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Abstract This paper develops further the theory of symmetrization of fractional Laplacian
operators contained in recent works of two of the authors. This theory leads to optimal es-
timates in the form of concentration comparison inequalities for both elliptic and parabolic
equations. The authors extend the theory for the so-called restricted fractional Laplacian
defined on a bounded domain Ω of R

N with zero Dirichlet conditions outside of Ω. As
an application, an original proof of the corresponding fractional Faber-Krahn inequality is
derived. A more classical variational proof of the inequality is also provided.
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1 Introduction

In this paper, we develop further the theory of symmetrization for fractional Laplacian
operators initiated in [25, 64–65], both in the elliptic and the parabolic setting, by extending it
to a natural version of the fractional Laplacian defined on a bounded domain Ω of R

N which is
known as the restricted fractional Laplacian. This research direction combines classical themes
in the study of nonlinear elliptic and parabolic equations, like symmetrization and accretive
operators, with the recent interest in nonlocal versions of the diffusion operators, specially
the fractional Laplacians. As an application of the obtained comparison results, we derive an
original proof of the Faber-Krahn inequality (FKI for short) for such operators defined on the
bounded domain Ω.

Before entering into the description of our results, we review in this introduction the nec-
essary information about symmetrization, the elliptic-to-parabolic technique used to generate
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evolution semigroups, the precise definition of the fractional Laplacian operators and the rela-
tion among these topics. This constitutes a sort of review part of this paper.

Definitions of fractional Laplacians on bounded domains When working in the
whole space domain R

N , there are several equivalent definitions of the fractional Laplacian
operator (−Δ)

σ
2 , 0 < σ < 2, classical references being [39, 53]. The interest in these operators

has a long history in probability since the fractional Laplacian operators of the form (−Δ)
σ
2

are infinitesimal generators of stable Lévy processes (see [1, 7, 57]). Further motivation and
references on the literature are given for instance in [11, 64]. A particular definition that was
convenient for symmetrization purposes defines the operator for every given 0 < σ < 2 as the
trace of a suitable Dirichlet-Neumann problem via an extended potential function w that solves
an elliptic equation in an upper half-space in H+ = R

N × (0,∞) ⊂ R
N+1. This is usually

called Caffarelli-Silvestre extension (see [18]). It allows to reduce nonlocal problems involving
(−Δ)

σ
2 to suitable local problems (actually, a degenerate-singular elliptic equation), defined in

one more space dimension.
When we work on a bounded domain Ω ⊂ R

N , things get complicated because there are
several options for defining the fractional Laplacian operator (−Δ)

σ
2 . Two of them appear

often in the recent literature. In our previous work [65] on symmetrization, we followed one of
these approaches to define the fractional Laplacian as the Dirichlet-to-Neumann map, through
an extended potential function defined in a cylinder C = Ω × (0,∞) ⊂ R

N+1, as was proposed
in [17, 22]. Zero values are assigned on the lateral boundary of C. We call this operator the
spectral version of the fractional Laplacian on Ω. Let us call this operator L1 (L stands for the
Laplacian). This setting allowed us to derive in [65] the desired symmetrization results, which
extend the standard symmetrization theory applied to elliptic and parabolic equations driven
by the standard Laplacian operator. But let us recall that there are remarkable restrictions on
their validity in the form of conditions on the nonlinearities that are allowed in the equations.

In this paper, we take the second usual approach to define (−Δ)
σ
2 , which seems to be more

natural in many applications. It consists in keeping the definition of fractional Laplacian in R
N

but asking it to act on the null-extensions to R
N of functions u(x) defined in Ω. So in principle,

we can use the most common formulation with a hyper-singular kernel

(−Δ)
σ
2 f(x) = c(N, σ)

∫
RN

f(x) − f(y)
|x− y|N+σ

dy (1.1)

on the condition that f(y) = 0 for y �∈ Ω. Let us call this operator L2. This option was
called the restricted Laplacian on a bounded domain (see [49, 10]), but we prefer the name
natural fractional Laplacian with Dirichlet conditions in this paper. The discussion on the
relations and differences between the two types of operators on bounded domains is currently
being investigated by several authors. Thus, Musina and Nazarov [44] used the name frac-
tional Laplacian with Navier conditions for the spectral version, and fractional Laplacian with
Dirichlet conditions for the restricted version.

Here, we want to extend to operator L2 the symmetrization theory we had developed for
L1 in [25, 64]. This has an independent interest since there are subtle differences between the
two operators (see [10, 12]).

Symmetrization Symmetrization is a very ancient geometrical idea that is used nowadays
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as an efficient tool of obtaining a priori estimates for the solutions of different partial differential
equations, notably those of elliptic and parabolic type. Since the topic is so well-known, let
us only recall some facts that are relevant here. Symmetrization techniques appear in classical
works like [34, 47]. The application of Schwarz symmetrization to obtaining a priori estimates
for elliptic problems was already described in [42, 66]. The standard elliptic result refers to the
solutions of an equation of the form

Lu = f, Lu = −
∑
i,j

∂i(aij∂ju)

posed in a bounded domain Ω ⊆ R
N ; the coefficients {aij} are assumed to be bounded, mea-

surable and satisfy the usual ellipticity condition; finally, we take zero Dirichlet boundary
conditions on the boundary ∂Ω. The classical analysis introduced by Talenti [54–55] leads to
pointwise comparison between the symmetrized version (more precisely the spherical decreasing
rearrangement) of the actual solution of the problem u(x) and the radially symmetric solution
v(|x|) of some radially symmetric model problem which is posed in a ball with the same volume
as Ω. Sharp a priori estimates for the solutions are then derived. Extensions of this method to
more general problems or related equations led to a copious literature.

Elliptic approach to parabolic problems For parabolic problems, this pointwise com-
parison fails and the appropriate concept is comparison of concentrations (see [2–3, 58]). The
latter considers the evolution problems of the form

∂tu = ΔA(u), u(0) = u0, (1.2)

where A is a monotone increasing real function, and u0 is a suitably given initial datum which
is assumed to be integrable. For simplicity, the problem was posed for x ∈ R

N , but bounded
open sets can be used as spatial domains. The novel idea of the paper is to use the famous
Crandall-Liggett Implicit Discretization theorem (see [24]) to reduce the evolution problem to
a sequence of nonlinear elliptic problems of the iterative form

−hΔA(u(tk)) + u(tk) = u(tk−1), k = 1, 2, · · · , (1.3)

where tk = kh, and h > 0 is the time step per iteration. Writing A(u) = v, the resulting chain
of elliptic problems can be written in the common form

hLv +B(v) = f, B = A−1. (1.4)

General theory of these equations (see [8]), ensures that the solution map

T : f �→ u = B(v)

is a contraction in some Banach space, which happens to be L1(Ω). Note that the constant
h > 0 is not essential, it can be put to 1 by scaling. In that context, the symmetrization result
can be split into two results:

(i) The first one applies to rearranged right-hand sides and solutions. It says that if two r.h.s.
functions f1, f2, are rearranged and satisfy a concentration comparison of the form f1 ≺ f2,
then the same applies to the solutions, in the form B(v1) ≺ B(v2).1

1For the definition of the order relation ≺, see Section 7.
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(ii) The second result aims at comparing the solution v of (1.4) with a non-rearranged
function f with the solution ṽ corresponding to f#, the radially decreasing rearrangement of
f . We obtain that ṽ is a rearranged function and B(v#) ≺ B(ṽ), i. e., B(v) is less concentrated
than B(ṽ).

This precise pair of comparison results can be combined to obtain similar results along
the whole chain of iterations u(tk) of the evolution process, if discretized as indicated above.
This allows in turn to conclude the symmetrization theorems (concentration comparison and
comparison of Lp norms) for the evolution problem (1.2). This approach can be used in many
different situations. In particular, it will be used below.

