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Abstract Negative index materials are artificial structures whose refractive index has neg-
ative value over some frequency range. These materials were first investigated theoretically
by Veselago in 1946 and were confirmed experimentally by Shelby, Smith, and Schultz in
2001. Mathematically, the study of negative index materials faces two difficulties. Firstly,
the equations describing the phenomenon have sign changing coefficients, hence the el-
lipticity and the compactness are lost in general. Secondly, the localized resonance, i.e.,
the field explodes in some regions and remains bounded in some others as the loss goes
to 0, might appear. In this survey, the author discusses recent mathematics progress in
understanding properties of negative index materials and their applications. The topics are
reflecting complementary media, superlensing and cloaking by using complementary me-
dia, cloaking a source via anomalous localized resonance, the limiting absorption principle
and the well-posedness of the Helmholtz equation with sign changing coefficients.
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1 Introduction

Negative index materials (NIMs for short) were first investigated theoretically by Veselago
[49]. The existence of such materials was confirmed by Shelby, Smith and Schultz [48]. The
study of NIMs attracted a lot attention in the scientific community thanks to their many
possible applications such as superlensing and cloaking by using complementary media, and
cloaking a source via anomalous localized resonance (ALR for short). Mathematically, the
study of NIMs faces two difficulties. Firstly, the equations describing the phenomena have sign
changing coefficients, hence the ellipticity and the compactness are lost in general. Secondly,
the localized resonance, i.e., the field explodes in some regions and remains bounded in some
others as the loss goes to 0, might appear.

In this survey, we present recent mathematics progress in understanding properties of NIMs
and their applications. The following five topics are discussed: reflecting complementary media,
superlensing by using complementary media, cloaking by using complementary media, cloaking
a source via ALR, and the limiting absorption principle and the well-posedness of the Helmholtz
equations with sign changing coefficients. The choice of these topics is related to the author’s
expertise for which he made contribution in [27–33] and in his joint work with Nguyen [34–35].
An interesting topic of NIMs, the construction of NIMs via various processes of homogeneization,
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is completely ignored; Concerning this aspect, the reader can consult [10, 12, 16, 20, 46] and
references therein.

The outline of the paper is as follows. Reflecting complementary media is discussed in Sec-
tion 2. To motivate this concept, we first illustrate peculiar properties of NIMs by presenting
an interesting result due to Nicorovici, McPhedran and Milton [42]. We then discuss its non-
trivial extension in [27] via the concept of reflecting complementary media using the reflecting
technique introduced there. Superlensing using complementary media is presented in Section 3.
Superlensing using complementary media was suggested by Veselago [49], Nicorovici, McPhe-
dran and Milton [42], Pendry [44–45], and Ramarkrishna and Pendry [47]. Concerning this
topic, we first present a class of superlensing schemes, which is a subclass of schemes given in
[28], and is inspired on one hand by the suggestion of superlenses in [42, 45, 47] and on another
hand by the study of reflecting complementary media in [27]. We then provide the proof of
superlensing for this class. The proof presented here uses the results in Section 2, and is sim-
pler than the first one given in [28]. Cloaking using complementary media is given in Section 4.
This was suggested by Lai et al. [21]. Concerning this topic, we present a cloaking scheme,
which is related to [21], and the first proof of cloaking by using complementary media from
[31], where the removing localized singularity technique was introduced to handle the localized
resonance. This technique was inspired by the influential work of Bethuel, Brezis and Hélein
on the Ginzburg Landau equation in [4]. Cloaking a source via ALR is discussed in Section 5.
This was discovered by Milton and Nicorovici [23] for a constant radial symmetric plasmonic
structure in the two dimensional quasi-static regime. Section 5, which is based on [30], is on
various properties on cloaking a source via ALR for doubly complementary media, a subclass
of reflecting complementary media introduced there. As an application of these properties, one
can construct a cloaking device to cloak a general source concentrate on a manifold of codi-
mension 1 in an arbitrary medium. The limiting absorption principle and the well-posedness
of the Helmholtz equations with sign changing coefficients are given in Section 6 and based
on [32]. Concerning this topic, we discuss various conditions on the coefficients for which the
limiting absorption principle holds and the equation is well-posed. The unique solution which
might not be in L2

loc
is obtained from the limiting absorption principle. The results presented

here extend largely known results by using the integral method, the pseudo differential operator
theory, and the T-coercivity approach. From Section 2 to Section 5, we mainly concentrate on
the quasi-static regime in a bounded domain, even thought the results in the finite frequency
regime are also mentioned. In the last section, we consider the finite frequency regime in the
whole space for which the uniqueness can be established without imposing further assumptions.

2 Reflecting Complementary Media

Let 0 < r1 < r2 < R, and f ∈ L2(BR) 1. Set r3 = r2
2

r1
. Assume that R > r3 and

supp f ∩ Br3 = Ø. Let uδ ∈ H1
0 (BR) (δ > 0) be the unique solution to the equation

div(εδ∇uδ) = f in BR, (2.1)

where, for δ ≥ 0, 2

εδ(x) =

{
−1 − iδ, if r1 < |x| < r2,

1, otherwise.
(2.2)

1Here and in what follows, for r > 0, Br denotes the ball centered at the origin and of radius r.
2In [42], εδ is given by −1 + iδ instead of −1 − iδ for r1 < |x| < r2; nevertheless, this point is not essential.
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Physically, the imaginary part of εδ is the loss of the medium. In [42], Nicorovici, McPhedran
and Milton obtained, by separation of variables, the following interesting result:

uδ → û for |x| > r3, (2.3)

where û ∈ H1
0 (BR) is the unique solution to the equation

Δû = f in BR.

The surprising fact of this result is that (2.3) holds for any f with supp f ∩ Br3 = Ø. From
(2.3), one might say that the region {r2 < |x| < r3} is canceled by the one in {r1 < |x| < r2}
and the total system is effectively equivalent to the free space; invisibility appeared. From (2.3),
one might as well say that the shell Br2 \ Br1 magnifies the core Br1

r3
r1

= r2
2

r2
1

times to make it
like Br3 , i.e., superlensing is revealed.

Under the condition (2.2), the property (2.3) does not hold in three dimensions, and its
natural extension for the finite frequency regime is not valid in two dimensions. In [27], we
extended the above results for quite general settings in two and three dimensions both in the
quasistatic and the finite frequency regimes by using a completely different approach. This is
given in the next two subsections. In the first one, we present an heuristic argument for (2.3),
and in the second one, we discuss new results inspired from the heuristic argument.

2.1 An heuristic argument for Nicorovici, McPhedran and Milton’s result

In this subsection, we assume that uδ → u0 ∈ H1(BR) as δ → 0, and present an heuristic
argument to obtain (2.3) from [27]. From the assumption, u0 ∈ H1

0 (BR) is a solution to the
equation

div(ε0∇u0) = f in BR.

Let F : Br2 \ {0} �→ R
2 \ Br2 be the Kelvin transform with respect to ∂Br2 , i.e., F (x) = r2

2x
|x|2 .

Define

u1,0(x) = u0 ◦ F−1(x) in R
2 \ Br2 .

From the transmission conditions on ∂Br2 , we have

u1,0 = u0 and ∂ru1,0

∣∣
r→r2+

= ∂ru0

∣∣
r→r2+

on ∂Br2 . (2.4)

Since F is a Kelvin transform and supp f ∩ Br3 = Ø, it follows that

div(ε̌0∇u1,0) = 0 in R
2 \ Br2 ,

where

ε̌0(x) =

{
1 in Br3 \ Br2 ,

−1 in R2 \ Br3 .

Note that F maps ∂Br1 into ∂Br3 . By the unique continuation principle, we have

u1,0 = u0 in Br3 \ Br2 . (2.5)
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Let G : R2 \Br3 �→ Br3 be the Kelvin transform with respect to ∂Br3 , i.e., G(x) = r2
3x

|x|2 . Define

u2,0(x) = u1,0 ◦ G−1(x) in Br3 .

Similar to (2.4), we have

u2,0 = u1,0 and ∂ru2,0

∣∣
r→r3−

= ∂ru1,0

∣∣
r→r3−

on ∂Br3 .

It follows from (2.5) that

u2,0 = u0 and ∂ru2,0

∣∣∣
r→r3−

= ∂ru0 on ∂Br3 . (2.6)

We also have

Δu2,0 = 0 in Br3 (2.7)

by the property of the Kelvin transforms and the definition of u2,0. Define

û(x) =

{
u0(x) if BR \ Br3 ,

u2,0(x) in Br3 .

Since Δu0 = f in BR \ Br3 , it follows from (2.6)–(2.7) that

Δû = f in BR.

Therefore, we obtain (2.3).

