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Abstract The authors study the large time asymptotics of a solution of the Fisher-KPP
reaction-diffusion equation, with an initial condition that is a compact perturbation of a
step function. A well-known result of Bramson states that, in the reference frame moving
as 2t−(

3
2

)
log t+x∞, the solution of the equation converges as t → +∞ to a translate of the

traveling wave corresponding to the minimal speed c∗ = 2. The constant x∞ depends on
the initial condition u(0, x). The proof is elaborate, and based on probabilistic arguments.
The purpose of this paper is to provide a simple proof based on PDE arguments.
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1 Introduction

We consider the Fisher-KPP equation

ut − uxx = u− u2, t > 0, x ∈ R (1.1)

with an initial condition u(0, x) = u0(x) which is a compact perturbation of a step function,
in the sense that there exist x1 and x2, so that u0(x) = 1 for all x ≤ x1, and u0(x) = 0 for all
x ≥ x2.

This equation has a traveling wave solution u(t, x) = φ(x − 2t), moving with the minimal
speed c∗ = 2, connecting the stable equilibrium u ≡ 1 to the unstable equilibrium u ≡ 0:

−φ′′ − 2φ′ = φ− φ2,

φ(−∞) = 1, φ(+∞) = 0.
(1.2)
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Each solution φ(ξ) of (1.2) is a shift of a fixed profile φ∗(ξ) : φ(ξ) = φ∗(ξ+ s), with some fixed
s ∈ R. The profile φ∗(ξ) satisfies the asymptotics

φ∗(ξ) = (ξ + k)e−ξ +O(e−(1+ω0)ξ), ξ → +∞ (1.3)

with two universal constants ω0 > 0, k ∈ R.
The large time behaviour of the solutions of this problem has a long history, starting with

a striking paper of Fisher [10], which identifies the spreading velocity c∗ = 2 via numerical
computations and other arguments. In the same year, the pioneering KPP paper [15] proved
that the solution of (1.1), starting from a step function: u0(x) = 1 for x ≤ 0, u0(x) = 0 for
x > 0, converges to φ∗ in the following sense: There is a function

σ∞(t) = 2t+ o(t), (1.4)

such that
lim

t→+∞u(t, x+ σ∞(t)) = φ∗(x).

Fisher has already made an informal argument that the o(t) in (1.4) is of the order O(log t).
An important series of papers by Bramson proves the following result.

Theorem 1.1 (see [5–6]) There is a constant x∞, depending on u0, such that

σ∞(t) = 2t− 3
2

log t− x∞ + o(1) as t→ +∞.

Theorem 1.1 was proved through elaborate probabilistic arguments. Bramson also gave
necessary and sufficient conditions on the decay of the initial data to zero (as x → +∞) in
order that the solution converges to φ∗(x) in some moving frame. Lau [17] also proved those
necessary and sufficient conditions (for a more general nonlinear term) using a PDE approach
based on the decrease in the number of the intersection points for a pair of solutions of the
parabolic Cauchy problem. The asymptotics of σ∞(t) were not identified by that approach.

A natural question is to prove Theorem 1.1 with purely PDE arguments. In that spirit, a
weaker version, precise up to the O(1) term (but valid also for a much more difficult case of the
periodic in space coefficients), is the main result of [11–12],

σ(t) = 2t− 3
2

log t+O(1) as t→ +∞. (1.5)

Here, we will give a simple and robust proof of Theorem 1.1. These ideas are further developed
to study the refined asymptotics of the solutions in [21].

The paper is organized as follows. In Section 2, we shortly describe some connections
between the Fisher-KPP equation (1.1) and the branching Brownian motion. In Section 3, we
explain, in an informal way, the strategy of the proof of the theorem: In a nutshell, the solution
is slaved to the dynamics at x = O(

√
t). In Sections 4–5, we make the arguments of Section 3

rigorous.

2 Probabilistic Links and Some Related Models

The time delay in models of the Fisher-KPP type has been the subject of various recent
investigations, both from the PDE and probabilistic points of view. The Fisher-KPP equation
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appears in the theory of the branching Brownian motion (BBM for short) (see [19]) as follows.
Consider a BBM starting at x = 0 at time t = 0, with binary branching at rate 1. Let
X1(t), · · · , XNt(t) be the descendants of the original particle at time t, arranged in the increasing
order: X1(t) ≤ X2(t) ≤ · · · ≤ XNt(t). Then, the probability distribution function of the
maximum

v(t, x) = P(XNt(t) > x),

satisfies the Fisher-KPP equation

vt =
1
2
vxx + v − v2

with the initial data v0(x) = �x≤0. Therefore, Theorem 1.1 is about the median location
of the maximal particle XNt . Building on the work of Lalley and Sellke [16], recent proba-
bilistic analyses (see [1–3, 7–8]) of this particle system have identified a decorated Poisson-
type point process which is the limit of the particle distribution “seen from the tip”: There
is a random variable Z > 0, such that the point process defined by the shifted particles
{X1(t) − c(t) , · · · , XNt(t) − c(t)}, with

c(t) = 2t− 3
2

log t+ logZ,

has a well-defined limit process as t→ ∞. Furthermore, Z is the limit of the martingale

Zt =
∑

k

(2t−Xk(t))eXk(t)−2t,

and
φ∗(x) = 1 − E[e−Ze−x

] for all x ∈ R.

