
Chin. Ann. Math.
38B(2), 2017, 687–694
DOI: 10.1007/s11401-017-1090-9

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2017

A Third Derivative Estimate for Monge-Ampere
Equations with Conic Singularities

Gang TIAN1

(Dedicated to Haim Brezis on the occasion of his 70th birthday)

Abstract The author applies the arguments in his PKU Master degree thesis in 1988 to
derive a third derivative estimate, and consequently, a C2,α-estimate, for complex Monge-
Ampere equations in the conic case. This C2,α-estimate was used by Jeffres-Mazzeo-
Rubinstein in their proof of the existence of Kähler-Einstein metrics with conic singulari-
ties.
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1 Introduction

In this note, we extend a third derivative estimate in [4] to Monge-Ampere equations in the
conic case. For the purpose of our application, we will consider the complex Monge-Ampere
equations in this note. The same result holds for real Monge-Ampere equations.

Let U be a neighborhood of (0, · · · , 0), and u satisfy

det
( ∂2u

∂zi∂zj

)
= eF |z1|2β−2 (1.1)

and

c−1
0 ωβ ≤ √−1 ∂∂ u ≤ c0 ωβ, where c0 > 0, (1.2)

where β ∈ (0, 1) and ωβ is the standard conic flat metric on C
n:

ωβ =
√−1

(dz1 ∧ dz1

|z1|2−2β
+

n∑
i=2

dzi ∧ dzi

)
.

Theorem 1.1 Let V be an open neighborhood of (0, · · · , 0), whose closure is contained in
U . Then for any α < min{1, β−1 − 1}, there are constants r0 > 0 and Cα, which may depend
on α, c0, V , inf ΔF and ‖F‖C1, such that for any x ∈ V and 0 < r < r0,∫

Br(x)

|∇3u|2 ωn
β ≤ Cα r2n−2+2α, (1.3)
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where Br(x) denotes the ball with center x and radius r, ∇ is the covariant derivative, Δ denotes
the Laplacian and the norm is taken with respect to ωβ.

It follows from Theorem 1.1 and the standard arguments, e.g., by using the Green function.

Corollary 1.1 Let u and F be as in Theorem 1.1. Then for any α ∈ (0, β−1 − 1) and
α < 1, ∂∂ u is Cα-bounded with respect to ωβ.

This corollary was used by Jeffres-Mazzeo-Rubinstein in their proving the existence of
Kähler-Einstein metrics with conic singularities. We refer the readers to Appendix B of [3]
for details.

Theorem 1.1 has been known to me for some time. The proof is identical to that in [4]. Its
arguments were inspired by Giaquinta-Giusti’s work (see [2]) on harmonic maps. For years, I
had talked about this approach to the C2,α-estimate for complex Monge-Ampere equations in
my courses on Kähler-Einstein metrics.

2 The Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by following the arguments in Section 2 of [4]. I will
present the proof for complex Monge-Ampere equations in details. In [4], the proof was written
for real Monge-Ampere equations, though it also applies to complex Monge-Ampere equations.

Without loss of generality, we may assume x ∈ V ∩ {z1 = 0}. In fact, one can apply known
estimates (see, e.g., [4]) to u outside the singular set {z1 = 0} of ωβ . If F is smooth on U , we
can also apply Calabi’s third derivative estimate to u outside {z1 = 0} (see [5]).

Define Bβ(r) to be the domain in C × Cn−1 consisting of all (w1, w
′), where w′ = (w2, · · · ,

wn), satisfying

|w1|2 + |w′|2 ≤ r2 and w1 = ρ e
√−1 θ for ρ ∈ [0, r] and θ ∈ [0, 2πβ]. (2.1)

There is an r > 0 such that w1 = β−1zβ
1 , and w′ = (z2, · · · , zn) defines a natural map from

Bβ(r) into U . This map is isometric from the interior of Bβ(r) onto its image. For convenience,
we will use w1, · · · , wn as coordinates. By scaling, we may assume that r = 1.

In terms of coordinates w1, · · · , wn, we have

ωβ =
√−1 dwi ∧ dwi

and covariant derivatives of u become ordinary derivatives, e.g.,

uij =
∂2u

∂wi∂wj
, uijk =

∂3u

∂wi∂wj∂wk
, · · · .

We will denote det(ukl)uij by U ij , where (uij) denotes the inverse of (uij).
First we recall two elementary facts.

Lemma 2.1 (see [4, Lemma 2.1]) For each j, U ij
i = 0, where all derivatives are covariant

with respect to ωβ.