Remark 2.1 If supp f ∩ (Br3 \Br2) 	= Ø and supp f ∩Br2 = Ø, then, instead of (2.5), one
has

Δw1 = f in Br3 \ Br2 , w1 = ∂rw1 = 0 on ∂Br2 ,

where w1 = u1,0 − u0 in Br3 \ Br2 . In general, this Cauchy problem does not have a solution
in H1(Br3 \ Br2) or even in L2(Br3 \ Br2). In fact, one can easily see from the heuristic
argument that there are two Cauchy problems in this context, another one is related to (2.7).
The non-existence mentioned here is the origin of the concept of compatibility in Definition 2.2.

2.2 Reflecting complementary media

Motivated by the heuristic argument in Subsection 2.1 and the change of variables for the
Helmholtz equations (see Lemma 2.1 below), in [27], we introduced the concept of reflecting
complementary media and extended (2.3) to this class. Let k ≥ 0 and Ω1 ⊂⊂ Ω2 ⊂⊂ Ω be
smooth connected bounded open subsets of R

d (d = 2, 3). Let A be a measurable matrix-valued
function and Σ be a measurable real function defined in Ω. Here and in what follows, we always
assume that

1
Λ
|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2, ∀ ξ ∈ R

d (2.8)

for a.e. x ∈ Ω and for some 0 < Λ < +∞, and

0 < ess inf
Ω

Σ ≤ ess sup
Ω

Σ < +∞. (2.9)
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Set

sδ(x) =

⎧⎨⎩−1 − iδ, if x ∈ Ω2 \ Ω1,

1, otherwise.
(2.10)

In [27], we were interested in the behavior of the unique solution uδ ∈ H1
0 (Ω) to the equation

div(sδA∇uδ) + k2s0Σuδ = f in Ω (2.11)

as δ → 0, under the condition that (A, Σ) in Ω3 \ Ω2 is reflecting complementary to (−A,−Σ)
in Ω2 \ Ω1 for some Ω2 ⊂⊂ Ω3 ⊂⊂ Ω. To motivate the definition of reflecting complementary
media, let us recall the change of variables for the Helmholtz equation, which follows from [27,
Lemma 2].

Lemma 2.1 Let D1 ⊂⊂ D2 ⊂⊂ D3 be smooth bounded open subsets of Rd, T be a diffeo-
morphism from D2 \D1 onto D3 \D2 such that T (x) = x on ∂D2, a ∈ [L∞(D2 \D1)]d×d, and
σ ∈ L∞(D2 \ D1). Let u ∈ H1(D2 \ D1) and set v = u ◦ T−1. Then

div(a∇u) + σu = f in D2 \ D1

for some f ∈ L2(D2 \ D1) if and only if

div(T∗a∇v) + T∗σv = T∗f in D3 \ D2. (2.12)

Moreover,

v = u and T∗a∇v · ν = −a∇u · ν on ∂D2. (2.13)

Here and in what follows, we use the standard notations:

T∗a(y) =
DT (x)a(x)DT T (x)

J(x)
, T∗σ(y) =

σ(x)
J(x)

, T∗f(y) =
f(x)
J(x)

, (2.14)

where x = T−1(y) and J(x) = | detDT (x)|.
We are ready to give [27, Definition 1].

Definition 2.1 (Reflecting Complementary Media) Let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 be smooth con-
nected bounded open subsets of Rd. The media (A, Σ) in Ω3 \ Ω2 and (−A,−Σ) in Ω2 \ Ω1 are
said to be reflecting complementary, if there exists a diffeomorphism F : Ω2 \ Ω1 → Ω3 \ Ω2,
such that

F∗A(x) = A(x), F∗Σ(x) = Σ(x) for x ∈ Ω3 \ Ω2, (2.15)

F (x) = x on ∂Ω2, (2.16)

and the following two conditions hold:
(1) There exists a diffeomorphism extension of F , which is still denoted by F , from Ω2 \

{x1} → Rd \ Ω2 for some x1 ∈ Ω1.
(2) There exists a diffeomorphism G : Rd \ Ω3 → Ω3 \ {x1} such that 3

G(x) = x on ∂Ω3 (2.17)

and

G ◦ F : Ω1 → Ω3 is a diffeomorphism if one sets G ◦ F (x1) = x1. (2.18)
3In (2.16)–(2.17), F and G denote some diffeomorphism extensions of F and G in a neighborhood of ∂Ω2

and of ∂Ω3, respectively.
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Some comments on the definition are useful. If k = 0, then the condition on Σ is irrelevant
in Definition 2.1. Condition (2.15) implies that (A, Σ) in Ω3 \ Ω2 and (−A,−Σ) in Ω2 \ Ω1

are complementary in the “usual sense”4. The term “reflecting” in the definition comes from
(2.16) and the assumption Ω1 ⊂ Ω2 ⊂ Ω3. Conditions (2.15)–(2.16) imply that u0 (the solution
to δ = 0 if it exists) and u1,0 := u0 ◦ F satisfy the same equation in Ω3 \ Ω2 and the same
Cauchy data on ∂Ω2 by Lemma 2.1, hence the reflecting technique in Section 2.1 can be used.
Conditions (2.15)–(2.16) are the key assumptions. Conditions (1)–(2) are mild ones. Introduc-
ing G makes the analysis more accessible (see also Sections 3–5). In general, it is not easy to
verify the condition (2.15). However, given (A, Σ) in Ω3 \ Ω2, it is easy to obtain (−A,−Σ) in
Ω2 \Ω1, such that (2.15) holds by choosing an arbitrary diffeomorphism F : Ω2 \Ω1 �→ Ω3 \Ω2

and defining (A, Σ) in Ω2 \ Ω1 by (F−1
∗ A, F−1

∗ Σ). This process was repeatedly used in various
applications of NIMs (see Sections 3–5).

Remark 2.2 The definition given here simplifies lightly the one introduced in [27], and
suffices for various applications of NIMs discussed later.

Here and in what follows in this section, we confine ourselves to the quasi-static regime:
k = 0. The finite frequency regime (k > 0) can be proceeded similarly (see [27]). The following
result follows from [27, Theorems 1–2].

Theorem 2.1 Let d = 2, 3, δ > 0, f ∈ L2(Ω) and let uδ ∈ H1
0 (Ω) be the unique solution to

(2.11),

div(sδA∇uδ) = f in Ω.

Assume that A in Ω3 \Ω2 and −A in Ω2 \Ω1 are reflecting complementary and supp f ∩Ω3 = Ø
for some Ω2 ⊂⊂ Ω3 ⊂⊂ Ω. We have the following.

(a) Case 1 : f is compatible (see Definition 2.2). Then (uδ) converges weakly in H1(Ω) and
strongly in L2(Ω) to u0 ∈ H1

0 (Ω) the unique solution to

div(s0∇u0) = f in Ω (2.19)

as δ → 0. Moreover, u0 = û in Ω \ Ω3, where û ∈ H1
0 (Ω) is the unique solution to

div(Â∇û) = f in Ω, where Â :=

{
A in Ω \ Ω3,

G∗F∗A in Ω3.
(2.20)

(b) Case 2 : f is not compatible. We have

lim
δ→0

‖uδ‖H1(Ω) = +∞. (2.21)

In the statement of Theorem 2.1, we use the following definition [27, Definition 2].

Definition 2.2 (Compatibility Condition) Assume that A in Ω3 \ Ω2 and −A in Ω2 \ Ω1

are reflecting complementary. Then f ∈ L2(Ω) with supp f ∩Ω3 = Ø is said to be compatible if
and only if

∃V ∈ H1(Ω3 \ Ω2) satisfies

⎧⎪⎨⎪⎩
div(A∇V ) = 0 in Ω3 \ Ω2,

V = û
∣∣
ext

on ∂Ω3,

A∇V · ν = A∇û · ν∣∣
ext

on ∂Ω3,

(2.22)

where û is defined in (2.20).
4In fact, complementary media had not been defined precisely, the property mentioned here appeared in

various known examples.
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Here and in what follows, for a smooth bounded open subset D ⊂ Rd, on ∂D, ν denotes the
outward unit normal vector.

The proof of Theorem 2.1 is quite straightforward from the definition of reflecting comple-
mentary media and the heuristic argument presented in Subsection 2.1. We first assume that
u0 exists. As in Subsection 2.1, define u1,0 = u0 ◦ F in Rd \ Ω3 and u2,0 = u1,0 ◦ G in Ω3. Set

û :=

{
u0 in Ω \ Ω3,

u2,0 in Ω3.

Then u1,0 = u0 in Ω3 \Ω2 and û satisfies div(Â∇û) = f by Lemma 2.1. It follows that V = u0

in Ω3 \ Ω2. Therefore, the compatibility condition holds, and u0 is uniquely given by

u0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

û in Ω \ Ω3,

V in Ω3 \ Ω2,

V ◦ F in Ω2 \ Ω1,

û ◦ G ◦ F in Ω1.