Symmetrization for equations with fractional operators The study of elliptic and
parabolic equations involving nonlocal operators, usually of fractional type, is currently the
subject of great attention. Symmetrization techniques were first applied to PDEs involving
fractional Laplacian operators in [25], where the following linear elliptic case is studied:

(−Δ)
σ
2 v = f. (1.5)

This paper uses an interesting technique of Steiner symmetrization of the extended problem,
based on the Caffarelli-Silvestre extension for the definition of σ-Laplacian operator. In [64]
the last two authors of the present paper were able to improve on that progress and combine
it with the parabolic ideas of [58] to establish the relevant comparison theorems based on
symmetrization for linear and nonlinear parabolic equations. To be specific, they dealt with
equations of the form

∂tu+ (−Δ)
σ
2A(u) = f, 0 < σ < 2 . (1.6)

Following the known theory for the standard Laplacian, the nonlinearity A is an increasing real
function such that A(0) = 0, and we accept some extra regularity conditions as needed, like A
smooth with A′(u) > 0 for all u > 0. The problem is posed in the whole space R

N . Special
attention is paid to cases of the form A(u) = um with m > 0; the equation is then called the
fractional heat equation (FHE for short) when m = 1, the fractional porous medium equation
(FPME for short) ifm > 1, and the fractional fast diffusion equation (FFDE for short) if m < 1.
Let us recall that the linear equation ∂tu + (−Δ)

σ
2 u = 0 is a model of so-called anomalous

diffusion, a much studied topic in physics.
The results of [25, 64] include a comparison of concentrations, in the form v# ≺ ṽ, that

parallels the result that holds in the standard Laplacian case; note however that no pointwise
comparison is obtained, so the result looks a bit like the parabolic results of the standard theory
mentioned above. [64] considered both problems posed in the whole space and on a bounded
domain. In the latter case, the spectral fractional Laplacian is always chosen.

2 Outline of Results of the Present Paper

We are interested in considering the application of such symmetrization techniques to linear
or nonlinear elliptic and parabolic equations with fractional Laplacian operators posed on a
bounded domain, when the natural (i.e., restricted) version of fractional Laplacian is used. We
denote the operator by L2.
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Parabolic equations To be specific, we want to treat evolution equations of the form

∂tu+ (−Δ)
σ
2A(u) = f, 0 < σ < 2. (2.1)

We want to consider as nonlinearity A an increasing real function such that A(0) = 0, and
we may accept some other regularity conditions as needed, like A smooth with A′(u) > 0 for
all u > 0. The problem is posed in Ω, a bounded subset of R

N with smooth boundary. The
parabolic result is developed in Section 5 and has to be compared with the results of papers [64–
65]. We focus on the linear case A(u) = cu. This is the case that is needed in the isoperimetric
application that we study in Section 6.

Elliptic equations The application of the method of implicit time discretization leads to
the nonlinear equation of elliptic type

h (−Δ)
σ
2 v +B(v) = f (2.2)

posed again in the whole space Ω ⊂ R
N with zero Dirichlet boundary conditions; h > 0 is a

non-essential constant, and the nonlinearity B is the inverse function to the monotone function
A that appears in the parabolic equation (1.6). The elliptic results are developed in Sections
3–4 and have to be compared with the results of [25, 64] where the equation is posed either in
R
N or in Ω with operator L1. Note that the elliptic results we get cover the standard linear

case where the term B(v) disappears, and we set h = 1.
A geometrical application (the Faber-Krahn inequality) As an application, we use the

symmetrization results to prove the Faber Krahn inequality for the fractional Laplacian operator
on a bounded domain in both versions considered above. We recall that the FKI is a classical
eigenvalue inequality, due separately to [31, 38], based on a conjecture by Rayleigh in 1877,
that can be stated as follows.

Let Ω be a bounded domain in R
N , and let B be the ball centered at the origin with

Vol(Ω) = Vol(B). Let λ1(Ω) be the first eigenvalue of the Laplacian operator, with zero
Dirichlet boundary conditions. Then λ1(Ω) ≥ λ1(B), with equality if and only if Ω = B almost
everywhere.

Remark 2.1 Note that we do not assume any regularity on the bounded domain Ω besides
its openness.

This is a classical result in the calculus of variations and proofs can be found in the classical
books like [20] (see a recent proof in [15]). The question we want to address here is the
following: Will the result also hold for the usual versions of the fractional Laplacian operator
(−Δ)

σ
2 defined on bounded domains of R

N with zero Dirichlet boundary conditions?
The answer is immediate in the case of the so-called spectral version of the Dirichlet frac-

tional Laplacian, L1, since its eigenvalues, λk(L1; Ω), are directly related to those of the standard
Laplacian, λk((−Δ); Ω), by the following formula:

λk(L1; Ω) = (λk((−Δ); Ω))
σ
2 . (2.3)

However, no simple relation like this one happens for the natural fractional Laplacian with the
definition restricted type, L2.
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In Section 6, we use our comparison results to present an original derivation of the fractional
FKI. It does not make use of any variational interpretation, but only of some properties of the
evolution process. The FKI can also be studied either by probabilistic or variational methods.
For completeness, we also present a variational derivation, see more details in the mentioned
section. This latter proof is based on the original argument for the FKI for the Laplacian
operator and relies on Pólya-Szegö inequalities.

Preliminary material and notation In this paper, we use standard concepts and no-
tations on symmetrization as fixed in [64]. We gather the main facts that we did not present
here in the first appendix for the reader’s convenience.

3 Elliptic Problem with Lower-Order Term

The case of the natural fractional Laplacian L2 occupies our attention in this paper. We
start our analysis by the following nonlocal elliptic problem with Dirichlet condition:{

(−Δ)
σ
2 v +B(v) = f(x) in Ω,

v = 0 in R
N \ Ω,

(3.1)

where Ω is an open bounded set of R
N , σ ∈ (0, 2), and f is an integrable function defined in

Ω. We are interested in treating the case of a bounded domain Ω with the natural version
of the fractional Laplacian. Exceptionally, Ω may be R

N , but this case was treated in [64].
We assume that the nonlinearity is given by a function B : R+ → R+ which is smooth and
monotone increasing with B(0) = 0 and B′(v) > 0. It is not essential to consider negative
values for our main results, but the general theory can be done in that greater generality, just
by assuming that B is extended to a function B : R− → R− by symmetry, B(−v) = −B(v).
Note that we have changed a bit the notation with respect to (2.2) in the introduction, by
eliminating the constant h > 0, but the change is inessential for the comparison results.

For simplicity, all the restrictions of the fractional Laplacian operator will be denoted by
(−Δ)

σ
2 . The underlying assumption is that such operator will be restricted to the ground

domain of each boundary value problem where it is involved.
The extension method The Caffarelli-Silvestre method can be kept as extension to the

whole H+, with the following important proviso: The extension must act on the null-extensions
to R

N of functions defined in Ω. In view of this discussion, a solution to (2.2) is defined here
as the trace of a properly defined Dirichlet-Neumann problem in the following way:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− divx,y(y1−σ∇w) = 0 in H+,

w(x, 0) = 0 for x ∈ R
N \ Ω,

− 1
κσ

lim
y→0+

y1−σ ∂w
∂y

(x, y) + B(w(x, 0)) = f(x) for x ∈ Ω,

(3.2)

where

H+ := R
N × (0,+∞),

and κσ is the constant κσ := 21−σ Γ(1−σ
2 )

Γ(σ2 ) (see [18]), but such a value is not important here.
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3.1 Review of existence, uniqueness and main properties

If (3.2) is solved in an appropriate sense, then the trace of w over Ω, TrΩ(w) = w(·, 0) =: v is
said to be a solution to (3.1). Note that the trace of w on the bottom hyperplane {y = 0} is the
extension ṽ of the function v defined in Ω by assigning the value zero outside of Ω. This is what
makes the difference with the case of the spectral Laplacian, where on the contrary the domain
of the extended function w is the cylinder C = Ω× (0,∞) and w takes zero boundary conditions
on the lateral boundary, Σ = ∂Ω× [0,∞) (see [64]). In accordance with our choice of operator
and in view of the iteration process that leads to the solution of the parabolic equations, we
need only consider functions f that are restrictions to Ω of functions defined in the whole of
R
N .

