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Abstract The authors show that for any ε ∈]0, 1[, there exists an analytic outside zero
solution to a uniformly elliptic conformal Hessian equation in a ball B ⊂ R
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1 Introduction

In this paper, we study a class of fully nonlinear second-order elliptic equations of the form

F (D2u,Du, u) = 0 (1.1)

defined in a domain of R
n. Here D2u denotes the Hessian of the function u, with Du being

its gradient. We assume that F is a Lipschitz function defined on a domain in the space
Sym2(R

n)×R
n ×R, with Sym2(R

n) being the space of n× n symmetric matrices, and that F
satisfies the uniform ellipticity condition, i.e., there exists a constant C = C(F ) ≥ 1 (called an
ellipticity constant), such that

C−1‖N‖ ≤ F (M +N) − F (M) ≤ C‖N‖

for any non-negative definite symmetric matrix N . If F ∈ C1(Sym2(R
n)), then this condition

is equivalent to
1
C′ |ξ|2 ≤ Fuij ξiξj ≤ C′|ξ|2, ∀ξ ∈ R

n.

Here, uij denotes the partial derivative ∂2u
∂xi∂xj

. A function u is called a classical solution to
(1.1) if u ∈ C2(Ω) and u satisfies (1.1). Actually, any classical solution to (1.1) is a smooth
Cα+1-solution, provided that F is a smooth Cα function of its arguments.

More precisely, we are interested in conformal Hessian equations (see, e.g., [9, pp. 5–6]), i.e.,
those of the form

F [u] := f(λ(Au)) = ψ(u, x), (1.2)
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with f being a function on R
n invariant under permutations of the coordinates, and

λ(Au) = (λ1, · · · , λn)

being the eigenvalues of the conformal Hessian in R
n:

Au := uD2u− 1
2
|Du|2In, (1.3)

where n ≥ 3, u > 0. In fact, in our setting the function ψ(u, x) is identically 0.
If F has this form, it is invariant under conformal mappings T : R

n −→ R
n, i.e., transfor-

mations which preserve angles between curves. In contrast to the case n = 2, for n ≥ 3, any
conformal transformation of R

n is decomposed into a finitely many family of Möbius transfor-
mations, that is, mappings of the form

Tx = y +
kA(x− z)
|x− z|a

with x, z ∈ R
n, k ∈ R, a ∈ {0, 2} and an orthogonal matrix A. In other words, each T is

a composition of a translation, a homothety, a rotation and (may be) an inversion. If T is a
conformal mapping and v(x) = J

− 1
n

T u(Tx), where JT denotes the Jacobian determinant of T ,
then F [v] = F [u].

We are interested in the Dirichlet problem{
F (D2u,Du, u) = 0, u > 0 in Ω,
u = ϕ on ∂Ω,

(1.4)

where Ω ⊂ R
n is a bounded domain with a smooth boundary ∂Ω and ϕ is a continuous function

on ∂Ω.
Consider the problem of existence and regularity of solutions to the Dirichlet problem (1.4)

which has always a unique viscosity (weak) solution for fully nonlinear elliptic equations. The
viscosity solutions satisfy the equation (1.1) in a weak sense, and the best known interior
regularity (see [1–2, 8]) for them is C1+ε for some ε > 0. For more details, see [2–3]. Recall
that in [4], the authors constructed a homogeneous singular viscosity solution in 5 dimensions
for Hessian equations of order δ for any δ ∈]1, 2], that is, of any order compatible with the
mentioned interior regularity results. In fact, we proved in [4] the following result.

Theorem 1.1 The function

w5,δ(x) =
P5(x)
|x|δ , δ ∈ [1, 2[

is a viscosity solution to a uniformly elliptic Hessian equation F (D2w) = 0 with a smooth
functional F in a unit ball B ⊂ R

5 for the isoparametric Cartan cubic form

P5(x) = x3
1 +

3x1

2
(z2

1 + z2
2 − 2z2

3 − 2x2
2) +

3
√

3
2

(x2z
2
1 − x2z

2
2 + 2z1z2z3)

with x = (x1, x2, z1, z2, z3).

It proves the optimality of the interiorC1+ε-regularity of viscosity solutions to fully nonlinear
equations in 5 and more dimensions.
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In this paper, we show that the same singularity result remains true for conformal Hessian
equations.