(2.23)

Assume that the compatibility condition holds. Define u0 by (2.23). One can verify that
u0 ∈ H1

0 (Ω) is a solution to (2.19) (see [27, Subsection 3.2.2] for the details). To prove that
uδ → u0 weakly as δ → 0 in this case, we proceed as follows. Define vδ = uδ − u0 in Ω. Then

div(sδA∇vδ) = div((sδ − s0)A∇u0) in Ω.

Multiplying the equation by vδ, the conjugate of vδ, considering the real part and the imaginary
part, we have (see [27, Lemma 1])

‖vδ‖H1(Ω) ≤ Cδ−1‖ div((sδ − s0)A∇u0)‖H−1(Ω) ≤ C

for some positive constant C independent of δ. Hence (uδ) is bounded in H1(Ω). Since u0 is
unique, a standard compactness argument yields that uδ → u0 weakly in H1(Ω) and strongly
in L2(Ω).

It remains to prove Case 2. The proof is based on a contradiction argument. Assume that
(2.21) does not hold. It follows that uδn → u0 weakly in H1(Ω) for some (δn) → 0+. Then
V = u0 in Ω3 \ Ω2 and f is compatible. We have a contradiction.

The compatibility condition is not easy to verify in general. Nevertheless, we have [27,
Corollary 2].

Proposition 2.1 Let d = 2, 3, δ > 0, f ∈ L2(Ω). Assume that A in Ω3 \ Ω2 and −A in
Ω2 \ Ω1 are reflecting complementary for some Ω2 ⊂⊂ Ω3 ⊂⊂ Ω, and G∗F∗A = A in Ω3 \ Ω2.
Then f ∈ L2(Ω) with supp f ∩ Ω3 = Ø is compatible.

Proposition 2.1 is a consequence of the fact V = û in Ω3 \ Ω2 since Â = A in Ω3 \ Ω2.
Its applications on superlensing and cloaking a source via ALR are given in Sections 3 and 5
respectively. It is clear that the setting of Nicorovici, McPhedran and Milton satisfies Proposi-
tion 2.1 with Ωj = Bj (j = 1, 2, 3), and F and G are the Kelvin transforms used in the heuristic
argument in Subsection 2.1.
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3 Superlensing Using Complementary Media

The construction of a superlens using NIMs was first suggested by Veselago [49] for a slab
lens. The superlensing property of the slab lens was also studied by Veselago via the ray
theory in [49]. Later, the study of cylindrical lenses in the two dimensional quasistatic regime,
the Veselago slab, cylindrical lenses and spherical lenses in the finite frequency regime were
considered by Nicorovici, McPhedran and Milton in [42], Pendry in [44–45], and Pendry and
Ramakrishna in [47], respectively for some constant isotropic objects.

Let us describe how to magnify m-times the region Br0 , for some r0 > 0 and m > 1, in the
quasistatic regime in which the medium is characterized by a matrix-valued function a using
complementary media. This has roots from [28]. The assumption on the geometry of the object
by all means imposes no restriction, since any region can be placed in such a ball provided
that the radius and the origin are appropriately chosen. The idea suggested in [42, 45, 47] is
to put a lens in Br2 \ Br0 whose medium is characterized by matrix −b with r2

2
r2
0

= m. Here

b = I, the identity matrix, in two dimensions and b =
( r2

2
|x|2

)
I in three dimensions. Our class of

superlenses is slightly different from the suggestion mentioned above and motivated from the
reflecting complementary media in Section 2. Let α > 1 and define F : Br2 \ {0} → Rd \Br2 by

F (x) =
rα
2 x

|x|α . (3.1)

−F−1
*

I

r
2

r
1

r
0

− −

−

Figure 1 The lensing device contains two parts. The first part −F−1
∗ I (the red region)

in Br2 \ Br1 is the complement of I in Br3 \ Br2 . The second part (the green region) is

md−2I in Br1 \ Br0 . The magnified region is Br0 .

Our lens contains two parts. The first one is given by

−F−1
∗ I in Br2 \ Br1 , (3.2)

and the second one is

md−2I in Br1 \ Br0 . (3.3)
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Here r1 and r2 are such that

mr0 = r2 and
r3

r1
= m, where r3 :=

rα
2

rα−1
1

. (3.4)

With the loss, the medium is characterized by sδA,5 where

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F−1
∗ I in Br2 \ Br1 ,

md−2I in Br1 \ Br0 ,

a in Br0 ,

I otherwise

and sδ =

{
−1 − iδ in Br2 \ Br1 ,

1 otherwise.
(3.5)

Let Ω be a smooth open subset of Rd (d = 2, 3) such that Br3 ⊂ Ω. Given f ∈ L2(Ω), let
uδ, û ∈ H1

0 (Ω) be respectively the unique solution to

div(sδA∇uδ) = f in Ω (3.6)

and

div(Â∇û) = f in Ω, where Â =

⎧⎨⎩m2−da
( x

m

)
in Bmr0 ,

I otherwise.
(3.7)

We have the following theorem.

Theorem 3.1 Let d = 2, 3, f ∈ L2(Ω) with supp f ⊂ Ω \ Br3 . We have

uδ → û weakly in H1(Ω \ Br3) as δ → 0. (3.8)

For an observer outside Br3 , the object a in Br0 would act like

m2−da
( x

m

)
in Bmr0

by (3.8). Then one has a superlens whose magnification is m.
We next give some comments on the lens construction and explain how to obtain Theorem 3.1

from Theorem 2.1 and Proposition 2.1. The first part of the lens with α = 2 is the same as
the known superlens constructions mentioned. Given r1, one requires that r3

r1
= m since a

superlens of m times magnification is considered as in [42, 45, 47] and the comments for (2.3)

(see also (3.7) and Theorem 3.1). Let G : Rd \ Br3 → Br3 \ {0} be defined by G(x) = rβ
3 x

|x|β ,
where β = α

α−1 . Then G ◦ F : Br1 → Br3 satisfies

G ◦ F (x) = mx in Br1 . (3.9)

This implies, since A = md−2I in Br1 \ Br0 and r2 = mr0,

G∗F∗A = I in Br3 \ Br2 . (3.10)

This is the place where the second part of the construction plays its role. From (3.9)–(3.10),
one has

F∗A = G∗F∗A = A = I in Br3 \ Br2 .

5In [28], sδ = −1 + iδ in Br2 \ Br1 ; nevertheless this point is not essential.
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Theorem 3.1 is now a direct consequence of Theorem 2.1 and Proposition 2.1.
A more delicate analysis implies that (3.8) holds for every f ∈ L2(Ω) with supp f ∩Br2 = Ø

(see Theorems 5.1 and 5.3). Theorem 3.1 can be easily extended for the finite frequency regime
using the concept of reflecting complementary media since Theorem 2.1 and Proposition 2.1
also hold in this regime (see [28] for the original proof).

Remark 3.1 In [28], the condition mr0 = r2 in (3.4) is replaced by mr0 ≤ √
r2r3. Taking

the advantage of (3.10), the proof of Theorem 3.1 follows easily from Section 2. The first
original proof of superlensing in the acoustic setting was given in [28] in both quasistatic and
finite frequency regimes. It is based on the removing singularity technique introduced in [28, 31].
The proof of superlensing in the electromagnetic setting is given in [33] in the same spirit of
the proof given here. The removing singularity technique is discussed in the next two sections
where cloaking using complementary media and cloaking a source via ALR are dealt with.

This section ends with the following question on the necessity of the second layer in the lens
construction.

Open Question 3.1 Does Theorem 3.1 hold where A is given in (3.5) with r1 = r0?

4 Cloaking Using Complementary Media

Cloaking using complementary media was suggested by Lai et al. in [21]. The idea is to
cancel the effect of the object by its complementary medium. The study of this problem faces
two difficulties. Firstly, this problem is unstable since the equations describing the phenomenon
have sign changing coefficients, hence the ellipticity and the compactness are lost in general.
Secondly, the localized resonance might appear.

Let us describe how to cloak the region B2r2 \Br2 for some r2 > 0 in the quasistatic regime in
which the medium is characterized by a matrix a using complementary media. The assumption
on the cloaked region by all means imposes no restriction, since any bounded set is a subset
of such a region provided that the radius and the origin are appropriately chosen. The idea
suggested by Lai et al. in [21] (in two dimensions) is to construct a complementary medium
in Br2 \ Br1 for some 0 < r1 < r2. Inspired by their idea, in [28], we constructed cloaking
devices in two and three dimensions and gave the first proof of cloaking using complementary
media. Our cloak consists of two parts. The first one, in Br2 \ Br1 , makes use of reflecting
complementary media to cancel the effect of the cloaked region, and the second one (the new
one), in Br1 , is to fill the space which “disappears” from the cancellation by the homogeneous
medium. For the first part, we modified the strategy in [21]. Instead of B2r2 \Br2 , we consider
Br3 \ Br2 for some r3 > 0 as the cloaked region in which the medium is given by the matrix

b =

{
a in B2r2 \ Br2 ,

I in Br3 \ B2r2 .