In order to make this more precise, we introduce the concept of weak solution to problem
(3.2). It is convenient to define the weighted energy space

X
σ
2 (H+) =

{
w ∈ H1

loc(H+) :
∫
H+

y1−σ|∇x,yw(x, y)|2 dxdy <∞
}
,

equipped with the norm

‖w‖
X
σ
2 (H+)

:=
(∫

H+
y1−σ |∇w(x, y)|2 dxdy

) 1
2
. (3.3)

For an open set E of R
N , we denote by H

σ
2 (E) the classical fractional Sobolev space of order

σ
2 over E. We recall that for any u ∈ H

σ
2 (RN ), there exists a unique σ-harmonic extension

w ∈ X
σ
2 (H+) of u to the half space H+, namely w solves⎧⎨⎩

− divx,y(y1−σ∇w) = 0 in H+,

w(x, 0) = u(x) for x ∈ R
N .

(3.4)

Then we write w = ExtH+(u). Moreover, for suitable functions u, we have

(−Δ)
σ
2 u = − 1

κσ
lim
y→0+

y1−σ ∂w
∂y

(x, y).

Now, in order to give a proper meaning of solution to a problem like (3.2) in a bounded
domain Ω, we define the space of all functions in X

σ
2 (H+) whose traces over R

N vanish outside
of Ω, namely,

X
σ
2
Ω (H+) = {w ∈ X

σ
2 (H+) : w|RN×{0} ≡ 0 in R

N \ Ω}. (3.5)

The domain of the natural fractional Laplacian (−Δ)
σ
2 is the space H(Ω) defined by

H(Ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H

σ
2 (Ω), if 0 < σ < 1,

H
1
2
00(Ω), if σ = 1,

H
σ
2
0 (Ω), if 1 < σ ≤ 2,

(3.6)

where H
σ
2 (Ω) and H

σ
2
0 (Ω) are usual fractional Sobolev spaces (see [40]), and

H
1
2
00(Ω) =

{
u ∈ H

1
2 (Ω) :

∫
Ω

u2(x)
d2(x)

dx <∞
}
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with d(x) = dist(x, ∂Ω). It turns out that

H(Ω) = {w|Ω×{0} : w ∈ X
σ
2
Ω (H+)}

(see [10] for a detailed account on this question). Then we provide the following definition.

Definition 3.1 Let Ω be an open bounded set of R
N and f ∈ L1(Ω). We say that w ∈

X
σ
2
Ω (H+) is a weak solution to (3.2) if TrΩ(B(w)) =: B(w(x, 0)) ∈ L1(Ω) and∫

H+
y1−σ∇x,yw · ∇x,yϕdxdy + κσ

∫
Ω

B(w(x, 0))ϕ(x, 0)dx = κσ

∫
Ω

f(x)ϕ(x, 0)dx (3.7)

for all the test functions ϕ ∈ C1(H+) such that TrRN (ϕ) ≡ 0 in R
N \ Ω.

If w is a solution to the “extended problem” (3.2), then the trace function v = TrΩ(w) will
be called a weak solution to (3.1).

Remark 3.1 It is clear that if B(t) = ct for all t ≥ 0 for some c ≥ 0, then (3.2) becomes
linear and the function v = TrΩ(w) belongs to the space H(Ω).

Concerning existence of solutions, their smoothness and L1 contraction properties, we ex-
cerpt some known results from [10, 26–27] which can be extended for our more general nonlin-
earity B. For the regularity, the reader may consult [16, 18, 50–52].

Theorem 3.1 For any f ∈ L∞(Ω), there exists a unique weak solution w ∈ X
σ
2
0 (CΩ) to

(3.2), such that TrΩ(B(w)) ∈ L∞(Ω). Moreover, we have the following:
(i) Regularity. We have w ∈ Cα(CΩ) for every α < σ if σ ≤ 1 (resp. w ∈ C1,α(CΩ) for every

α < σ − 1 if σ > 1). Arguing as in [17], the higher regularity of w depends easily on the higher
regularity of f and B.

(ii) L1 contraction. If w, w̃ are the solutions to (3.2) corresponding to data f, f̃ , the following
L1 contraction property holds:∫

Ω

[B(w(x, 0)) −B(w̃(x, 0))]+dx ≤
∫

Ω

[f(x) − f̃(x)]+dx. (3.8)

In particular, we have that w ≥ 0 in CΩ whenever f ≥ 0 on Ω. Furthermore, if we put
u := B(w(·, 0)), then for all p ∈ [1,∞], we have

‖u‖Lp(Ω) ≤ ‖f‖Lp(Ω).

(iii) For f ∈ L1(Ω), the weak solution is obtained as the limit of the solutions of approximate
problems with fn ∈ L1(Ω) ∩ L∞(Ω), fn → f in L1. Then the sequence {B(wn(x, 0))}n also
converges in L1 to some B(w(x, 0)), and ‖B(w(x, 0))‖1 ≤ ‖f‖1, and hence vn is uniformly
bounded in Lp for all small p. Property (ii) holds for such limit solutions.

Remark 3.2 (On Some Nonhomogeneous Boundary Value Problems) Let ε > 0. For our
arguments it is essential to consider problems with nonhomogeneous boundary values of the
type {

(−Δ)
σ
2 v +B(v) = f(x) in Ω,

v = ε in R
N \ Ω .

(3.9)
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In order to ensure the existence of a solution to this problem, we associate it with the following
nonhomogeneous extension problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− divx,y(y1−σ∇w) = 0 in H+,

w(x, 0) = ε for x ∈ R
N \ Ω,

− 1
κσ

lim
y→0+

y1−σ ∂w
∂y

(x, y) + B(w(x, 0)) = f(x) for x ∈ Ω.

(3.10)

If f ∈ L1(Ω), we say that w ∈ X
σ
2 (H+) is a weak solution to (3.10) if w − ε ∈ X

σ
2
Ω (H+) and

w satisfies (3.7). In such case, we say that v = TrΩw is a weak solution to (3.9). In particular,
if B(t) = ct for all t ≥ 0 and some c > 0, and v is the solution to the following linear problem
with homogeneous boundary data:{

(−Δ)
σ
2 v + cv = f(x) − cε in Ω,

v = 0 in R
N \ Ω,

then v = v + ε is the unique solution to the linear, nonhomogeneous problem (3.9).

Using the variational formulation to (3.10), it is easy to prove that if ε > 0, vε is the unique
weak solution to (3.9) and wε is its extension solving (3.10), then

wε → w in L1(H+),

TrRNwε → TrRNw in L1(RN ),

where v and w solve (3.1) and (3.2), respectively.

We warn the reader that the solutions of all the Dirichlet problems throughout this paper
are identified with their extension on the whole R

N , whose values out of Ω clearly depend on
the boundary conditions considered.

4 Concentration Comparison for the Extended Problem

Let us address the comparison issue. From now on, we always assume that the right-hand
side f is nonnegative. Our goal here is to compare the solution v to (3.1) with the solution V
to the problem {

(−Δ)
σ
2 V + B(V ) = f#(x) in Ω#,

V = 0 on R
N \ Ω#.