Proof Recall the identities

U ilUkjuij = det(upq)Ukl, where k, l = 1, · · · , n.
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Differentiating them in wk-direction and summing over k, we get

2 det(upq)Ukl + U il det(upq)Ukjukji = det(upq)k Ukl + det(upq)Ukl
k.

Then the lemma follows.

Lemma 2.2 (see [4, Lemma 2.2]) For any positive λ1, · · · , λn, we have∣∣∣ λ

λi
uii − det(upq) − (n − 1)λ

∣∣∣ ≤ C
∑
i,j

|uij − λiδij |2, (2.2)

where λ = λ1 · · ·λn, and C is a constant depending only on λi and (uij).

Proof In [4], (2.2) is proved by the properties of determinants. Here we outline a simpler
proof. First by using the homogeneity and positivity of (uij), we only need to prove the case
when uij = δij . Next, if we denote the left-hand side of (2.2) by f(Λ), then by a direct
computation, f(I) = 0, ∂f

∂λi
(I) = 0 for i = 1, · · · , n. Then (2.2) follows from the Taylor

expansion of f at I.

In terms of w1, · · · , wn, (1.1) becomes

det
( ∂2u

∂wi∂wj

)
= eF . (2.3)

By a direct computation, we deduce from this

uijuklij = uiqupjuijkupql + Fkl. (2.4)

This system resembles the one for harmonic maps whose regularity theory were studied exten-
sively in 70s and 80s. The idea of [4] is to apply the arguments, particularly in [2], from the
regularity theory for harmonic maps.

The following lemma follows easily from the Sobolev embedding theorem.

Lemma 2.3 There is a constant Cβ, which depends on β, such that for any smooth function
h on Bβ = Bβ(1) with boundary condition

h(ρ e
√−12πβ , w′) = e

√−12π(1−β)h(ρ, w′), (2.5)

we have ∫
Bβ

|h|2 dw ∧ dw ≤ Cβ

(∫
Bβ

|dh| 2n
n+1 dw ∧ dw

)n+1
n

. (2.6)

Note that Cβ blows up when β tends to 1.

Lemma 2.4 (see [4, Lemma 2.3]) There is some q > 2, which may depend on β, ‖uij‖L∞

and ‖Fij‖L∞, such that for any B2r(y) ⊂ U , we have

(
r−2n

∫
Br(y)

(1 + |∇ω|2) q
2 ωn

β

) 2
q ≤ C r−2n

∫
Br(y)

(1 + |∇ω|2)ωn
β . (2.7)

where ω =
√−1∂∂ u, and C denotes a uniform constant.1

1Note that C, c always denote uniform constant though their actual values may vary in different places.
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Proof First we assume y = x. Define λij by

λij = r−2n

∫
Br(x)

uij ωn
β , i, j = 1, · · · , n. (2.8)

By using unitary transformations if necessary, we may assume λij = 0 for any i 
= j and i, j ≥ 2.
It follows from (1.2) that

c−1
0 I ≤ (λij) ≤ c0 I,

where I denotes the identity matrix.
Choose a cut-off function η : Br(x) �→ R satisfying

η(z) = 1, ∀z ∈ B 3r
4

(x), η(z) = 0, ∀z ∈ Br(x)\B 7r
8

(x), |∇η| ≤ 8
r
, |∇2η| ≤ 64

r2
.

Using Lemma 2.1 and (2.4), we can deduce

c

∫
Br(x)

η |∇ω|2 ωn
β +

∫
Br(x)

( n∑
k=1

λ

λk
Fkk eF − U ij(eF )ij

)
η ωn

β

≤
∫

Br(x)

U ij
( n∑

k=1

λ

λk
ukk − det(upq) − (n − 1)λ

)
ηij ωn

β ,

where λk = λkk and λ = λ1 · · ·λn.
Using Lemma 2.1, we have∫

Br(x)

( n∑
k=1

λ

λk
Fkk eF − U ij(eF )ij

)
η ωn

β

=
∫

Br(x)

[
eF F

n∑
k=1

λ

λk
ηkk − eF U ij ηij

]
ωn

β

≤ r−2

∫
Br(x)

(
F 2 +

n∑
i,j=1

|uij − λi δij |2
)

ωn
β

Then by Lemma 2.2, we can deduce from the above that∫
B 3r

4
(x)

|∇ω|2 ωn
β ≤ C r−2

∫
Br(x)

(
1 +

n∑
i,j=1

|uij − λiδij |2
)

ωn
β .

By applying the Sobolev inequality to u11 −λ1, uij −λi δij (i, j ≥ 2) and Lemma 2.3 to u1i, ui1

(i ≥ 2) in the above, we get∫
B 3r

4
(x)

(1 + |∇ω|2)ωn
β ≤ C r−2

( ∫
Br(x)

(1 + |∇ω|2) n
n+1 ωn

β

) n+1
n

.