We will assume that

b ∈ C1(Br3 \ Br2). (4.1)

The complementary medium in Br2 \ Br1 is given by

−(F−1)∗b,



Negative Index Materials and Their Applications 611

where F : Br2 \Br1 → Br3 \Br2 is the Kelvin transform with respect to ∂Br2 . Concerning the
second part, the medium in Br1 is given by(r2

3

r2
2

)d−2

I. (4.2)

The reason for this choice is the condition

G∗F∗A = I in Br3 , (4.3)

where G is the Kelvin transform with respect to ∂Br3 since the homogeneous medium is filled
(see Theorem 2.1 and (2.20)). The cloaking scheme is illustrated in Figure 2.

I

−F−1
*

b

a

r
3

r
2

r
1

− −

Figure 2 The cloaking device contains two parts. The first part −F−1
∗ b (the red and

orange regions) in Br2 \Br1 is the complement of b which consists of a (grey and blue grey

regions) in B2r2 \ Br2 and I in Br3 \ Br2 . The second part (the blue region)
( r2

3
r2
2

)d−2
I is

to fill the space which disappears by the cancelation.

In two dimensions, the medium in Br1 is I, as used in [21], while it is not I in three
dimensions. With the loss, the medium is characterized by sδA where

A =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b in Br3 \ Br2 ,

F−1∗ b in Br2 \ Br1 ,(r2
3

r2
2

)d−2

I in Br1 ,

I otherwise

and sδ =

{
−1 − iδ in Br2 \ Br1 ,

1 otherwise.
(4.4)

Given f ∈ L2(Ω), let uδ, û ∈ H1
0 (Ω) be respectively the unique solution to

div(sδA∇uδ) = f in Ω (4.5)

and

Δû = f in Ω. (4.6)

We established [31, Theorem 1].6

6In [31], sδ = −1 + iδ in Br2 \ Br1 ; nevertheless this point is not essential.
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Theorem 4.1 Let d = 2, 3, f ∈ L2(Ω) with supp f ⊂ Ω\Br3 . There exists 
 > 0, depending
only on r2, and the ellipticity and the Lipschitz constants of b such that if r3 > 
r2 then

uδ → û weakly in H1(Ω \ Br3) as δ → 0. (4.7)

For an observer outside Br3 , the medium in Br3 looks as the homogeneous one by (4.7).
Then one has cloaking.

Proof We only consider the two dimensional case; the proof in three dimensions follows
similarly. Multiplying (3.6) by uδ, integrating in Ω, considering first the imaginary part and
then the real part, we have

‖uδ‖2
H1(Ω) ≤

C

δ
‖uδ‖L2(Ω\Br3 )‖f‖L2. (4.8)

Here and in what follows in the proof, C denotes a positive constant independent of δ and f .
As in Section 2, define u1,δ ∈ H1

loc
(R2 \ Br2) and u2,δ ∈ H1(Br3) as follows:

u1,δ = uδ ◦ F−1 in R
2 \ Br2 and u2,δ = u1,δ ◦ G−1 = uδ ◦ F−1 ◦ G−1 in Br3 .

Applying Lemma 2.1, we have

div(b∇uδ) = div(b∇u1,δ) = 0 in Br3 \ Br2 .

Fix 1
2 < α < 1. Applying [31, Lemma 1.1] (a three spheres inequality), we have, for 
 large

enough,

N(u1,δ − uδ, 3r2)2 ≤ CN(u1,δ − uδ, r2)2αN(u1,δ − uδ, r3)2(1−α), (4.9)

where

N(v, r) := ‖v‖
H

1
2 (∂Br)

+ ‖∂rv‖
H− 1

2 (∂Br)
. (4.10)

This implies

N(u1,δ − uδ, 3r2)2 ≤ Cδ2α−1‖uδ‖L2(Ω\Br3 )‖f‖L2. (4.11)

Applying Lemma 2.1 again, we obtain

Δuδ = Δu1,δ = Δu2,δ = 0 in Br3 \ B3r2 , (4.12)

u2,δ = u1,δ and ∂ru2,δ = (1 + iδ)∂ru1,δ|int on ∂Br3 . (4.13)

From (4.12), one can represent u1,δ, and u2,δ of the forms

u1,δ = c0 + d0 ln r +
∑
�≥1

∑
±

(c�,±r� + d�,±r−�)e±i�θ in Br3 \ B3r2 , (4.14)

u2,δ = e0 + f0 ln r +
∑
�≥1

∑
±

(e�,±r� + f�,±r−�)e±i�θ in Br3 \ B3r2 (4.15)

for c0, d0, e0, f0, c�,±, d�,±, e�,±, f�,± ∈ C (
 ≥ 1). Since, by (4.8),

‖u1,δ‖2

H
1
2 (∂B3r2 )

+ ‖∂ru1,δ‖2

H− 1
2 (∂B3r2)

+ ‖u1,δ‖2

H
1
2 (∂Br3)

+ ‖∂ru1,δ‖2

H− 1
2 (∂Br3)

≤ C

δ
‖f‖L2‖uδ‖L2(Ω\Br3 ),
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we obtain

|c0|2 + |d0|2 +
∑
�≥1

∑
±



(|c�,±|2r2�

3 + |d�,±|2(3r2)−2�
) ≤ C

δ
‖f‖L2‖uδ‖L2(Ω\Br3 ). (4.16)

From (4.13)–(4.15), a straightforward computation gives

{
e0 = c0 − iδd0 ln r3,

f0 = (1 + iδ)d0

and

⎧⎪⎪⎨⎪⎪⎩
e�,± =

2 + iδ
2

c�,± − iδ
2

d�,±r−2�
3 ,

f�,± = − iδ
2

c�,±r2�
3 +

2 + iδ
2

d�,±

for 
 ≥ 1. (4.17)

A combination of (4.14)–(4.15) and (4.17) yields, in Br3 \ B3r2 ,

u1,δ − u2,δ = iδd0(ln r3 − ln r) − iδ
2

∑
�≥1

∑
±

(c�,± − d�,±r−2�
3 )r�e±i�θ

+
iδ
2

∑
�≥1

∑
±

(c�,±r2�
3 − d�,±)r−�e±i�θ. (4.18)

Set

ûδ =

⎧⎪⎨⎪⎩
uδ in x ∈ Ω \ Br3 ,

uδ − ûδ,rem Br3 \ B3r2 ,

u2,δ in x ∈ B3r2 ,

(4.19)

where

ûδ,rem = iδd0(ln r2 − ln r3) +
iδ
2

∑
�≥1

∑
±

(c�,±r2�
3 − d�,±)r−�e±i�θ for x ∈ Br3 \ Br2 . (4.20)

It is clear from the definition of ûδ that ûδ ∈ H1(Ω \ (∂Br3 ∪ ∂Br1)),

div(Â∇ûδ) = f in Ω \ (∂Br3 ∪ ∂B3r2) and ûδ = 0 on ∂Ω. (4.21)

We claim that

‖[ûδ]‖2

H
1
2 (∂Br2)

+
∥∥∥[

Â∇ûδ · x

|x|
]∥∥∥2

H− 1
2 (∂Br2 )

‖[ûδ]‖2

H
1
2 (∂Br3 )

+
∥∥∥[

Â∇ûδ · x

|x|
]∥∥∥2

H− 1
2 (∂Br3 )

≤ Cδ‖ûδ‖L2(Ω\Br3 )‖f‖L2. (4.22)

Here and in what follows [·] denotes the jump of a quantity across the boundary. Admitting
this, we derive from (4.21) that

‖ûδ‖H1(Ω\(∂Br3∪∂B3r2)) ≤ C‖f‖L2,

as δ is small. Without loss of generality, one may assume that ûδ → u weakly in H1(Ω \
(∂Br3 ∪ ∂Br1)). It is clear that u ∈ H1

0 (Ω) and div(Â∇u) = f in Ω and hence u = û. Since the
limit is unique, the convergence holds for the whole family (ûδ). The conclusion follows in two
dimensions.

It remains to prove (4.22). In fact, it is a consequence of (4.8), (4.11), (4.16), and the
definition of ûδ. The proof is complete.
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Remark 4.1 In the proof, we remove ûδ,rem, the singular part of ûδ, from ûδ in Br3 \ Br2 .
The function ûδ,rem becomes more and more singular as r is smaller and smaller and behaves
smoothly for large r. This is the idea of the removing localized singularity technique which was
introduced in [28, 31]. The removing term ûδ,rem is in the same spirit with the removing term
of “infinite” energy in the theory of Ginzburg-Landau equations proposed by Bethuel, Brezis,
and Hélein in [4] and was inspired by their work. In [4], after removing the infinite energy term,
one obtained the renormalized energy introduced there. Here, after removing the bad term,
the gluing function ûδ satisfies a standard elliptic equation which characterizes the reflecting
medium.

