), we recall that
uε(t, x) ≤ A+ CT −K2

√
1 + |x|2, and thus

∫
|x|>r

e
uε
ε dx <

∫
|x|>r

e
A+CT−K2|x|

ε dx <
ρm

2

for 0 < ε < ε0, ε0 small enough and r large enough. We also have from Lemma 3.1 that
ρε ≥ ρm, then for 0 < ε < ε0 and r large enough, we obtain

ρm

2
<

∫
|x|≤r

e
uε
ε dx ≤ Bre

max
Br

uε
ε
.

This implies

max
Br

uε ≥ εln
ρm

2|Br| .

Using the Lipschitz bound (4.5), we obtain

uε(t, x) > εln
ρm

2|Br| − 2L(t)r, ∀x ∈ B(0, r).

Hence we have the local lower bound on uε.
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4.2 The equi-continuity in time

For given T, η and r > 0, we fix (s, x) ∈ [0, T [×B(0, r
2 ), and define

ξε(t, y) = uε(s, x) + η + E|y − x|2 +D(t− s) for (t, y) ∈ [s, T ] ×B(0, r),

where E and D are constants to be determined. We prove in this section the uniform continuity
in time. The idea of the proof is to find constants E and D large enough such that, for any
x ∈ R(0, r

2 ), and for all ε < ε0,

uε(t, y) ≤ ξε(t, y) = uε(s, x) + η + E|y − x|2 +D(t− s), ∀(t, y) ∈ [0, T ]×B(0, r) (4.6)

and

uε(t, y) ≥ φε(t, y) := uε(s, x) − η − E|y − x|2 −D(t− s), ∀(t, y) ∈ [0, T ]×B(0, r). (4.7)

Then by taking y = x, we have the uniform continuity in time on compact subsets of [0,∞)×R
d.

We prove here the inequality (4.6), and the proof of (4.7) is analogous.
First we prove that ξε(t, y) > uε(t, y) on [s, T ]×∂B(0, r), for all η,D and x ∈ B(0, r

2 ). Since
uε are locally uniformly bounded according to Sections 4.1 and 4.3, by taking E large enough,
such that

E ≥ 8‖uε‖L∞([0,T ]×B(0,r))

r2
,

we obtain

ξε(t, y) ≥ uε(t, x) + η + 2‖uε‖L∞([0,T ]×B(0,r)) +D(t− s)

≥ ‖uε‖L∞([0,T ]×B(0,r))

≥ uε(t, y).

Next we prove that, for E large enough, ξε(s, y) ≥ uε(s, y) for all y ∈ B(0, r). We argue by
contradiction. Assume that there exists η > 0, such that for all constants E > 0, there exists
yE ∈ B(0, r), such that

uε(s, yE) − uε(s, x) > η + E|yE − x|2.

This implies

|yE − x| ≤
√

2M
E
,

where M is a uniform upper bound for ‖uε‖L∞([0,T ]×B(0,r)). For E → ∞, we have |yE −x| → 0.
Since uε are uniformly continuous in space, this is a contradiction.

Finally, from assumption (2.3), if D is large enough, ξε is a super-solution to (4.3) in
[s, T ]×B(0, r),

uε(t, y) ≤ uε(s, x) + η + E|y − x|2 +D(t− s), ∀(t, y) ∈ [0, T ] ×B(0, r).

With the proof of (4.7) which is similar, we deduce that the sequence uε is uniformly continuous
in time on compact subsets of [0,∞) × R

d.
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4.3 Passing to the limit

We proceed as in [5] to prove the convergence of (4.1) to (4.3) as ε goes to 0. Considering
the regularity results above, the point at this step is to pass to the limit in the term R(x, Sε).
To avoid the complications of the discontinuity, we define

φε(t, x) := uε(t, x) −
∫ t

0

R(x, Sε(s))ds,

and it follows that φε satisfies the equation

∂tφε(t, x) − εΔφε(t, x) − |∇φε(t, x)|2 − 2∇φε(t, x) ·
∫ t

0

∇R(x, Sε(s))ds

= ε

∫ t

0

ΔR(x, Sε(s))ds+
∣∣∣
∫ t

0

∇R(x, Sε(s))ds
∣∣∣2. (4.8)

