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1 Introduction

The Toda system consists of coupled Liouville equations of the type

−1
2
Δui(x) =

N∑
j=1

aijeuj(x), x ∈ Σ, i = 1, · · · , N, (1.1)

where Δ = Δg is Laplace-Beltrami operator and A = (aij)ij is the Cartan matrix of SU(N+1),

A =

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · · · · −1 2 −1
0 · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠ .

This system arises in the study of self-dual non-abelian Chern-Simons models (see [22, 44, 45])
(also for further details and an up-to-date set of references), and the right-hand side of the
equations might contain singular sources corresponding to vortices, namely points where the
wave function appearing in the physical model vanishes. The system also has an interest in
geometry, as it describes to the Frenet frame of (possibly ramificated) holomorphic curves in
CPn (see [8, 10, 16, 26]).

The following non-homogeneous version with two components was extensively studied on
compact, boundary-less Riemannian surfaces (Σ, g):⎧⎪⎪⎨⎪⎪⎩

−Δu1 = 2ρ1

( h1eu1´
Σ
h1eu1dVg

− 1
)
− ρ2

( h2eu2´
Σ
h2eu2dVg

− 1
)
,

−Δu2 = 2ρ2

( h2eu2´
Σ
h2eu2dVg

− 1
)
− ρ1

( h1eu1´
Σ
h1eu1dVg

− 1
)
.

(1.2)
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Here h1, h2 are smooth positive functions on Σ and ρ1, ρ2 are real parameters. Flat tori might
model for example periodic physical systems in the plane.

(1.2) has variational structure, and the corresponding Euler functional Jρ : H1(Σ)×H1(Σ)
→ R has the expression

Jρ(u1, u2) =
ˆ

Σ

Q(u1, u2) dVg +
2∑

i=1

ρi

(ˆ
Σ

uidVg − log
ˆ

Σ

hieuidVg

)
, ρ = (ρ1, ρ2), (1.3)

where Q(u1, u2) is the positive-definite quadratic form as follows:

Q(u1, u2) =
1
3
(|∇u1|2 + |∇u2|2 + ∇u1 · ∇u2). (1.4)

It is well-known that H1(Σ) embeds into any Lp space, and that indeed the embedding can be
pushed to exponential class via the Moser-Trudinger inequality. Concerning the functional Jρ

the sharp inequality for the Toda system was found in [26].

Theorem 1.1 (see [26]) For ρ = (ρ1, ρ2) the functional Jρ : H1(Σ) × H1(Σ) is bounded
from below if and only if both ρ1 and ρ2 satisfy ρi ≤ 4π.

By the latter theorem we have that when both ρ1, ρ2 < 4π the functional Jρ is coercive, and
solutions can be found by minimization via the direct methods of the calculus of variations (see
also [28] for the case when max

i
ρi = 4π, when the energy is bounded below but non-coercive).

When one of the ρi’s exceeds 4π the energy becomes unbounded from below, and solutions have
to be found as saddle points. One result in this direction is as follows.

Theorem 1.2 (see [36]) Suppose that m is a positive integer, and let h1, h2 : Σ → R be
smooth positive functions. Then for ρ1 ∈ (4πm, 4π(m+ 1)) and for ρ2 < 4π, (1.2) is solvable.

Remark 1.1 The case m = 1 in Theorem 1.2 was proved in [25] for surfaces with positive
genus. The assumption ρ1 �∈ 4πN is due to compactness reasons (see Section 2).

To describe the general ideas beyond the proof of Theorem 1.2, we recall first the mean field
or Liouville equation:

−Δu = 2ρ̃
( h(x)eu´

Σ h(x)eudVg
− 1

)
, (1.5)

where ρ̃ ∈ R and h : Σ → R is smooth and positive. The interest in (1.5) arises from the abelian
version of (1.2) and, in geometry, from the problem of conformally prescribing the Gaussian
curvature of a compact surface (see [1]).

One approach to attack the existence problem for (1.5) relies on computing the Leray-
Schauder degree of the equation (see [14, 29]) (more comments on this approach will be given
in the next section). Another one exploits the variational structure of the problem, via the
Euler functional Iρ̃ : H1(Σ) → R,

Iρ̃(u) =
1
2

ˆ
Σ

|∇gu|2dVg + 2ρ̃
(ˆ

Σ

udVg − log
ˆ

Σ

h(x)eudVg

)
, u ∈ H1(Σ). (1.6)

The counterpart of Theorem 1.1 in the scalar case is the classical Moser-Trudinger inequality
(u stands for the average of u on Σ)

log
ˆ

Σ

e(u−u)dVg ≤ C +
1

16π

ˆ
Σ

|∇u|2dVg, (1.7)
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which gives coercivity of Iρ̃ for ρ < 4π (see [18, 40] for the borderline case). The supercritical
case ρ > 4π can be treated through improvements of the latter inequality under suitable con-
ditions on the function u (see [13]). Roughly, the improvement states that if the function eu

spreads into two separate regions of Σ, then the constant in (1.7) can be nearly halved. In [19],
(1.5) was studied for ρ̃ ∈ (4π, 8π), and the improvement in [13] was used to show that if Iρ̃ is
large negative, then the probability measure eu´

Σ eudVg
has to concentrate near a single point of

Σ. This fact was used jointly with a variational scheme to prove existence of critical points of
saddle point type when Σ has positive genus (see [43] for a different argument on the flat torus,
using the mountain-pass theorem).

This strategy was then pursued in [21] (for the prescribed Q-curvature problem in four
dimension) and in [20] to treat the case ρ̃ ∈ (4kπ, 4(k + 1)π). An extension of the argument in
[13, 19], with a more involved topological construction, allowed to show that for low energy the
measure eu´

Σ eudVg
concentrates near at most k points of the surface. This induces to consider

the family Σk of formal sums

Σk =
{ k∑

i=1

tiδxi :
k∑

i=1

ti = 1, ti ≥ 0, xi ∈ Σ, ∀ i = 1, · · · , k
}
, (1.8)

called the barycentric sets of Σ of order k. The above set of measures, which is naturally
endowed with the weak topology of distributions, does not have a smooth structure for k ≥ 2
(while Σ1 is homeomorphic to Σ), that is, it is a stratified set, namely union of open manifolds
of different dimensions (see [27] for further characterizations, especially of topological type).
The basic property used in [20–21] is that Σk is non-contractible, which allows to define proper
min-max schemes to attack the existence problem. In [35], it was also used to deduce the
degree-counting formula from [14] with a different approach. We also mention the role of these
sets for the study of the Yamabe equation in Euclidean domains (see [2]).

In [36], it was shown that this latter approach can be extended to study (1.2) in the situation
described in Theorem 1.2. When ρ1 ∈ (4kπ, 4(k+1)π), k ∈ N, and ρ2 < 4π the Euler-Lagrange
energy Jρ is virtually (even though not literally) coercive in the second component u2, and
the set Σk again appears in the distributional description of the function eu1 when Jρ is low
enough. Using the non-contractibility of Σk, one can then prove Theorem 1.2 using variational
techniques.

We are interested here in the situation when both the ρi’s exceed the threshold coercivity
value 4π. Using improved inequalities in the spirit of [13], it is possible to prove that if ρ1 <

4(k + 1)π, ρ2 < 4(l + 1)π, k, l ∈ N, and if Jρ(u1, u2) is sufficiently low, then either eu1 is close
to Σk or eu2 is close to Σl in the distributional sense. This (non-mutually exclusive) alternative
can be expressed in term of the topological join of Σk and Σl. Recall that, given two topological
spaces A and B, their join A ∗B is defined as the family of elements of the form (see [23])

A ∗B =
{(a, b, s) : a ∈ A, b ∈ B, s ∈ [0, 1]}

E
, (1.9)

where E is an equivalence relation given by

(a1, b, 1) E∼ (a2, b, 1), ∀ a1, a2 ∈ A, b ∈ B and (a, b1, 0) E∼ (a, b2, 0), ∀ a ∈ A, b1, b2 ∈ B.