Remark 4.2 Theorem 4.1 hods if A in Br2 is chosen such that F∗A = b in Br3 \ Br2 and
G∗F∗A = I in Br3 for some F and G as in Definition 2.1 with Ωj = Brj for j = 1, 2, 3. This
means

A =

{
F−1∗ b in Br2 \ Br1 ,

F−1
∗ G−1 ∗ I in Br1

(4.23)

for such a pair (F, G). In particular, Theorem 4.1 hods if A in Br2 is given in (4.4) in which
F (x) := rα

2
x
|x|

α for some α > 1 (see also Section 3).

Remark 4.3 The method presented here was extended for the Helmholtz equation in [38]
in joint work with Nguyen. To this end, we established new type of three spheres inequalities
for the Helmholtz equations in which no condition of the smallness of radii is imposed.

We have the following question on the necessity of the layer I in Br3 \ B2r2 .

Open Question 4.1 Does Theorem 4.1 hold where A is given in (3.5) with r3 = 2r2?

Remark 4.4 Cloaking can also be achieved via transformation optics or changes of vari-
ables. Resonance might also appear in this context (see [19, 25–26, 39]). It is shown in [26] that
in the resonance case cloaking might not be achieved and the field inside the cloaked region
can depend on the field outside. Cloaking can also be achieved in the time regime via change
of variables (see [40–41]).

5 Cloaking a Source via Anomalous Localized Resonance

Cloaking a source via ALR was discovered by Milton and Nicorovici in [23] for constant
radial symmetric plasmonic structures in the two dimensional quasi-static regime. Their work
has its roots from [42] (see also [22]) where the localized resonance was observed and established
for such a setting. More precisely, in [23], the authors studied the setting (2.1)–(2.2). They
showed that a dipole is not seen by an observer away from the core-shell structure hence it is

cloaked, if and only if the dipole is within distance r∗ :=
√

r3
2

r1
of the shell; moreover, the power

Eδ(uδ) of the field uδ, which is roughly speaking δ‖uδ‖2
H1 , blows up. Two key features of this

phenomenon are as follows:
(1) The localized resonance, i.e., the fields blow up in some regions and remain bounded in

some others as the loss goes to 0.
(2) The connection between the localized resonance and the blow up of the power as the

loss goes to 0.
Their work has attracted many investigations, see [2–3, 11–14, 18, 24, 37] in which special

structures were considered due to the use of the separation of variables or the blow up of the
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power was investigated. An important class of NIMs in which the localized resonance might
appear is the class of reflecting complementary media in Section 2 (see also Sections 3–4).
Nevertheless, the complementary property is not enough to ensure that cloaking a source via
ALR takes place, and there is no connection between the blow up of the power and the localized
resonance in general as discussed in [37] (joint work with Nguyen).

In [29–30], we investigated CALR for a source for a subclass of complementary media called
the class of doubly complementary media for a core-shell structure. Let d = 2, 3, and Ω be
a smooth open bounded subset of Rd, and let 0 < r1 < r2 be such that Br2 ⊂⊂ Ω. Set, for
δ ≥ 0,7

sδ :=

{
−1 − iδ in Br2 \ Br1 ,

1 otherwise.
(5.1)

Let A be a symmetric uniformly elliptic matrix-valued function defined in Ω. The definition of
doubly complementary media [30, Definition 1.2] is as follows.

Definition 5.1 The medium s0A is said to be doubly complementary if for some r3 > 0
with Br3 ⊂⊂ Ω, A in Br3 \ Br2 and −A in Br2 \ Br1 are reflecting complementary, and

F∗A = G∗F∗A = A in Br3 \ Br2 (5.2)

for some F and G coming from Definition 2.1 with Ωj = Brj for j = 1, 2, 3.

Remark 5.1 Roughly speaking, the shell Br2 \ Br1 is not only reflecting complementary
to a part of the matrix but also to a part of the core. Indeed, −A in Br2 \ Br1 is not only
complementary to A in Br3 \ Br2 but also to A in (G ◦ F )−1(Br3 \ Br2) (a subset of Br1) (see
Figure 3).

−

−  o −  o 

Figure 3 s0A is doubly complementary: −A in Br2 \Br1 (the red region) is complementary

to A = F∗A in Br3 \ Br2 (the grey region) and A = K∗A with K = F−1 ◦ G−1 ◦ F in

K(Br2 \ Br1) (the blue grey region).

7In [30], sδ = −1 + iδ in Br2 \ Br1 ; nevertheless this point is not essential.
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Let f ∈ L2(Ω) with supp f ∩ Br2 = Ø and let uδ ∈ H1
0 (Ω) be the unique solution to

div(sδA∇uδ) = f in Ω. (5.3)

The power Eδ(uδ) is defined by (see, e.g., [23])

Eδ(uδ) = δ

∫
Br2\Br1

|∇uδ|2.

Using the fact that uδ = 0 on ∂Ω, one has 8∫
Ω

(|∇uδ|2 + |uδ|2) ≤ C
( ∫

Br2\Br1

|∇uδ|2 + ‖f‖2
L2

)
(5.4)

for some positive constants C independent of f and δ ∈ (0, 1). Let vδ ∈ H1
0 (Ω) be the unique

solution to

div(sδA∇vδ) = fδ in Ω. (5.5)

Here fδ = cδf and cδ is the normalization constant such that

δ

∫
Br2\Br1

|∇vδ|2 = 1. (5.6)

In what follows in this section, we assume that

A ∈ [C3(Br3 \ Br2)]
d×d. (5.7)

The equivalence between the blow up of the power and cloaking a source via ALR for doubly
complementary media can be derived from the following result [30, Proposition 4.1].

Theorem 5.1 Let d = 2, 3, let (δn) → 0, (gn) ⊂ L2(Ω) with supp gn ⊂ Ω \ Br2 , and let
vn ∈ H1

0 (Ω) be the unique solution to

div(sδnA∇vn) = gn in Ω.

Assume that s0A is doubly complementary, gn → g weakly in L2(Ω) for some g ∈ L2(Ω), and

lim
n→∞ δn‖∇vn‖L2(Br2\Br1 ) = 0. (5.8)

Then vn → v̂ weakly in H1(Ω \ Br3) where v̂ ∈ H1
0 (Ω) is the unique solution to

div(Â∇v̂) = g in Ω.

Here, as usual,

Â :=

{
A, if x ∈ Ω \ Br3 ,

G∗F∗A, if x ∈ Br3 .

The equivalence between the blow up of the power and the cloaking a source via ALR can be
obtained from Theorem 5.1 as follows. Suppose that the power blows up, i.e.,

lim
n→∞ δn‖∇uδn‖2

L2(Br2\Br1) = +∞.

8One way to obtain this inequality is to multiply (5.3) by uδ, integrate on Ω, and consider the real part.
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Then, by Theorem 5.1, vδn → 0 in Ω \ Br3 . The source αδnf is not seen by observers far
away from the shell: The source is cloaked. Note that the localized resonance happens in this
case since (5.6) takes place. If the power of uδn remains bounded, then uδn → û weakly in
H1(Ω \ Br3), where û ∈ H1

0 (Ω) is the unique solution to div(Â∇û) = f in Ω, the source is not
cloaked.

We next present the proof in the case A = I in Br3 \Br2 in two dimensions to highlight the
use of the removing localized singularity technique. This situation is already non-trivial and
the standard separation of variables is out of reach, since A can be arbitrary outside Br3 .

Sketch of the Proof of Theorem 5.1 (Under the additional assumption that A = I in
Br3 \ Br2 and d = 2.) Using (5.4), we derive from (5.8) that

lim
n→∞ δn‖vn‖H1(Ω) = 0. (5.9)

Define

v1,n = vn ◦ F−1 in R
2 \ Br2 and v2,n = v1,n ◦ G−1 in Br3 .

Since A = I in Br3 \ Br2 , it follows from (5.2) and Lemma 2.1 that

Δv1,n = Δv2,n = 0 in Br3 \ Br2 (5.10)

and

v1,n = v2,n, ∂rv1,n =
1

1 + iδn
∂rv2,n on ∂Br3 . (5.11)

From (5.10), v1,n and v2,n can be represented respectively as follows:

v1,n = c0 + d0 ln r +
∑
�≥1

∑
±

(c�,±r� + d�,±r−�)e±i�θ in Br3 \ Br2 ,

v2,n = e0 + f0 ln r +
∑
�≥1

∑
±

(e�,±r� + f�,±r−�)e±i�θ in Br3 \ Br2

for c0, d0, e0, f0, c�,±, d�,±, e�,±, f�,± ∈ C (
 ≥ 1). Using (5.11), as in the proof of Theorem 4.1,
there exists v̂n,rem ∈ H1(Br3 \ Br2) such that Δv̂n,rem = 0 in Br3 \ Br2 , and

N(v̂n,rem, r3)2 + N(v2,n − v1,n − v̂n,rem, r2)2 ≤ Cδn‖vn‖L2(Ω\Br3 )‖f‖L2,

where N(·, r) is defined in (4.10). The conclusion now follows as in the proof of Theorem 4.1.
Define

v̂n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vn in x ∈ Ω \ Br3 ,

vn − v̂n,rem Br3 \ Br2 ,

v2,n in x ∈ Br2 .