As Sε(t) converges to S(t) for all t ≥ 0 and R(x, I) is a Lipschitz continuous function, we have

lim
ε→0

∫ t

0

R(x, Sε(s))ds =
∫ t

0

R(x, S(s))ds,

lim
ε→0

∫ t

0

∇R(x, Sε(s))ds =
∫ t

0

∇R(x, S(s))ds,

lim
ε→0

∫ t

0

ΔR(x, Sε(s))ds =
∫ t

0

ΔR(x, S(s))ds

for all t ≥ 0. Furthermore, the limit functions

∫ t

0

R(x, S(s))ds,
∫ t

0

∇R(x, S(s))ds,
∫ t

0

ΔR(x, S(s))ds

are locally uniformly continuous.
After extraction of a subsequence by the Arzela-Ascoli theorem, uε(t, x) converges locally

uniformly to the continuous function u(t, x) as ε vanishes. Consequently, φε(t, x) converges
locally uniformly to the continuous function φ(t, x) = u(t, x) − ∫ t

0
R(x, S(s))ds and φ is a

viscosity solution to the equation

∂tφ(t, x) − |∇φ(t, x)|2 − 2∇φ(t, x) ·
∫ t

0

∇R(x, S(s))ds =
∣∣∣
∫ t

0

∇R(x, S(s))ds
∣∣∣2. (4.9)

Then u is a solution to the following equation in the viscosity sense:

∂tu(t, x) = |∇u|2 + R(x, S(t)).

It remains to prove that max
x∈Rd

u(t, x) = 0 for all t ≥ 0. We argue by contradiction. Assume

that there exists a > 0, such that for some t > 0 and x ∈ R
d, we have 0 < a ≤ u(t, x).

It follows that, from the continuity of u, u(t, y) ≥ a
2 on B(x, r) for some r > 0, and then

nε(t, y) → ∞ as ε goes to 0, which is a contradiction to the statements of Lemma 2.1. Thus we
have max

x∈Rd
u(t, x) ≤ 0 for all t ≥ 0.
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From Subsection 4.1, we have for 0 < ε < ε0 and for some r > 0 large enough,

lim
ε→0

∫
|x|≤r

nε(t, x)dx >
ρm

2
, t ≥ 0. (4.10)

Furthermore, recall that we have

uε(t, x) ≤ A+ Ct−K2

√
1 + |x|2 ≤ A+ Ct−K2|x|, ∀t ≥ 0, x ∈ R

d.

Then it follows that, for r large enough,

lim
ε→0

∫
|x|≥r

nε(t, x)dx ≤ lim
ε→0

∫
|x|≥r

e
A+Ct−K2|x|

ε dx = 0.

We argue by contradiction again. Assume that u(t, x) < 0 for all t ≥ 0 and |x| < r. It implies
that lim

ε→0
nε(t, x) = 0 and thus lim

ε→0

∫
|x|<r

nε(t, x)dx = 0. This is a contradiction with (4.10) and

it follows that max
x∈Rd

u(t, x) = 0 for all t ≥ 0.

It is an open problem to know if the full sequence uε converges, and it is equivalent to the
question of uniqueness of the solution to the Hamilton-Jacobi equation. We consider in Section
5 a special case where uniqueness holds.

In the next section, we derive some properties of the concentration points that also hold in
the concavity framework (Section 6), and is useful in what follows.

4.4 Properties of the concentration points

We prove in the rest of this section the following theorem.

Theorem 4.2 Let (2.3) hold. For any u0 ∈ W 1,∞(Rd), the solution of (4.3) is semi-convex
in x for any t > 0, i.e., there exists a C(t) such that, for any unit vector ξ ∈ R

d, we have the
following inequality:

∂2

∂ξ2
u ≥ −C(t).

Consequently, u(t, ·) is differentiable in x at maximum points, and we have

∇u(t, x(t)) = 0,

where x(t) is a maximum point of u(t, ·).
Furthermore, for all Lebesgue points of S, we have

R(x(t), S(t)) = 0.

Step 1 The semi-convexity To increase readability, we use the notation uξ := ∂uε

∂ξ , uξξ

:= ∂2uε

∂ξ2 for a unit vector ξ. We obtain from (4.1),

∂

∂t
uξ = 2∇uε · ∇uξ +Rξ(x, Sε(t)) + εΔuξ (4.11)

and

∂

∂t
uξξ = 2∇uε · ∇uξξ + 2|∇uξ|2 +Rξξ(x, Sε(t)) + εΔuξξ. (4.12)
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Notice that |∇uξ| ≥ |uξξ| because uξξ = ∇uξ · ξ. Therefore, the function w := uξξ satisfies

∂

∂t
w ≥ 2∇uε · ∇w + 2w2 −K2 + εΔw,

from the assumption (2.3). The semi-convexity follows from the comparison principle with the
subsolution given by the solution to the ODE ẏ = 2y2 −K2, y(0) = −∞.

