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Abstract This paper presents the fundamental optical concepts of designing multifocal
ophthalmic lenses and the mathematical methods associated with them. In particular, it is
shown that the design methodology is heavily based on differential geometric ideas such as
Willmore surfaces. A key role is played by Hamilton’s eikonal functions. It is shown that
these functions capture all the information on the local blur and distortion created by the
lenses. Along the way, formulas for computing the eikonal functions are derived. Finally,
the author lists a few intriguing mathematical problems and novel concepts in optics as
future projects.
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1 Introduction

People start losing their ability to contract the eye’s lens at about the age of 45. This leads
to deteriorating near-field vision, a condition known as presbyopia. If a person suffers also from
myopia or hyperopia, then that person needs vision correction both for far vision and near
vision. One option is to keep two pairs of spectacles; another option is to use bifocal lenses,
where a small lens for near vision is fused onto a larger lens for far vision. The bifocal solution
is based on the fact that as the eye accommodates, that is, tries to view a near-by object, it
also converges towards the nose. Therefore, the smaller lens in a bifocal is fused in the nasal
part of the larger lens.

A major drawback of bifocals is that they create a discontinuity in the lens structure, as
well as a discontinuity in its optical behavior. This implies discomfort to the wearer and also
an undesired cosmetic effect. Therefore, there were many attempts to design a smooth surface
that will provide slow transition from far vision to near vision. In addition to overcoming
the two drawbacks of bifocals, such a smooth multifocal lens could provide good vision at all
intermediate distances.

The purpose of this paper is to explain the mathematical foundations of multifocal lens
design. As will be shown, a high quality design requires a variety of mathematical tools,
including PDEs, numerical analysis, optimization, CAD, and more.

Indeed, after many failures, two successful designs were proposed in the 1950’s. One by
Kanolt [9] and one by Maitenaz [15]. The design of Maitenaz and variants of it led to the first
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successful commercial multifocal lenses, also called now Progressive Addition Lenses (PALs for
short). However, the lens proposed by Maitenaz was not based on acceptable design paradigms,
where a merit function is constructed based on desired optical properties, and then optimized
to achieve optimal design under given constraints.

A design methodology of PALs in the sense above was developed by Katzman and Rubinstein
[10]. In Section 2, we shall explain the key ideas behind it and its relation to the Willmore
problem in differential geometry. We shall also present there some basic optical parameters
that are needed to understand what is a spectacle lens in general. It was realized that the
mathematical model behind this design is not accurate enough. A more precise model, based on
Hamilton’s eikonal functions is presented in Section 3. In Section 4, we consider two additional
topics, including a related challenging open problem in differential geometry, and the idea
behind adjustable focus lenses, which provide an interesting alternative to PALs. Finally, we
summarize the paper in Section 5, where we also briefly mention additional aspects of PAL
design.

2 Surface Power and a Differential Geometric Design

The first step is to understand what is an eyeglass prescription. Following an eye exam a
person gets 4 numbers: Power Sd, cylinder (also called sometimes astigmatism) Cd, cylinder
axis αd and add A. The add is the difference between the optical powers of the lens needed to
correct for far vision and near vision. The power, cylinder and axis are in fact parameters that
define a 2 × 2 matrix, termed dioptric matrix:

Diop =

⎛
⎜⎝ Sd +

Cd

2
cos 2αd

Cd

2
sin 2αd

Cd

2
sin 2αd Sd − Cd

2
cos 2αd

⎞
⎟⎠ . (2.1)

To understand the meaning of this matrix, consider a far point source at the horizontal forward
gaze direction. The point emits a spherical wavefront that propagates towards the eye, and
then is distorted by the lens two surfaces. Later, this wavefront propagates into the eye, where
it is again refracted, this time by the eye’s optical surfaces (cornea, crystalline lens). Since the
pupil is relatively small, optometrists consider only the quadratic terms in the Taylor expansion
of the wavefront. Indeed Diop is the quadratic form of the second order terms in the wavefront
Taylor expansion. The dioptric matrix is, roughly speaking, the shape of the wavefront (after
refraction by the spectacles) that would be focused by the person’s eye to a focal point at the
retina. Geometrically, Sd is the mean curvature of the wavefront, Cd is the difference between
its principal curvatures, and αd is the angle between the principal direction associated with the
larger principal curvature and the x axis. In optometry, curvatures are measured in units called
diopter, where 1 diopter = 1/meter. Therefore, a basic goal is to shape the lens to achieve this
prescription dioptric matrix. The problem is that the eye is not looking only at the forward
direction; rather, it scans the visual field in many angles. Therefore, it is required to design a
lens that would provide dioptric matrices that are as close as possible to the prescription matrix
for all gaze directions.