(5.12)

Then v̂n → v̂ weakly in H1(Ω \ (∂Br2 ∪ ∂Br3)). The proof is complete.

To develop the approach presented above for a general core-shell structure, in [30], we
introduced and implemented the separation of variables technique to solve Cauchy problems
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in a general shell. The main idea behind the method is to find an appropriate dense set of
solutions to the equation

div(A∇u) = 0 in Br3 \ Br2

to replace r�e±i�θ and r−�e±i�θ in the case A = I and d = 2. Indeed, from [30, Proposition 4.2],
there exist two families (v�)�≥1 and (w�)�≥1 such that

div(A∇w�) = div(A∇v�) = 0 in Br3 \ Br2 , (5.13)

w� = v� on ∂Br3 and A∇w� · x

|x| = −A∇v� · x

|x| on ∂Br3 (5.14)

and

{v�, w�; 
 ≥ 0} is dense in {v ∈ H1(Br3 \ Br2), div(A∇v) = 0}.

Here v0 = 1 in Br3 \ Br2 and w0 ∈ H1(Br3 \ Br2) is the unique solution to

div(A∇w0) = 0 in Br3 \ Br2 , w0 = 1 on ∂Br3 , w0 = 0 on ∂Br2 .

More properties on the behaviors of (w�) and (v�) are required in the proof of Theorem 5.1 (see
[30, Proposition 4.2] for the details). Properties (5.13)–(5.14) are very suitable for the use of
removing localized singularity technique. Due to the lack of the orthogonality of v� and w�, the
implementation of this technique in the general case is more delicate.

In [30], we also showed that the power blows up if the source is located “near” the shell
even for reflecting complementary media (see [30, Theorem 2]).

Theorem 5.2 Let d = 2, 3, f ∈ L2(Ω) with supp f ⊂ Ω \ Br2 , and let uδ ∈ H1
0 (Ω) be the

unique solution to

div(sδA∇uδ) = f in Ω.

Assume that A in Br̂3 \ Br2 and −A in Br2 \ Br̂1 are reflecting complementary for some r1 ≤
r̂1 < r2 < r̂3, with Br̂3 ⊂⊂ Ω. There exists a constant r∗ ∈ (r2, r̂3), independent of δ and f

such that if there is no w ∈ H1(Br∗ \ Br2) with the properties

div(A∇w) = f in Br∗ \ Br2 , w = 0 on ∂Br2 , A∇w · ν = 0 on ∂Br2 , (5.15)

then

lim sup
δ→0

δ
1
2 ‖∇uδ‖L2(Br2\Br1 ) = +∞. (5.16)

Assume in addition that A = I in Br̂3 \ Br2 , then

r∗ can be taken by any number less than
√

r̂3r2. (5.17)

Proof We will sketch the proof in the case r̂3 = r3 and A = I in Br3 \ Br2 . The proof in
the general case follows by the same approach via three spheres inequalities. The proof is again
based on the use of reflection. Define u1,δ = uδ ◦ F−1 and set wδ = uδ − u1,δ in Br3 \ Br2 . We
have

Δwδ = f in Br3 \ Br2 , wδ = 0 on ∂Br2 , ∂rwδ =
iδ

1 + iδ
∂ruδ on ∂Br2 .
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We prove by contradiction that

lim sup
n→+∞

δn(‖wδn‖2
H1(Br3\Br2 ) + ‖∂ruδn‖2

H− 1
2 (∂Br2 )

) = +∞, (5.18)

where δn = 2−n. Assume that

m := δn(‖wδn‖2
H1(Br3\Br2) + ‖∂ruδn‖2

H− 1
2 (∂Br2 )

) < +∞. (5.19)

We claim that (wδn) is a Cauchy sequence in H1(Br∗ \ Br2). Indeed, set

Wn = wδn+1 − wδn in Br3 \ Br2 .

It follows from (5.19) that

ΔWn = 0 in Br3 \ Br2 , Wn = 0 on ∂Br2 , ‖∂rWn‖
H− 1

2 (∂Br2)
≤ Cmδ−

n
2 .

In this proof, C denotes a constant independent of n. Using the following standard three spheres
inequality:

‖ϕ‖H1(BR) ≤ C‖ϕ‖α
H1(BR1 )‖ϕ‖1−α

H1(BR2 ),

where α =
ln

(
R2
R

)
ln

(
R2
R1

) , if Δϕ = 0 in BR2 and 0 < R1 < R < R2, one can prove

‖Wn‖H1(Br∗\Br1) ≤ Cm2−n 2α−1
2 ,

where α =
ln(

r3
r∗ )

ln(
r3
r2

)
> 1

2 . Thus (wn) is a Cauchy sequence in H1(Br∗ \ Br2). Let w be the limit

of wn in H1(BR∗ \ BR1). Then

Δw = f in Br∗ \ Br2 , w = 0 on ∂Br2 , ∂rw = 0 on ∂Br2 .

This contradicts the non-existence of w. Hence (5.18) holds. The proof is complete.

Remark 5.2 Theorem 5.2 implies the result in [18] on the blow up of the power.

Concerning the boundedness of the power, we can establish the following more general result.

Theorem 5.3 Let d = 2, 3, f ∈ L2(Ω), and let uδ ∈ H1
0 (Ω) be the unique solution to (5.3).

Assume that s0A is doubly complementary and supp f ∩ Br3 = Ø. Then

lim sup
δ→0

‖uδ‖H1(Ω) < +∞. (5.20)

Assume in addition that A = I in Br3 \ Br2 . If there exists w ∈ H1(Br0 \ Br2) for some
r0 > rα

2 r1−α
3 with the properties

div(A∇w) = f in Br0 \ Br2 , w = 0 on ∂Br2 , A∇w · ν = 0 on ∂Br2

for some 0 < α < 1, then

lim sup
δ→0

δα‖uδ‖H1(Ω) < +∞. (5.21)
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Remark 5.3 The first part (5.20) is from Theorem 2.1. The second part (5.21) with α = 1
2

is given in [30, Theorem 3]. The proof in this case is based on a kind of removing singularity
technique. The proof of the result stated here follows similarly. One just needs to replace the
constant ξ� defined in [30, (3.10)] by δα

(
r3
r0

)�. The details are left to the reader.

Using Theorems 5.1 and 5.2, we can construct a cloaking device to cloak a general source
concentrate on a manifold of codimension 1 in an arbitrary medium (see [30, Section 5] for the
details).

6 Limitting Absorption Principle and Well-Posedness of the Helmholtz
Equation with Sign Changing Coefficients

Let k > 0 and let A be a (real) uniformly elliptic symmetric matrix defined on Rd (d ≥ 2),
and Σ be a bounded real function defined on Rd. Assume that 9

A(x) = I in R
d \ BR0 and A is piecewise C1,

Σ(x) = 1 in R
d \ BR0

for some R0 > 0. Let D ⊂⊂ BR0 be a bounded open subset in Rd of class C2. Set, for δ ≥ 0,

sδ(x) =

{
−1 − iδ in D,

1 in Rd \ D.

In [32], we studied the well-posedness of the following equation:

div(s0A∇u0) + k2s0Σu0 = f in R
d, (6.1)

under various conditions on A and Σ. To make sure that physics solutions are considered, we
also study the limiting absorption principle associated with (6.1), i.e., the convergence of uδ to
u0 (in an appropriate sense). Here uδ ∈ H1(Rd) is the unique solution of the equation

div(sδA∇uδ) + k2s0Σuδ + iδuδ = f in R
d. (6.2)

Recall that a solution v ∈ H1
loc

(Rd \ BR) of the equation

Δv + k2v = 0 in R
d \ BR

for some R > 0, is said to satisfy the outgoing condition if

∂rv − ikv = o(r−
d−1
2 ) as r = |x| → +∞.