Step 2 ∇u(t, x(t)) = 0 The semi-convexity implies that u is differentiable at its maxi-
mum points. Therefore, we have for t > 0,

∇u(t, x(t)) = 0.

Moreover, we also have the property that, for any sequence (tk, xk) of x-differentiability point
of u which converges to (t, x(t)), we have

∇u(tk, xk) → 0 as k → ∞.

In fact, we deduce that, for h, r > 0, h, r → 0,

1
rh

∫ t+h

t

∫ x(t)+r

x(t)−r

|∇u(s, y)|2dsdy → 0

and
1
rh

∫ t

t−h

∫ x(t)+r

x(t)−r

|∇u(s, y)|2dsdy → 0.

We obtain these convergence results by applying Lebesgue’s dominated convergence theorem
to the integral ∫ 1

0

∫ 1

−1

|∇u(t+ hτ, x(t) + rσ)|2dτdσ

given by a change of variable, combined with the local Lipschitz continuity of u.

Step 3 Proof of R(x(t), S(t)) = 0 We first integrate the equation on rectangles
(t, t+ h) × (x(t) − r, x(t) + r). We obtain

∫ x(t)+r

x(t)−r

[u(t+h, y)−u(t, y)]dy =
∫ t+h

t

∫ x(t)+r

x(t)−r

R(y, S(s))dsdy+
∫ t+h

t

∫ x(t)+r

x(t)−r

|∇u(s, y)|2dsdy.

By the semi-convexity, we have

0 ≥ u(t, y) ≥ u(t, x(t)) − C(t)|y − x(t)|2 = O(r2),

and also u(t+ h, y) ≤ 0. We deduce

1
rh

∫ t+h

t

∫ x(t)+r

x(t)−r

R(y, S(s))dsdy +
1
rh

∫ t+h

t

∫ x(t)+r

x(t)−r

|∇u(s, y)|2dsdy ≤ 1
rh
O(r2).

Therefore, we obtain

1
rh

∫ t+h

t

∫ x(t)+r

x(t)−r

R(y, S(s))dsdy ≤ 1
rh
O(r2).
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We conclude that at any Lebesgue point of S, we have

R(x(t), S(t)) ≤ 0.

Next, we prove the opposite inequality. By integrating on the rectangle (t− h, t) × (x(t) −
r, x(t) + r), we have

∫ x(t)+r

x(t)−r

(u(t, y) − u(t− h, y))dy ≥
∫ x(t)+r

x(t)−r

u(t, y)dy

and
1
rh

∫ t

t−h

∫ x(t)+r

x(t)−r

R(y, S(s))dsdy +
1
rh

∫ t

t−h

∫ x(t)+r

x(t)−r

|∇u(s, y)|2dsdy ≥ O(r)
h

.

Hence, we have that, at any Lebesgue point of S,

R(x(t), S(t)) ≥ 0.

Hence the statement of Theorem 4.2 holds.

5 The Monomorphic Case in Dimension d = 1

In the case when dimension d equals 1 and R(x, S) is monotonic in x for each S, we have
the expected convergence toward a single Dirac mass under the additional assumption (which
holds for instance when R is monotonic in x)

∀Sm < S < S0, there is a unique X(S) ∈ R such that R(X(S), S) = 0. (5.1)

Theorem 5.1 Assume (2.1)–(2.5) and (5.1) hold, and that u0
ε are uniformly continuous

in R
d. Then, the solution nε of (1.1), still after extraction of a subsequence, converges in the

weak sense of measures

nεk
(t, x) −→ n(t, x) := ρ(t)δ(x − x(t)), (5.2)

and we also obtain the relations

x(t) = X(S(t)), R(x(t), S(t)) = 0 a.e.

Moreover, the full sequence nε converges when R has one of the following form, for some
functions b > 0, d > 0, F > 0,

R(x, S) = b(x) − d(x)F (S) with F ′(S) < 0 (5.3)

or

R(x, S) = b(x)F (S) − d(x) with F ′(S) > 0. (5.4)

We do not prove this result in detail. It is a consequence of the following observation. As
the measure n defined in (5.2) satisfies the condition supp n(t, ·) ⊂ {u(t, ·)} from the properties
obtained in the previous section (see details in [5, 7]), n is monomorphic. Indeed, from the
condition (5.1), the set {u(t, ·)} is reduced to an isolated point for all t ≥ 0. The uniqueness
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of the solution when R is written as (5.3) or (5.4) is entirely explained in [7]. The idea of the
proof is to consider for instance the function

φ(t, x) = u(t, x) − b(x)
∫ t

0

F (S(σ))dσ,

and, by noticing that φ satisfies the equation

∂tφ(t, x) = −d(x) +
∣∣∣∇(φ(t, x) + b(x))

∫ t

0

F (S(σ))dσ
∣∣∣,

to derive an estimate on the derivative of the difference between two different solutions φ1 and
φ2 with the same initial data. By considering the different quantities at the maximum points
of u(t, ·), we see that there exists a constant C > 0, such that

d
dt

‖φ1 − φ2‖∞ ≤ C‖φ1 − φ2‖∞,
and the uniqueness follows.