This inequality still holds, if we replace Br(x) by any Br(y) which is disjoint from the singular
set {z1 = 0}. This can be proved by using the same arguments, but Lemma 2.3 is not needed.
One can easily deduce from this and a covering argument that for any ball B2r(y) ⊂ U ,∫

Br(y)

(1 + |∇ω|2)ωn
β ≤ C r−2

(∫
B2r(y)

(1 + |∇ω|2) n
n+1 ωn

β

) n+1
n

.

Then (2.7) follows from Gehring’s inverse Hölder inequality (see [1]).
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Lemma 2.5 (see [4, Lemma 2.4]) For any y ∈ V and B4r(y) ⊂ U and σ < r, we have

∫
Bσ(y)

|∇ω|2 ωn
β − c r2n

≤ C
[(σ

r

)2n−4+2β−1

+
(
r2−2n

∫
Br(y)

|∇ω|2 ωn
β

) q−2
q

] ∫
Br(y)

|∇ω|2 ωn
β . (2.9)

Proof Define v =
√−1 vii dwi ∧ dwi by solving

n∑
i=1

λ

λi
vii = 0 on Br(y), v = ω on ∂Br(y). (2.10)

Multiplying (2.10) by ŵ = ω − v, we get

∫
Br(y)

n∑
i=1

λ

λi

∣∣∣ ∂v

∂wi

∣∣∣2 ωn
β ≤

∫
Br(y)

n∑
i=1

λ

λi

∣∣∣ ∂ω

∂wi

∣∣∣2 ωn
β .

It follows that

∫
Br(y)

|∇v|2 ωn
β ≤ C

∫
Br(y)

|∇ω|2 ωn
β . (2.11)

Multiplying (2.4) by ŵ and integrating by parts, we have

∫
Br(y)

upquikpŵkiq ωn
β ≤

∫
Br(y)

(ŵkluiqupjuijkupql − ŵiFi)ωn
β .

Using the assumption that ∇F is bounded, we can easily deduce from this

∫
Br(y)

|∇ŵ|2 ωn
β ≤ c

(
r2n +

∫
Br(y)

(|ŵ| + |uij − λiδij |2) |∇ω|2 ωn
β

)
. (2.12)

By Lemma 2.4 and the Poincare inequality, we have

∫
Br(y)

|uij − λiδij |2 |∇ω|2 ωn
β

≤ r2n
(
r−2n

∫
Br(y)

|∇ω|q ωn
β

) 2
q
(
r−2n

∫
Br(y)

|uij − λiδij |
2q

q−2 ωn
β

) q−2
q

≤ C
(
r−2n

∫
Br(y)

|uij − λiδij |2 ωn
β

) q−2
q

∫
Br(y)

(1 + |∇ω|2)ωn
β

≤ C
(
r2−2n

∫
Br(y)

|∇ω|2 ωn
β

) q−2
q

∫
Br(y)

(1 + |∇ω|2)ωn
β . (2.13)

Without loss of generality, we may assume that q ≥ 2(q − 2). Since ŵ vanishes on ∂Br(y), its
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L2-norm is controlled by the L2-norm of |∇ŵ| and consequently, of |∇ω|. Then we have∫
Br(y)

|ŵ| |∇ω|2 ωn
β

≤ r2n
(
r−2n

∫
Br(y)

|∇ω|q ωn
β

) 2
q
(
r−2n

∫
Br(y)

|ŵ| q
q−2 ωn

β

) q−2
q

≤ C′
(
r−2n

∫
Br(y)

|ŵ|2 ωn
β

) q−2
q

∫
Br(y)

(1 + |∇ω|2)ωn
β

≤ C
(
r2−2n

∫
Br(y)

|∇ŵ|2 ωn
β

) q−2
q

∫
Br(y)

(1 + |∇ω|2)ωn
β

≤ C
(
r2−2n

∫
Br(y)

|∇ω|2 ωn
β

) q−2
q

∫
Br(y)

(1 + |∇ω|2)ωn
β . (2.14)

Next, we recall a simple lemma which can be proved by standard methods.

Lemma 2.6 Let h be any harmonic function on Bβ = Bβ(1), such that

h(ρe
√−12πβ , w′) = e

√−12π(1−β)h(ρ, w′),
∫
Bβ

|dh|2 dw ∧ dw < ∞. (2.15)

Then for any r < 1,∫
Bβ(r)

|dh|2 dw ∧ dw ≤ Cr2n−4+2β−1
∫
Bβ

|dh|2 dw ∧ dw. (2.16)

Note that the exponent 2n− 4 + 2β−1 is sharp, since we have the harmonic function w
1−β

β

1

on Bβ .
In fact, we only need a weaker version of Lemma 2.6 in the subsequent arguments: In

addition to the assumption (2.15), we may further assume

∂h

∂z1
(ρe

√−12πβ , w′) = e
√−12π(1−β) ∂h

∂z1
(ρ, w′).