As we have mentioned, the logarithmic term in Theorem 1.1 arises also in inhomogeneous
variants of this model. For example, consider the Fisher-KPP equation in a periodic medium

ut − uxx = μ(x)u − u2, (2.1)

where μ(x) is continuous and 1-periodic in R, such that the principal periodic eigenvalue of the
operator −∂xx − μ(x) is negative. Then there is a minimal speed c∗ > 0, such that for each
c ≥ c∗, there is a unique pulsating front Uc(t, x), up to a time shift [4, 13]. It was shown in [12]
that there is s0 > 0 such that, if u(t, x) solves (2.1) with a nonnegative, nonzero, compactly
supported initial condition u0(x), and 0 < s ≤ s0, then the s-level set σs(t) of u(t, x) (here, the
largest σ > 0 such that u(t, σ) = s) must satisfy

σs(t) = c∗t− 3
2λ∗

log t+O(1),

where λ∗ > 0 is the rate of exponential decay (as x → ∞) of the minimal front Uc∗ , which
depends on μ(x) but not on s or on u0. This implies the convergence of u(t, x − σs(t)) to
a closed subset of the family of minimal fronts. It is an open problem to determine whether
convergence to a single front holds, not to mention the rate of this convergence. When μ(x) > 0
everywhere, the solution u of the related model

ut − uxx = μ(x)(u − u2)
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may be interpreted in terms of the extremal particle in a BBM with a spatially-varying branching
rate (see [12]).

Models with temporal variation in the branching process have also been considered. In [9],
Fang and Zeitouni studied the extremal particle of such a spatially homogeneous BBM where
the branching particles satisfy

dX(t) =
√

2κ
( t
T

)
dB(t)

between branching events, rather than following a standard Brownian motion. In terms of
PDE, their study corresponds to the model

ut = κ2
( t
T

)
uxx + f(u), 0 < t < T, x ∈ R. (2.2)

They proved that if κ is increasing, and f is of the Fisher-KPP type, the shift is algebraic and
not logarithmic in time: There exists C > 0, such that

T
1
3

C
≤ X(T )− ceffT ≤ CT

1
3 , ceff = 2

∫ 1

0

κ(s)ds.

In [20], we proved the asymptotics

X(T ) = ceffT − νT
1
3 +O(logT ) with ν = β

∫ 1

0

κ(τ)
1
3 κ̇(τ)

2
3 dτ. (2.3)

Here, β < 0 is the first zero of the Airy function. Maillard and Zeitouni [18] refined the
asymptotics further, proving a logarithmic correction to (2.3), and convergence of u(T ) to a
traveling wave.

3 Strategy of the Proof of Theorem 1.1

3.1 Why converge to a traveling wave?

We first provide an informal argument for the convergence of the solution of the initial
value problem to a traveling wave. Consider the Cauchy problem (1.1), starting at t = 1 for
the convenience of the notation

ut − uxx = u− u2, x ∈ R, t > 1, (3.1)

and proceed with a standard sequence of changes of variables. We first go into the moving
frame

x 	→ x− 2t+
(3

2

)
log t,

leading to

ut − uxx −
(
2 − 3

2t

)
ux = u− u2. (3.2)

Next, we take out the exponential factor: Set

u(t, x) = e−xv(t, x),

so that v satisfies

vt − vxx − 3
2t

(v − vx) + e−xv2 = 0, x ∈ R, t > 1. (3.3)
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Observe that for any shift x∞ ∈ R, the function V (x) = exφ(x − x∞) is a steady solution of

Vt − Vxx + e−xV 2 = 0.

We regard (3.3) as a perturbation of this equation, and expect that v(t, x) → exφ(x − x∞) as
t→ ∞ for some x∞ ∈ R.

3.2 The self-similar variables

We note that for x → +∞, the term e−xv2 in (3.3) is negligible, while for x → −∞ the
same term will create a large absorption and force the solution to be close to zero. For this
reason, the linear Dirichlet problem

zt − zxx − 3
2t

(z − zx) = 0, x > 0, (3.4)

z(t, 0) = 0

is a reasonable proxy for (3.3) for x 
 1, and, as shown in [11–12], it provides good sub-
and super-solutions for v(t, x). The main lesson of [11–12] is that everything relevant to the
solutions of (3.4) happens at the spatial scale x ∼ √

t, and their asymptotics may be unraveled
by a self-similar change of variables. Here, we will accept the full nonlinear equation (3.3) and
perform directly the self-similar change of variables

τ = logt, η =
x√
t

(3.5)

followed by a change of the unknown

v(τ, η) = e
τ
2w(τ, η).

This transforms (3.3) into

wτ − η

2
wη − wηη − w +

3
2
e−

τ
2wη + e

3τ
2 −ηexp( τ

2 )w2 = 0, η ∈ R, τ > 0. (3.6)

This transformation strengthens the reason why the Dirichlet problem (3.4) appears naturally:
For

η � −τe− τ
2 ,

the last term in the left-hand side of (3.6) becomes exponentially large, which forces w to be
almost 0 in this region. On the other hand, for

η 
 τe−
τ
2 ,

this term is very small, so it should not play any role in the dynamics of w in that region. The
transition region has width of the order τe−

τ
2 .

3.3 The choice of the shift

Also, through this change of variables, we can see how a particular translation of the wave
will be chosen. Considering (3.4) in the self-similar variables, one can show (see [11, 14]) that,
as τ → +∞, we have

e−
τ
2 z(τ, η) ∼ α∞ηe−

η2

4 , η > 0 (3.7)
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with some α∞ > 0. Therefore, taking (3.4) as an approximation to (3.3), we should expect that

u(t, x) = e−xv(t, x) ∼ e−xz(t, x) ∼ e−xe
τ
2 α∞ηe−

η2

4 = α∞xe−xe−
x2
4t , (3.8)

at least for x of the order O(
√
t). This determines the unique translation: If we accept that u

converges to a translate x∞ of φ∗, then for large x (in the moving frame), we have

u(t, x) ∼ φ∗(x− x∞) ∼ xe−x+x∞ . (3.9)

Comparing this with (3.8), we infer that

x∞ = logα∞.