6 The Concavity Framework in R
d

In this section, we are going to assume more regularity in order to prove the convergence
of nε to a Dirac mass in the sense of measure. The specific feature of this framework is that
uniform concavity of the growth rate and initial data induce uniform concavity of the solutions
uε to the Hamilton-Jacobi equations, which implies that uε has only one maximum point. The
main technical difficulty is that uniform bounds are not possible because of the quadratic growth
at infinity. Therefore, following the work [33], we start with assumptions on R ∈ C2 as follows:

max
x∈Rd

R(x, Sm) = 0 = R(0, Sm), (6.1)

−K2|x|2 ≤ R(x, S) ≤ K0 −K2|x|2, (6.2)

0 < K1 ≤ RS(x, S) ≤ K1, (6.3)

− 2K2 ≤ D2R(x, S) ≤ −2K2. (6.4)

We also need the uniform concavity of the initial data

n0
ε = e

u0
ε

ε , (6.5)

− L0 − L1|x|2 ≤ u0
ε ≤ L0 − L1|x|2, (6.6)

− 2L1 ≤ D2u0
ε ≤ −2L1, (6.7)

and we add some compatibility conditions

4L
2

1 ≤ K2 ≤ K2 ≤ 4L2
1. (6.8)

For this section, we need

D3R(·, S) ∈ L∞(Rd), (6.9)

D3u0
ε ∈ L∞(Rd) uniformly in ε, (6.10)

n0
ε(x) −→ ρ0δ(x− x0) weakly in the sense of measures. (6.11)

We keep the same assumptions on Q and Sε as in the previous section. Next we are going
to prove the following result.
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Theorem 6.1 Under assumptions (6.2)–(6.8) and the assumptions on Q, ρε and Sε have
locally bounded total variations uniformly in ε. Therefore, there exist functions ρ and S, such
that, after extraction of a subsequence, we have

Sεk
(t) −→

εk→0
S(t), ρεk

(t) −→
εk→0

ρ(t), a.e.

Furthermore, we have weakly in the sense of measures for a subsequence nε,

nε(t, x) −→
ε→0

ρ(t)δ(x − x(t)), (6.12)

and the pair (x(t), S(t)) also satisfies

R(x(t), S(t)) = 0, a.e. (6.13)

As a first step, we give estimates on uε. Next, we adapt the proof of Section 3 to give BV
estimates on ρε and Sε, and then pass to the limit as ε goes to 0. Finally, we prove the following
theorem.

Theorem 6.2 Assuming that (6.1)–(6.11) hold, x(t) is a W 1,∞(R+,R
d)-function, and its

dynamics is described by the equation

ẋ(t) = (−D2u(t, x(t)))−1 · ∇xR(x(t), S(t)), x(0) = x0 (6.14)

with u(t, x) given below in (6.29) and (6.11). Furthermore, S(t) is a W 1,∞(R+)-function. From
this equation, it follows that S(t) is a decreasing function and

S(t) −→
t→∞ Sm, x(t) −→

t→∞ 0. (6.15)

6.1 Uniform concavity of uε

Again we use the Hopf-Cole transformation defining uε = εlnnε, and we obtain the same
equation as in Section 4

⎧⎨
⎩
∂tuε(t, x) = |∇uε|2 +R(x, Sε(t)) + εΔuε,

uε(t = 0, x) = u0
ε(x) := εlnn0

ε.
(6.16)

We focus now on the study of the properties of the sequence uε.
We first prove the following lemma.

Lemma 6.1 Under assumptions (6.2) and (6.8), we have for t ≥ 0 and for x ∈ R
d,

−L0 − L1|x|2 − ε(2dL1)t ≤ uε(t, x) ≤ L0 − L1|x|2 + (K0 + 2dεL1)t. (6.17)

Proof First we achieve an upper bound for uε. By defining uε(t, x) := L0−L1|x|2 +C0(ε)t
with C0(ε) := K0+2dεL1, we obtain from assumptions (6.2), (6.6) and (6.8) that uε(t = 0) ≥ u0

ε

and

∂tuε − |∇uε|2 −R(x, Iε) − εΔuε ≥ C0(ε) − 4L
2

1|x|2 −K0 +K2|x|2 − 2dεL1 ≥ 0.
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Then by a comparison principle, we conclude that uε(t, x) ≤ L0 − L1|x|2 + (K0 + 2dεL1)t for
all t ≥ 0 and x ∈ R

d.
Next for the lower bound, we define uε(t, x) := −L0−L1|x|2−εC1t with C1 := 2dL1. Thus,

we have uε(t = 0) ≤ u0
ε and

∂tuε − |∇uε|2 −R(x, Iε) − εΔuε ≤ −εC1 − 4L2
1|x|2 +K2|x|2 + ε2dL1 ≤ 0.