(4.1)

A reasonable way to do that is to compare the solution w to (3.2) with the solution ψ to
the problem⎧⎪⎪⎨⎪⎪⎩

− divx,y(y1−σ∇ψ) = 0 in H+,

ψ(x, 0) = 0 for x ∈ R
N \ Ω#,

− 1
κσ

lim
y→0+

y1−σ ∂ψ
∂y

(x, y) + B(ψ(x, 0)) = f#(x) in Ω#,

(4.2)
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where ψ(x, 0) = V (x). According to [25], using the change of variables z =
(
y
σ

)σ
, problems

(3.2) and (4.2) become⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−zν ∂

2w

∂z2
− Δxw = 0 in H+,

w(x, 0) = 0 for x ∈ R
N \ Ω#,

−∂w
∂z

(x, 0) = σσ−1κσ(f(x) −B(w(x, 0))) in Ω

(4.3)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−zν ∂

2ψ

∂z2
− Δxψ = 0 in H+,

ψ = 0 for x ∈ R
N \ Ω#,

−∂ψ
∂z

(x, 0) = σσ−1κσ(f#(x) −B(ψ(x, 0))) in Ω#,

(4.4)

respectively, where ν := 2σ−1
σ . Then, the problem reduces to prove the concentration compari-

son between the solutions w(x, z) and ψ(x, z) to (4.3) and (4.4), respectively. We now introduce
the function

Z(s, z) =
∫ s

0

(w∗(τ, z) − ψ∗(τ, z))dτ. (4.5)

Using standard symmetrization tools (see [25]), we get the differential inequality

−(zνZzz + p(s)Zss) ≤ 0 (4.6)

for a.e. (s, z) ∈ (0,+∞) × (0,+∞), where p(s) = N2ω
2
N

N s
2− 2

N . Obviously, we have

Z(0, y) = 0. (4.7)

A crucial point in our arguments below is played by the derivative of Z with respect to z. Due
to the boundary conditions contained in (4.3)–(4.4), we have for 0 < s < |Ω|,

Zz(s, 0) ≥ θσ

∫ s

0

(B(w∗(τ, 0)) −B(ψ∗(τ, 0)) dτ, (4.8)

where θσ := σσ−1κσ. On the other hand, for s ≥ |Ω|, we have
(
∂Z
∂s

)
(s, 0) = 0. This is the

novelty in the argument with respect to the spectral case treated before, where the boundary
condition

∂Z

∂s
(|Ω|, z) = 0, ∀z ≥ 0

made the real difference as follows: The boundary conditions are imposed on y = 0 and are of
two types. Contradiction must be obtained after taking into account the two possibilities.

4.1 Comparison result for the elliptic problem

We are going to obtain a comparison result for some linear and nonlinear B. Actually the
nonlinearities considered here allow to get a result which is weaker than the one for the linear
problem, i.e., when B(t) = ct for some c ≥ 0, which is the only case that we are going to need
in addressing the Faber-Krahn inequalities. We also point out that, in order to reach our goal,
we use a lifting-type argument of the symmetrized problem (4.1).
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Theorem 4.1 Let v be the nonnegative solution to (3.1) posed in a bounded domain with
zero Dirichlet boundary condition, nonnegative data f ∈ L1(Ω) and B being smooth, concave,
strictly increasing on R+ and such that B(0) = 0. If V is the solution of the corresponding
symmetrized problem (4.1), we have

v#(x) ≺ V (x). (4.9)

The same is true if Ω = R
N .

Proof In this case, we pose the problem first in a bounded domain Ω of R
N with smooth

boundary. We also assume that f is smooth, bounded and compactly supported in Ω, since
the comparison result for general data can be obtained later by approximation, using the L1

dependence on the map f �→ v. Let us choose ε > 0, fε = f + B(ε), and let us consider the
solution Vε to the following problem:{

(−Δ)
σ
2 Vε +B(Vε) = f#

ε (x) in Ω#,

Vε = ε on R
N \ Ω#,

where f#
ε = f# +B(ε). By virtue of Remark 3.2, we have Vε = ψε(x, 0) for all x ∈ R

N , where
ψε is the solution to the following problem:⎧⎪⎪⎨⎪⎪⎩

− divx,y(y1−σ∇ψε) = 0 in H+,

ψε(x, 0) = ε for x ∈ R
N \ Ω#,

− 1
κσ

lim
y→0+

y1−σ ∂ψε
∂y

(x, y) +B(ψε(x, 0)) = f#(x) +B(ε) in Ω#,

which can be reduced to the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−zν ∂

2ψε
∂z2

− Δxψε = 0 in H+,

ψε(x, 0) = ε for x ∈ R
N \ Ω#,

−∂ψε
∂z

(x, 0) = σσ−1κσ(f#(x) +B(ε) −B(ψε(x, 0))) in Ω#.

(4.10)

Setting

Zε(s, z) =
∫ s

0

(w∗(τ, z) − ψ∗
ε (τ, z))dτ,

we prove that

Zε(s, z) ≤ 0. (4.11)

To this aim, we first observe that Zε satisfies (4.6). In particular, a big role is played by the
property of the solution ψε: The level sets {x ∈ R

N : ψε(x, z) > t} are bounded, because they
are balls centered at the origin. Now we set

Yε(s, z) =
∫ s

0

(B(w∗(τ, z)) −B(ψ∗
ε (τ, z))) dτ.

From (4.8), we obtain

∂Zε
∂z

(s, 0) ≥ θσYε(s, 0) + θσB(ε). (4.12)
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By the strong maximum principle applied to (4.6), which is satisfied by Zε, a positive maximum
of Zε cannot be achieved at an interior point, hence it must be achieved either as s → ∞ or
at a boundary point (s0, 0) for some s0 > 0. The first option cannot hold, since w∗(s, z) → 0
while ψε(s, z) → ε as s→ ∞. As for the second, we see that for s ≥ |Ω|, we have

∂Zε
∂s

(s, 0) = v∗(s) − V ∗
ε (s) = −ε < 0,

the function Zε(s, 0) is strictly decreasing in [|Ω|,∞), then it must happen that s0 ∈ (0, |Ω|].
Arguing as in [64], using (4.12), we can write

∂Zε
∂z

(s0, 0) > θσ

∫ s0

0

B′(v∗(s))
∂Zε
∂s

(s, 0)ds

= θσ

[
g(0)Zε(s0, 0) +

∫ s0

0

[Zε(s0, 0) − Zε(s, 0)]dg(s)
]
> 0, (4.13)

where g(s) := B′(v∗(s)), which is impossible due to Hopf’s boundary maximum principle.
Finally, by (4.11), we have, for s ≥ 0,∫ s

0

v∗(τ)dτ ≤
∫ s

0

V ∗
ε (τ)dτ,

and thus as ε→ 0, ∫ s

0

v∗(τ)dτ ≤
∫ s

0

V ∗(τ)dτ.

Then the result follows. The case Ω = R
N was solved in [64, Theorem 3.2], to which the

interested reader can refer.

Remark 4.1 If we consider the linear case, i.e., when B(t) = ct, for some c ≥ 0, the proof
of Theorem 4.1 can be simplified, because Zε = cYε. Moreover, ψε = ψ + ε, where ψ solves
(4.4), and Vε = V + ε.

Remark 4.2 If B is nonlinear and satisfies the assumptions of Theorem 4.1, the mass
concentration comparison (4.9) is not enough to obtain the same result when it is passing to
the evolution problem via Crandall-Liggett theorem.

A valuable property we are going to prove now is that the equality in (4.9) implies that
the domain Ω of the initial problem (3.1) is actually a ball modulo translation. This kind of
property is known to be essential for studying the equality case in the Faber–Krahn inequality,
i.e., to prove that the ball is the unique minimizer of the principal eigenvalue of the classical
Laplacian over all the sets of fixed Lebesgue measure (see [37]).