The difficulty with this argument, apart from the justification of the approximation

u(t, x) ∼ e−xz(t, x),

is that each of the asymptotics (3.8)–(3.9) uses different ranges of x: (3.8) comes from the
self-similar variables in the region x ∼ O(

√
t), while (3.9) assumes x to be large but finite.

However, the self-similar analysis does not tell us at this stage what happens on the scale x ∼
O(1). Indeed, it is clear from (3.6) that the error in the approximation (3.7) is at least of the
order O(e−

τ
2 ) (note that the right-hand side in (3.7) is a solution of (3.6) without the last two

terms in the left-hand side). On the other hand, the scale x ∼ O(1) corresponds to η ∼ e−
τ
2 .

Thus, the leading order term and the error in (3.7) are of the same size for x ∼ O(1), which
means that we can not extract information directly from (3.7) on that scale.

To overcome this issue, we proceed in two steps: First we use the self-similar variables to
prove stabilization (that is, (3.8) holds) at the spatial scales x ∼ O(tγ) with a small γ > 0, and
not just at the diffusive scale O(

√
t). This boils down to showing that

w(τ, η) ∼ α∞ηe−
η2

4

for the solution to (3.6), even for η ∼ e−( 1
2−γ)τ . Next, we show that this stabilization is sufficient

to ensure the stabilization on the scale x ∼ O(1) and convergence to a unique wave. This is the
core of the argument: Everything happening at x ∼ O(1) should be governed by the tail of the
solution (the fronts are pulled).

We conclude this section with some remarks about the generality of the argument. Although
we assume, for simplicity, that the reaction term in (1.1) is quadratic, our proof also works for
a more general reaction term. Specifically, the function u − u2 in (1.1) may be replaced by a
C2 function f : [0, 1] → R satisfying f(0) = 0 = f(1), f ′(0) > 0, f ′(1) < 0, and f ′(s) ≤ f ′(0)
for all s ∈ [0, 1]. In particular, these assumptions imply that there is C > 0, such that
0 ≤ f ′(0)s − f(s) ≤ Cs2 for all s ∈ [0, 1]. Without loss of generality, we may suppose that
f ′(0) = 1. Then, if g(u) = u− f(u), the equation (3.3) for v becomes

vt − vxx − 3
2t

(v − vx) + exg(e−xv) = 0, x ∈ R, t > 1,

and the equation (3.6) for w becomes

wτ − η

2
wη − wηη − w +

3
2
e−

τ
2wη + e

τ
2 +ηexp( τ

2 )g(e
τ
2 −ηexp( τ

2 )w) = 0, η ∈ R, τ > 0,
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where 0 ≤ g(s) ≤ Cs2 and g′(s) ≥ 0. Then all of the arguments below (and in [11]) work in
this more general setting. Finally, the arguments also apply to fronts arising from compactly
supported initial data u0 ≥ 0 (not just perturbations of the step-function). In that case, one
obtains two fronts propagating in opposite directions. Combined with [11], our arguments here
imply that Theorem 1.1 holds for both fronts. That is, the fronts moving to ±∞ are at positions
σ±
∞(t) with

σ±
∞(t) = ±2t∓ 3

2
log t+ x±∞ + o(1),

where the shifts x+∞ and x−∞ may differ and depend on the initial data.

4 Convergence to a Single Wave as a Consequence of the Diffusive
Scale Convergence

The proof of Theorem 1.1 relies on the following two lemmas. The first is a consequence
of [11].

Lemma 4.1 The solution of (3.2) with u(1, x) = u0(x) satisfies

lim
x→−∞u(t, x) = 1, lim

x→+∞u(t, x) = 0, (4.1)

both uniformly in t > 1.

The main new step is to establish the following.

Lemma 4.2 There exists a constant α∞ > 0 with the following property. For any γ > 0
and all ε > 0, we can find Tε, so that for all t > Tε we have

|u(t, xγ) − α∞xγe−xγ e−
x2

γ
4t | ≤ εxγe−xγ e−

x2
γ

6t (4.2)

with xγ = tγ .

We postpone the proof of this lemma for the moment, and show how it is used. A conse-
quence of Lemma 4.2 is that the problem for the moment is to understand, for a given α > 0,
the behavior of the solutions of

∂uα

∂t
− ∂2uα

∂x2
−

(
2 − 3

2t

)∂uα

∂x
− uα + u2

α = 0, x ≤ xγ(t), (4.3)

uα(t, tγ) = αtγe−tγ− t2γ−1
4

for t > Tε, with the initial condition uα(Tε, x) = u(Tε, x). In particular, we will show that
uα∞±ε(t, x) converge, as t→ +∞, to a pair of steady solutions, separated only by an orderO(ε)-
translation. Note that the function v(t, x) = exuα(t, x) solves

vt − vxx +
3
2t

(vx − v) + e−xv2 = 0, x ≤ tγ , (4.4)

v(t, tγ) = αtγe−
t2γ−1

4 .