Consequently, we obtain that uε(t, x) ≥ −L0 − L1|x|2 − ε(2dL1)t for all t ≥ 0 and x ∈ R
d.

Hence we have the estimates on uε(t, x).

The next point is to show that the semi-convexity and the concavity of the initial data are
preserved by (1.1). In other words, we are going to show the following lemma.

Lemma 6.2 Under assumptions (6.2)–(6.8), we have for t ≥ 0 and x ∈ R
d,

−2L1 ≤ D2uε(t, x) ≤ −2L1. (6.18)

Proof For a unit vector ξ, we use the notation uξ := ∇ξuε and uξξ := ∇2
ξξuε to obtain

uξt = Rξ(x, I) + 2∇u · ∇uξ + εΔuξ,

uξξt = Rξξ(x, I) + 2∇uξ · ∇uξ + 2∇u · ∇uξξ + εΔuξξ.

By using |∇uξ| ≥ |uξξ| and the definition w(t, x) := min
ξ
uξξ(t, x), we arrive at the inequality

∂tw ≥ −2K2 + 2w2 + 2∇u · ∇w + εΔw.

Finally by a comparison principle and assumptions (6.7)–(6.8), we obtain

w ≥ −2L1. (6.19)

Hence the uniform semi-convexity of uε is proved.
To prove the uniform concavity, we first recall that, at every point (t, x) ∈ R

+ × R
d, we

can choose an orthonormal basis, such that D2uε(t, x) is diagonal. Thus, we can estimate the
mixed second derivatives in terms of uξξ, and consequently, we have

|∇uξ| = |uξξ|. (6.20)

By defining w(t, x) := max
ξ
uξξ(t, x) and using assumptions (6.4) and (6.20), we obtain the

following inequality:

∂tw ≤ −2K2 + 2w2 + 2∇u · ∇w + εΔw.

By a comparison principle and assumption, we obtain the estimate

w ≤ −2L1, (6.21)

which ends the proof of Lemma 6.2.
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6.2 BV estimates on ρ2
ε, Sε and their limits

We use exactly the same proof as in Section 3 to obtain BV estimates on ρ2
ε and Sε. To

obtain these estimates, an important point is the bounds on εPε. We need to confirm that
εPε is bounded, which is clear in Section 3 thanks to the bounds on the growth rate. Here the
growth rate has a quadratic decrease at infinity, which does not give an immediate lower bound
on εPε. Furthermore, we do not have a lower bound on ρε either because of the same argument
and we cannot obtain directly a BV estimate on Sε as in Subsection 3.2. However, we derive
a lower bound for εPε, and we use the uniform concavity of uε for that purpose.

By the definition of Pε, it follows from (6.2) and (6.17) that

εPε =
∫

Rd

nεR(x, Sε(t))dx ≥
∫

Rd

e
1
ε (−L0−L1|x|2−εC1t)(−K2|x|2)dx

≥ −K2e
1
ε (−L0−εC1t)

∫
Rd

e−
1
ε L1|x|2 |x|2dx

= −K2e
1
ε (−L0−εC1t) dε

2L1

(√
πε

L1

)d−1

. (6.22)

And we have a bound for (εPε)−.
We recall that (3.14) also holds true in this framework

ε
d
dt

(Pε)− + αε
(Pε)−
βμε

≤ K1ρM (Pε(0) + βμε(0)Jε(0))−
e

−μmKQ
ε t

βμm
+ Cε.

Then, we integrate this inequality over [0, T ] for T > 0 and by the same arguments used in
Subsection 3.1, it follows that ρ2

ε has local BV bounds. Therefore there exists a function ρ,
such that after extraction of a subsequence,

ρε −→ ρ in L1
loc(0,∞).

The next aim is to show that Sε has local BV bounds. We go back to (3.6), and we recall

εβ
d
dt
Jε = QSJe +QρPε.