This construction allows to map low sublevels of Jρ into Σk ∗ Σl, with the join parameter s
expressing whether distributionally eu1 is closer to Σk or whether eu2 is closer to Σl.
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However, as for the scalar problem (1.5) the above description is somehow optimal, it is no
more the case for (1.2). The optimality of the description of low-energy levels of Iρ̃ by means
of the Σk’s has to be understood in the following sense. When ρ̃ ∈ (4kπ, 4(k + 1)π), for any
measure σ ∈ Σk there exists a test function ϕλ,σ, depending on a large parameter λ > 0 with
the following properties:

eϕλ,σ ⇀ σ, Iρ̃(ϕλ,σ) → −∞ as λ→ +∞,

with the second property holding uniformly in the choice of σ ∈ Σk. This means that copies
of Σk can naturally be embedded into arbitrary low sublevels of Iρ̃. In this way, using also the
previous statements, one finds a way to go back and forth from large-negative sublevels of Iρ̃
to the set of measures Σk.

Turning to (1.2), things get more complicated, due to the interaction form Q(u1, u2). Look-
ing at its structure, it clearly appears that when the gradients of u1 and u2 point in the same
direction Q gets larger. This means that if u1 and u2 are peaked near the same point a higher
energy is expected, which puts extra constraints in the choice of the test functions. In some cases
this problem can be overcome: By restricting the location of the peaks of the two components
u1, u2 to disjoint curves γ1, γ2 ⊆ Σ, the following result was obtained in [7].

Theorem 1.3 (see [7]) Suppose that ρi �∈ 4πN for both i = 1, 2 and that Σ has positive
genus. Then (1.2) is solvable.

The assumption on the genus of Σ is used to construct global maps from Σ into γi, and then
their push-forwards from Σk (resp. Σl) into (γ1)k (resp. (γ2)l) (the barycentric sets of the γi’s),
and then reason only in terms of the topological join of (γ1)k and (γ2)l. Some counterpart of
this argument for the singular Liouville equation can be found in [3].

In general, one would need to understand in more depth the interaction between the two
components when they concentrate near the same point. We will see that one has to take
into account not only of the location of the concentration points, but also of the scale of
concentration. One can indeed show for example that when both ρi’s belong to (4π, 8π),
Jρ(u1, u2) low enough implies that either eu1 , eu2 are concentrated at different points, or that
if they are concentrated at the same point but with different scales of concentration (see [37]).

This argument relies on improved Moser-Trudinger inequalities which are different in spirit
from those in [13], and which have the feature of being scaling-invariant. They can be applied
to functions that are arbitrarily concentrated and that, at a macroscopic level, look just like
Dirac masses. A different improved inequality, but with the same scaling-invariant feature, was
proved in [24]. We refer to Section 3 for details, just remarking here that it applies to cases when
one component is much more concentrated than the other. This has some relation to improved
inequalities for the Singular Liouville equation: A version of (1.5) with singular sources (in the
form of Dirac masses) on the right-hand side, representing either conical points on surfaces, or
vortex points from the physical point of view. The relation to this latter problem can be seen
from the right-hand side of (1.2): A highly concentrated function appears as a Dirac delta when
looking at the scale of the less concentrated component. These improved inequalities have the
effect of removing suitable subsets in the topological join Σk ∗Σl (see Sections 3–4 for details).
One can then prove the following result via min-max theory.

Theorem 1.4 (see [24, 37]) Let h1, h2 be two positive smooth functions, and let Σ be any
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compact surface. Suppose that ρ1 ∈ (4kπ, 4(k + 1)π), k ∈ N and ρ2 ∈ (4π, 8π). Then (1.2) has
a solution.

The existence problem for the case of general parameters and genus is still open. We hope
that the topological join construction might still play a role. An interesting variant of (1.2)
regards the presence of singular sources on the right-hand sides of the equations. For this case
the progress is still limited (see [5, 7, 11] in the scalar case) for some particular situations.

The plan of the paper is the following. In Section 2, some compactness results are pre-
sented, showing the role of the multiples of 4π: Applications to min-max constructions are also
discussed. In Section 3, some improved inequalities are shown, both at a macroscopic and at a
scaling-invariant level. Section 4 treats the weighted barycentric sets and the topological join
construction. Finally, in Section 5, some test functions are constructed, which allow to define
suitable min-max schemes to prove existence of solutions.

Some Notations Given points x, y ∈ Σ, d(x, y) will stand for the metric distance between
x and y on Σ. Similarly, for any p ∈ Σ, Ω,Ω′ ⊆ Σ, we set

d(p,Ω) = inf{d(p, x) : x ∈ Ω}, d(Ω,Ω′) = inf{d(x, y) : x ∈ Ω, y ∈ Ω′}.

The symbol Bs(p) stands for the open metric ball of radius s and center p, and the complement
of a set Ω in Σ will be denoted by Ωc.

Given a function u ∈ L1(Σ) and Ω ⊂ Σ, the average of u on Ω is denoted by the symbol
 

Ω

u dVg =
1
|Ω|

ˆ
Ω

u dVg.

We denote by u the average of u in Σ. Since we are assuming |Σ| = 1, we have

u =
ˆ

Σ

u dVg =
 

Σ

u dVg.

The sub-levels of the functional Jρ will be indicated as

Ja
ρ := {u = (u1, u2) ∈ H1(Σ) ×H1(Σ) : J(u1, u2) ≤ a}.

Throughout this paper, the letter C will stand for large constants which are allowed to vary
among different formulas or even within the same lines. We denote M(Σ) the set of all Radon
measures on Σ, and introduce a norm by using duality versus Lipschitz functions, that is, we
set

‖μ‖Lip′(Σ) = sup
‖f‖Lip(Σ)≤1

∣∣∣ˆ
Σ

f dμ
∣∣∣, μ, ν ∈ M(Σ). (1.10)

We denote by d the corresponding distance, which is known as the Kantorovich-Rubinstein
distance.

2 Analytic Aspects of the Problem

In this section, we collect some useful compactness results that mainly arise from a concentra-
tion-compactness alternative. We discuss first the scalar case, then the vector case, and finally
we turn to applications to min-max theory.
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2.1 Compactness properties of (1.5)

In this subsection, we describe the analytic aspects of the problem, especially for what con-
cerns the compactness properties. The first result in this direction was proved in [9], concerning
the scalar Liouville equation in a bounded domain Ω of the Euclidean plane. For a smooth pos-
itive function h(x) and a real-valued sequence of positive numbers ρn we consider the following
problem: ⎧⎪⎨⎪⎩

−Δun = 2ρnh(x)eun in Ω,ˆ
Ω

eundx ≤ C, | log ρn| ≤ C.
(2.1)

Define then the blow-up set S as

S = {x ∈ Ω : ∃xn → x such that un(xn) → +∞}.
Theorem 2.1 (see [9]) Suppose that Ω ⊆ R2 is a bounded domain, and consider a sequence

of solutions of (2.1). Then, up to a subsequence, one of the following three possibilities holds
true:

(i) un is bounded in L∞
loc(Ω).

(ii) un → −∞ on every compact set of Ω.
(iii) The blow-up set S of (un) is finite, un → −∞ on the compact sets of Ω\S and moreover

ρnh(x)eun ⇀
∑
xi∈S

βiδxi

with βi ≥ 2π for every xi ∈ S.

This result was proved using potential theory jointly with Jensen’s inequality. Later, it was
specialized by Li and Shafrir in the following sense.

Theorem 2.2 (see [30]) If the case (iii) occurs in Theorem 2.1, then βi is a positive multiple
of 4π for every xi ∈ S.