Proposition 4.1 (Case of Equality) Assume that we have an equality sign in (4.9), in the
sense that ∫ s

0

v∗(σ)dσ =
∫ s

0

V ∗(σ)dσ

for all s ∈ [0, |Ω|]. Then Ω is a ball, i.e., Ω = Ω# (up to a translation of the origin).

Proof Using the same notation as in Theorem 4.1, by the given assumption, we have
Y (s, 0) = 0 for all s ∈ [0, |Ω|], and since the extensions are null, this equality holds for every
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s ≥ 0. Then by Hopf’s maximum principle and (4.8), we find Y ≡ 0, and thus

w∗(s, z) = ψ∗(s, z) for all s, z ≥ 0. (4.14)

We divide the rest into the following steps.
(i) Here we argue as in [54] or in [43]. Recall that the function w(·, z) is smooth on R

N for
any z > 0. Then let us fix z > 0, multiply both sides of the equation (4.3) by the test function

ϕzh(x) =

⎧⎪⎨⎪⎩
1, if w(x, z) ≥ t+ h,
w(x, z) − t

h
, if t < w(x, z) < t+ h,

0, if w(x, z) ≤ t,

and integrate over R
N . An integration by parts yields the identity

1
h

∫
{x∈RN : t<w(x,z)<t+h}

|∇xw|2dx− zν
∫
{x∈RN :w(x,z)>t+h}

∂2w

∂z2
dx

− zν
∫
{x∈RN : t<w(x,z)<t+h}

∂2w

∂z2

(w − t

h

)
dx = 0.

Then, if we let h→ 0, we find

− ∂

∂t

∫
{x∈RN :w(x,z)>t}

|∇xw|2 dx = zν
∫
{x∈RN :w(x,z)>t}

∂2w

∂z2
dx.

Thus using the second order derivation formula (see Section 7), we get

− ∂

∂t

∫
{x∈RN :w(x,z)>t}

|∇xw|2 dx ≤ zν
∫ μw(t,z)

0

∂2w∗

∂z2
ds.

Concerning the solution ψ to (4.4), since it is spherically decreasing w.r.t. x, the following
equality occurs:

− ∂

∂t

∫
{x∈RN :ψ(x,z)>t}

|∇xψ|2 dx = zν
∫ μψ(t,z)

0

∂2ψ∗

∂z2
ds.

Using the fact that w∗(s, z) = ψ∗(s, z) (which implies μw(·, z) = μψ(·, z)), we have

− ∂

∂t

∫
{x∈RN :w(x,z)>t}

|∇xw|2 dx ≤ − ∂

∂t

∫
{x∈RN :ψ(x,z)>t}

|∇xψ|2 dx.

Integrating between t and ∞, we find∫
{x∈RN :w(x,z)>t}

|∇xw|2 dx ≤
∫
{x∈RN :ψ(x,z)>t}

|∇xψ|2 dx,

and then by the Pólya-Szegö inequality and (4.14),∫
{x∈RN :w#(x,z)>t}

|∇xw
#|2 dx ≤

∫
{x∈RN :w(x,z)>t}

|∇xw|2 dx

≤
∫
{x∈RN :ψ(x,z)>t}

|∇xψ|2 dx

=
∫
{x∈RN :w#(x,z)>t}

|∇xw
#|2 dx . (4.15)
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We conclude that for every t > 0,∫
{x∈RN :w(x,z)>t}

|∇xw|2 dx =
∫
{x∈RN :w#(x,z)>t}

|∇xw
#|2 dx ,

which is the equality case in the Pólya-Szegö inequality.
(ii) Now we notice that w(·, z) is analytic on the upper half space as a consequence of its

representation formula. Indeed, the Poisson kernel for the extension operator Lσ is given by

P (x, z) = cσ,N
zσ

(|x|2 + z2)N+σ

(see, e.g., [18]), which is an analytic function on the upper half-space z > 0. This means that
for every h(x) ∈ L1(RN ), the solution w(x, z) of the elliptic equation with data w(x, 0) = h(x)
is analytic, since it is the convolution of h with P (with respect to the x variable). In fact, once
we know that w ∈ C∞ in a certain subdomain, it is analytic by classical results on solutions of
elliptic equations with analytic coefficients (see for instance [33, 35, 46]).

(iii) Moreover, each level set {x ∈ R
N : w(x, z) > t} is bounded, because w(·, z) decays to

zero as |x| → ∞. We may now use the equality case in the Pólya-Szegö inequality (see [14, 30])
to obtain that {x ∈ R

N : w(x, z) > t} = {x ∈ R
N : w#(x, z) > t} modulo a translation. Then

all the level sets {x ∈ R
N : w(x, z) > t} are balls. The results also imply that for every fixed

z > 0 the function w(·, z) is radially symmetric up to translation.
(iv) Finally, we take the limit z → 0, and we conclude that u(x) is also radially symmetric

(as a function defined in R
N ). This means that the domain Ω, which is the positivity set of u

in R
N , must be a ball, i.e., Ω = Ω#, up to a translation of the origin.

The following result can be shown as in the proof of [64, Theorem 3.3]

Theorem 4.2 (Comparison of Concentrations for Radial Problems) Let v1, v2 be two non-
negative solutions to (3.1) posed in a ball BR(0), with R ∈ (0,+∞] with zero Dirichlet boundary
conditions if R < +∞, nonnegative radially symmetric decreasing data f1, f2 ∈ L1(BR(0)) and
B(t) = ct for some c > 0 and all t ≥ 0. Then v1 and v2 are rearranged, and

f1 ≺ f2 implies v1 ≺ v2 . (4.16)

5 Symmetrization for the Parabolic Problem

The theory of the existence of weak solutions for the initial value problem

∂tu+ (−Δ)
σ
2A(u) = f, 0 < σ < 2 (5.1)

with A(u) = cum, and all c,m > 0, was addressed by the first author and collaborators in [10],
and the main properties were obtained. In particular, if we take initial data in L1 ∩H−s, then
an H−s-contraction semigroup is generated, and the Crandall-Liggett discretization theorem
applies. The construction and properties of the solutions of the evolution problem is thus
reduced to an iterated application of the results obtained for the elliptic counterpart in the
previous section. This was carefully explained in [64] and is reviewed in Subsection 7.3. Thus,
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using Theorem 7.2 in Subsection 7.3, we obtain the existence of a unique mild solution to the
linear Cauchy-Dirichlet problem on the bounded domain Ω as follows:⎧⎪⎨⎪⎩

ut + (−Δ)
σ
2 u = f, x ∈ Ω, t > 0,

u = 0, x ∈ R
N \ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω
(5.2)

obtained as a limit of discrete approximate solutions by the ITD scheme.
Concerning the application of symmetrization techniques to this type of parabolic problems,

we can employ Theorems 4.1–4.2 and the arguments in the proof of [64, Theorem 5.3] in order
to find the following result.

Theorem 5.1 (Concentration Comparison) Let u be the nonnegative mild solution to (5.2),
0 < σ < 2, posed in Ω, with initial data u0 ∈ L1(Ω), and the right-hand side f ∈ L1(Ω×(0,∞)).
Assume that u0 ∈ L1(Ω#) is rearranged, f(x, t) ∈ L1(Ω# × (0,∞)) is rearranged w.r.t. any
t > 0, such that

u#
0 ≺ u0

and
f#(·, t) ≺ f(·, t)

for a.e. t > 0. Let v be the solution of the evolution problem⎧⎪⎨⎪⎩
vt + (−Δ)

σ
2 v = f(x, t), x ∈ Ω#, t > 0,

v = 0, x ∈ R
N \ Ω#, t > 0,

v(x, 0) = u0(x), x ∈ Ω#.

(5.3)

Then, for all t > 0, we have

u#(|x|, t) ≺ v(|x|, t). (5.4)

In particular, we have ‖u(·, t)‖p ≤ ‖v(·, t)‖p for every t > 0 and every p ∈ [1,∞].