The design paradigm is to consider the “world” as a set of points in space, some far and some
near, then, each point emits a spherical wavefront that propagates towards the eye. Computing
the wavefront after refraction by the two lens surfaces, we can estimate how close it is to the
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desired wavefront given by the patient’s prescription. Therefore, there are a few questions we
need to answer:

(1) How to compute the refracted wavefront after refraction by the lens?
(2) How to represent the lens surfaces?
(3) Since we need to compromise vision in many gaze directions, what is a good merit

function for “good” vision?
(4) What optimization approach to use? This involves convergence, efficiency, accuracy, etc.
To simplify the analysis, we assume at this point that the lens consists of a single refractive

surface, and neglect the refraction by the second surface. We shall remove this assumption in
the next section. We further assume that the prescription has no astigmatism, i.e., Cd = 0. In
Section 4, we shall explain how to deal with non-zero cylinder. Deviations of the actual power S

from the desired power Sd, and nonzero actual cylinder C imply a blurred image on the retina.
To minimize that blur, we want to make the expression e = (S − Sd)2 + C2 small for each gaze
direction. However, some directions are more important for normal visual tasks. Therefore, we
define the following merit function consisting of a weighted sum of the error e:

e(u) =
∫

Ω

(wp(x, y)(S − Sd)2 + wc(x, y)C2) dxdy, (2.2)

where u(x, y) is the refractive surface, S(x, y) and C(x, y) are the actual power and cylinder at
a point (x, y), Ω is the projection of the lens surface on the (x, y) plane (the forward direction
is denoted z), and wp and wc are given weight functions chosen by designer. Notice that S and
C are functions of the surface u. The choice of L2 norms for the error is somewhat arbitrary,
and other norms are proposed as well. However, it turns out that this norm contributes to the
stability of the optimization algorithms; furthermore, designs based on (2.2) and its upgrades
described in the next section give rise to excellent lenses.

When the prescription is cylinder-free, it represents locally a spherical wavefront with radius
of curvature 1

Sd
. The refracted wavefront, needed in the computation of the functional e, is more

complicated to compute even if we only consider its local quadratic approximation. Consider
first the propagation of the wavefront from its point source Xo = (xo, yo, zo) to the lens surface,
along the ray connecting Xo with Xs = (xs, ys, u(xs, ys)). Since we start at a point source, the
wavefront is a spherical surface, with curvature κi = 1

r , where r = |Xs − Xo|. As a further
simplification, we assume in this section that the wavefront hits the surface normally, that is,
the base ray (which is normal to the wavefront at its base) is parallel to the normal to the surface
u at the point of intersection Xs. If we denote by κj

i (j = 1, 2) the two principal curvatures of
the incident wavefront, and by κj

s (j = 1, 2) the two principal curvatures of the surface at Xs,
then the principal curvatures κj

r (j = 1, 2) of the refracted wavefront are given by the equation

κj
r =

n

n′ κ
j
i +

n − n′

n′ κs, j = 1, 2. (2.3)

Here n and n′ are the refraction indices in the media before and after refraction. We shall
derive formula (2.3) from a more general result in the next section.

(2.3) implies that up to a suitable constant, the functional e can be written in terms of the
surface’s principal curvatures as

e(u) =
∫

Ω

(wp(Hs − Hd)2 + wc(κ1
s − κ2

s)
2) dxdy, (2.4)
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where Hs denotes the mean curvature of the lens surface.
To obtain intuition into the nature of the variational problem of minimizing e(u), consider

the canonical homogeneous model wp = wc = 1. Upon linearization about a flat surface, u

satisfies a bi-harmonic equation:

Δ2u = ΔHd. (2.5)

Based on this observation, Wang et al. proved several regularity results about the minimizers
of e. For instance, for clamped boundary conditions they proved the following result.