Theorem 1.2 Let δ = 1 + ε ∈]1, 2[, ε ∈]0, 1[. The function

u(x) := c+ w5,δ(x) = c+
P5(x)
|x|δ = c+

P5(x)
|x|1+ε

is a viscosity solution to a uniformly elliptic conformal Hessian equation (1.1) in a unit ball
B ⊂ R

5 for a sufficiently large positive constant c (c = 106 is sufficient for δ = 3
2 , ε = 1

2 ).

The idea behind this choice of u(x) is that the conformal Hessian of u has the form cD2w

plus a term which does not depend on c, that is, the conformal Hessian is (relatively) very
close to cD2w for large enough c > 0 which permits to use a very precise information on the
spectrum of cD2u obtained in a previous paper (see [4]).

Notice also that the result does not hold for δ = 1, and we do not know how to construct a
non-classical C1,1-solution to a uniformly elliptic conformal Hessian equation.

The rest of the paper is organized as follows. In Section 2, we recall some necessary prelim-
inary results, and we prove our main result in Section 3. To simplify the notation, we suppose
that δ = 3

2 in Section 3. For any δ, the proof is along the same line, but more cumbersome.
However, we give also some indications for a general δ. In fact, all proofs but one (Lemma 3.4
which is more cumbersome) remain valid for any δ ∈]1, 2[. In our proofs of Sections 2–3, we
used MAPLE to verify some algebraic identities. However, these calculations of derivatives and
eigenvalues do not exceed human capacities and could be verified by a hardworking reader.

2 Preliminary Results

Notation 2.1 For a real symmetric matrix A, we denote by |A| the maximum absolute
value of its eigenvalues.

Let u be a strictly positive function on B1, u ∈ C1(B1) ∩ C2(B1 \ {0}). Define the map

Λ : B1 \ {0} −→ λ(S) ∈ R
n,

where λ(S) = {λi : λ1 ≥ · · · ≥ λn} ∈ R
n is the ordered set of eigenvalues of the conformal

Hessian
Au := uD2u− 1

2
|Du|2In .

Denote Σn the permutation group of {1, · · · , n}. For any σ ∈ Σn, we denote by Tσ the linear
transformation of R

n given by xi �→ xσ(i), i = 1, · · · , n.
Let a, b ∈ B1 and let μ1(a, b) ≥ · · · ≥ μn(a, b) be the eigenvalues of the difference Au(a) −

Au(b). The following ellipticity criterion can be proved similarly to Lemma 2.1 of [5]. However,
note that in the present setting, one needs the positivity of u which we suppose everywhere
below.

Lemma 2.1 Suppose that the family

{M(a, b, O) := Au(a) −O−1 ·Au(b) ·O : a, b ∈ B1, O ∈ O(n)} \ {0}
is uniformly hyperbolic, i.e., if {μ1(a, b, O) ≥ · · · ≥ μn(a, b, O)} is the ordered spectrum of
M(a, b, O) �= 0, then

C−1 ≤ −μ1(a, b, O)
μn(a, b, O)

≤ C, ∀a, b ∈ B1, ∀O ∈ O(n)
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for some constant C > 1. Then w is a viscosity solution in B1 to a uniformly elliptic conformal
Hessian equation (1).

We recall then some properties of the function w := w5,δ(x) = P5(x)
|x|δ , and of its Hessian D2w

proved in [4].

Lemma 2.2 There exists a 3-dimensional Lie subgroup GP of SO(5), such that P is
invarant under its natural action and the orbit GP S

1
1 of the circle

S
1
1 = {(cos(χ), 0, 0, sin(χ), 0) : χ ∈ R} ⊂ S

4
1

under this action is the whole S
4
1.

This result permits to parametrize the values of w5,δ(x) and the spectrum Spec(D2w5,δ(x))
by a single number p ∈ [0, 1], where x lies in the orbit of (p, 0, 0,

√
1 − p2, 0) ∈ S

1
1.

Lemma 2.3. (i) Let x ∈ S
4
1, and let x ∈ GP (p, 0, 0, r, 0) with p2 + r2 = 1.