One of the main extra ingredients in the proof of the latter result is the blow-up analysis
of solutions. The un’s are rescaled near its local maxima. Using the dilation invariance of the
limit equation

−Δu = 2ρ1e
u in R

2, (2.2)

it is proved that in the limit a scaled un solves (2.2) and has a uniformly bounded global
maximum at zero. Solutions of (2.2) with such property were classified in [13]. It was proved
that, up to a dilation, the limit profile has the form

U0(x) = 2 log
1

1 + |x|2 + Cρ0 (2.3)

for some explicit constant Cρ0 ∈ R. Such functions have the property that ρ0

´
R2 eU0dx = 4π

independently of ρ0, which justifies the appearance of the multiples of 4π in Theorem 2.2.
Some delicate extra work (relying on Harnack-type inequalities and an ODE analysis for the
radial averages around the blow-up points) is then needed to show that no residual volume
accumulates near the bubbling points. The analysis in [30] carries over with no substantial
difficulties to closed manifolds, and one finds the following corollary.
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Corollary 2.1 Consider the problem (1.5). Then for any compact set K of R \ 4πN there
exists a positive constant CK such that all solutions of (1.5) are bounded in C2,α(Σ) by CK

whenever ρ ∈ K.

Remark 2.1 (i) When h(x) is strictly positive on a compact manifold and is of class C1,
the local accumulation of mass for (1.5) near a blow-up point is exactly 4π. This was proved in
[29] using moving-plane arguments, and allowed the author to prove that the Leray-Schauder
degree of the equation is well defined for ρ �∈ 4πN. In [29], it was shown that the degree turns
out to be always 1 when ρ < 4π. Using a more refined blow-up analysis and a Lyapunov-
Schmidt reduction in [14], the Leray-Schauder degree of (1.5) was computed for general ρ’s not
belonging to 4πN (see also [35] for a different approach).

(ii) It was proved instead in [15] that in bounded planar domains the mass accumulation
can be a multiple of 4π strictly larger than 4π.

2.2 Compactness properties of (1.2)

We next turn to (1.2). It turns out that in this case there are different types of blow-ups,
but it is still possible to obtain compactness results under rather neat assumptions. We first
consider a sequence of solutions to a counterpart of (1.2), where the coefficients ρn are allowed
to vary, namely⎧⎪⎪⎨⎪⎪⎩

−Δu1,n = 2ρ1,n

( h1eu1,n´
Σ
h1eu1,ndVg

− 1
)
− ρ2,n

(
h2e

u2,n´
Σ h2e

u2,ndVg
− 1

)
,

−Δu2,n = 2ρ2,n

( h2eu2,n´
Σ
h2eu2,ndVg

− 1
)
− ρ1,n

(
h1e

u1,n´
Σ h1e

u1,ndVg
− 1

)
.

(2.4)

Define the blow-up set

S̃ = {x ∈ Σ : ∃xn → x such that ui,n(xn) → +∞ for some i = 1, 2}.

For a point x ∈ S̃, we then define the local limit masses Ai(x) as

Ai(x) = lim
r→0

lim
n

ˆ
Br(x)

ρi,n

( hieui,n´
Σ hieui,ndVg

− 1
)
.

Then one has the following result (see also [32]).

Theorem 2.3 (see [25]) Suppose that x is a blow-up point for (2.4). Then only one among
the following five possibilities may occur for (A1(x), A2(x)):

(4π, 0), (0, 4π), (4π, 8π), (8π, 4π), (8π, 8π).

The reason for the restriction to these couples relies on the different blow-up rates of the two
components. The first possibility (for the second one just exchange u1 and u2) corresponds to
the case when the first component u1,n blows-up while the second does not. Then the situation
is quite similar to the scalar case described before, with a blow-up profile given by (2.3).

The third possibility (again, exchange components for the fourth one) occurs when the blow-
up rate of the first component is much faster than that of the second one. In this case, rescaling
u1,n so that its maximal value becomes zero, the role of the second component u2,n will be
irrelevant, so the limiting profile of u1,n will still be given by (2.3). On the other hand, looking
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at the equation satisfied by u2,n and rescaling so that u2,n has maximal height equal to zero,
the term ρ1,n

(
h1e

u1,n´
Σ h1e

u1,ndVg
− 1

)
in the right-hand side of the equation will resemble a Dirac

mass, with factor −4π. Therefore the profile of u2,n (after subtracting a suitable logarithmic
function) will be given by the solution of the singular problem

−Δu = 2ρ2e
u − 4πδ0 in R

2. (2.5)

Solutions of this singular equation were classified in [41], and these have the following expression:

U(x) = −2 log(1 − 2|x|2 cos 2(θ − θ0) tanh ξ + |x|4) + Cζ,ρ2 , (2.6)

where ξ > 0 and where θ0 ∈ [0, 2π). We notice that, compared to (2.3), the solution is not
unique, it is not radial and it depends on the angular parameter θ0. Indeed, if one considers the
singular equation (2.5) but with a general weight −α in front of the Dirac mass, it turns out
that solutions are always radial if α is not a positive multiple of 4π while, as already noticed in
[12], there always exist non-radial solutions in the complementary case. However, as it happens
for U0 in (2.3), it turns out that ρ2

´
R2 eUdx = 8π independently of ρ2 > 0. This fact yields the

third alternative in Theorem 2.3.
Finally, the fifth alternative occurs when both components blow-up with the same rate.

After scaling, the profile of (u1,n, u2,n) is given by the vectorial solution of the entire system{−ΔU1 = 2ρ1eU1 − ρ2eU2 ,

−ΔU2 = 2ρ2eU2 − ρ1eU1
in R

2. (2.7)

Viewing (2.7) as a structure equation for holomorphic curves in CP
2, such solutions were clas-

sified in [26]. These depend indeed on eight parameters, however it happens that one always
has the quantization property

ρ1

ˆ
R2

eU1dx = 8π, ρ2

ˆ
R2

eU2dx = 8π.

This yields the fifth possibility for the mass accumulation values in Theorem 2.3.
Using Green’s representation formulas, in [6], it was proved that in case of blow-up at least

one component ui must accumulate at a finite number of points, and therefore the corresponding
limiting parameter ρi must be quantized, according to Theorem 2.3. As a consequence one finds
the following result.

Theorem 2.4 (see [6, 25]) Consider the problem (1.2). Then for any compact set K of
R \ 4πN there exists a positive constant CK such that all solutions of (1.5) are bounded in
C2,α(Σ) by CK whenever ρi ∈ K.

Remark 2.2 In [17], it was proved that there exist blowing-up solutions of (1.2) for which
only one component concentrates near finitely-many points, while the other does not. Therefore,
compactness holds true provided the couple (ρ1, ρ2) stays bounded away from the grid

Λ := {(ρ1, ρ2) : ρi ∈ 4πN for some i = 1, 2},
and not only from the squared lattice of points

{(ρ1, ρ2) : ρi ∈ 4πN for both i = 1, 2}.
As for (1.5), when (ρ1, ρ2) �∈ Λ, the Leray-Schauder degree of (1.2) is well defined for (ρ1, ρ2) �∈
Λ. Some degree-computations can be found in [31, 39] (and in [33] for other Liouville systems).



Variational Analysis of Toda Systems 547

2.3 Applications to min-max theory

We will now show how to apply the previous results to deduce existence of solutions. Let
us fix (ρ1, ρ2) �∈ Λ, and let K ⊆ K be two compact sets. Let F : K → H1(Σ) × H1(Σ) be a
continuous map, and define the following class of continuous maps:

F := {F ∈ C(K;H1(Σ) ×H1(Σ)) : F|K ≡ F}.

Given this definition, one can introduce the corresponding min-max value

cρ := inf
F∈F

sup
z∈K

Jρ(F(z)).

As the Palais-Smale condition is not known yet for the functional Jρ, one has to do some extra
work in order to guarantee existence of critical points. We have the following proposition.

Proposition 2.1 Suppose that there exists t0 > 0 and β0 > 0 such that [ρ1(1 − t0), ρ1(1 +
t0)] × [ρ2(1 − t0), ρ2(1 + t0)] ⊆ R2 \ Λ and such that

c(1+t)ρ > sup
z∈K

Jρ(F(z)) + β0 for all t ∈ [1 − t0, 1 + t0].