Theorem 2.1 (see [23]) Assume u = ∂νu = 0 on the boundary ∂Ω, where ∂ν denotes
normal derivative. If wp, wc ∈ Ck(Ω), Hd ∈ Hk(Ω), and furthermore wp and wc are bounded
from below by a positive constant, then e has a unique minimizer in the Sobolev space H2+k(Ω).

Remark 2.1 It is interesting to note that in the special case wp = 0, wc = 1, the functional
e(u) becomes, up to a constant,

e1(u) =
∫

Ω

(H2
s − KG) dxdy, (2.6)

where KG is the Gaussian curvature of the surface. Thus e1 is essentially the Willmore energy
of the surface. Moreover, upon linearization about a flat surface, e1 becomes

e1,l =
∫

Ω

((Δu)2 − 4(uxxuyy − u2
xy)) dxdy, (2.7)

which is the energy of a plate with Poisson ratio σ = −1. While Landau and Lifshitz [13] stated
that there are no known substances for which σ is negative, some exotic materials with negative
σ were constructed in recent years, and in any case, mathematically the problem is well-defined
all the way down to σ = −1.

3 Design Based on Eikonal Functions

The design method presented in the previous section was successfully implemented (see [10])
to become one of the leading PALs in the market at the time 1. However, is it accurate enough?
Can it be improved? Two immediate questions come up in this context. Is the approximation of
the optical power by surface curvatures good enough? Are we using the correct merit function?

A partial negative answer to the first question was given in [6]. The authors computed
the optical distance of a set of rays emanating from a point source after refraction by the
lens surfaces, and used these distances to construct the refracted wavefront. Their calculation
indicated that in some cases the difference between the precise wavefront and its geometric
approximation given in equation (2.3) is quite large. We shall therefore upgrade the design
method so that the optics of the lens is computed accurately. However, we shall do so by a
different method than in [6]. One reason for this is that the optimization process requires many
iterations, and the use of many free parameters to represent the freeform surface. Therefore,
the wavefront computation must be very efficient. Another reason is that with the method
described below we can capture additional optical features of the lens that are needed for a
more general merit function.

1Although the patent was issued in 2001, the method was commercially used since the early 90s.
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The last point is related to the second question we asked. The merit function e in equation
(2.2) is based on the minimization of the spread of the image of a point source, namely what
is minimized is the image blur at the retina. While this is a very important requirement,
one may want to control not only the blur but also the shape of an extended image. For
example, quantities such as the local magnification of a small square image, and its distortion
also contribute to good vision.

Our method is based on Hamilton’s eikonal function E. This function, and some canonical
transforms of it were introduced by Hamilton [8] as the foundation of his geometrical optics
theory.

3.1 Eikonal functions

Consider 2 points P = (x, y, z) and P ′ = (x′, y′, z′) in an optical medium characterized by
a (possibly varying) refraction index n. The optical distance between the points is the minimal
value of the Fermat integral

∫ P ′

P
n along all possible paths connecting the two points. We

denote it by do(P, P ′). The eikonal equation |∇do| = n imposes a constraint on the derivatives
of do. It is therefore convenient to restrict the points P and P ′ to lie on two predetermined
surfaces Σ and Σ′, respectively. For example, we select the reference planes (Σ : z = 0 and
Σ′ : z′ = 0). The choice of the coordinate frames is a bit arbitrary, and might depend on the
problem at hand. For instance, if the system has a common optical axis, we may use it as the z

and z′ axes. The refraction index is n near P and n′ near P ′. The point eikonal E(x, y, x′, y′) is
defined to be the optical distance between P ∈ Σ and P ′ ∈ Σ′. The ray directions are denoted
by r = (ξ, η, ζ) and r′ = (ξ′, η′, ζ′). It follows from the eikonal equation that the ray directions
can be determined from E. For example, ∂E

∂x = nξ, etc.
Indeed a main application of E is to determine the associated rays connecting two points in

the medium. In the important case where the points are separated by a lens, the point eikonal
serves to determine the rays connecting points in the object space (the space near (x, y, z)) with
points in the image space (the space near (x′, y′, z′)).