Then w5,δ(x) = P (x)=p(3−p2)
2 and

Spec(D2w5,δ(x)) = {μ1,δ, μ2,δ, μ3,δ, μ4,δ, μ5,δ}
for

μ1,δ =
p(p2δ + 6 − 3δ)

2
,

μ2,δ =
p(p2δ − 3 − 3δ) + 3

√
12 − 3p2

2
,

μ3,δ =
p(p2δ − 3 − 3δ) − 3

√
12 − 3p2

2
,

μ4,δ = −pδ(6 − δ)(3 − p2) +
√
D(p, δ)

4
,

μ5,δ = −pδ(6 − δ)(3 − p2) − √
D(p, δ)

4
,

where

D(p, δ) := (6 − δ)(4 − δ)(2 − δ)δ(p2 − 3)2p2 + 144(δ − 2)2 ≥ 144(δ − 2)2 > 0.

(ii) Let λ1 ≥ λ2 ≥ · · · ≥ λ5 be the ordered eigenvalues of D2w5,δ(x). Then

λ1 = μ2,δ, λ5 = μ3,δ,

λ2 =

{
μ4,δ for p ∈ [−1, p0(δ)],
μ1,δ for p ∈ [p0(δ), 1],

λ3 =

⎧⎪⎨⎪⎩
μ5,δ for p ∈ [−1,−p0(δ)],
μ1,δ for p ∈ [−p0(δ), p0(δ)],
μ4,δ for p ∈ [p0(δ), 1],

λ4 =

{
μ1,δ for p ∈ [−1,−p0(δ)],
μ5,δ for p ∈ [−p0(δ), 1],

where

p0(δ) :=
3

1
4
√

2 − δ

(3 + 2δ − δ2)
1
4

=
3

1
4
√

1 − ε

(4 − ε2)
1
4
∈]0, 1[.
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Remark 2.1 Notice the oddness property of the spectrum:

λ1,δ(−p) = −λ5,δ(p), λ2,δ(−p) = −λ4,δ(p), λ3,δ(−p) = −λ3,δ(p).

Proposition 2.1 Let Nδ(x) = D2wδ(x), 1 ≤ δ < 2. Suppose that a �= b ∈ B1 \ {0}, and
let O ∈ O(5) be an orthogonal matrix s.t.

Nδ(a, b, O) := Nδ(a) − tO ·Nδ(b) ·O �= 0.

Denote Λ1 ≥ Λ2 ≥ · · · ≥ Λ5 the eigenvalues of the matrix Nδ(a, b, O). Then

1
C

≤ −Λ1

Λ5
≤ C

for C := C(δ) := 1000δ(4−δ)
3(2−δ)2 . For δ ∈ [1, 3

2 ], one can choose C = 1000.

As an immediate consequence we get the following result.

Corollary 2.1 In the notation of Proposition 2.1 we have

Λ1 ≥ |Nδ(a, b, O)|
C(δ)

, |Λ5| ≥ |Nδ(a, b, O)|
C(δ)

.

We need also the following classical Hermann Weyl’s result.

Lemma 2.4 Let A �= B be two real symmetric n × n matrices with the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn and λ′1 ≥ λ′2 ≥ · · · ≥ λ′n, respectively. Then for the eigenvalues
Λ1 ≥ Λ2 ≥ · · · ≥ Λn of the matrix A−B, we have

Λ1 ≥ max
i=1,··· ,n

(λi − λ′i), Λn ≤ min
i=1,··· ,n

(λi − λ′i).

3 Proofs

Let n = 5, u(x) = c+w5,δ(x). We begin with δ = 1 and show that the result is false in this
case. Indeed, let a = (1, 0, 0, 0, 0), b =

(
1
2 , 0, 0, 0, 0

)
, O = I5. Then

w(a) = 1, w(b) =
1
4
, |Du(a)|2 = |Dw(a)|2 = 9, |Du(b)|2 = |Dw(b)|2 =

9
4
,

D2u(a) = D2w(a) = D2u(b) = D2w(b),

and
Au(a) −Au(b) =

1
2
D2w(a) − 27

4
I5

which is negative since the spectrum of D2w(a) is (2, 2, 2,−7,−7). The reason is clearly that
D2w(a) for δ = 1 is homogeneous order 0 and does not depend on |a|.