Then Jρ admits a critical point at level cρ.

The proof of this result relies on both a monotonicity method introduced by Struwe in [42]
(see also [34] for an alternative approach) and on the previous compactness results. First, one
notices that since for t′ ≥ t

Jtρ(u)
t

− Jt′ρ(u)
t′

=
(1
t
− 1
t′

)ˆ
Σ

Q(u1, u2)dVg ≥ 0, u ∈ H1(Σ) ×H1(Σ),

so we clearly have that
αtρ

t
− αt′ρ

t′
≥ 0.

This implies that the function t �→ αtρ

t is almost-everywhere differentiable. As in [19], one can
prove that for the values of t for which αtρ

t is differentiable Jtρ has a bounded Palais-Smale
sequence at level αtρ. It can be shown that this sequence then converges to a critical point
of Jtρ. We will show it for the functional Itρ̃ corresponding to the scalar equation (1.5) (with
ρ̃ �∈ 4πN and t close to 1). The vectorial counterpart requires only minor changes.

Consider a Palais-Smale sequence ul for Itρ̃ bounded in H1(Σ). The existence of a weak
limit u0 ∈ H1(Σ) follows from Theorem 2.2, as tρ̃ �∈ 4πN for t close to 1. Let us show that u0

satisfies I ′tρ̃(u0) = 0. For any function v ∈ H1(Σ) there holds

I ′tρ̃(u0)[v] = I ′tρ̃(ul)[v] +
ˆ

Σ

∇gv · ∇g(u0 − ul)dVg + tρ̃
(´

Σ
heulvdVg´

Σ
heuldVg

−
´
Σ
heu0vdVg´

Σ
heu0dVg

)
.

Since the first two terms in the right-hand side tend to zero by our assumptions, it is sufficient
to check that

´
Σ heulvdVg =

´
Σ heu0vdVg + o(1)‖v‖H1(Σ) (to deal with the denominators just

take v ≡ 1). In order to do this, we consider exponents p, p′, p′′ > 1 satisfying 1
p + 1

p′ + 1
p′′ = 1.

Using Lagrange’s formula, we obtain, for some function θl with range in [0, 1], eul − eu0 =
eθlul+(1−θl)u0(ul − u0) almost everywhere in x. Then from some elementary inequalities (and
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the Moser-Trudinger inequality, that allows to control Lp norms of the exponentials), we find
ˆ

Σ

(eul − eu0)v dVg ≤ C

ˆ
Σ

(eul + eu0)|ul − u0||v|dVg

≤ C[‖eul‖Lp(Σ) + ‖eu0‖Lp(Σ)]‖ul − u0‖Lp′(Σ)‖v‖Lp′′(Σ)

≤ o(1)‖v‖Lp′′(Σ) = o(1)‖v‖H1(Σ),

by (1.7), the boundedness of (ul)l and the fact that ul ⇀ u0 weakly in H1(Σ).
By the above reasoning, we proved that there exists tk → 1 for which the system

−Δui,k =
2∑

j=1

tkρjaij

( hjeuj,k´
Σ hjeuj,kdVg

− 1
)
, i = 1, 2 (2.8)

is solvable. Then using Theorem 2.4, which applies when both ρ1, ρ2 are not multiples of 4π,
one obtains convergence of solutions and arrives to the desired conclusion.

3 Improved Inequalities

In this section, we collect some improved Moser-Trudinger type inequalities. These hold
for functions satisfying certain requirements on the distribution of their exponentials. We will
divide the discussion between cases in which the functions are macroscopically spread, and
others that have scaling-invariant features.

3.1 Improved inequalities via macroscopic spreading

We present now the first improved inequality. Basically, if the mass of both h1eu1 and h2eu2

is spread respectively on at least k + 1 and l+ 1 different sets, then the values of the ρi’s for
which one has coercivity increase by a factor (k + 1) and (l + 1) respectively.

We have first a couple of technical lemmas (see [7, Section 4] for details) that are useful for
localizing the Moser-Trudinger inequality in Theorem 1.1.

Lemma 3.1 Let δ > 0 and Ω � Ω̃ ⊂ Σ be such that d(Ω, ∂Ω̃) ≥ δ. Then, for any ε > 0
there exists C = C(ε, δ) such that for any u = (u1, u2) ∈ H1(Σ) ×H1(Σ),

log
ˆ

Ω

eu1−
ffl
Ω̃ u1dVgdVg + log

ˆ
Ω

eu2−
ffl
Ω̃ u2dVgdVg ≤ 1

4π

ˆ
Ω̃

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg +C.

Lemma 3.2 Let δ > 0, θ > 0, k, l ∈ N with k ≥ l, fi ∈ L1(Σ) be non-negative functions
with ‖fi‖L1(Σ) = 1 for i = 1, 2 and {Ω1,i,Ω2,j}i∈{0,··· ,k},j∈{0,··· ,l} ⊂ Σ such that

d(Ω1,i,Ω1,i′) ≥ δ, ∀ i, i′ ∈ {0, · · · , k} with i �= i′,

d(Ω2,j ,Ω2,j′ ) ≥ δ, ∀ j, j′ ∈ {0, · · · , l} with j �= j′

and
ˆ

Ω1,i

f1dVg ≥ θ, ∀ i ∈ {0, · · · , k},
ˆ

Ω2,j

f2dVg ≥ θ, ∀ j ∈ {0, · · · , l}.
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Then, there exist δ > 0, θ > 0, independent of fi, and {Ωn}k
n=1 ⊂ Σ such that

d(Ωn,Ωn′) ≥ δ, ∀n, n′ ∈ {0, · · · , k} with n �= n′

and

|Ωn| ≥ θ, ∀n ∈ {0, · · · , k},ˆ
Ωn

f1dVg ≥ θ, ∀n ∈ {0, · · · , k},
ˆ

Ωn

f2dVg ≥ θ, ∀n ∈ {0, · · · , l}.

We then have the following result: It says qualitatively that the more the components
(u1, u2) of the system are spread over Σ, the more effectively Q(u1, u2) controls the exponential
integrals.

Proposition 3.1 (see [7]) Let δ > 0, θ > 0, k, l ∈ N and {Ω1,i,Ω2,j}i∈{0,··· ,k},j∈{0,··· ,l} ⊂ Σ
be such that

d(Ω1,i,Ω1,i′) ≥ δ, ∀ i, i′ ∈ {0, · · · , k} with i �= i′,

d(Ω2,j ,Ω2,j′) ≥ δ, ∀ j, j′ ∈ {0, · · · , l} with j �= j′.

Then, for any ε > 0, there exists C = C(ε, δ, θ, k, l,Σ), such that any u = (u1, u2) ∈ H1(Σ)
×H1(Σ) satisfying

ˆ
Ω1,i

h1eu1dVg ≥ θ

ˆ
Σ

h1eu1dVg, ∀ i ∈ {0, · · · , k},
ˆ

Ω2,j

h2eu2dVg ≥ θ

ˆ
Σ

h2eu2dVg, ∀ j ∈ {0, · · · , l}

verifies

(k + 1) log
ˆ

Σ

h1eu1−u1dVg + (l + 1) log
ˆ

Σ

h2eu2−u2dVg ≤ 1 + ε

4π

ˆ
Σ

Q(u1, u2)dVg + C.

Proof In the proof, we assume that u1 = u2 = 0. After relabelling the indexes, we can
suppose k ≥ l and apply Lemma 3.2 with fi = hie

ui´
Σ hieuidVg

to get {Ωj}k
j=0 ⊂ Σ with

d(Ωi,Ωj) ≥ δ, ∀ i, j ∈ {0, · · · , k} with i �= j

and ˆ
Ωi

h1eu1dVg ≥ θ

ˆ
Σ

h1eu1dVg, ∀ i ∈ {0, · · · , k},
ˆ

Ωj

h2eu2dVg ≥ θ

ˆ
Σ

h2eu2dVg, ∀ j ∈ {0, · · · , l}.