Remark 5.1 The parabolic result only covers the linear equation, which is much below
our original expectations, since the elliptic result covers indeed nonlinear equations. We do not
know if the lack of nonlinear results is due to a failure of the expected form of the theorem, as
copied from (5.1), or is only due to a lack of technique. We remind the reader that in the case
of the problem in the whole space, we are able to prove the nonlinear symmetrization result
when A is concave, and to show that the corresponding statement for A convex is false, so that
the question is posed about which kind of statement could be true. Such question is broader in
the present case.

6 Application: An Original Proof of the Fractional Faber-Krahn
Inequality

Here we prove the validity of the Faber-Krahn inequality for the fractional Laplacian op-
erator L2 defined on bounded domains of R

N with zero Dirichlet boundary conditions. This
operator appears often in theory and applications, and is known under the name of restricted
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fractional Laplacian, though we can call it the natural fractional Laplacian. Unlike the spectral
Laplacian L1, the spectral sequence {λk(L2; Ω)}k is not directly related to the sequence of the
standard Laplacian. However, it is known that the spectrum is discrete and given by a strictly
increasing sequence {λk, σ2 (Ω) = λk(L2; Ω)} (see, e.g., [10]). Our theorem is then stated as
follows.

Theorem 6.1 We have

λ1, σ2
(Ω) ≥ λ1, σ2

(Ω#) (6.1)

with equality if and only if Ω = Ω#, up to translation.

The proof we present here is completely elementary and uses neither the variational charac-
terization (6.6) nor the nonlocal Pólya-Szegö inequality as in [13], but only the concentration
comparison provided by Theorem 5.1 and the asymptotic definition of λ1, σ2

(Ω), which can be
derived by the decay rate of the parabolic problem ut + L2u = 0.

Proof of Theorem 6.1 Suppose that {ψk, σ2 ,Ω(x)}k are the (L2 normalized) eigenfunctions
of L2 and let us consider the function

u(x, t) = e−λ1, σ2
(Ω) t

ψ1, σ2 ,Ω
(x),

solving the problem ⎧⎪⎪⎨⎪⎪⎩
ut + (−Δ)

σ
2 u = 0, x ∈ Ω, t > 0,

u = 0, x ∈ R
N \ Ω, t > 0,

u(x, 0) = ψ1, σ2 ,Ω
(x), x ∈ Ω.

(6.2)

By Theorem 5.1 we find, for all t > 0,

‖u(·, t)‖2 ≤ ‖v(·, t)‖2,

where v solves the problem⎧⎪⎪⎨⎪⎪⎩
vt + (−Δ)

σ
2 v = 0, x ∈ Ω#, t > 0,

v = 0, x ∈ R
N \ Ω#, t > 0,

v(x, 0) = ψ#
1, σ2 ,Ω

(x), x ∈ Ω#.

(6.3)

Since

‖u(·, t)‖2 = e−λ1, σ2
(Ω) t (6.4)

and the expression for v can be given in terms of superposition, namely,

v(x, t) =
∞∑
k=1

〈ψ#
1, σ2 ,Ω

, ψk, σ2 ,Ω#〉L2(Ω#) e−λk, σ2 (Ω#) t
ψk, σ2 ,Ω#(x),
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we have

‖v(·, t)‖2
2 =

∞∑
k=1

|〈ψ#
1, σ2 ,Ω

, ψk, σ2 ,Ω#〉|2L2(Ω#) e−2λk, σ2
(Ω#) t

≤ e−2λ1, σ2
(Ω#) t

∞∑
k=1

|〈ψ#
1, σ2 ,Ω

, ψk, σ2 ,Ω#〉|2L2(Ω#)

= e−2λ1, σ2
(Ω#) t‖ψ#

1, σ2 ,Ω
‖2
L2(Ω#) = e−2λ1, σ2

(Ω#) t
.

This together with (6.4) implies (6.1).
The case of equality Analyzing the last list of inequalities that starts by ‖v(·, t)‖2

2, we
conclude that in the case where λ1, σ2

(Ω) = λ1, σ2
(Ω#) we necessarily have

‖v(·, t)‖L2(Ω#) = ‖u(·, t)‖L2(Ω) = e−λ1, σ2
(Ω#) t

,

so that we conclude that the coefficients of the Fourier expansion of v0 = v(·, 0) in terms of eigen-
functions are all zero but the first, in view of the known fact that the first eigenvalue λ1, σ2

(Ω#)
is simple. This means that v0(x) = cψ1, σ2 ,Ω

# , with a constant c > 0. By normalization, we get

ψ#
1, σ2 ,Ω

(x) = ψ1, σ2 ,Ω
#(x). (6.5)

But this is enough to apply the important Proposition 4.1 and obtain Ω = Ω#, and the result
ends as before.

6.1 A variational proof

A direct proof of the FKI for our operator and similar can be based on the variational
interpretation of the first eigenvalue, since it can be written as the minimizer of the Rayleigh
quotient, where the local L2 gradient energy norm is replaced by the Gagliardo seminorm (see
Section 7 for some details).

As in the proof of Theorem 6.1, suppose that {ψk, σ2 ,Ω(x)}k are the (L2 normalized) eigen-
functions of L2. As already mentioned in the introduction, the proof of Theorem 6.1 is a direct
consequence of the variational characterization of λ1, σ2

(Ω). Indeed, we know by [48] that

λ1, σ2
(Ω) = min

u∈H σ
2 (RN )\{0}

u=0 on R
N\Ω

∫
RN

∫
RN

|u(x) − u(y)|2
|x− y|N+σ

dxdy∫
Ω

u2dx
. (6.6)

Then we could use the nonlocal (hence fractional) version of the Pólya-Szegö inequality (see for
instance [45]) to see that replacing u with u# makes the Gagliardo seminorm in (6.6) decrease,
therefore (6.1) holds. Furthermore, if equality occurs in (6.1), the minimality of λ1, σ2

(Ω#)
implies that ψ#

1, σ2 ,Ω
(x) is an eigenfunction. But since the eigenvalue λ1, σ2

(Ω#) is also simple,
by normalization, we have

ψ#
1, σ2 ,Ω

(x) = ψ1, σ2 ,Ω
#(x)

which the same result in [45] shows to be possible only when Ω = Ω# and ψ1, σ2 ,Ω
= ψ#

1, σ2 ,Ω
up

to translation.
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More general version of the FKI Actually, Brasco et al. [13] was able to establish a
more general version of the FKI, which applies to a nonlinear variant of the fractional Laplacian,
namely the fractional p-Laplacian. The main argument of the general variational proof is the use
of a nonlocal Pólya-Szegö inequality, proved in [32], to estimate the first nonlinear eigenvalue.

Probabilistic approach The Faber-Krahn inequality for the fractional Laplacian with
Dirichlet data on a bounded domain of R

N is stated with a hint of the proof based on proba-
bilistic arguments as the last result (see [4, Theorem 5]). This means that the eigenvalues are
also characterized in terms of the evolution, in their case of the stochastic process of Levy type.
Another proof with probabilistic flavor can be found in [9].

7 Appendices

7.1 On symmetrization

We gather here some basic information on symmetrization that can be useful to read this
paper. We follow standard notations used in this literature, and we recall that we presented a
more detailed account in [64]. A measurable real function f defined on R

N is called radially
symmetric (radial, for short) if there is a function f̃ : [0,∞) → R such that f(x) = f̃(|x|) for all
x ∈ R

N . We often write f(x) = f(r), r = |x| ≥ 0 for such functions by abuse of notation. We
say that f is rearranged if it is radial, nonnegative and f̃ is a right-continuous, non-increasing
function of r > 0. A similar definition can be applied for real functions defined on a ball
BR(0) = {x ∈ R

N : |x| < R}.
If Ω is an open set of R

N and f is a real measurable function on Ω, we denote by | · | the
N -dimensional Lebesgue measure. We define the distribution function μf of f as

μf (k) = |{x ∈ Ω : |f(x)| > k}|, k ≥ 0,

and the decreasing rearrangement of f as

f∗(s) = sup{k ≥ 0 : μf (k) > s}, s ∈ (0, |Ω|).