Remark 3.1 More generally, the same argument applied to the points

a = (1, 0, 0, 0, 0), b′ = (λ, 0, 0, 0, 0)

for small enough λ > 0 shows that a solution of the form c+ v for a constant c and an order 2
homogeneous function v is impossible for a conformal Hessian equation.
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Suppose now that δ ∈]1, 2[. We formulate below the results which we need to prove the
main theorem for any δ ∈]1, 2[, but give detailed proofs only for δ = 3

2 (and c = 106). However,
we point out how to modify the arguments for a general δ ∈]1, 2[. First we spell out Lemma
2.3 for δ = 3

2 .

Lemma 3.1 (i) Let x ∈ S
4
1, and let x ∈ GP (p, 0, 0, r, 0) with p2 + r2 = 1. Then

Spec(D2u(x)) = Spec(D2w(x)) = {μ1, μ2, μ3, μ4, μ5}

for

μ1 =
3p(p2 + 1)

4
,

μ2 =
3p(p2 − 5) + 6

√
12 − 3p2

4
,

μ3 =
3p(p2 − 5) − 6

√
12 − 3p2

4
,

μ4 =
27p(p2 − 3) + 3

√
105p6 − 630p4 + 945p2 + 64

16
,

μ5 =
27p(p2 − 3) − 3

√
105p6 − 630p4 + 945p2 + 64

16
.

(ii) Let λ1 ≥ λ2 ≥ · · · ≥ λ5 be the ordered eigenvalues of Spec(D2u(x)) = Spec(D2w(x)).
Then

λ1 = μ2, λ5 = μ3,

λ2 =

{
μ4 for p ∈ [−1, p0],
μ1 for p ∈ [p0, 1],

λ3 =

⎧⎪⎨⎪⎩
μ5 for p ∈ [−1,−p0],
μ1 for p ∈ [−p0, p0],
μ4 for p ∈ [p0, 1],

λ4 =

{
μ1 for p ∈ [−1,−p0],
μ5 for p ∈ [−p0, 1],

where
p0 = 5−

1
4  0.6687403050.

We will need also the derivatives of the eigenvalues.

Lemma 3.2 Let di(p) := d(μi)
dp . Then

d1(p) =
3(3p2 + 1)

4
,

d2(p) = −3(5 − 3p2)
4

+
9p

2
√

12 − 3p2
,

d3(p) = −3(5 − 3p2)
4

− 9p

2
√

12 − 3p2
,
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d4(p) =
81(1 − p2)

16

( 35p(3 − p2)
3
√

105p6 − 630p4 + 945p2 + 64
− 1

)
,

d5(p) = −81(1 − p2)
16

( 35p(3 − p2)

3
√

105p6 − 630p4 + 945p2 + 64
+ 1

)
.

For the general δ ∈]1, 2[, we give only the two most complicated derivatives:

d4(p, δ) :=
dμ4,δ

dp
=

3δ(p2 − 1)(6 − δ)
4

+
A(p, δ)

4
√
D(p, δ)

,

d5(p, δ) :=
dμ5,δ

dp
=

3δ(p2 − 1)(6 − δ)
4

− A(p, δ)
4
√
D(p, δ)

,

where
A(p, δ) := 3δp(δ − 6)(δ + 2)(δ − 4)(p− 1)(p+ 1)(p2 − 3),

and D(p, δ) is defined in Lemma 2.3.

Simple calculus gives the following result.

Corollary 3.1 Define

Dδ := max{|di(p, δ)| : p ∈ [−1, 1], i = 1, · · · , 5}.

Then
Dδ <

d

2 − δ

for an absolute constant d > 0 (one can take d = 100 ). For δ = 3
2 , one has D = D 3

2
< 10.

Indeed, the only problem to bound the derivatives di(p, δ) is the expression
√
D(p, δ) ≥

12(2 − δ) in the denominator of d4(p, δ) and d5(p, δ), while the other derivatives are easily
bounded by an absolute constant (say, by 100).