Notice that

log
ˆ

Σ

hieuidVg =
 

Ω̃j

uidVg + log
ˆ

Σ

hie
ui−

ffl
Ω̃j

uidVgdVg , i = 1, 2.
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The average on Ω̃j can be estimated by Poincaré’s inequality as follows:
 

Ω̃j

uidVg ≤ 1

|Ω̃j |

ˆ
Σ

|ui|dVg ≤ C
( ˆ

Σ

|∇ui|2dVg

) 1
2 ≤ C + ε

ˆ
Σ

|∇ui|2dVg, i = 1, 2. (3.1)

We now apply, for any j ∈ {0, · · · , k}, Lemma 3.1 with Ω = Ωj and Ω̃ = Ω̃j :=
{
x ∈ Σ :

d(x,Ωj) < δ
2

}
. For j ∈ {0, · · · , l}, we get

log
ˆ

Σ

h1e
u1−

ffl
Ω̃j

u1dVgdVg + log
ˆ

Σ

h2e
u2−

ffl
Ω̃j

u2dVgdVg

≤ 2 log
1
θ

+ log
ˆ

Ωj

h1e
u1−

ffl
Ω̃j

u1dVgdVg + log
ˆ

Ωj

h2e
u2−

ffl
Ω̃j

u2dVgdVg

≤ C + log
ˆ

Ωj

e
u1−

ffl
Ω̃j

u1dVgdVg + log
ˆ

Ωj

e
u2−

ffl
Ω̃j

u2dVgdVg

≤ C +
1
4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg, j = 1, · · · , l. (3.2)

For j ∈ {l + 1, · · · , k}, we have

log
ˆ

Σ

h1e
u1−

ffl
Ω̃j

u1dVgdVg ≤ log
1
θ

+ ‖h1‖L∞(Σ) + log
ˆ

Ωj

e
u1−

ffl
Ω̃j

u1dVgdVg

≤ C − log
ˆ

Ωj

e
u2−

ffl
Ω̃j

u2dVgdVg +
1
4π

ˆ
Ω̃j

Q(u1, u2)dVg

+ ε

ˆ
Σ

Q(u1, u2)dVg. (3.3)

The exponential term on the second component can be estimated by using Jensen’s inequal-
ity as follows:

log
ˆ

Ωj

e
u2−

ffl
Ω̃j

u2dVgdVg = log |Ωj | + log
 

Ωj

e
u2−

ffl
Ω̃j

u2dVgdVg ≥ log |Ωj | ≥ −C. (3.4)

Putting together (3.3) and (3.4), we have

log
ˆ

Σ

h1e
u1−

ffl
Ω̃j

u1dVgdVg

≤ 1
4π

ˆ
Ω̃j

Q(u1, u2)dVg + ε

ˆ
Σ

Q(u1, u2)dVg + C, j = l + 1, · · · , k. (3.5)

Summing over all j ∈ {0, · · · , k} and taking into account (3.2) and (3.5), we obtain the result,
renaming ε appropriately.

3.2 Scaling-invariant improved inequalities

We next introduce two new improved inequalities that have the feature of being scaling-
invariant. As we already remarked, this means that can be applied to functions which might
be indefinitely concentrated near a single point, differently from the previous proposition.

We begin by considering the family of functions

A =
{
f ∈ L1(Σ) : f > 0 a.e. and

ˆ
Σ

fdVg = 1
}
.

First we have the following result about functions in L1 that are sufficiently concentrated
near a single point.
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Proposition 3.2 Fix R > 1. Then there exists δ = δ(R) > 0 and a continuous map

ψ : A ∩ {d(·,Σ1) < δ(R)} → Σ × R+, ψ(f) = (β, σ),

satisfying the following property: Given f ∈ A there exists p ∈ Σ such that
(a) d(p, β) ≤ C′σ for C′ = max{3R+ 1, δ−1diam(Σ)},
(b) there exists τ > 0 depending only on R and Σ such that

ˆ
Bp(σ)

f dVg > τ,

ˆ
Bp(Rσ)c

f dVg > τ.

Proof We only sketch the main arguments, referring to [38] for full details. Take R0 = 3R,
and let σ : Σ ×A→ (0,+∞) (well defined and continuous) be such that

ˆ
Bx(σ(x,f))

f dVg =
ˆ

Bx(R0σ(x,f))c

f dVg . (3.6)

We notice that σ satisfies

d(x, y) ≤ R0 max{σ(x, f), σ(y, f)} + min{σ(x, f), σ(y, f)}. (3.7)

In fact, if this were not true, we would have Bx(R0σ(x, f))∩By(σ(y, f)+ε) = ∅ for some ε > 0.
Also, By(R0σ(y, f)) cannot coincide with Σ, so Ay(σ(y, f), σ(y, f) + ε) (Ay(r1, r2) stands for
the open annulus centered at y with radii r1, r2) is non-empty and open. This implies that

ˆ
Bx(σ(x,f))

f dVg =
ˆ

Bx(R0σ(x,f))c

f dVg ≥
ˆ

By(σ(y,f)+ε)

f dVg >

ˆ
By(σ(y,f))

f dVg.

By interchanging x and y, we also obtain the opposite inequality, which proves (3.7).
Next, setting

T : Σ ×A→ R, T (x, f) =
ˆ

Bx(σ(x,f))

fdVg,

we make the following claim.

Claim 3.1 If x0 ∈ Σ satisfies T (x0, f) = max
y∈Σ

T (y, f), then σ(x0, f) < 3σ(x, f) for any

other x �= x0.

To see this, fix x ∈ Σ and ε > 0. First, reasoning as above we find that Bx(R0σ(x, f) + ε)∩
Bx0(σ(x0, f)) �= ∅, and similarly that Bx(R0σ(x, f)+ε) cannot be contained in Bx0(R0σ(x0, f)).
From the triangular inequality, one has

2(R0σ(x, f) + ε) > (R0 − 1)σ(x0, f),

so by the arbitrariness of ε we get that σ(x, f) ≥ R0−1
2R0

σ(x0, f). The claim follows from the fact
that R0 > 3.

Using a covering argument, one also has that there exists a τ > 0 (independent of f) such
that

max
x∈Σ

T (x, f) > τ > 0 for all f ∈ A. (3.8)
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Let us now fix x0 ∈ Σ such that T (x0, f) = max
x∈Σ

T (x, f). By the above claim, for any x ∈
Ax0(σ(x0, f), Rσ(x0, f)), one hasˆ

Bx
σ(x0,f)

3

f dVg ≤
ˆ

Bx(σ(x,f))

f dVg ≤ T (x0, f).

Taking a finite covering of the form

Ax0(σ(x0, f), Rσ(x0, f)) ⊂
k⋃

i=1

Bxi

σ(x0, f)
3

(where k can be chosen depending only on Σ and R), we find

1 =
ˆ

Σ

f dVg ≤
ˆ

Bx0(σ(x0,f))

f dVg +
ˆ

Bx0(Rσ(x0,f))c

f dVg +
k∑

i=1

ˆ
Bxi

σ(x0,f)
3

f dVg

≤ (k + 2)T (x0, f).

Considering the continuous function

σ : A→ R, σ(f) = 3 min{σ(x, f) : x ∈ Σ},
and given τ as in (3.8), define

S(f) = {x ∈ Σ : T (x, f) > τ, σ(x, f) < σ(f)}. (3.9)

Claim 3.1 and (3.8) imply that if x0 ∈ Σ maximizes T (x, f), then x0 ∈ S(f). Hence for any
f ∈ A S(f) is non-empty and open. Moreover, (3.7) implies

diam(S(f)) ≤ (R0 + 1)σ(f). (3.10)

Embedding Σ in R3 and identifying it with its image, we define the center of mass

η(f) =

´
Σ(T (x, f) − τ)+(σ(f) − σ(x, f))+x dVg´
Σ(T (x, f) − τ)+(σ(f) − σ(x, f))+dVg

∈ R
N .