We may also think of extending f∗ as the zero function in [|Ω|,∞) if Ω is bounded. From this
definition, it turns out that μf∗ = μf (i.e., f and f∗ are equi-distributed) and f∗ is exactly the
generalized inverse of μf . Furthermore, if ωN is the measure of the unit ball in R

N and Ω# is
the ball of R

N centered at the origin having the same Lebesgue measure as Ω, we define the
function

f#(x) = f∗(ωN |x|N ), x ∈ Ω#,

which is called spherical decreasing rearrangement of f . From this definition, it follows that f
is rearranged if and only if f = f#.

Rearranged functions have a number of interesting properties. Here, we just recall the
conservation of the Lp norms (coming from the definition of rearrangements and the classical
Cavalieri principle): For all p ∈ [1,∞],

‖f‖Lp(Ω) = ‖f∗‖Lp(|0,Ω|) = ‖f#‖Lp(Ω#) ,
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as well as the classical Hardy-Littlewood inequality (see [34])∫
Ω

|f(x)g(x)|dx ≤
∫ |Ω|

0

f∗(s)g∗(s)ds =
∫

Ω#
f#(x) g#(x) dx. (7.1)

(1) We often deal with two-variable functions of the type

f : (x, y) ∈ CΩ → f(x, y) ∈ R (7.2)

defined on the cylinder CΩ := Ω × (0,+∞), and measurable with respect to x. Here Ω can be
a bounded domain or R

N . For such functions, it is convenient to define the so-called Steiner
symmetrization of CΩ with respect to the variable x, namely the set C#

Ω := Ω# × (0,+∞).
Furthermore, we denote by μf (k, y) and f∗(s, y) the distribution function and the decreasing
rearrangements of (7.2), respectively, with respect to x for y fixed, and we also define the
function

f#(x, y) = f∗(ωN |x|N , y)
which is called the Steiner symmetrization of f , with respect to the line x = 0. Clearly, f# is
a spherically symmetric and decreasing function with respect to x, for any fixed y.

(2) There are some interesting differentiation formulas which turn out to be very useful in
our approach. Typically, they are used when one wants to get sharp estimates satisfied by the
rearrangement u∗ of a solution u to a certain equation, and it becomes crucial to differentiate
with respect to the extra variable y (introduced in the extension process that is used in fractional
operators) in the form ∫

{u(x,y)>u∗(s,y)}

∂u

∂y
(x, y) dx.

We recall here two formulas that have been already used in [25, 64].

Proposition 7.1 Suppose that f ∈ H1(0, T ;L2(Ω)) for some T > 0 and f is nonnegative.
Then

f∗ ∈ H1(0, T ;L2(0, |Ω|)).
If |{f(x, t) = f∗(s, t)}| = 0 for a.e. (s, t) ∈ (0, |Ω|)×(0, T ), the following differentiation formula
holds: ∫

f(x,y)>f∗(s,y)

∂f

∂y
(x, y) dx =

∫ s

0

∂f∗

∂y
(τ, y) dτ. (7.3)

The second-order differentiation formula is as follows.

Proposition 7.2 Let f be nonnegative and f ∈ W 2,∞(CΩ). Then for almost every y ∈
(0,+∞) the following differentiation formula holds:∫

f(x,y)>f∗(s,y)

∂2f

∂y2
(x, y)dx

=
∂2

∂y2

∫ s

0

f∗(τ, y)dτ −
∫
f(x,y)=f∗(s,y)

(∂f
∂y

(x, y)
)2

|∇xf | dHN−1(x)

+
( ∫

f(x,y)=f∗(s,y)

∂f
∂y (x, y)

|∇xf | dHN−1(x)
)2(∫

f(x,y)=f∗(s,y)

1
|∇xf | dHN−1(x)

)−1

.
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(3) Mass concentration. We provide estimates of the solutions of our elliptic and parabolic
problems in terms of their integrals. For that purpose, the following definition, taken from [58],
is remarkably useful.

Definition 7.1 Let f, g ∈ L1
loc(R

N ) be two radially symmetric functions on R
N . We say

that f is less concentrated than g, and we write f ≺ g if for all R > 0, we get∫
BR(0)

f(x)dx ≤
∫
BR(0)

g(x)dx.

The partial order relationship ≺ is called comparison of mass concentrations. Of course, this
definition can be suitably adapted if f, g are radially symmetric and locally integrable functions
on a ball BR. Besides, if f and g are locally integrable on a general open set Ω, we say that
f is less concentrated than g, and we write again f ≺ g simply if f# ≺ g#, but this extended
definition has no use if g is not rearranged.

The comparison of mass concentrations enjoys a nice equivalent formulation if f and g are
rearranged, whose proof we refer to [21, 34, 59].

Lemma 7.1 Let f, g ∈ L1(Ω) be two rearranged functions on a ball Ω = BR(0). Then
f ≺ g if and only if for every convex nondecreasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0
we have ∫

Ω

Φ(f(x)) dx ≤
∫

Ω

Φ(g(x)) dx. (7.4)

This result still holds if R = ∞ and f, g ∈ L1
loc(R

N ) with g → 0 as |x| → ∞.

From this lemma it easily follows that if f ≺ g and f, g are rearranged, then

‖f‖Lp(Ω) ≤ ‖g‖Lp(Ω), ∀p ∈ [1,∞]. (7.5)

7.2 On analyticity

In the analyticity argument of Proposition 4.1, we want to apply the results of [35]. Let us
put

F (x, z, u, uj, ujk) = zνu(N+1)(N+1) +
N∑
j=1

ujj ,

where subindexes indicate partial derivatives. Then, ∂F
∂ujk

= zν for j = k = N + 1, ∂F
∂ujj

= 1 for
each j = 1, · · · , N and ∂F

∂ujk
= 0 for j �= k. Thus

N+1∑
j,k=1

∂F

∂ujk
(x, z, u, uj, ujk)ζjζk = zνζ2

N+1 + |ζ1|2 + · · · + |ζN |2 > 0

for all (x, z) ∈ R
N+1
+ := Ω, ζ ∈ R

N+1 \ (0, 0). Then the equation

zνwzz + Δxw = F (x, z,∇x,zw,∇2
x,zw) = 0

is elliptic in Ω = R
N+1
+ . Since a solution w to such equation is C∞ in R

N+1
+ and the function

F (x, z, u, uj, ujk) is analytic in (z, ujj) ∈ R+ × R
N+1, we can apply the main theorem in [35]

and conclude that w(x, z) is analytic in R
N+1
+ .
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7.3 On accretive operators and the semigroup approach

Let X be a Banach space and A : D(A) ⊂ X → X be a nonlinear operator defined on a
suitable subset of X . Let us consider the problem{

u′(t) + A(u) = f, t > 0,

u(0) = u0,
(7.6)

where u0 ∈ X and f ∈ L1(I;X) for some interval I of the real axis. For a wide class of
operators, in particular the ones considered in this paper, a very efficient way to approach such
problem is to use an implicit time discretization scheme that we describe next. Suppose to
be specific that I = [0, T ] (but this can be replaced by any interval [a, b] and the procedure
is similar). The method consists in taking first a partition of the interval, say, tk = kh for
k = 0, 1, · · · , n and h = T

n , and then solving the system of difference relations

uh,k − uh,k−1

h
+ A(uh,k) = f

(h)
k (7.7)

for k = 0, 1, · · · , n, where we pose uh,0 = u0. The data set {f (h)
k : k = 1, · · · , n} is supposed

to be a suitable discretization of the source term f , corresponding to the time discretization
we choose. This process is called implicit time discretization scheme (ITD for short) of the
equation u′(t) + A(u) = f . It can be rephrased in the form

uh,k = Jh(uh,k−1 + hf
(h)
k ) ,

where the operator Jλ = (I + λA)−1, λ > 0 is called the resolvent operator, with I being the
identity operator. Therefore, the application of the method needs the operator A to have a
well-defined family of resolvents with good properties. When the ITD is solved, we construct a
discrete approximate solution {uh,k}k. By piecing together the values uh,k, we take a piecewise
constant function, uh(t), typically defined through

uh(t) = uh,k, if t ∈ [(k − 1)h, kh] (7.8)