Since we anticipate that the tail is going to dictate the behavior of uα, we choose the translate
of the wave that matches exactly the behavior of uα(t, x) at the boundary x = tγ : Set

ψ(t, x) = exφ∗(x+ ζ(t)). (4.5)
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Recall that φ∗(x) is the traveling wave profile. We look for a function ζ(t) in (4.5) such that

ψ(t, tγ) = v(t, tγ). (4.6)

In view of the expansion (1.3), we should have, with some ω0 > 0,

e−ζ(t)(tγ + ζ(t) + k) +O(e−ω0tγ

) = αtγe−
1

4t1−2γ ,

which implies, for γ ∈ (
0, 1

2

)
,

ζ(t) = −logα− (logα− k)t−γ +O(t−2γ),

and thus
|ζ̇(t)| ≤ C

t1+γ
.

The equation for the function ψ is

ψt − ψxx +
3
2t

(ψx − ψ) + e−xψ2 = −ζ̇ψ + ζ̇ψx +
3
2t

(ψx − ψ) = O
(x
t

)
= O(t−1+γ), |x| < tγ .

In addition, the left-hand side above is exponentially small for x < −tγ because of the expo-
nential factor in (4.5). Hence, the difference s(t, x) = v(t, x) − ψ(t, x) satisfies

st − sxx +
3
2t

(sx − s) + e−x(v + ψ)s = O(t−1+γ), |x| ≤ tγ , (4.7)

s(t,−tγ) = O(e−tγ

), s(t, tγ) = 0.

Proposition 4.1 For γ ∈ (
0, 1

3

)
, we have

lim
t→+∞ sup

|x|≤tγ

|s(t, x)| = 0. (4.8)

Proof The issue is whether the Dirichlet boundary conditions would be stronger than the
force in the right side of (4.7). Since the principal Dirichlet eigenvalue for the Laplacian in
(−tγ , tγ) is π2

4t2γ , investigating (4.7) is, heuristically, equivalent to solving the ODE

f ′(t) + (1 − 2γ)t−2γf =
1

t1−γ
. (4.9)

The coefficient (1−2γ) is chosen simply for convenience and can be replaced by another constant.
The solution of (4.9) is

f(t) = f(1)e(−t−2γ+1+1) +
∫ t

1

sγ−1e(−t−2γ+1+s−2γ+1)ds.

Note that f(t) tends to 0 as t→ +∞ a little faster than t3γ−1 as soon as γ < 1
3 , so the analog

of (4.8) holds for the solutions of (4.9). With this idea in mind, we are going to look for a
super-solution of (4.7), in the form

s(t, x) = t−λ cos
( x

tγ+ε

)
, (4.10)

where λ, γ and ε will be chosen to be small enough. We now set Tε = 1 for convenience. We
have, for |x| ≤ tγ ,

s(t, x) ∼ t−λ, −sxx = t−(2γ+2ε)s(t, x), (4.11)

st = −λ
t
s+ g(t, x), |g(t, x)| ≤ C|x|

tλ+γ+ε+1
≤ C

t1+ε
s(t, x)
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and
∣∣∣ 3
2t

(sx − s)(t, x)
∣∣∣ ≤ Ct−1s(t, x). (4.12)

Gathering (4.11) and (4.12), we infer the existence of q > 0, such that, for t large enough,

(
∂t − ∂xx +

3
2t

(∂x − 1)
)
s(t, x) ≥ qt−(2γ+2ε)s(t, x) ≥ q

2
t−(2γ+2ε+λ) ≥ O

( 1
t1−γ

)
,

as soon as ε and λ are small enough, since γ ∈ (
0, 1

3

)
. Because the right-hand side of (4.7) does

not depend on s, the inequality extends to all t ≥ 1 by replacing s by As, with A large enough,
and (4.8) follows.

Let us note that the term e−x(v + ψ) in (4.7), which results from the quadratic structure
of the nonlinearity, is positive. For a more general nonlinearity f(u) replacing u − u2, the
monotonicity of g(u) = uf ′(0) − f(u) may be used in an analogous way.

4.1 Proof of Theorem 1.1

We are now ready to prove the theorem. Fix γ ∈ (
0, 1

3

)
, as required by Proposition 4.1.

Given ε > 0, take Tε as in Lemma 4.2. Let uα(t, x) be the solution of (4.3) for t > Tε, and
the initial condition uα(Tε, x) = u(Tε, x). Here, u(t, x) is the solution of the original problem

(3.2). Taking Tε larger, if necessary, we may assume that e−
x2

γ
4t ≥ 1

2 for t ≥ Tε. It follows from
Lemma 4.2 that for any t ≥ Tε, we have

uα∞−2ε(t, x) ≤ u(t, x) ≤ uα∞+2ε(t, x)

for all x ≤ tγ . From Proposition 4.1, we have

ex[uα∞±2ε(t, x) − φ∗(x+ ζ±(t))] = o(1) as t→ +∞, (4.13)

uniformly in x ∈ (−tγ , tγ) with

ζ±(t) = − log(α∞ ± 2ε) − (log(α∞ ± 2ε) − k)t−γ +O(t−2γ).

Because ε > 0 is arbitrary, we have

lim
t→+∞(u(t, x) − φ∗(x+ x∞)) = 0

with x∞ = −logα∞, uniformly on compact sets. Together with Lemma 4.1, this concludes the
proof of Theorem 1.1.