Then we have the following inequality:

εβ
d
dt

(−Jε) ≤ QS(−Jε) + LQ|Pε| (6.23)

and

εβ
d
dt

(Jε)− ≤ QS(Jε)− + LQ((Pε)+ + (Pε)−). (6.24)

By integrating this inequality over [0, T ] for T > 0, using
∫ T

0

LQ|Pε|dx ≤ LQ

( ∫ T

0

(ρ̇ε)+dx+
∫ T

0

(Pε)−dx
)
, (6.25)

and since ρε is bounded above, we deduce from (3.14) that
∫ T

0

(Jε)−dx ≤ C1T + o
ε→0

(1). (6.26)

To conclude, we can extract a subsequence from Sε which locally converges in L1
loc(0,∞) to a

limit function S.
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6.3 The limit of the Hamilton-Jacobi equation

From the estimates obtained above on uε and D2uε, we can deduce that ∇uε is locally
uniformly bounded and thus from (4.1) for ε < ε0 that ∂tuε is also locally uniformly bounded.
Therefore there exists a function u such that, after extraction of a subsequence (see [10, 26] for
compactness properties), we have for T > 0,

uε(t, x) −→
ε→0

u(t, x) strongly in L∞(0, T ;W 1,∞
loc (Rd)),

uε(t, x) −→
ε→0

u(t, x) weakly-∗ in L∞(0, T ;W 2,∞
loc (Rd)) ∩W 1,∞(0, T ;L∞

loc(R
d))

and

− L0 − L1|x|2 ≤ u(t, x) ≤ L0 − L1|x|2 +K0t, −2L1 ≤ D2u(t, x) ≤ −2L1 a.e., (6.27)

u ∈W 1,∞
loc (R+ × R

d). (6.28)

Then, passing to the limit as ε → 0 in (4.1), we deduce that u satisfies in the viscosity sense
the equation ⎧⎪⎨

⎪⎩
∂

∂t
u = R(x, S(t)) + |∇u|2,

max
Rd

u(t, x) = 0.
(6.29)

In particular, u is strictly concave, therefore it has exactly one maximum. This proves that
n stays monomorphic and characterizes the Dirac location by

max
Rd

u(t, x) = 0 = u(t, x(t)). (6.30)

This completes the proof of Theorem 6.1.

6.4 The canonical equation

In this section, we establish from the regularity properties proved in the previous sections a
form of the so-called canonical equation in the language of adaptive dynamics (see [15, 22]) as
follows:

ẋ(t) = (−D2u(t, x(t)))−1 · ∇xR(x(t), S(t)).

This equation was formally introduced in [24] and holds true in our framework. The point of
this differential equation is to describe the long time behaviour of the concentration point x(t).

Step 1 Bounds on third derivatives of uε For the unit vectors ξ and η, we use the
notation uξ := ∇ξuε, uξη := ∇2

ξηuε and uξξη := ∇3
ξξηuε to derive

∂tuξξη = 4∇uξη · ∇uξ + 2∇uη · ∇uξξ + 2∇u · ∇uξξη +Rξξη + εΔuξξη.

Let us define
M1(t) := max

x,ξ,η
uξξη(t, x).

Again, at every (t, x) ∈ R+ × R
d, we can choose an orthogonal basis, such that D2(∇ηuε(t, x))

is diagonal. And since −uξξη(t, x) = ∇−ηuξξ(t, x), we have M1(t) = max
x,ξ,η

|uξξη(t, x)|. Then we

obtain the following inequality:

d
dt
M1 ≤ 4dM1‖D2uε‖∞ + 2dM1‖D2uε‖∞ +Rξξη.



532 A. Lorz, B. Perthame and C. Taing

As (6.10) gives a bound onM1(t = 0), by using the Gronwall lemma, we obtain an L∞-bound
on the third derivative uniform in ε.

Step 2 Maximum point of uε We denote the maximum point of uε(t, ·) by xε(t). Since
we have ∇uε(t, xε(t)) = 0, we obtain

d
dt

∇uε(t, xε(t)) = 0.

Then the chain rule gives

∂

∂t
∇uε(t, xε(t)) +D2

xuε(t, xε(t))ẋε(t) = 0.

By using (6.16), it follows that, for all t ≥ 0, we have

D2
xuε(t, xε(t))ẋε(t) = − ∂

∂t
∇uε(t, xε(t)) = −∇xR(xε(t), Sε(t)) − εΔ∇xuε.

Thanks to the uniform bound on D3uε and the regularity on R, we pass to the limit

ẋ(t) = (−D2u(t, x(t)))−1 · ∇xR(x(t), S(t)), a.e.