For δ > 0 small, let P be an orthogonal projection from a δ-neighbourhood of Σ onto the
surface, and define

β : {f ∈ A : σ(f) ≤ δ} → Σ, β(f) = P ◦ η(f).

To conclude the proof, we check that ψ(f) = (β(f), σ(f)) satisfies the desired condition. If
σ(f) ≤ δ, then d(β(f),S(f)) < (R0 + 1)σ(f). Taking p ∈ S(f), recalling that R0 = 3R and
that σ(f) ≤ 3σ(x, f) < 3σ(f) for any x ∈ S(f), we then deduce both (a) and (b).

The next result provides a lower bound on the functional in terms of the function ψ. Its
proof relies on using Kelvin inversions, which preserve the integral of the quadratic form Q.

Proposition 3.3 (see [37]) Given any ε > 0, there exist R = R(ε) > 1 and ψ as in
Proposition 3.2 for which, if

ψ
( eu1´

Σ
eu1dVg

)
= ψ

( eu2´
Σ

eu2dVg

)
,

then there exists C = C(ε) such that

(1 + ε)
ˆ

Σ

Q(u1, u2) dVg ≥ 8π
(

log
ˆ

Σ

eu1−u1dVg + log
ˆ

Σ

eu2−u2dVg

)
+ C.
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The previous result states roughly that if the two components have the same scale of con-
centration and near the same point, then the Moser-Trudinger constant improves. The next
proposition applies instead to the case in which one component (u1) is much more concentrated
than the other.

Proposition 3.4 (see [24]) Let r > 0, γ0 > 0 and τ0 > 0. For any ε > 0, there exists
C = C(ε, r, τ0, γ0) such that, if for some σ ∈ (

0, r
C2

)
and z ∈ Σ, it holds that

´
B σ

2
(z)

eu1 dVg´
Σ

eu1 dVg
> γ0,

´
Az(Cσ, r

C )
eu2 dVg´

Σ
eu2 dVg

> γ0 (3.11)

and

sup
y∈Az(Cσ, r

C )

´
Bτ0d(y,z)(y)

eu2 dVg´
Az(Cσ, r

C ) eu2 dVg
< 1 − τ0, (3.12)

then

4π log
ˆ

Σ

eu1−u1 dVg + 8π log
ˆ

Σ

eu2−u2 dVg ≤
ˆ

Br(z)

Q(u1, u2) dVg + ε

ˆ
Σ

Q(u1, u2) dVg + C.

The requirement in (3.12) means qualitatively that eu2 is well distributed around the con-
centration point (with smaller scale) of eu1 . The result is inspired from a similar situation
regarding the singular Liouville problem, whose relation to (1.2) was discussed in Section 1. In
this case, one has the following improved inequality.

Proposition 3.5 (see [4]) Let p ∈ Σ and r > 0, τ0 > 0. Then, for any ε > 0, there exists
C = C(ε, r) such that

log
ˆ

Br(p)

d(x, p)2ev dVg ≤ 1 + ε

32π

ˆ
Br(p)

|∇v|2 dVg + C

for every function v ∈ H1
0 (Br(p)) such that

sup
y∈Br(p); y �=p

´
Bτ0d(y,p)(y)

d(x, p)2ev dVg´
Br(p)

d(x, p)2ev dVg
< 1 − τ0.

In [4], the assumption in the last proposition was also expressed in terms of the angular
moments of the function d(x, p)2ev around the singular point p.

4 Weighted Barycentric Sets and Topological Join

In this section, we characterize the low-energy levels of Jρ in supercritical regimes. We show
first that the improved inequality in Proposition 3.1 leads naturally to consider barycentric set
of Σ and their topological join. Then, the scaling-invariant improved inequalities in Propositions
3.3–3.4 are used to provide further properties of low-energy functions.

4.1 General description of low energy levels

We now state a technical result that gives sufficient conditions to apply Proposition 3.1. Its
proof relies on a covering argument.
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Lemma 4.1 (see [36, 20]) Let f ∈ L1(Σ) be a non-negative function with ‖f‖L1(Σ) = 1,
and let m ∈ N be such that there exist ε > 0, s > 0 with

ˆ
⋃m

j=0 Bs(xj)

fdVg < 1 − ε, ∀{xj}m
j=0 ⊂ Σ.

Then there exist ε > 0, s > 0, not depending on f , and {xj}m
j=1 ⊂ Σ satisfying

ˆ
Bs(xj)

fdVg > ε, ∀ j ∈ {1, · · · ,m},

B2s(xi) ∩B2s(xj) = ∅, ∀ i, j ∈ {1, · · · ,m}, i �= j.

Applying this result to both h1(x)eu1 and h2(x)eu2 (once normalized in L1), jointly with
Proposition 3.1, we obtain the following concentration alternative for the exponential functions.

Lemma 4.2 Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l+ 1)π). Then, for any ε > 0,
s > 0, there exists L = L(ε, s) > 0 such that for any u ∈ J−L

ρ there are either some {xi}k
i=1 ⊂ Σ

such that ´
k⋃

i=1
Bs(xi)

h1eu1dVg

´
Σ h1eu1dVg

≥ 1 − ε

or some {yj}l
j=1 ⊂ Σ such that

´
l⋃

j=1
Bs(yj)

h2eu2dVg

´
Σ
h2eu2dVg

≥ 1 − ε.

An immediate consequence of the previous lemma is that at least one of the two hieui ’s
(once normalized in L1) has to be distributionally close respectively to the sets of k-barycenters
or l-barycenters of Σ.

Corollary 4.1 Suppose ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l+ 1)π). Then, for any ε

> 0, there exists L > 0 such that any u ∈ J−L
ρ verifies either

d
( h1eu1´

Σ h1eu1dVg
,Σk

)
< ε or d

( h2eu2´
Σ h2eu2dVg

,Σl

)
< ε.

We can now see the role of the topological join of the barycentric sets of Σ.

Proposition 4.1 Suppose ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4lπ, 4(l+ 1)π), and let Φλ be as in
(5.2). Then for L sufficiently large, there exists a natural continuous map

Ψ : J−L
ρ → Σk ∗ Σl

from low-energy levels of Jρ into the topological join of Σk and Σl.

By natural, we mean that we are able to construct a sort of right-inverse of this map (see
the next section for details).

Proof of Proposition 4.1 It was proved in [20–21] that if m ∈ N, then there exists a
retraction ψm from a small neighbourhood of Σm (with respect to the distance d defined after
(1.10)) onto Σm.
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By Corollary 4.1, we know that either ψk

(
h1e

u1´
Σ h1eu1dVg

)
or ψl

(
h2eu2´

Σ h2eu2dVg

)
is well defined (or

both), since either d
(

h1e
u1´

Σ h1eu1dVg
,Σk

)
< ε or d

(
h2e

u2´
Σ h2eu2dVg

,Σl

)
< ε (or both).

We then set

d1 = d
( h1eu1´

Σ
h1eu1dVg

,Σk

)
, d2 = d

( h2eu2´
Σ
h2eu2dVg

,Σl

)
,

and consider a function s̃ = s̃(d1, d2) with the expression

s̃(d1, d2) = f
( d1

d1 + d2

)
, (4.1)

where f is such that

f(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if z ∈

[
0,

1
4

]
,

2z − 1
2 , if z ∈

(1
4
,
3
4

)
,

1, if z ∈
[3
4
, 1

]
.

(4.2)

The desired map is then defined by

Ψ(u1, u2) =
(
ψk

( h1eu1´
Σ
h1eu1dVg

)
, ψl

( h2eu2´
Σ
h2eu2dVg

)
, s̃

)
, (4.3)

where we are using the notation in (1.9).

4.2 Surfaces with positive genus

In this section, we consider the case of positive genus, where the map from Proposition 4.1
will be specialized. We begin with an easy topological result, whose proof is evident from the
picture below.