5 The Diffusive Scale x ∼ O(
√

t) and the Proof of Lemma 4.2

Our analysis starts with (3.6), which we write as

wτ + Lw +
3
2
e−

τ
2wη + e

3τ
2 −ηexp( τ

2 )w2 = 0, η ∈ R, τ > 0. (5.1)

Here, the operator L is defined as

Lv = −vηη − η

2
vη − v. (5.2)
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Its principal eigenfunction on the half-line η > 0 with the Dirichlet boundary condition at η =
0 is

φ0(η) =
η

2
e−

η2

4

as Lφ0 = 0. The operator L has a discrete spectrum in L2(R+), weighted by e−
η2

8 , its non-zero
eigenvalues are λk = k ≥ 1, and the corresponding eigenfunctions are related via

φk+1 = φ′′k.

The principal eigenfunction of the adjoint operator

L∗ψ = −ψηη +
1
2
∂η(ηψ) − ψ

is ψ0(η) = η. Thus, the solution of the unperturbed version of (5.1) on a half-line

pτ + Lp = 0, η > 0, p(τ, 0) = 0 (5.3)

satisfies

p(τ, η) = η
e−

η2
4

2
√
π

∫ +∞

0

ξv0(ξ)dξ +O(e−τ )e−
η2
6 as τ → +∞, (5.4)

and our task is to generalize this asymptotics to the full problem (5.1) on the whole line. The

weight e−
η2
6 in (5.4) is, of course, by no means optimal. We will prove the following.

Lemma 5.1 Let w(τ, η) be the solution of (3.6) on R, with the initial condition w(0, η) =
w0(η) such that w0(η) = 0 for all η > M , with some M > 0, and w0(η) = O(eη) for η < 0.
There exists α∞ > 0 and a function h(τ) such that lim

τ→+∞h(τ) = 0, and such that we have, for

any γ′ ∈ (
0, 1

2

)
,

w(τ, η) = (α∞ + h(τ))η+e−
η2

4 +R(τ, η)e−
η2

6 , η ∈ R (5.5)

with
|R(τ, η)| ≤ Cγ′e−( 1

2−γ′)τ ,

where η+ = max(0, η).

Once again, the weight e−
η2

6 is not optimal. Lemma 4.2 is an immediate consequence of
this result. Indeed,

u(t, x) = e−x
√
tw

(
log t,

x√
t

)
,

hence Lemma 5.1 implies, with xγ = tγ ,

exγu(t, xγ) − α∞xγe−
x2

γ
4t =

√
tw

(
log t,

xγ√
t

)
− α∞xγe−

x2
γ

4t (5.6)

= h(log t)xγe−
x2

γ
4t +

√
tR

(
log t,

xγ√
t

)
e−

x2
γ

6t .

We now take Tε so that |h(log t)| < ε
3 for all t > Tε. For the second term in the right-hand side

of (5.6), we write
∣∣∣R

(
log t,

xγ√
t

)∣∣∣√te−x2
γ

6t ≤ Ctγ
′
e−

x2
γ

6t ≤ εxγe−
x2

γ
6t (5.7)
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for t > Tε sufficiently large, as soon as γ′ < γ. This proves (4.2). Thus, the proof of Lemma 4.2
reduces to proving Lemma 5.1. We will prove the latter by a construction of an upper and
lower barrier for w with the correct behaviors.

5.1 The approximate Dirichlet boundary condition

Let us come back to why the solution of (5.1) must approximately satisfy the Dirichlet
boundary condition at η = 0. Recall that w is related to the solution of the original KPP
problem via

w(τ, η) = u(eτ , ηe
τ
2 )e−

τ
2 +ηe

τ
2 .

The trivial a priori bound 0 < u(t, x) < 1 implies that we have

0 < w(τ, η) < e−
τ
2 +ηe

τ
2 , η < 0, (5.8)

and, in particular, we have

0 < w(τ,−e−( 1
2−γ)τ) ≤ e−eγτ

. (5.9)

We also have

wτ (τ, η) = ut(eτ , ηe
τ
2 )e

τ
2 +ηe

τ
2 +

η

2
ux(eτ , ηe

τ
2 )eηe

τ
2 +

(η
2
e

τ
2 − 1

2

)
u(eτ , ηe

τ
2 )e−

τ
2 +ηe

τ
2 ,

so that

wτ (τ,−e−( 1
2−γ)τ ) = ut(eτ ,−eγτ )e

τ
2 −eγτ − 1

2
e−( 1

2−γ)τux(eτ ,−eγτ)e−eγτ

− 1
2
(eγτ + 1)u(eτ ,−eγτ)e−

τ
2 −eγτ

= O(e−γeγτ

) (5.10)

for γ > 0 sufficiently small. Thus, the solution of (5.1) satisfies

0 < w(τ,−e−( 1
2−γ)τ ) ≤ e−eγτ

,

|wτ (τ,−e−( 1
2−γ)τ )| ≤ Ce−γeγτ

,
(5.11)

which we will use as an approximate Dirichlet boundary condition at η = 0.

5.2 An upper barrier

Consider the solution of

wτ + Lw +
3
2
e−

τ
2wη = 0, τ > 0, η > −e−( 1

2−γ)τ , (5.12)

w(τ,−e−( 1
2−γ)τ ) = e−eγτ

with a compactly supported initial condition w0(η) = w(0, η) chosen so that w0(η) ≥ u(1, η)eη.

Here, γ ∈ (
0, 1

2

)
should be thought of as a small parameter.