Remark 2.1 If we replace (2.15) by

h(ρe
√−12πβ , w′) = h(ρ, w′),

∫
bBβ

|dh|2 dw ∧ dw < ∞, (2.17)

then we have a better estimate∫
Bβ(r)

|dh|2 dw ∧ dw ≤ Cr2n

∫
Bβ

|dh|2 dw ∧ dw.

Now we apply Lemma 2.6 to our v above. If we write v =
√−1 vij dwi ∧ dwj , then each

coefficient vij is a harmonic function in either Lemma 2.6 or Remark 2.1 with respect to the

coordinates w̃i =
√

λi

λ wi. Thus, by Lemma 2.6 and a standard scaling trick, we can deduce for
σ < r, ∫

Bσ(y)

|∇v|2 ωn
β ≤ C

(σ

r

)2n−4+2β−1 ∫
Br(y)

|∇v|2 ωn
β . (2.18)
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We observe ∫
Bσ(y)

|∇ω|2 ωn
β ≤ 2

∫
Bσ(y)

(|∇ŵ|2 + |∇v|2)ωn
β

≤ 2
∫

Br(y)

|∇ŵ|2 ωn
β + 2

∫
Bσ(y)

|∇v|2 ωn
β .

Hence, by (2.11) and (2.18), we get∫
Bσ(y)

|∇ω|2 ωn
β ≤

∫
Br(y)

(
2 |∇ŵ|2 + c

(σ

r

)2n−4+2β−1

|∇ω|2
)

ωn
β . (2.19)

Clearly, (2.9) follows from (2.12)–(2.14) and (2.19).

In view of (2.9), we need the following lemma.

Lemma 2.7 (see [4, Lemma 2.5]) For any ε0 > 0, there is an � depending only on ε0,
‖Δu‖L∞ and inf ΔF satisfying that for any r̃ > 0 with Br̃(y) ⊂ U , there is r ∈ [2−�r̃, r̃], such
that

r2−2n

∫
Br(y)

|∇ω|2 ωn
β ≤ ε0. (2.20)

Proof It follows from (2.4) that

Δ′Δu = uijupquiqkujpk + ΔF, (2.21)

where Δ′ denotes the Laplacian of ω.
Let η be a non-negative function on Br(y) satisfying that η(z) = 1 for any z ∈ Br/2(y),

η(z) = 0 for any z near ∂Br(y) and r2 |∇2η| ≤ 4. Then∫
Br(y)

η |∇ω|2 ωn
β ≤ C r2n −

∫
Br(y)

Δ′η (Mr − Δu)ωn

≤ C r2n − 4r−2

∫
Br(y)

(Mr − Δu)ωn, (2.22)

where Mr = supBr(y) Δu.
Set Z = Mr −Δu− c r2. It follows from (2.21) that for a suitable constant c > 0, Δ′Z ≤ 0,

i.e., Z is super-harmonic with respect to ω. Since ω is equivalent to ωβ , we can apply the
standard Moser iteration to Δ′ to get

r−2n

∫
Br(y)

Z ωn ≤ C
(

inf
B r

2
(y)

Z + r2
)
.

It follows that
r2−2n

∫
Br(y)

|∇ω|2 ωn
β ≤ C (Mr − M r

2
+ r2).

Hence, if (2.20) does not hold for r = r̃, 2−1r̃, · · · , 2−k r̃, then

k ε0 ≤ C (Mr̃ − M2−kr̃ + 2 r̃2).

This is impossible if k is sufficiently large. So the lemma is proved.
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Now we complete the proof of Theorem 1.1. Choose ξ = λ2α and λ ∈ (0, 1), such that

(1 + C)λ2(β−1−1−α) ≤ 1
2
.

Next we choose ε0 and r0 sufficiently small, such that

(C ε
q−2

q

0 + c r2
0)λ2−2n−2α ≤ 1

2
.

Then we can deduce from (2.9) that for σ = λ r and r ≤ r0 satisfying (2.20),

σ2ν + σ2−2n

∫
Bσ(y)

|∇ω|2 ωn
β ≤ ξ

(
r2ν + r2−2n

∫
Br(y)

|∇ω|2 ωn
β

)
,

where ν = β−1 − 1 > α. Then (1.3) follows again from this and a standard iteration.
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