It is sometimes preferred to work with a different, more direct characterization of the optical
system, provided by a set of equations that determine for each ray in the object space its
associated ray in the image space. Using the same notation, we applied for the point eikonal,
we look for equations of the form

x′ = x′(x, y, ξ, η), y′ = y′(x, y, ξ, η), ξ′ = ξ′(x, y, ξ, η), η′ = η′(x, y, ξ, η). (3.1)

We term these equations collectively as the lens transformation, or the lens mapping.
There are several reasons for the introduction of objects such as the point eikonal, although

the lens transformation seems a more direct way to characterize an optical system. One reason
is that eikonals have a transparent geometrical meaning. They are also closely related to the
imaging properties of wavefronts as we shall show. Furthermore, certain eikonals are often
easier to compute than the lens transformation. Unfortunately, the point eikonal is obviously
degenerate for a point object that is focused at an image point. For this reason, Hamilton
introduced two more useful eikonal functions.

The point angle eikonal is defined to be the Legendre transform of E with respect to (x′, y′).
We therefore write

EM (x, y, ξ′, η′) = extx′,y′(E(x, y, x′, y′) − n′(x′ξ′ + y′η′)). (3.2)
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Similarly, we define the angle eikonal EA(ξ, η, ξ′, η′) as the Legendre transform of EM with
respect to the variables (x, y):

EA(ξ, η, ξ′, η′) = extx,y(EM (x, y, ξ′, η′) + n(xξ + yη)). (3.3)

A great advantage of the angle eikonal is that it changes in a very simple way when we shift
either reference plane in the orthogonal direction. Such shifts are important, for example, since
we might want to shift a given plane to a new plane where a certain object is imaged. Another
instance where shifts are useful is when one wants to study the propagation of wavefronts.
Using the analytic definition or the geometric interpretation of the point angle eikonal, it can
be shown (see [14]) that under an orthogonal shift of the Σ′ reference plane by an amount δ′,
the point angle eikonal EM is transformed according to

EM (x, y, ξ′, η′) �→ EM (x, y, ξ′, η′) + n′δ′
√

1 − (ξ′)2 − (η′)2. (3.4)

Thus, the shifted point-angle eikonal is expressed by an explicit formula involving its own
natural variables. This is an example for the usefulness of the eikonal functions. The angle
eikonal is transformed similarly upon such a shift. The transformation of the point eikonal,
on the other hand, is difficult to compute, since the factor

√
1 − (ξ′)2 − (η′)2 is expressed only

implicitly in term of the arguments of E.

3.2 Local eikonals: Definition and imaging properties

Hamilton’s eikonal functions were rarely used in optical design since their computation is a
formidable task, and since in general only part of the information embodied in them is needed.
For our purposes, and since as mentioned in the previous section only the local form of the
wave should be considered in light of the small pupil, we proceed by defining local eikonals.
These functions are far easier to compute, and they contain all the information for the imaging
properties of spectacles lenses.

To construct the local eikonals, we consider rays in the vicinity of a base ray that leaves
the point P in the direction of the z axis, and arrives at P ′ along the direction of the normal
there z′. In this case, the direction parameters ξ, η, ξ′, η′ are zero to first order, and to leading
order the point eikonal can be approximated by its quadratic form that is characterized by its
Hessian matrix

E =
(

P Q
Qt R

)
, (3.5)

where P ,Q,R are 2 × 2 matrices. The matrices R and P are symmetric, while Q is not
necessarily symmetric. The symmetries of P and R follow from the eikonal equation.

′

Figure 1 The base ray in the eikonal construction for narrow beams.
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We analyze now the optical information encoded in the 10 independent parameters that con-
stitute the matrix E . It is convenient to do so by considering separately the matrices P ,Q,R.
The matrix R determines the classical properties such as power and oblique astigmatism (cylin-
der). Consider the case where (x, y) = (0, 0). Then to leading order,

E(0, 0, x′, y′) = R11x
′2 + 2R12x

′y′ + R22y
′2. (3.6)

It is easy to see from the geometric interpretation of E that it is equivalent (up to a sign and a
factor) to the local shape of the wavefront. As before, the power S of a wavefront is its mean
curvature, and the astigmatism (cylinder) C is difference between the principal curvatures. We
thus write S = − 1

2n′ (R11+R22) and C = 1
n′

√
(R11 −R22)2 + R2

12. The matrix P plays exactly
the same role but for the inverse problem of characterizing the shape of the local wavefront in
the object space that is exactly imaged at (0, 0) at the image plane.