Lemma 4.3 Let Σ be a compact surface with positive genus. Then, there exist two simple
closed curves γ1, γ2 ⊆ Σ satisfying

(1) γ1, γ2 do not intersect each other,
(2) there exist global retractions Πi : Σ → γi, i = 1, 2.

Figure 1 A compact surface with positive genus Σ.

Consider the global retractions Π1 : Σ → γ1 and Π2 : Σ → γ2 given in Lemma 4.3. Acting by
push-forward, any probability measure on Σ is sent by (Π1)∗ (resp., by (Π2)∗) into a probability
measure on γ1 (resp., on γ2). In this case, Proposition 4.1 has the following variant, that is
quite useful for our purposes.
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Proposition 4.2 Suppose ρ1 ∈ (4kπ, 4(k + 1)π), ρ2 ∈ (4lπ, 4(l + 1)π). Then for L suffi-
ciently large, there exists a natural continuous map

Ψ̃ : J−L
ρ → (γ1)k ∗ (γ2)l

from low-energy levels of Jρ into the topological join of (γ1)k and (γ2)l.

Remark 4.1 Since each γi is homeomorphic to S1, it follows from [9, Proposition 3.2] that
(γ1)k is homeomorphic to S2k−1 and (γ2)l to S2l−1 (in [27], it was proved previously a homotopy
equivalence). As it is well-known, the topological join Sm ∗ Sn is homeomorphic to Sm+n+1

(see, for example, [23]), and therefore (γ1)k ∗ (γ2)l is homeomorphic to the sphere S2k+2l−1.

4.3 Constraints from scaling-invariant inequalities

In this subsection, we make use of the scaling-invariant improved inequalities from the
previous section in order to find some constraints on the maps from low-energy levels into the
topological join of the barycentric sets.

We first consider the case (ρ1, ρ2) ∈ (4π, 8π). We perform a construction similar to (4.3),
but taking the scales of concentration of the ui’s (as defined in Proposition 3.2) into account.
Notice that the scale σ is only defined in a δ(R) (the choice of R will be made before Proposition
4.3) neighbourhood (with respect to the distance d). To extend this scale to arbitrary functions,
we set

σ̂1 = inf
{
σ(f) : d(f,Σ1) ≤ 1

2
δR

}
,

and then
σ(ui) = min

{
σ̂1, σ

( hieui´
Σ hieuidVg

)}
with the convention of choosing σ̂1 whenever σ

(
hie

ui´
Σ hieuidVg

)
is not well defined.

If f is as in (4.1), we define a modified map Ψ̂ as

Ψ̂(u1, u2) = (β(u1), β(u2), s̃(σ(u1), σ(u2))). (4.4)

By means of Proposition 3.3, we then deduce the following result, which imposes some constraint
on the map into the topological join Σ1 ∗ Σ1 � Σ ∗ Σ (the number ε in Proposition 3.3 will be
taken sufficiently small, and R in Proposition 3.2 taken as R(ε)).

Proposition 4.3 For (ρ1, ρ2) ∈ (4π, 8π), let Ψ̂ be as in (4.4). Then for L sufficiently large
Ψ̂ sends J−L

ρ into (Σ ∗ Σ) \ Ŝ, where

Ŝ :=
{

(x, x,
1
2
) : x ∈ Σ

}
⊆ Σ ∗ Σ.

When k > 1 in Theorem 1.4, for δ > 0 small, we define the set

Š =
{(
ν, δz,

1
2

)
∈ Σk ∗ Σ1 : ν =

k∑
i=1

tiδxi ; d(xi, xj) ≥ δ, ∀ i �= j,

δ ≤ ti ≤ 1 − δ, ∀ i; z ∈ supp (ν)
}
. (4.5)

The counterpart of the above proposition becomes the following one.
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Proposition 4.4 Let ρ1, ρ2 be as in Theorem 1.4, with k ≥ 2. Let Š be as in (4.5) and
let Y = (Σk ∗ Σ1) \ Š. Then, for L > 0 large there exists a continuous map Ψ̌ from the low
sublevels J−L

ρ into the set Y .

We limit ourselves to give just few ideas beyond this result, referring to [24, Section 3] for
the details. Under the assumptions of Theorem 1.4, when k ≥ 1, we have that for low values
of Jρ(u) either eu1 is concentrated near at most k points of Σ or eu2 is concentrated near a
single point. From the construction in the proof of Proposition 4.1, the join parameter is chosen
depending on the d-distances of the exponentials from Σk and Σ1 � Σ.

In a situation when both components are concentrated, we would also like to take into
account the relative scales of the two components, as it was done in (4.4). For u2, which is
concentrated near a single point, a natural scale to use is the function β from Proposition 3.2.
For u1, which might be concentrated near multiple points (recall that now k ≥ 2), there is a
way to localize this quantity near each peak, and to choose the one for the peak closest to that
of u2. The latter definition might sound ambiguous because of possible multiple choices, but
there is a rigorous way to define a scale of u1 near the peak of u2 by an averaging process.
The choice of the join parameter should then take also into account the ratios of the two scales
(absolute for u2 and local near the peak of u2 for u1).

Now, two competing effects might take place in determining the join parameter. On the
one hand, a small local scale of u1 relative to that of u2 would tend the join parameter
to approach 0. On the other hand, having d(eu1 ,Σk) not that small would make the join
parameter approach 1. This is precisely the situation in the assumption of Proposition 3.4. u1

has a peak sharper than that of u2 (and near the same point), but at the same time starts to
split (at a macroscopic level) into k + 1 regions (see Lemma 4.1). One can then combine (a
localized version of) Proposition 3.4 and Proposition 3.1 to get a lower bound on the energy.

5 Proofs of the Theorems

In this section, we sketch the proofs of Theorems 1.3–1.4. We first construct suitable test
functions modelled on (proper subsets of the) the topological joins, and then introduce vari-
ational min-max schemes in order to find solutions as saddle points of the Euler-Lagrange
energy.

5.1 Test functions

We first consider the case of positive genus. For ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l+
1)π), we wish to build a family of test functions modelled on the topological join (γ1)k ∗ (γ2)l,
the barycentric sets of the curves γ1, γ2 (see Lemma 4.3).

Let ζ = (σ1, σ2, r) ∈ (γ1)k ∗ (γ2)l, where

σ1 :=
k∑

i=1

tiδxi ∈ (γ1)k and σ2 :=
l∑

j=1

sjδyj ∈ (γ2)l.

Our goal is to define a test function modelled on any ζ ∈ (γ1)k ∗ (γ2)l, depending on a positive
parameter λ and belonging to low sub-levels of Jρ for large λ, that is, to find a map

Φλ : (γ1)k ∗ (γ2)l → J−L
ρ , L� 0.
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For λ > 0 large and r ∈ [0, 1], we define the parameters

λ1,r = (1 − r)λ, λ2,r = rλ. (5.1)

We introduce next Φλ(ζ) = ϕλ,ζ whose components are defined by

(
ϕ1(x)
ϕ2(x)

)
=

⎛⎜⎜⎜⎜⎜⎝
log

k∑
i=1

ti

( 1
1 + λ2

1,rd(x, xi)2
)2

− 1
2

log
l∑

j=1

sj

( 1
1 + λ2

2,rd(x, yj)2
)2

−1
2

log
k∑

i=1

ti

( 1
1 + λ2

1,rd(x, xi)2
)2

+ log
l∑

j=1

sj

( 1
1 + λ2

2,rd(x, yj)2
)2

⎞⎟⎟⎟⎟⎟⎠ . (5.2)

Notice that when r = 0 we have that λ2,r = 0, and therefore, as
l∑

j=1

sj = 1, the second terms

in both rows are constant, independent of σ2; a similar consideration holds when r = 1. These
arguments imply that the function Φλ is indeed well defined on (γ1)k ∗ (γ2)l (where equivalence
relations are used). We have then the following result.

Proposition 5.1 Suppose that ρ1 ∈ (4kπ, 4(k + 1)π) and ρ2 ∈ (4lπ, 4(l + 1)π) and that Σ
has positive genus. Then one has

Jρ(ϕλ,ζ) → −∞ as λ→ +∞ uniformly in ζ ∈ (γ1)k ∗ (γ2)l.