Denote
Γ = ∂D,

and, for τ > 0, set

Dτ =
{
x ∈ D; dist(x, Γ) < τ

}
and D−τ =

{
x ∈ R

d \ D; dist(x, Γ) < τ
}
. (6.3)

The well-posedness of the Helmholtz equation with sign changing coefficients was first es-
tablished by Costabel and Stephan in [15]. They proved, by the integral method, that (6.1)

9The smoothness assumption of A is mainly required for the use of the unique continuation principle. It can
be omitted in two dimensions.
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is well-posed if A = I in Rd \ D and A = λI in D provided that λ is positive constant not
equal to 1. Later, Ola in [43] proved, using the integral method and the pseudo-differential
operators theory, that (6.1) is well-posed in three and higher dimensions if the interface Γ is
strictly convex and connected even though λ = 1, i.e., A = I in Rd. His result was extended for
the case where Γ has two connected components by Kettunen, Lassas and Ola in [17]. Recently,
the well-posedness was extensively studied by Bonnet-Ben Dhia, Ciarlet, and their coauthors in
[5–9] by the T-coercivity approach. This approach was introduced by Bonnet-Ben Dhia, Ciarlet,
and Zwölf in [9] and is related to the (Banach-Necas-Babuska) inf-sup condition. The sharpest
condition for the acoustic setting in this direction, obtained by Bonnet-Ben Dhia, Chesnel, and
Ciarlet in [5], is that (6.1) is well-posed in the Fredholm sense (this means that compactness
holds), if A is isotropic, i.e., A = aI for some positive function a, and the contrast of a is not 1
on each connected component of Γ.

The starting point in [32] is to use reflections to obtain Cauchy’s problems from the Helm-
holtz equations with sign changing coefficients as previously discussed in various contexts. The
use of reflections to study NIMs was also considered by Milton et al. in [24] and by Bonnet-Ben
Dhia, Ciarlet, and their coauthors in their T-coercivity approach (see, e.g., [5] and references
there in). However, there is a difference between the use of reflections in [24] and [5] and in our
work. In [24], the authors used reflections as a change of variables to obtain a new simple setting
from an old more complicated one, and hence the analysis of the old problem becomes simpler.
In [5], the authors used a standard reflection to build test functions for the inf-sup condition to
obtain an a priori estimate for the solution. Our use of reflections is to derive Cauchy problems.
This can be done in a very flexible way via a change of variables formula stated in Lemma 2.1
as observed in [27]. The limiting absorption principle and the well-posedness of (6.1) are then
based on a priori estimates for these Cauchy problems.

In [32], we introduced three approaches to obtain a priori estimates for the Cauchy prob-
lems. The first one follows from a priori estimates for elliptic systems imposing implementing
boundary conditions. This is based on the classic work of Agmon, Douglis, and Nirenberg in
[1]. Applying their result, we proved [32, Theorem 1].

Theorem 6.1 Let f ∈ L2(Rd) with supp f ⊂⊂ BR0 and let uδ ∈ H1(Rd) (0 < δ < 1) be the
unique solution to (6.2). Assume that A+ := A

∣∣
Rd\D

∈ C1(D−τ ) and A− := A
∣∣
D

∈ C1(Dτ )
for some τ > 0, and A+(x), A−(x) satisfy the (Cauchy) complementing condition with respect
to direction ν(x) for all x ∈ Γ. Then

‖uδ‖H1(BR) ≤ CR‖f‖L2(Rd), ∀R > 0. (6.4)

Moreover, uδ → u0 weakly in H1
loc

(Rd) and strongly in L2
loc

(Rd), as δ → 0, where u0 ∈ H1
loc

(Rd)
is the unique outgoing solution to (6.1). Consequently,

‖u0‖H1(BR) ≤ CR‖f‖L2(Rd), ∀R > 0. (6.5)

Here CR denotes a positive constant independent of f and δ.

We recall the following definition.

Definition 6.1 (see [1]) Two constant positive symmetric matrices A1 and A2 are said to
satisfy the (Cauchy) complementing condition with respect to direction e ∈ ∂B1 if and only if
for all ξ ∈ Rd

e,0 \ {0}, the only solution (u1(x), u2(x)) to the form (ei〈y,ξ〉v1(t), ei〈y,ξ〉v2(t)) with
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x = y + te where y ∈ Rd
e,0 and t = 〈x, e〉, of the following system:{

div(A1∇u1) = div(A2∇u2) = 0 in Rd
e,+,

u1 = u2 and A1∇u1 · e = A2∇u2 · e on Rd
e,0,

which is bounded in Rd
e,+ is (0, 0).

Here and in what follows, for a unit vector e, the following notations are used:

R
d
e,+ = {ξ ∈ R

d; 〈ξ, e〉 > 0} and R
d
e,0 = {ξ ∈ R

d; 〈ξ, e〉 = 0}.
〈·, ·〉 denotes the Euclidean scalar product in R

d.

An algebraic characterization of the complementing condition is [32, Proposition 1].

Proposition 6.1 Two constant positive symmetric matrices A1 and A2 are said to satisfy
the complementing condition with respect to direction e ∈ ∂B1 if and only if

〈A2e, e〉〈A2ξ, ξ〉 − 〈A2e, ξ〉2 	= 〈A1e, e〉〈A1ξ, ξ〉 − 〈A1e, ξ〉2, ∀ ξ ∈ P \ {0},
where

P :=
{
ξ ∈ R

d; 〈ξ, e〉 = 0
}
.

In particular, if A2 > A1 then A1 and A2 satisfy the complementing boundary condition for all
e ∈ ∂B1.

As a consequence of Theorem 6.1 and Proposition 6.1, we obtained [32, Corollary 1].

Corollary 6.1 Let f ∈ L2(Rd) with supp f ⊂⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be
the unique solution of (6.2). Assume that A+ := A

∣∣
Rd\D

∈ C1(D−τ ) and A− := A
∣∣
D
∈ C1(Dτ )

for some τ > 0, and A+(x) > A−(x) or A−(x) > A+(x) for all x ∈ Γ. Then the conclusion of
Theorem 6.1 holds.

To our knowledge, Corollary 6.1 is new and cannot be obtained by the known approaches
mentioned above. It is in the same spirit of the one of Bonnet-Ben Dhia, Chesnel, and Ciarlet
in [5]; nevertheless, A+ and A− are not assumed to be isotropic here.

We next discuss briefly the proof of Theorem 6.1. We recall the result as follows.

Lemma 6.1 (see [1]) Let D be a smooth bounded open subset of Rd, and A1 and A2 be two
symmetric uniformly elliptic matrices defined in D of class C1(D). Let f1, f2 ∈ L2(D), and let
u1, u2 ∈ H1(D) be such that

− div(A1∇u1) = f1 and − div(A2∇u2) = f2 in D, (6.6)

u1 = u2 and A1∇u1 · ν = A2∇u2 · ν on ∂D. (6.7)

Assume that A1 and A2 satisfy the (Cauchy) complementing condition with respect to direction
ν(x) for all x ∈ Γ. We have

‖(u1, u2)‖H2(D) ≤ C(‖(f1, f2)‖L2(D) + ‖(u1, u2)‖L2(D)). (6.8)

We confine ourselves to the case δ = 0 and give the ideas of the proof of (6.5). Note that the
uniqueness of u0 can be obtained as in the standard setting where the coefficients are positive
by Rellich’s lemma. Define F : D−τ → Dτ as follows:

F (xΓ + tν(xΓ)) = xΓ − tν(xΓ), ∀xΓ ∈ Γ, t ∈ (−τ, 0). (6.9)
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Let v0 be the reflection of u0 through Γ by F , i.e., v0 = u0 ◦ F−1 in Dτ . By Lemma 2.1,

div(F∗A∇v0) + k2F∗Σv0 = F∗f in Dτ

and

v0 − u0|D = 0, F∗A∇v0 · ν − A∇u0|D · ν = 0 on Γ.

Note that A+ and A− satisfy the complementing condition on Γ if and only if F∗A− and A+

satisfy the complementing condition on Γ by Proposition 6.1. Applying Lemma 6.1 and using
the outgoing condition, one obtains

‖u0‖H1(BR) ≤ CR(‖u0‖L2(BR0 ) + ‖f‖L2).

The conclusion now follows from the uniqueness via a standard compactness argument (see [32,
Section 2] for the details).

One can verify that if F∗A+ = A− on Γ, then the complementing condition is not satisfied
(see Proposition 6.1). To deal with this situation, in [32], we developed a second approach to
obtain a priori estimates for the Cauchy problems. This is a variational approach and based
on the Dirichlet principle. Using this approach, we established the following theorem (see [32,
Theorem 2]).

Theorem 6.2 Let f ∈ L2(Rd) with supp f ⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the
unique solution to (6.2). Assume that there exists a reflection F from U \D onto Dτ for some
τ > 0 and for some smooth open set U ⊃⊃ D, i.e., F is diffeomorphism and F (x) = x on Γ,
such that

either A − F∗A ≥ c dist(x, Γ)αI or F∗A − A ≥ c dist(x, Γ)αI, (6.10)

on each connected component of Dτ , for some c > 0 and 0 < α < 2. Set vδ = uδ ◦ F−1 in Dτ .
Then

‖uδ‖L2(BR) + ‖uδ − vδ‖H1(Dτ ) +
( ∫

Dτ

∣∣〈(A − F∗A)∇uδ,∇uδ〉
∣∣) 1

2 ≤ CR‖f‖L2(Rd). (6.11)

Moreover, uδ → u0 weakly in H1
loc

(Rd \ Γ) and strongly in L2
loc

(Rd) as δ → 0, where u0 ∈
H1

loc
(Rd \ Γ) ∩ L2

loc
(Rd) is the unique outgoing solution to the equation (6.1) such that the LHS

of (6.12) is finite where v0 = u0 ◦ F−1 in Dτ . Consequently,

‖u0‖L2(BR) + ‖u0 − v0‖H1(Dτ ) +
(∫

Dτ

∣∣〈(A − F∗A)∇u0,∇u0〉
∣∣) 1

2 ≤ CR‖f‖L2. (6.12)

Here CR denotes a positive constant independent of f and δ.