The matrix Q is in general asymmetric. We therefore express it in the from UM, where U
is a rotation matrix, and M is a symmetric matrix. Let μ1, μ2 be the two eigenvalues of M.
To provide the matrix Q with an interpretation related to its imaging function, we choose the
origin to be a viewing point in the image space by setting x′ = y′ = 0. If there is no optical
element between the viewing point in image space and an extended object reaching the point
(x, y) on a plane in the object space at a distance r from the origin, the object will be seen from
the origin at the direction

(
x
r , y

r

)
. The viewing direction of the same object from the origin

with the optical element is given by (see Figure 2)
(

ξ′

η′

)
=

1
n′Q

t

(
x
y

)
. (3.7)

�

�

Figure 2 Top sketch: A line element in the object space, viewed from a point in the

image space with no lens in between. Bottom sketch: Same line viewed through an optical

element. The information on the change in the viewing directions is stored in the matrix

Q.

Multiplying and dividing the last equation by r, we obtain

(
ξ′

η′

)
=

rQt

n′

⎛
⎜⎝

x

r
y

r

⎞
⎟⎠ . (3.8)

It follows that the matrix r
n′Mt provides (up to a rigid rotation) the information on the angular

magnification of the optical element. We can now define the following geometrical optical
parameters:
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(1) Angular magnification: M = r
2n′ (μ1 + μ2).

(2) Angular distortion: D = r
n′ (μ1 − μ2).

(3) Angular magnification angle: φ1 is the angle of the largest magnification axis.
(4) Torsion: φ2 is the rotation angle defining the rotation matrix U .
The importance of these quantities to vision was only recently understood (see [2, 20]).

3.3 Local eikonals: Computations

We showed in the previous subsection that the local point eikonal E contains not only the
blur information of the lens, but also shape information, such as the local magnification and
distortion parameters. It remains to develop an efficient method to compute E . We now show
how to do so with the help of the angle eikonal EA and the lens transformation introduced in
equation (3.1).

For this purpose, we write the Hessians of the local angle eikonal EA and local lens trans-
formation J as

EA =
(

A B
Bt C

)
, J =

(
T F
G H

)
, (3.9)

where A,B, · · · ,H are all 2 × 2 matrices. Then the equations for the angle eikonal and lens
transformation are⎛

⎜⎜⎝
x′

y′

ξ′

η′

⎞
⎟⎟⎠ =

(
T F
G H

) ⎛
⎜⎜⎝

x
y
ξ
η

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

nx
ny

−n′x′

−n′y′

⎞
⎟⎟⎠ =

(
A B
Bt C

) ⎛
⎜⎜⎝

ξ
η
ξ′

η′

⎞
⎟⎟⎠ . (3.10)

Since the point eikonal E has a similar set of equations, one can easily convert one local eikonal
to another.

Since the lens transformation forms a group whose structure is particularly simple in the
local approximation we use in this section, we can construct the transformation from a point
object into the image space beyond the two lens surfaces as a product:

J = J4 · J3 · J2 · J1 · I, (3.11)

where I is the 4 × 4 identity map, J1 is the shift transformation from the point source to
the anterior lens surface, J2 is the refraction transformation through the anterior surface, J3

is the shift from the anterior surface to the posterior lens surface, and J4 is the refraction
transformation through the posterior surface.

The effect of shifting the reference plane on the eikonals can be most conveniently found
through the angle eikonal. Expanding equation (3.4) for small angles, we obtain

EA → EA − n′δ′

2
((ξ′)2 + (η′)2). (3.12)

In terms of the matrix EA, the shift implies

C → Cδ′ = C − n′δ′, (3.13)

where δ′ is the shift, and the matrices A and B remain unchanged under the shift.
The refraction transformation is much harder to compute. In [21], we applied a geometric

approach to solve the eikonal equation to obtain a closed expression for J2 and J4 (see also
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[22]). Let w be a refractive surface separating a medium with refraction index n and a medium
with refraction index n′. Let the incident base ray be r, and the refracted base ray be r′, and let
the normal to Σ at the hit point of the rays be ν. We construct three local coordinate systems
(x, y, z), (x′, y′, z′) and (X ,Y,Z) for the incident rays, the refracted rays, and the surface Σ,
such that the z, z′,Z axes are along r, r′, ν, respectively. Next, we recall from Snell’s law (see
[12]) that the incident ray, the refracted ray and the surface normal are coplanar. Of course,
we also have the Snell relation n sin i = n′ sin i′, where i, i′ are the angles made by ν and the
incident and refracted base rays, respectively. We thus select the x axis to be orthogonal to r
in this common plane, with similar choice for x′ and X . The third coordinate in each frame
is chosen so as to complete the first two coordinates into a regular orthogonal frame. In this
coordinate frames, an incident wavefront v about the base ray, the refracted wavefront v′ and
the refractive surface w are all quadratic functions to leading order. It is convenient to write
them down explicitly as