Below we denote Di(p) := d(λi)
dp ; the relation of Di(p) and di(p) is clear from Lemma 3.1

(ii); for example, D1(p) = d2(p), D5(p) = d3(p).
The proof of Theorem 1.2 is based on some auxiliary lemmas which use the following nota-

tion. Let us take two points

a, b ∈ B1 \ {0} with |a| = s ≤ 1, |b| = t ≤ 1, and a matrix O ∈ O(5),

and let a′ := a
s ∈ GP (p, 0, 0, r, 0) ∈ S

4
1, b

′ := b
t ∈ GP (q, 0, 0, r′, 0) ∈ S

4
1 . Below we use the

following quantity K depending on the pair (a, b):

K := K(a, b) = K(p, q, s, t) = |s− t| + |p− q| > 0,

and work with the following matrices depending on (a, b) and on an orthogonal matrix O (and
also on δ):

M1 := M1(a, b, O) := D2u(a) −O−1D2u(b) ·O = Nδ(a, b, O),

M2 := M2(a, b, O) := w(a)D2u(a) −O−1w(b)D2u(b)O = w(a)D2w(a) −O−1w(b)D2w(b)O.

Lemma 3.3 There holds

||Du(a)|2 − |Du(b)|2| ≤ C1(δ)K
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with C1(δ) = c1(2 − δ) for an absolute constant c1. For δ = 3
2 , we can take C1 := C1(3

2 ) = 21.

Proof Notice first that |Du(a)|2 = |Dw(a)|2, |Du(b)|2 = |Dw(b)|2. Since P = P5(x) can be
represented as the generic traceless norm in the Jordan algebra Sym3(R), it verifies the eiconal
equation |DP (x)|2 = 9|x|4 (see, e.g., [7]). Then let δ = 3

2 . An easy calculation gives

|Du(a)|2 =
9s(16 − 3p2(p2 − 3)2)

16
, |Du(b)|2 =

9t(16 − 3q2(q2 − 3)2)
16

,

since P (a) = s3p(3−p2)
2 , P (b) = t3q(3−q2)

2 . Thus

||Du(a)|2 − |Du(b)|2| ≤
∣∣∣9s(16 − 3p2(p2 − 3)2)

16
− 9t(16 − 3p2(p2 − 3)2)

16

∣∣∣
+

∣∣∣9t(16 − 3p2(p2 − 3)2)
16

− 9t(16 − 3q2(q2 − 3)2)
16

∣∣∣
=

∣∣∣9(s− t)(16 − 3p2(p2 − 3)2)
16

∣∣∣
+

∣∣∣27t(p− q)(p+ q)((q2 − 3)2 − (p2 − 3)2)
16

∣∣∣
≤ |9(s− t)| +

∣∣∣81(p− q)
4

∣∣∣ ≤ 21K.

Same calculation gives for the general δ,

|Du(a)|2 = s4−2δ
(
9 + δ(δ − 6)

p2(p2 − 3)2

4

)
,

|Du(b)|2 = t4−2δ
(
9 + δ(δ − 6)

q2(q2 − 3)2

4

)
.

Repeating the argument, we obtain the conclusion.

Lemma 3.4 Let M := |M1| = |D2u(a) −O−1 ·D2u(b) ·O|. Then

M ≥ C2(δ)K

for a positive constant C2(δ) depending only on δ. For δ = 3
2 , we can take C2 := C2(3

2 ) = 1
8 .

Proof If one replaces a by a′ = a
s and b by b′′ = b

s the quantity M gets bigger and K gets
smaller. Therefore, we can suppose that |a| = s = 1. Then we have

D2u(a) −O−1 ·D2u(b) ·O = D2u(a) − O−1 ·D2u(b′) ·O√
t

.

By Lemma 2.4, we have

M ≥ max{λi(p) − λi(q)√
t

: i = 1, · · · , 5},

M ≥
∣∣∣min

{
λi(p) − λi(q)√

t
: i = 1, · · · , 5

}∣∣∣.
Let then δ = 3

2 . Suppose first p ≥ q. If q ≥ − 24
25 = −0.96, then

D1(p′) < −1
4

= −0.25, λ1(p) >
3
2
, ∀p′ ∈ [q, p]
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(by a simple calculation using the explicit formulas for D1, λ1). Therefore,

λ1(p) − λ1(q)√
t

= λ1(p) − λ1(q) + λ1(q) − λ1(q)√
t

≤ −p− q

4
− 3

2

( 1√
t
− 1

)
< −K

4
.