(or some other interpolation rule, like linear interpolation). Then the main question consists in
verifying if such function uh converges somehow as h → 0 to a solution u (which we hope to
be a classical, strong, weak, or other type of solution) to (7.6). To this regard, we first choose
a suitable discretization {f (h)

k } in time of the source term f , such that the piecewise constant
interpolation of this sequence produces a function f (h)(t) (defined by means of (7.8)) verifies
the property

‖f (h) − f‖L1(0,T ;X) → 0, as h→ 0.

By means of these discrete approximate solutions, we introduce the following notion of mild
solution.

Definition 7.2 We say that u ∈ C((0, T );X) is a mild solution to (7.6) if it is obtained as
uniform limit of the approximate solutions uh, as h→ 0. The initial data are taken in the sense
that u(t) is continuous in t = 0 and u(t) → u0 as t→ 0. Besides, we say that u ∈ C((0,∞);X)
is a mild solution to (7.6) in [0,∞) if u is a mild solution to the same problem in any compact
subinterval I ⊂ [0,∞).
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In order to state a positive existence result, we need to restrict the class of operators ac-
cording to the following definitions.

Definition 7.3 Let A : D(A) ⊂ X → X be a nonlinear, possibly unbounded operator. Let
Rλ(A) be the range of I + λA, a subset of X.

(i) The operator A is said accretive if for all λ > 0 the map I + λA is one-to-one onto
Rλ(A) ⊂ X, and the resolvent operator Jλ : Rλ(A) → X is a (non-strict) contraction in the
X-norm (i.e., a Lipschitz map with Lipschitz norm 1).

(ii) We say that A satisfies the rank condition if Rλ(A) ⊃ D(A) for all λ > 0. In particular,
the rank condition is satisfied if Rλ(A) = X for all λ > 0. In this case, if A is accretive, we
say that A is m-accretive.

We are now ready to state the desired semigroup generation result, that generalizes the
classical result of Hille-Yosida (valid in Hilbert spaces and for linear A) and the variant by
Lumer and Phillips (valid in Banach spaces, still for linear A), and provides the existence and
uniqueness of mild solutions to problems of the type (7.6) in the case f ≡ 0.

Theorem 7.1 (Crandall-Liggett) Suppose that A is an accretive operator satisfying the
rank condition. Then for all data u0 ∈ D(A), the limit

St(A)u0 = lim
n→∞(J t

n
(A))nu0 (7.9)

exists uniformly with respect to t, on compact subset of [0,∞), and u(t) = St(A)u0 ∈ C([0,∞) :
X). Moreover, the family of operators {St(A)}t>0 is a strongly continuous semigroup of con-
tractions on D(A) ⊂ X.

Using a popular notation in the linear framework, we could write St(A)u0 = e−tAu0, and
because of this analogy formula, (7.9) is called the Crandall-Liggett exponential formula for the
nonlinear semigroup generated by −A. The problem with this very general and useful result is
that the X-valued function u(t) = St(A)u0 solves the equation only in a mild sense, which is not
necessarily a strong solution or a weak solution. Though it is known that strong solutions are
automatically mild, the correspondence between mild and weak solutions is not always clear.
For the FPME, this issue was discussed in detail in [26–27].

In addition, the Crandall-Liggett theorem result can be extended when we consider nontriv-
ial source term f , according to the following result.

Theorem 7.2 Suppose that A is m-accretive, f ∈ L1(0,∞;X) and u0 ∈ D(A). Then
the abstract problem (7.6) has a unique mild solution u, obtained as the limit of the discrete
approximate solution uh by ITD scheme described above, as h→ 0,

u(t) := lim
h→0

uh(t),

and the limit is uniform in compact subsets of [0,∞). Moreover, u ∈ C([0,∞);X) and for any
couple of solutions u1, u2 corresponding to source terms f1, f2, we have

‖u1(t) − u2(t)‖X ≤ ‖u1(s) − u2(s)‖X +
∫ t

s

‖f1(τ) − f2(τ)‖Xdτ

for all 0 ≤ s < t.
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There is a wide literature on these topics, starting with the seminal paper by Crandall and
Liggett [24] (see also [23] and the general reference [5]). These notes are based on [60, Chapter
10] (see the references therein). The last formula we mentioned introduces the correct concept
of uniqueness for the constructed class of solutions. Characterizing the uniqueness of different
concepts of solution is a difficult topic already discussed (with positive results) by Bénilan [6].

8 Comments and Extensions

(1) We have only proved results on parabolic comparison based on symmetrization for the
linear case. The elliptic results can be applied to nonlinear equations but still have severe
restrictions. It is interesting to know how much is true for nonlinear functions B and A in
the respective equations. This question was partially addressed and solved for the spectral
fractional Laplacian in [64], and the limitations to the generality of the results were also shown
to be necessary, the symmetrization result was false for the concave B or the convex A of power
type.

More generally, we would like to know if there is an approach that ensures comparison
results of some symmetrization type valid for quite general nonlinearities, as it happens in the
non-fradtional case (see [59]).

(2) The variable coefficient case. As a future direction, we are interested in the following
problem: ⎧⎨⎩

div( y1−2sB(x)∇w) = 0 in H+,
w = 0 in R

N\Ω,
−y1−2s∂yw|y=0 = f,

(8.1)

where

B(x) =
(
A(x) 0

0 1

)
.

Here the matrix A(x) is supposed to be W 1,∞(RN ) and uniformly elliptic with lower constant
Λ > 0.

It is a well-known fact that the spectral powers of div(A(x)∇), i.e., (div(A(x)∇))s for
s ∈ (0, 1) in a bounded domain Ω can be described as the Dirichlet-to-Neumann operator of
a suitable extension in a cylinder C = Ω × R

+ (see for instance [19] for a detailed account).
The previous problem (8.1) is a variant of this extension but in the whole R

N . The Dirichlet-
to-Neumann operator in this case is not explicitly identified. However, we believe that it is
a natural possible extension of the problem we considered in this paper. The idea here is to
develop the techniques produced in the present paper to handle variable coefficients, having in
mind an isoperimetric inequality. Indeed, an FKI is proven in terms of the first eigenvalue by
means of

λ1(Ω) ≥ Λλ1(Ω#).

The aim here is to prove such a result for the following problem: Let Ls be the Dirichlet-to-
Neumann operator associated to (8.1) defined on Ω. It is obvious that Ls has discrete spectrum
{λk,s}∞k=1. It is not clear how to use a variational approach to deal with this operator, since it
does not seem obvious that this operator is associated to a norm in R

N satisfying a Pólya-Szegö
inequality. However, the parabolic approach developed in the present paper seems promising.
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die kreisförmige die tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. Wiss., Math. Phys. Munich., 1923,
169–172.

[32] Frank, R. L. and Seiringer, R., Non-linear ground state representations and sharp Hardy inequalities, J.
Funct. Anal., 255, 2008, 3407–3430.

[33] Friedman, A., On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial
differential equations, J. Math. Mech., 7, 1958, 43–59.
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