v =
1
2
(x, y)tV (x, y), v′ =

1
2
(x′, y′)tV ′(x′, y′), w =

1
2
(X ,Y)tW (X ,Y), (3.14)

where V, V ′, W are 2 × 2 matrices.
Our goal now is to find the matrices (T ,F ,G,H) as in equation (3.10) that relate points

and directions (x, y, ξ, η) of incident rays on the plane orthogonal to r to points and directions
(x′, y′, ξ′, η′) of refracted rays on the plane orthogonal to r′. Without spelling our the details
(see [21–22]), we obtain that T ,F ,H do not depend upon the surface w:

T =

⎛
⎝ cos i′

cos i
0

0 1

⎞
⎠ , F =

(
0 0
0 0

)
, H =

n

n′

⎛
⎝

cos i

cos i′
0

0 1

⎞
⎠ . (3.15)

The key information on the refractive surface is found to be encoded in G:

G =
n cos i − n′ cos i′

cos i cos i′

(
W11 W12 cos i

W12 cos i′ W22 cos i cos i′

)
. (3.16)

Equations (3.15)–(3.16) are all we need to compute the local lens transformations J2 and
J4. In addition, equation (3.13) enables the computation on J1 and J3. Therefore, we are now
able to compute the entire local lens mapping J . As explained above, once J is known, we
can invert the eikonal equations to find the imaging matrices R and Q, that contain all the
focusing, magnification and distortion parameters of the lens at any point on it.

As a by-product of the formula, we derived for the refraction mapping, we show how to
apply it to upgrade Snell’s law. This law relates an incident ray, the refracted ray and the
refracting surface normal. Alternatively, Snell’s law relates the tangent planes of the incident
wavefront, the refracted wavefront and the refracting surface. We now derive a second order
extension of Snell law, by relating the quadratic shapes (V, V ′, W ) of these surfaces. For this
purpose, we observe that for a given incident and refracted wavefronts the ray directions are
determined by the ray location on a given plane and the wavefront shape. Using the same
notation as above in this subsection, we have the following relations:

(ξ, η) = −V (x, y), (ξ′, η′) = −V ′(x′, y′). (3.17)

Therefore, using the fact that F = 0, we obtain

V ′ = −GT −1 + HV T −1. (3.18)



656 J. Rubinstein

Substituting the expression we obtained for T ,G,H in (3.15)–(3.16) into (3.18), we obtain the
quadratic refraction formula

n′ cos i′V ′ = n cos i

⎛
⎜⎝V11

cos i

cos i′
V12

V21 V22
cos i′

cos i

⎞
⎟⎠

+ (n′ cos i′ − n cos i)

⎛
⎝W11

1
cos i′

W12

W21 W22 cos i′

⎞
⎠ . (3.19)

In the special case where the incident and refracted wavefronts are both tangent to the refractive
surface i = i′ = 0, equation (3.19) reduces to

V ′ =
n

n′V +
n′ − n

n′ W, (3.20)

which proves the relation (2.3).

3.4 Extended merit function

Now, since we are able to compute the entire matrix E which contains all the imaging
properties of a lens at each point, we can upgrade the merit function e of Section 2.

As a first application, consider a design for a person with nonzero cylinder C. It is more
convenient in this case to rewrite the dioptric matrix in the form (see [7])

Diop =
(

Sd + C+,d CX,d

CX,d Sd − C+,d

)
, (3.21)

where we introduced the cross cylinders

C+ =
C

2
cos 2α, CX =

C

2
sin 2α.

The notion of cross cylinders is of practical and theoretical importance. Practically, some opto-
metric instruments measure them directly. Theoretically, cross cylinders are natural quantities
for expressing both the magnitude and angle of the cylinder.