It follows from (5.11) that w(τ, η) is an upper barrier for w(τ, η). That is, we have

w(τ, η) ≤ w(τ, η) for all τ > 0 and η > −e−( 1
2−γ)τ .
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It is convenient to make a change of variables

w(τ, η) = p(τ, η + e−( 1
2−γ)τ ) + e−eγτ

g(η + e−( 1
2−γ)τ ), (5.13)

where g(η) is a smooth monotonic function such that g(η) = 1 for 0 ≤ η < 1 and g(η) = 0 for
η > 2. The function p satisfies

pτ + Lp+
(
γe−( 1

2−γ)τ +
3
2
e−

τ
2

)
pη = G(τ, η)e−eγτ

, η > 0, p(τ, 0) = 0 (5.14)

for τ > 0, with a smooth function G(τ, η) supported in 0 ≤ η ≤ 2, and the initial condition

p0(η) = w0(η − 1) − e−1g(η),

which also is compactly supported.
We will allow (5.14) to run for a large time T , after which time we can treat the right-hand

side and the last term in the left-hand side of (5.14) as a small perturbation. A variant of

Lemma 2.2 from [11] implies that p(T, η)e
η2

6 ∈ L2(R+) for all T > 0, as well as the following
estimate.

Lemma 5.2 Consider ω ∈ (
0, 1

2

)
and G(τ, η) smooth, bounded, and compactly supported in

R+. Let p(τ, η) solve

|pτ + Lp| ≤ εe−ωτ (|pη| + |p| +G(τ, η)), τ > 0, η > 0, p(τ, 0) = 0 (5.15)

with the initial condition p0(η) such that p0(η)e
η2

6 ∈ L2(R+). There exists ε0 > 0 and C > 0
(depending on p0), such that, for all 0 < ε < ε0, we have

p(τ, η) = η
(e−

η2

4

2
√
π

( ∫ +∞

0

ξp0(ξ)dξ + εR1(τ, η)
)

+ εe−ωτR2(τ, η)e−
η2

6 + e−τR3(τ, η)e−
η2

6

)
, (5.16)

where ‖R1,2,3(τ, ·)‖C3 ≤ C for all τ > 0.

For any ε > 0, we may choose T sufficiently large, and ω ∈ (
0, 1

2 − γ
)

so that

|pτ + Lp| ≤ εe−ω(τ−T )(|pη| + |G(τ, η)|), τ > T, η > 0, p(τ, 0) = 0. (5.17)

This follows from (5.14). Then, applying Lemma 5.2 for τ > T , we have

p(τ, η) = η
(e−

η2
4

2
√
π

( ∫ +∞

0

ξp(T, ξ)dξ + εR1(τ, η)
)

+ εe−ω(τ−T )R2(τ, η)e−
η2
6

+ e−(τ−T )R3(τ, η)e−
η2
6

)
. (5.18)

We claim that with a suitable choice of w0, the integral term in (5.18) is bounded from
below:

∫ ∞

0

ηp(τ, η)dη ≥ 1 for all τ > 0. (5.19)
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Indeed, multiplying (5.14) by η and integrating gives

d
dτ

∫ ∞

0

ηp(τ, η)dη =
(
γe−( 1

2−γ)τ +
3
2
e−

τ
2

)∫ ∞

0

p(τ, η)dη + e−eγτ

∫
G(τ, η)ηdη. (5.20)

The function G(τ, η) need not have a sign, hence we do not know that p(τ, η) is positive
everywhere. However, it follows from (5.14) that the negative part of p is bounded as

∫ ∞

0

p(τ, η)dη ≥ −C0

for all τ > 0, with the constant C0 which does not depend on w0(η) on the interval [2,∞).
Thus, we deduce from (5.20) that for all τ > 0, we have

∫ ∞

0

ηp(τ, η)dη ≥
∫ ∞

0

ηw0(η)dη − C′
0 (5.21)

with, once again, C′
0 independent of w0. Therefore, after possibly increasing w0, we may ensure

that (5.19) holds.
It follows from (5.18)–(5.19) that there exists a sequence τn → +∞, C > 0 and a func-

tion W∞(η), such that

C−1ηe−
η2
4 ≤W∞(η) ≤ Cηe−

η2
4 (5.22)

and

lim
n→+∞ e

η2
8 |p(τn, η) −W∞(η)| = 0, (5.23)

uniformly in η on the half-line η ≥ 0. The same bound for the function w(τ, η) itself follows

lim
n→+∞ e

η2

8 |w(τn, η) −W∞(η)| = 0, (5.24)

also uniformly in η on the half-line η ≥ 0.

5.3 A lower barrier

A lower barrier for w(τ, η) is devised as follows. First, note that the upper barrier for w(τ, η)
we have constructed above implies that

e
3τ
2 −ηexp( τ

2 )w(τ, η) ≤ Cγe−exp( γτ
2 ),

as soon as
η ≥ e−( 1

2−γ)τ

with γ ∈ (
0, 1

2

)
, and Cγ > 0 is chosen sufficiently large. Thus, a lower barrier w(τ, η) can be

defined as the solution of

wτ + Lw +
3
2
e−

τ
2wη + Cγe−exp( γτ

2 )w = 0, w(τ, e−( 1
2−γ)τ ) = 0, η > e−( 1

2−γ)τ (5.25)

with an initial condition w0(η) ≤ w0(η). This time it is convenient to make the change of
variables

w(τ, η) = z(τ, η − e−( 1
2−γ)τ ),
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so that

zτ + Lz + (−γe−( 1
2−γ)τ +

3
2
e−

τ
2 )zη + Cγe−exp( γτ

2 )z = 0, η > 0, z(τ, 0) = 0. (5.26)

We could now try to use an abstract stable manifold theorem to prove that

I(τ) :=
∫ ∞

0

ηz(τ, η)dη ≥ c0 > 0 for all τ > 0. (5.27)