As we have R(x(t), S(t)) = 0 and (6.2), x(t) is bounded in L∞(R+). Then it implies from the
canonical equation that x(t) is bounded in W 1,∞(R+), and S(t) is also bounded in W 1,∞(Rd),
since S → R(·, S) is invertible by the implicit function theorem. We differentiate (6.13) and
obtain the following differential equation:

ẋ(t) · ∇xR+ Ṡ(t)∇SR = 0.

Step 3 Long time behaviour Using the canonical equation, we obtain

d
dt
R(x(t), S(t)) = ∇R(x(t), S(t))

d
dt
x(t) + ∂SR(x(t), S(t))

d
dt
S(t)

= ∇R(x(t), S(t))(−D2u)−1∇R(x(t), S(t)) + ∂SR(x(t), S(t))
d
dt
S(t).

Since the left-hand side equals 0 from (6.13), it follows that

d
dt
S(t) =

−1
∂SR(x(t), S(t))

∇R(x(t), S(t))(−D2u)−1∇R(x(t), S(t)) ≤ 0.

We deduce that S(t) decreases. Consequently, S(t) converges and subsequences of x(t) also
converge, since x(t) is bounded. However, the possible limits x∞ and S∞ have to satisfy
∇R(x∞, S∞) = 0. Then from (6.1), (6.3) and (6.13), we conclude that

S(t) −→
t→∞ Sm, x(t) −→

t→∞ x∞ = 0,

which ends the proof of Theorem 6.2.
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7 Numerical Results

We illustrate in this section the evolution of nε, ρε and Sε in time with different values of
β. We choose the following initial data:

n0 = Cmassexp
(
− (x − 0.8)2

ε

)
, (7.1)

and growth rate R and Q as follows:

R(x, S) = 0.2(−0.6 + 0.3S − (x− 0.5)2), (7.2)

Q(ρ, S) = 10 − (1.5 + ρ)S. (7.3)

The numerics are performed in Matlab with parameters as follows. We consider the solution
on interval [0, 1]. We use a uniform grid with 1000 points on the segment and denote by nk

i and
Sk the numerical solutions at grid point xi = iΔx and at time tk = kΔt. We choose as initial
value of the nutrient concentration Sε(t = 0) = 5. We also choose β to be 2 · 103, the time step
Δt = 10−4 and Cmass such as the initial mass of the population in the computational domain
is equal to 1. The equation is solved by an implicit-explicit finite-difference method with the
following scheme:

nk+1
i = nk

i +
Δt
ε

((Rk
i )+nk

i + (Rk
i )−nk+1

i ) + ε
Δt
Δx2

(nk+1
i+1 − 2nk+1

i + nk+1
i−1 ), (7.4)

Sk+1 = Sk +
Δt
εβ

(10 − (1.5 + ρk)Sk+1). (7.5)

We use Neumann boundary conditions nk+1
0 = nk+1

1 and nk+1
N−1 = nk+1

N . We use an implicit-
explicit scheme for the growth term in order to maintain the positivity of the numerical solution.

Figure 1 shows the dynamics for ε = 1 · 10−3 and Figure 2 for ε = 5 · 10−4. We observe
that, since ε is smaller in Figure 2, the concentration location of the population moves to the
maximum point of fitness more quickly than in Figure 1, which illustrates the dynamics given
by the canonical equation, and then the concentration point and the population density become
stable.

Figure 1 Dynamics of ρε ( ) and Sε (−−−−) (left) and dynamics of the density

nε for β = 2 · 103 and ε = 10−3.
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Figure 2 Dynamics of ρε ( ) and Sε (−−−−) (left) and dynamics of the density

nε for β = 2 · 103 and ε = 5 · 10−4.

In Figure 3, we show the numerical results corresponding to the same data as in Figure 1,
except that we choose β = 2 · 102. We can observe oscillations of ρε and Sε in the first case
(β = 2 ·103), whereas there are very few variations of these quantities when β is smaller. Indeed
the parameter β can be considered as a measure of the ecological dynamics: As β goes to 0,
we approach the case of the quasi-stationary state of the resource level, and we then observe
mostly the dynamics of the concentration location. However, as explained in the next section,
the convergence to the quasi-stationary solutions as β goes to 0 cannot be proved with our
approach and remains an open problem.

Figure 3 Dynamics of ρε ( ) and Sε (−−−−) (left) and dynamics of the density

nε for β = 2 · 102 and ε = 10−3.