In analogy with the merit function e defined in Section 2, consider a person with a pre-
scription given by equation (3.21). Assume that one of the lens surfaces is fixed, and the other
one u(x, y) is to be optimized. Let Sd(x, y), C+.d(x, y), CX,d(x, y) be a distribution of desired
optical power and cross cylinders for the design at a point (x, y). The actual wavefront, or
equivalently, actual dioptric component S(x, y), C+(x, y) and CX(x, y) at a point (x, y) can be
computed by the method of Subsection 3.3. Then, we define a merit function to be minimized
of the form

e(u) =
∫

Ω

(wp(S − Sd)2 + wcC
2
e ) dxdy, (3.22)

where

Ce(x, y) = 2
√

(Cx − Cx,d)2 + (C+ − C+,d)2. (3.23)
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Remark 3.1 One may wonder why the desired cross cylinders Cd,+, Cd,X may depend
upon the position (x, y), while the prescription is a fixed quantity. There are two reasons for
that. One reason is that in practice a person does not notice small deviations in cylinder (or
power) from his optimal prescription. The designer can exploit this fact to deviate locally in
purpose from the prescription in order to achieve an overall good actual optical performance.
Another reason is that as the eye rotates it scans the visual field in different directions. This
raises an inherent difficulty: The rotation group SO(3) is not commutative, and therefore the
cylinder axis seems to depend on the orbit the eye takes from its forward gaze to any given gaze
direction! This paradox was resolved in 1845 by the topologist J.B. Listing who postulated the
following principle.

Listing’s Law For each eye there exists a primary visual axis, essentially near the forward
looking direction, and an associated primary plane, orthogonal to this axis. All eye rotations
from the primary axis to other gaze directions are done by rotating the eye about an axis in
the primary plane.

While there is not yet a mechanical foundation to this postulate (in terms of eye muscle
geometry), this law was validated, at least approximately, in many tests.

The merit function e(u) can be further extended by including in it terms, such as

em(u) =
∫

Ω

wm(M − Md)2 + wd(D − Dd)2, (3.24)

where M(x, y) and D(x, y) are the actual magnification and distortion parameters introduced in
Subsection 3.2, while Md and Dd are desired magnification and distortion, e.g., Md = 1, Dd = 0.

Open Problem We showed in Section 2 that the functional e(u) defined in equation (2.2)
is related to the Willmore functional, and its linearization is related to the energy of a plate. In
particular, the main operator in the associated Euler-Lagrange equation is biharmonic. There
is still no theory, similar to the one presented in [23], for the extended functional e of equation
(3.22). An even more challenging problem is to study the functional e of equation (3.22) with
the addition of the magnification and distortion terms of equation (3.24).

4 Additional Topics and Open Problems

4.1 Estimating the cylinder

In the geometric model presented in Section 2 a perfect lens surface would be umbilic with
prescribed mean curvature. However, a basic theorem in differential geometry states that the
only umbilic surface is a sphere. Thus, if the mean curvature is not constant (and a varying
mean curvature is the essence of multifocal lenses), the lens surface cannot be spherical, and
therefore it cannot be umbilic. Indeed, while a “perfect” lens is not attainable, we searched
for an optimal lens in the sense of the functional e(u), namely, we sought a surface whose
mean curvature is close to a given function, while minimizing the surface astigmatism, i.e., the
difference between its principal curvatures.

A very interesting question is what are the inherent limitations of the design. Specifically,
we ask the problem as follows.

Open Problem Find a lower bound on the astigmatism for a given mean curvature
distribution.
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While this problem is in general open, a partial result was obtained in this direction by
Minkwitz. He proved the result below.

Theorem 4.1 (see [16]) Assume that the center line u(0, y) of a surface is umbilic. Then
∂
∂xCs(0, y) = 2 ∂

∂y Hs(0, y).

However, since we showed that the geometric properties of the surface only approximate
its actual optics, the question is whether a similar estimate on the astigmatism growth can
be obtained from information on the power of the lens. Indeed the following result, based on
formula derived in [18], holds:

Theorem 4.2 (see [17]) Consider an incident parallel wavefront that is refracted by a
lens surface u(x, y). Let the surface separate media with refraction indices n and n′. Assume
without loss of generality that n < n′, and define μ = n

n′ , and β = 1 − μ2. Assume further
that all the points of the centerline u(0, y) := h(y) are optically umbilic, that is, the principal
curvatures of the refracted wavefront are the same along this line. Then

∂

∂x

( 1 + h
′2

(1 + βh′2)
1
2 − μ

(1 + βh
′2)

1
2 Cr

)
= 2

∂

∂y

( 1 + h
′2

(1 + βh′2)
1
2 − μ

Hr

)
, (4.1)

where we denote the refracted wavefront astigmatism by Cr(0, y), and Hr(0, y) denotes the
wavefront’s mean curvature.