That is, I(τ) remains uniformly bounded away from 0. However, to keep this paper self-
contained, we give a direct proof of (5.27). We look for a sub-solution to (5.26) in the form

p(τ, η) = (ζ(τ)φ0(η) − q(τ)ηe−
η2

8 )e−F (τ), (5.28)

where
F (τ) =

∫ τ

0

Cγe− exp( γs
2 ) ds

with the functions ζ(τ) and q(τ) satisfying

ζ(τ) ≥ ζ0 > 0, ζ̇(τ) < 0, q(τ) > 0, q(τ) = O(e−
τ
4 ). (5.29)

In other words, we wish to devise p(τ, η) as in (5.28)–(5.29), such that

p(0, η) ≤ z(0, η) = w0(η + 1) (5.30)

and

L(τ)p ≤ 0 (5.31)

with
L(τ)p = p

τ
+ Lp+

(
− γe−( 1

2−γ)τ +
3
2
e−

τ
2

)
p

η
.

Notice that the choice of F (τ) in (5.28) has eliminated a low order term involving Cγe− exp(γ τ
2 ).

For convenience, let us define

h(τ) = −γe−( 1
2−γ)τ +

3
2
e−

τ
2 ,

which appears in (5.26). Because Lφ0 = 0 and

L(ηe−
η2

8 ) = ηLe−
η2

8 =
(η2

16
− 3

4

)
ηe−

η2

8 ,

we find that

L(τ)p = ζ̇φ0 + ζh(τ)φ′0 −
(
q̇ +

(η2

16
− 3

4

)
q
)
ηe−

η2
8 + q

η2

4
e−

η2
8 h(τ) − qe−

η2
8 h(τ).

Let us write this as

η−1e
η2

8 L(τ)p = ζ̇η−1φ0e
η2

8 + η−1h(τ)
(
ζe

η2

8 φ′0 + q
(η2

4
− 1

))
−

(
q̇ +

(η2

16
− 3

4

)
q
)
. (5.32)

Our goal is to choose ζ(τ) and q(τ), such that (5.29) holds and the right-hand side of (5.32)
is non-positive after a certain time τ0, possibly quite large. However, and this is an important
point, this time τ0 will not depend on the initial condition w0(η).
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Let us restrict the small parameter γ to the interval
(
0, 1

4

)
. Observe that if τ0 > 0 is

sufficiently large, then h(τ) < 0 and |h(τ)| ≤ e−
τ
4 for all τ ≥ τ0. As φ0(η) = ηe−

η2

4 , note that

in (5.32) both φ′0(η)e
η2
8 and φ0(η)e

η2
8 are bounded functions. In particular, if τ0 is large enough

then
|φ′0e

η2
8 h(τ)| ≤ e−

τ
4

for all τ ≥ τ0, η ≥ 0.
Note also that for all η ≥ η1 =

√
28, we have

η2

16
− 3

4
≥ 1 and

η2

4
− 1 ≥ 0. (5.33)

Therefore, on the interval η ∈ [η1,∞) and for τ ≥ τ0, (5.32) is bounded by

η−1e
η2

8 L(τ)p ≤ η−1h(τ)ζe
η2

8 φ′0 − (q̇ + q) ≤ ζ(τ)e−
τ
4 − (q̇ + q),

assuming q(τ) > 0 and ζ̇ < 0. Hence, if q(τ) and ζ(τ) are chosen to satisfy the differential
inequality

q̇ + q − e−
τ
4 ζ ≥ 0, τ ≥ τ0, (5.34)

then we will have

L(τ)p ≤ 0 for τ ≥ τ0 and η ≥ η1, (5.35)

provided that ζ̇ ≤ 0, as presumed in (5.29). Still assuming ζ̇ ≤ 0 on (τ0,+∞), a sufficient
condition for (5.34) to be satisfied is

q̇ + q ≥ e−
τ
4 ζ(τ0), τ ≥ τ0.

Hence, we choose

q(τ) = e−(τ−τ0) +
4
3
e−

τ
4 ζ(τ0). (5.36)

Note that q(τ) satisfies the assumptions on q in (5.29).
Let us now deal with the range η ∈ [0, η1]. The function η−1φ0(η) is bounded on R and it

is bounded away from 0 on [0, η1]. Define

ε1 = min
η∈[0,ηγ ]

η−1φ0(η)e
η2
8 > 0.

As h(τ) < 0 for τ ≥ τ0, on the interval [0, η1], we can bound (5.32) by

η−1e
η2
8 L(τ)p ≤ ε1ζ̇(τ) + η−1h(τ)(ζe

η2
8 φ′0 − q) −

(
q̇ − 3

4
q
)
. (5.37)

For η ∈ [1, η1], where η−1 < 1, we have

η−1e
η2
8 L(τ)p ≤ ε1ζ̇(τ) + e−

τ
4 (ζ + q) −

(
q̇ − 3

4
q
)
. (5.38)

To make this non-positive, we choose ζ to satisfy

ε1ζ̇(τ) ≤ q̇ − 3
4
q − e−

τ
4 (ζ + q) = e−

τ
4 ζ(τ0) − 7

4
q(τ) − e−

τ
4 (ζ(τ) + q(τ)), (5.39)
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where the last equalilty comes from (5.36). Assuming ζ̇ < 0, we have ζ(τ) < ζ(τ0), so a sufficient
condition for (5.39) to hold when τ ≥ τ0 is simply

ε1ζ̇(τ) ≤ −3q(τ). (5.40)

For η near 0, the dominant term in (5.37) is η−1h(τ)(ζe
η2
8 φ′0 − q). Define

ε2 = min
η∈[0,1]

φ′0(η)e
η2

8 > 0.