Moreover, if Ψ̃ is as in Proposition 4.2, the composition ζ �→ ϕλ,ζ �→ Ψ̃(ϕλ,ζ) is homotopic to
the identity on (γ1)k ∗ (γ2)l for λ large.

We will not prove this result (referring to [7] for details), but we will limit ourselves to
discuss some aspects of the construction and of the estimates. If σ1 is as above, it turns out
that

h1(x)eϕ1´
Σ
h1(x)eϕ1dVg

⇀ σ1 as λ1,r → +∞,

and similarly for ϕ2, replacing h1 by h2 and λ1,r by λ2,r. By the way Ψ̃ is constructed, the
latter fact allows to deduce the second statement in Proposition 5.1.

Concerning the estimate of Jρ(ϕλ,ζ), the most delicate term to understand in (1.3) is the
quadratic one in the gradient. Using direct algebraic inequalities, it is possible to prove that

|∇ϕ1|(x) � min
{
λ1,r,

4
d1,min(x)

}
near γ1; |∇ϕ1|(x) � min

{
λ1,r,

2
d2,min(x)

}
near γ2,

and that, vice versa

|∇ϕ2|(x) � min
{
λ2,r,

4
d2,min(x)

}
near γ2, |∇ϕ2|(x) � min

{
λ2,r,

2
d1,min(x)

}
near γ1.

In these formulas, we defined d1,min(x) = min
i=1,··· ,k

d(x, xi) and d2,min(x) = min
j=1,··· ,l

d(x, yj). More-

over it turns out that

∇ϕ2 � −1
2
∇ϕ1 near γ1, ∇ϕ1 � −1

2
∇ϕ2 near γ2.

These two ingredients allow to estimate the desired quantity
´
ΣQ(ϕ1, ϕ2)dVg . We also notice

that, near the peak points xi and yj, by the last formula the gradients of ϕ1, ϕ2 point in opposite
directions, and their proportionality turns out to be optimal for keeping Q as small as possible.
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We consider now the assumptions of Theorem 1.4, and for simplicity here we limit ourselves
to the case k = 1, referring to [24] when k ≥ 2.

When k = 1, we wish to parametrize the test functions on the set (Σ∗Σ)\Ŝ (see Proposition
4.3). Indeed, as the latter set is not compact, it is convenient to consider, for ν > 0 small, a
deformation retract of (Σ ∗ Σ) \ Ŝ onto the compact set Xν , corresponding to (Σ ∗ Σ) with a
ν-neighbourhood of Ŝ removed.

For ζ = (δx1 , δx2 , r) ∈ Xν , and λ > 0 define λ1,r, λ2,r as in (5.1), and then the test functions
ϕ̂λ,ζ := (ϕ̂1, ϕ̂2) whose expression is

ϕ̂1(y) = log
1 + λ−2

2,rd(x2, y)2

(1 + λ1,rd(x1, y)2)2
, ϕ̂2(y) = log

1 + λ1,rd(x1, y)2

(1 + λ2,rd(x2, y)2)2
. (5.3)

By construction, this map Φ̂λ is well defined on Xν , and moreover, when one of the parameters
ti is greater than δ these resemble the previous ones.

We have next the counterpart of Proposition 5.1.

Proposition 5.2 Suppose ρ1, ρ2 ∈ (4π, 8π). Then one has

Jρ(ϕλ,ζ) → −∞ as λ→ +∞ uniformly in ζ ∈ Xν .

Moreover, if Ψ̂ is as in Proposition 4.3, the composition ζ �→ ϕλ,ζ �→ Ψ̂(ϕλ,ζ) is homotopic to
the identity on Xν for λ large.

5.2 The min-max argument

We are now in position to introduce the variational scheme used to prove existence.

Proof of Theorem 1.3 By Proposition 5.1, given any L > 0, there exists λ so large that
Jρ(ϕλ,ζ) < −L for any ζ ∈ (γ1)k ∗ (γ2)l. We choose L so large that Proposition 4.2 applies. We
then have that the following composition:

(γ1)k ∗ (γ2)l
Φλ−→ J−L

ρ
Ψ̃−→ (γ1)k ∗ (γ2)l

is homotopic to the identity map. In this situation, it is said that the set J−L
ρ dominates

(γ1)k ∗ (γ2)l (see [23, p. 528]). Since (γ1)k ∗ (γ2)l is not contractible, this implies that

Φλ((γ1)k ∗ (γ2)l) is not contractible in J−L
ρ .

Moreover, we can take λ larger so that Φλ((γ1)k ∗ (γ2)l) ⊂ J−2L
ρ .

Define the topological cone with basis (γ1)k ∗ (γ2)l via the equivalence relation

C =
(γ1)k ∗ (γ2)l × [0, 1]
(γ1)k ∗ (γ2)l × {0} .

Notice that, since (γ1)k ∗ (γ2)l � S2k+2l−1, C is homeomorphic to a Euclidean ball of dimension
2k + 2l.

We now define the min-max value

m = inf
ξ∈Γ

max
u∈C

J(ξ(u)),
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where

Γ = {ξ : C → H1(Σ) ×H1(Σ) : ξ(ζ) = ϕλ,ζ ∀ ζ ∈ ∂C}. (5.4)

Observe that tΦλ : C → H1(Σ) ×H1(Σ) belongs to Γ, so this is a non-empty set. Moreover,

sup
ζ∈∂C

Jρ(ξ(ζ)) = sup
ζ∈(γ1)k∗(γ2)l

Jρ(ϕλ,ζ) ≤ −2L.

We now show that m ≥ −L. Indeed, ∂C is contractible in C, and hence in ξ(C) for any ξ ∈ Γ.
Since ∂C is not contractible in J−L

ρ , we conclude that ξ(C) is not contained in J−L
ρ . Being this

valid for any arbitrary ξ ∈ Γ, we conclude that m ≥ −L. The above argument applies when
slightly varying ρ, so we can then apply Proposition 2.1.

Proof of Theorem 1.4 We proceed next similarly to the previous case, restricting ourselves
to considering k = 1. Let X ν denote the topological cone over Xν , namely

X ν =
Xν × [0, 1]
Xν × {1} .

We choose L > 0 so large that Proposition 4.3 applies and then λ so large that, by Proposition
5.2, the supremum of Jρ on the image of Φ̂λ (see the notation after (5.3)) is less than −2L.

Consider then the class of maps

Γ = {η : X ν → H1(Σ) ×H1(Σ) : η is continuous and η(· × {0}) = ϕ(ϑ1,ϑ2) on Xν}. (5.5)

Similarly to the previous case, we have that the set Γ is non-empty and moreover, letting

α = inf
η∈Γ

sup
m∈Xν

Jρ(η(m)),

one has

α > −3
2
L.

Indeed, assuming by contradiction that α ≤ − 3
2L, there would be η ∈ Γ such that

sup
m∈Xν

Jρ(η(m)) ≤ − 6
5L. Then, letting Rν denote a retraction of (Σ ∗ Σ) \ Ŝ onto Xν , writ-

ing m = (ϑ, s) (ϑ ∈ Xν), the map

s �→ Rν ◦ Ψ̂ ◦ η(·, s)

would be a homotopy in Xν between Rν ◦ Ψ̂ ◦ ϕ(ϑ1,ϑ2) and a constant map.
This fact is indeed impossible since Xν is non-contractible. The proof of this fact is given

in the appendix of [38], while here we limit ourselves to describe the case when Σ is a sphere.
Indeed in this situation the set Σ∗Σ � S2∗S2 is homeomorphic to S5, while Xν is homeomorphic
to the product S5 with a two-dimensional sphere removed. This latter set has a non-vanishing
second homology group. Finally, we find that α > − 3

2L, which is the desired conclusion.
As before, the reasoning applies when slightly varying ρ, so we can then apply Proposition

2.1.
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