In Figure 4, we show the numerical results for the 2-dimensional model with β = 2 · 102,
ε = 1 ·10−2 and Sε(t = 0) = 5. We choose the time step Δt to be 5 ·10−3 and Δx to be 1 ·10−2.
We also choose the initial condition

n0(x, y) = exp
(
− (x− 0.8)2

ε
− (y − 0.2)2

ε

)
, (7.6)
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and the functions

R(x, y, S) = 0.2(−0.6 + 0.3S − (1 + (x− 0.3)2)(1 + (y − 0.6)2)), (7.7)

Q(ρ, S) = 10 − (1.5 + ρ)S. (7.8)

As confirmed by the analysis we conducted, the population density concentrates at the maxi-
mum point of the growth rate.
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Figure 4 Dynamics in dimension 2 of ρε ( ) and Sε (− − −−) (at top left), the

initial condition for nε (at top right) and the stationary state nε converges to (at bottom),

with β = 2 · 102 and ε = 10−2.

8 Discussion

The weak assumptions provide a generic framework to study the asymptotic behaviour of
uε, but do not enable us to derive a canonical equation describing the dynamics of the con-
centration points, and we can observe jump phenomena of the concentration location. Indeed,
the lack of regularity can produce a discontinuity of ρ(t) and local maxima of u(t, x) can be-
come global maxima and jumps from a given concentration location to another one can occur,
which means the extinction of a population quickly invaded by another growing one (see [7]
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for further details). The concavity assumptions are suitable to avoid the jump cases because
these assumptions preserve regularity, and they ensure that the global maximum of u is the
only maximum. The canonical equation derived in this framework describes the evolution of
the selected trait in an evolutionary time scale.

Many models are studied to illustrate the diversity of evolutionary problems. For instance,
the problem of coevolution was tackled in [7, 18, 33]. The branching phenomenon where a
monomorphic population at some point becomes dimorphic is described in [24, 41]. In the
chemostat model, the spatial component is neglected here with the hypothesis that the content
of the chemostat is well-mixed, it was taken into account in [9, 37–38].

The inclusion of mutations in structured population models is necessary to generate phe-
notypic variability in a given population, which is a fundamental ingredient of the selection
process. It implies the separation of the ecological time scale and the evolutionary one. In the
presented model, the mutation term has little phenotypic effects due to the parameter ε. Espe-
cially in the canonical equation form, we observe that the pressure of mutants on the dynamics
of x is small and, as ε goes to 0, it does not change the convergence of xε to the maximum point
of fitness x. It means that only the mutations with positive effects on the phenotypic trait can
influence the dynamics: Mutants emerging with a better fitness than the residents can invade,
while the other mutants go to extinction.

However, some open questions arise from the present study. First it seems that the method
developed in this work does not give TV bounds for the full range [0, β0] for some small β0,
since the estimates providing the uniform BV estimates on ρ2 in Subsection 3.2 are local in
time and then it is not possible to prove uniform convergence of S(t) as β → 0 on [0,∞) at
this stage. Thus we cannot obtain the asymptotic behaviour of the limit functions as β goes to
0, while the convergence of ε to 0 describes the dynamics of the presented system on a larger
time scale, therefore local estimates are enough.

As mentioned in Section 4, the uniqueness of the solution of the Hamilton-Jacobi equation
(6.29) has up to now been an open problem, apart from very particular cases (see for instance
[6]), and the issue of the convergence of the full sequence uε has remained unsolved. How-
ever a recent work of Mirrahimi and Roquejoffre [40] has shown uniqueness of the constrained
Hamilton-Jacobi equation related to the following selection-mutation model in the concavity
framework:

ε∂tnε(t, x) = nε(t, x)R(x, Iε(t)) + ε2Δnε(t, x),

Iε(t) =
∫

Rd

ψ(x)nε(t, x)dx,

and generalizes a result on a selection model with spatial structure (see [38]), where the proof
relies on the uniqueness of the solution of the corresponding constrained Hamilton-Jacobi equa-
tion. The proof of the uniqueness property in our chemostat model is a forthcoming work.
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[3] Barles, G., Solutions de Viscosité des Équations de Hamilton-Jacobi, Springer-Verlag, Berlin Heidelberg,
1994.

[4] Barles, G., Evans, L. C. and Souganidis, P. E., Wavefront propagation for reaction diffusion systems of
PDE, Duke Math. J., 61(3), 1990, 835–858.

[5] Barles, G., Mirrahimi, S. and Perthame, B., Concentration in Lotka-Volterra parabolic or integral equa-
tions: A general convergence result, Methods Appl. Anal., 16(3), 2009, 321–340.

[6] Barles, G. and Perthame, B., Concentrations and constrained Hamilton-Jacobi equations arising in adpa-
tive dynamics, Contemporary Mathematics, 439, 2007, 57.

[7] Barles, G. and Perthame, B., Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math.
J., 57(7), 2008, 3275–3301.
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