If q < −0.96 but p ≥ − 23
25 = −0.92, then

λ1(p) − λ1(q)√
t

= λ1(p) − λ1(q) + λ1(q) − λ1(q)√
t

≤ λ1(p) − λ1

(24
25

)
+ λ1(q) − λ1(q)√

t
− p+ 0.96

4
− 3

2

( 1√
t
− 1

)
< −p− q

8
− 3

2

( 1√
t
− 1

)
< −K

8
.

Then suppose that q < −0.96, p < −0.92. In this case, we have

d2(p′) >
5
2
, λ2(p′) < −3

2
, ∀p′ ∈ [q, p],

and thus

λ2(p) − λ2(q)√
t

= λ2(p) − λ2(q) + λ2(q) − λ2(q)√
t

≥ 5(p− q)
2

+
3
2

( 1√
t
− 1

)
≥ 3K

4
,

which finishes the proof for p ≥ q. The case q ≥ p is treated similarly (replace λ1 by λ5 and λ2

by λ4).
For the general δ ∈]1, 2[, the argument is similar, but more cumbersome. It shows that we

can take C2(δ) = c2(2 − δ)2 for an absolute constant c2 > 0 (say, c2 = 0.001).

Remark 3.2 Notice that Lemma 3.4 is false for δ = 1.

Lemma 3.5 Let

M ′ := |M2| = |w(a)D2u(a) −O−1w(b)D2u(b) ·O|.

Then
M ′ ≤ C3(δ)K

for a positive constant C3(δ) depending only on δ. For δ = 3
2 , we can take C3 := C3(3

2 ) = 10.

Proof Indeed for δ = 3
2 , let a′ := a

s , b
′ := b

s . Then by homogeneity,

|w(a)D2w(a) −O−1w(b)D2w(b) ·O| = |sD2w(a′) −O−1 · tD2w(b′) ·O|
≤ s|D2w(a′) −O−1 ·D2w(b′) ·O|

+ |s− t| · |O−1 ·D2w(b′)|
≤ max

p,i
{|Di(p)|}|p− q| + 7|s− t|

= max
p,i

{|di(p)|}|p− q| + 7|s− t| ≤ 10K.

For the general δ, the argument remains valid and permits to take

C3(δ) = Dδ =
100

2 − δ
.
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End of Proof of Theorem 1.2 We can now prove the uniform hyperbolicity ofM(a, b, O),
and thus the theorem. In fact, for δ = 3

2 , one can take C = 2000 in Lemma 2.1 for c = 106.
Indeed, we have

M(a, b, O) = Au(a) −O−1 · Au(b) ·O = cM1 +M2 − (|Du(a)|2 − |Du(b)|2)I5.
Therefore,

|μ5(a, b, O)| ≥ c|Λ5(M1)| − C1(δ)K − C3(δ)K ≥ cM

C(δ)
− (C1(δ) + C3(δ))K,

|μ1(a, b, O)| ≥ c|Λ5(M1)| − C1(δ)K − C3(δ)K ≥ cM

C(δ)
− (C1(δ) + C3(δ))K

and
|M(a, b, O)| ≤ cM +M ′ + ||Du(a)|2 − |Du(b)|2| ≤ cM + (C1(δ) + C3(δ))K.

Thus

max
{ |μ1(a, b, O)|
|μ5(a, b, O)| ,

|μ5(a, b, O)|
|μ1(a, b, O)|

}
≤ C(δ) · cM + (C1(δ) + C3(δ))K

cM − C(δ)(C1(δ) + C3(δ))K
,

since |M(a, b, O)| = max{|μ1(a, b, O)|, |μ5(a, b, O)|}. Therefore, for a sufficiently large c, we get

max
{ |μ1(a, b, O)|
|μ5(a, b, O)| ,

|μ5(a, b, O)|
|μ1(a, b, O)|

}
≤
C(δ)

(
1 +

C1(δ) + C3(δ)
cC2(δ)

)
1 − C(δ)(C1(δ) + C3(δ))

cC2(δ)

≤ 2C(δ) =: C,

since M ≥ C2(δ)K which finishes the proof. Taking for δ = 3
2 the values

C1

(3
2

)
= 21, C2

(3
2

)
=

1
8
, C3

(3
2

)
= 10

from Lemmas 3.2–3.5, choosing c := 106, and making an elementary calculation, we see that
C = 2C

(
3
2

)
= 2000 is admissible in this case.
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