These theorems imply that the lateral growth of the astigmatism away from the center line
is twice as fast as the change in the optical power of the lens in the vertical direction. Indeed,
essentially all designs of PALs show two regions of relatively high astigmatism just outside a
narrow corridor of low astigmatism about the center line.

4.2 Power-adjustable lenses

An entirely different approach to presbyopia is to design for each half of the spectacles an
optical element consisting of two lenses that slide with respect to each other, thus varying the
optical power. To obtain intuition into this idea, first proposed by Alvarez [1], consider a surface
of the form u(x, y) = A

(
x3

3 + xy
)
, where A is a parameter. Shifting x → x + δ, the surface

becomes

uδ = A
(x3

3
+ xy

)
+

A

δ(x2 + y2)
+

A

δ2
x + A

δ3

3
.

Recalling that to a first approximation the power of the lens is proportional to its mean curva-
ture, we observe that

1
2
Δu(0, 0) = 0,

1
2
Δuδ(0, 0) = Aδ. (4.2)

Therefore, the shift generated a power change proportional to Aδ. The idea, thus, is to select a
cubic surface and parameters, such as A and δ, so that one obtains a desired far vision power
in one relative position, and another, near vision power, in the second relative position.

Alvarez’s concept did not meet with commercial success due to poor optical performance.
However, this concept was revived recently by Barbero and Rubinstein [3], who used a design
methodology as explained in Section 3 above. In the present design, one needs to optimize not
only over many gaze directions, but also over two (or more) relative lens shifts, to obtain good
optical behavior for all powers. The original goal of [3] was to provide adjustable-power lenses to
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solve the problem of lack of visual correction that affects over 150 million people in developing
countries (see [11]). More recently, the authors showed that the Alvarez-Barbero-Rubinstein
(ABR for short) design can be used to provide spectacles for presbyopia that offer for the first
time wide field of view at all distances (see [5]).

5 Discussion

We presented the main optical concepts and the associated mathematical methods needed
to design high-quality multifocal lenses. Even earlier designs from the 90’s raised fundamental
questions in differential geometry; for instance, the open problem put forward in Section 4. The
present design paradigm is based on the Hamilton’s eikonal functions. While these functions are
the cornerstone of geometrical optics, they were not used before for actual lens design because
of their enormous complexity. Spectacles design has become an exception. On the one hand,
the eye’s pupil is small relative to the visual field; however, for this reason the eye scans the
visual field in a saccadic movement or voluntarily. These facts can be exploited by expressing
the effective optical characteristics of the lens via local eikonal functions.

The variational problem of minimizing the functional e defined in equation (3.22) is far
harder than the geometrical functional define in equation (2.4). The added functional em

defined in equation (3.24) makes it even harder. Almost nothing is known on these variational
problems.

There are many additional aspects of multifocal lens design we did not touch here. One
key numerical question is the surface representation. PALs are freeform surfaces; namely, they
have no symmetry. A number of CAD techniques have been used to represent them, ranging
from splines to finite elements. One specific method that was found to be very efficient (among
other reasons because of the small pupil) is the method of germs. The surface is defined by
the values u(xi, yj) of many anchor points (xi, yj) on it. Then, to approximate u and its first
and second derivatives at an arbitrary point (x, y), a patch is constructed around this point
that includes some of the anchor points to define an approximating local polynomial (germ) of
u near the point (x, y). The germ method turns out to be very efficient. Its main drawback is
that the patches are not even continuously connected; however, this is not an obstacle, since
for manufacturing purposes all, we need to supply the manufacturer is a set of discrete points
on the surface u.

While the functionals in (3.22) and (3.24) contain all the local information on the image blur
and image distortion, the actual visual acuity of a person is determined by the eye’s contrast
sensitivity. This feature can be greatly affected by scatter in the eye. This problem affects
mainly the elderly, but they are natural customers of PALs. A design paradigm that includes
a model for contrast sensitivity is still an open problem.
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