The unique solution, which is obtained by the limiting absorption principle, might not be
in H1

loc
(Rd) in this case. The definition [32, Definition 2] is as follows.

Definition 6.2 Let f ∈ L2(Rd) with compact support, and let F be a reflection from U \D

to Dτ for some τ > 0 (small) and for some open set D ⊂⊂ U , i.e., F is diffeomorphism and
F (x) = x on Γ. A function u0 ∈ H1

loc
(Rd \ Γ) ∩ L2

loc
(Rd) such that the LHS of (6.12) is finite

is said to be a solution to (6.1) if

div(s0A∇u0) + k2s0Σu0 = f in R
d \ Γ, (6.13)

u0 − v0 = 0, (F∗A∇v0 − A∇u0

∣∣
D

) · ν = 0 on Γ (6.14)
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and

lim
t→0+

∫
∂Dt\Γ

(
F∗A∇v0 · νv0 − A∇u0 · νu0

)
= 0. (6.15)

Remark 6.1 Since the LHS of (6.12) is finite, it follows that u0 − v0 ∈ H
1
2 (Γ) and

(F∗A∇v0 − A∇u0

∣∣
D

) · ν ∈ H− 1
2 (Γ). Hence requirement (6.14) makes sense. It is clear that

the definition of weak solutions in Definition 6.2 coincides with the standard definition of weak
solutions when α = 0 by Lemma 2.1. Requirements in (6.14)–(6.15) can be seen as generalized
transmission conditions.

Once the uniqueness is obtained, the stability is based on a compactness argument. The
requirement α < 2 is required in the compactness argument (see [32, Lemma 7]); we do not know
if this condition is necessary. As a consequence of Theorem 6.2, one can prove [32, Corollary
2].

Corollary 6.2 Let f ∈ L2(Rd) with supp f ⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the
unique solution to (6.2). Assume that A ◦ F−1(x) or A(x) is isotropic for x ∈ Dτ , and

either A ◦ F−1(x) − A(x) ≥ cI or A(x) − A ◦ F−1(x) ≥ cI (6.16)

in each connected component Dτ for some small τ > 0 and for some c > 0, where F is given
by (6.9). Then

‖uδ‖H1(BR) ≤ CR‖f‖L2.

Moreover, uδ → u0 weakly in H1
loc

(Rd) as δ → 0, where u0 ∈ H1
loc

(Rd) is the unique outgoing
solution to (6.1) and

‖u0‖H1(BR) ≤ CR‖f‖L2.

Remark 6.2 Applying Corollary 6.2 for the isotropic case, one rediscovers and extends the
result obtained by Bonnet Ben-Dhia, Chesnel and Ciarlet in [5].

We next present another consequence of Theorem 6.2 for the case α = 1. The following
notation is used.

Definition 6.3 The boundary Γ of D is called strictly convex, if all its connected components
are the boundary of strictly convex sets.

We are ready to present [32, Corollary 2].

Corollary 6.3 Let d ≥ 3 and D be of class C3. Let f ∈ L2(Rd) with supp f ⊂ BR0 and let
uδ ∈ H1(Rd) (0 < δ < 1) be the unique solution of (6.2). Assume that A is constant in each
connected component of a neighborhood of Γ and Γ is strictly convex. There exist c > 0, τ > 0,
a smooth open subset U ⊃⊃ D, a reflection F : U → Dτ such that F∗A − A ≥ c dist(x, Γ)I or
A − F∗A ≥ c dist(x, Γ)I on each connected component of Dτ . Then (6.11) holds. Moreover,
uδ → u0 weakly in H1

loc
(Rd) as δ → 0, where u0 ∈ H1

loc
(Rd), u0 satisfies (6.12), and u0 is the

unique outgoing solution to (6.1).

Remark 6.3 The reflection F in Corollary 6.3 is not given by (6.9). Its choice is quite
subtle and depends on the fundamental form of Γ (see [32, Proof of Corollary 2]). Corollary 6.3
does not hold in two dimensions. The strict convexity of Γ is necessary in three dimensions. In
four or higher dimensions, the strict convexity of Γ can be relaxed (see [32, Remark 10]).
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We next return to the proof of Theorem 6.2. An important step in the proof is to obtain
estimate for the Cauchy problem. A result of this type is the following lemma which is somehow
a replacement of Lemma 6.1 in this context and a special case of [32, Lemma 5]. The proof is
based on the Dirichlet principle.

Lemma 6.2 Let D be a smooth bounded open subset of Rd, and A1 and A2 be two symmetric
uniformly elliptic matrices defined in D. Let f1, f2 ∈ L2(D), and let u1, u2 ∈ H1(D) be such
that

− div(A1∇u1) = f1 and − div(A2∇u2) = f2 in D, (6.17)

u1 = u2 and A1∇u1 · ν = A2∇u2 · ν on ∂D. (6.18)

Assume that

A1 ≥ A2 in D. (6.19)

Then ∫
D

〈(A1 − A2)∇u1,∇u1〉 ≤ C(‖(f1, f2)‖2
L2(D) + ‖(u1, u2)‖2

L2(D)). (6.20)

Proof By considering the real part and the imaginary part separately, without loss of
generality, one may assume that all functions in Lemma 6.2 are real. Set

M = ‖(f1, f2)‖2
L2(D) + ‖(u1, u2)‖2

L2(D).

Multiplying the equation of uj by uj (for j = 1, 2) and integrating on D, we have∫
D

〈Aj∇uj ,∇uj〉 =
∫

D

fjuj +
∫

∂D

Aj∇uj · ν uj . (6.21)

Using (6.17)–(6.18), we derive from (6.21) that∫
D

〈A1∇u1,∇u1〉 − 〈A2∇u2,∇u2〉 ≤ CM. (6.22)

Here and in what follows, C denotes a positive constant independent of fj , h, uj for j = 1, 2.
By the Dirichlet principle, we have

1
2

∫
D

〈A2∇u2,∇u2〉 −
∫

D

f2u2 −
∫

∂D

A2∇u2 · ν u2

≤ 1
2

∫
D

〈A2∇u1,∇u1〉 −
∫

D

f2u1 −
∫

∂D

A2∇u2 · ν u1. (6.23)

A combination of (6.17)–(6.18) and (6.23) yields∫
D

〈A2∇u2,∇u2〉 − 〈A2∇u1,∇u1〉 ≤ CM. (6.24)

Adding (6.22) and (6.24), we obtain the conclusion.

Similar conclusion holds in the case F∗A = A in Dτ under additional assumptions on
Σ − F∗Σ � dist(·, Γ)β in Dτ for some β > 0 (see [32, Theorem 3] for a more general result).
The unique solution in this case is not even in L2

loc
(Rd). As far as we know, [32, Theorem 3]

is the first result on the limiting absorption principle and the well-posedness of the Helmholtz
equations with sign changing coefficients where the conditions on the coefficients contains the
zero order term Σ.
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Remark 6.4 The results mentioned here showed that the complementary property of me-
dia is necessary for the occurrence of the resonance. In [32, Proposition 2], we showed that
even in the case (F∗A, F∗Σ) = (A, Σ) in B ∩ Dτ for some open set B with B ∩ Γ 	= Ø, the
system is resonant in the following sense: There exists f with supp f ⊂⊂ BR0 \ Γ, such that
lim sup

δ→0
‖uδ‖L2(K) = +∞ for some K ⊂⊂ BR0 \ Γ. This implies the optimality of the results

mentioned above. The proof of [32, Proposition 2] is inspired from the one of Theorem 5.2.

Notes added Very recent progress on negative index materials can be found in [34–36].
The answers to Open Questions 3.1 and 4.1 are negative (see [34]).
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[5] Bonnet-Ben Dhia, A. S., Chesnel, L. and Ciarlet, P., T -coercivity for scalar interface problems between
dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal., 46, 2012, 1363–1387.

[6] Bonnet-Ben Dhia, A. S., Chesnel, L. and Ciarlet, P., T -coercivity for the Maxwell problem with sign-
changing coefficients, Comm. Partial Differential Equations, 39, 2014, 1007–1031.
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[8] Bonnet-Ben Dhia, A. S., Ciarlet, P. and Zwölf, C. M., A new compactness result for electromagnetic waves.
Application to the transmission problem between dielectrics and metamaterials, Math. Models Methods
Appl. Sci., 18, 2008, 1605–1631.
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