Therefore, if we can arrange that ζ(τ) > q(τ)
ε2

, then for η ∈ [0, 1], we have ζe
η2
8 φ′0 − q ≥ 0, so

η−1h(τ)(ζe
η2
8 φ′0 − q) ≤ 0.

In this case,

η−1e
η2
8 L(τ)p ≤ ε1ζ̇(τ) −

(
q̇ − 3

4
q
)
, (5.41)

which is non-positive for τ ≥ τ0, due to (5.39). In summary, we will have L(τ)p ≤ 0 in the
interval η ∈ [0, η1] and τ ≥ τ0 if ζ satisfies (5.40) and ζ(τ) > q(τ)

ε2
for τ ≥ τ0. In view of this,

we let ζ(τ) have the form

ζ(τ) = a2 + a3e−
τ−τ0

4 .

Thus, (5.40) holds if

−ε1a3

4
e−

τ−τ0
4 ≤ −3q = −3e−(τ−τ0) − 4e−

τ
4 (a2 + a3), τ ≥ τ0.

Hence it suffices that
ε1a3

4
≥ 3 + 4e−

τ0
4 (a2 + a3)

holds; this may be achieved with a2, a3 > 0 if τ0 is large enough. Then we may take a2 large
enough, so that ζ(τ) > q(τ)

ε2
also holds for τ ≥ τ0; this condition translates to

a2 + a3e−
τ−τ0

4 ≥ 1
ε2

(
e−(τ−τ0) +

4
3
e−

τ
4 (a2 + a3)

)
, τ ≥ τ0.

This also is attainable with a2 >
1
ε2

and a3 > 0 if τ0 is chosen large enough. This completes
the construction of the subsolution p(τ, η) in (5.28).

Let us come back to our subsolution z(τ, η). From the strong maximum principle, we know
that z(τ0, η) > 0 and ∂ηz(τ0, 0) > 0. Hence, there is λ0 > 0, such that

w(τ0, η) ≥ λ0p(τ0, η),

where p is given by (5.28) with ζ and q defined above, and we have for τ ≥ τ0,

w(τ, η) ≥ λ0p(τ, η).

This, by (5.29), bounds the quantity I(τ) uniformly from below, so that (5.29) holds with a
constant c0 > 0 that depends on the initial condition w0.
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Therefore, just as in the study of the upper barrier, we obtain the uniform convergence of
(possibly a subsequence of) w(τn, ·) on the half-line η ≥ e−( 1

2−γ)τ to a function W∞(η) which
satisfies

C−1ηe−
η2
4 ≤W∞(η) ≤ Cηe−

η2
4 , (5.42)

and such that

lim
n→+∞ e

η2

8 |w(τn, η) −W∞(η)| = 0, η > 0. (5.43)

5.4 Convergence of w(τ, η): Proof of Lemma 5.1

Let X be the space of bounded uniformly continuous functions u(η), such that e
η2

8 u(η)
is bounded and uniformly continuous on R+. We deduce from the convergence of the upper
and lower barriers for w(τ, η) (and ensuing uniform bounds for w) that there exists a sequence
τn → +∞, such that w(τn, ·) itself converges to a limit W∞ ∈ X , such that W∞ ≡ 0 on R−, and
W∞(η) > 0 for all η > 0. Our next step is to bootstrap the convergence along a sub-sequence,
and show that the limit of w(τ, η) as τ → +∞ exists in the space X . First, observe that the
above convergence implies that the shifted functions wn(τ, η) = w(τ + τn, η) converge in X ,
uniformly on compact time intervals, as n→ +∞ to the solution w∞(τ, η) of the linear problem

(∂τ + L)w∞ = 0, η > 0, (5.44)

w∞(τ, 0) = 0,

w∞(0, η) = W∞(η).

In addition, there exists α∞ > 0, such that w∞(τ, η) converges to ψ(η) = α∞ηe−
η2

4 , in the
topology of X as τ → +∞. Thus, for any ε > 0, we may choose Tε large enough, so that

|w∞(τ, η) − α∞ηe−
η2

4 | ≤ εηe−
η2

8 for all τ > Tε and η > 0. (5.45)

Given Tε, we can find Nε sufficiently large so that

|w(Tε + τn, η + e−( 1
2−γ)Tε) − w∞(Tε, η)| ≤ εηe−

η2
8 for all n > Nε. (5.46)

In particular, we have

α∞ηe−
η2

4 − 2εηe−
η2

8 ≤ w(τNε + Tε, η + e−( 1
2−γ)Tε) ≤ α∞ηe−

η2

4 + 2εηe−
η2

8 . (5.47)

We may now construct the upper and lower barriers for the function w(τ + τNε + Tε, η +
e−( 1

2−γ)Tε), exactly as we have done before. It follows, once again from Lemma 5.2 applied to
these barriers that any limit point φ∞ of w(τ, ·) in X as τ → +∞ satisfies

(α∞ − Cε)ηe−
η2

4 ≤ φ∞(η) ≤ (α∞ + Cε)ηe−
η2

4 . (5.48)

As ε > 0 is arbitrary, we conclude that w(τ, η) converges in X as τ → +∞ to ψ(η) = α∞ηe−
η2

4 .
Taking into account Lemma 5.2 once again, applied to the upper and lower barriers for w(τ, η)
constructed starting from any time τ > 0, we have proved Lemma 5.1, which implies Lemma
4.2.
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