A Third Derivative Estimate for Monge-Ampere Equations with Conic Singularities

Gang TIAN¹

(Dedicated to Haim Brezis on the occasion of his 70th birthday)

Abstract The author applies the arguments in his PKU Master degree thesis in 1988 to derive a third derivative estimate, and consequently, a $C^{2,\alpha}$ -estimate, for complex Monge-Ampere equations in the conic case. This $C^{2,\alpha}$ -estimate was used by Jeffres-Mazzeo-Rubinstein in their proof of the existence of Kähler-Einstein metrics with conic singularities.

Keywords Complex, Monge-Ampere, Conic, C^{α} -estimate 2000 MR Subject Classification 32W, 35J

1 Introduction

In this note, we extend a third derivative estimate in [4] to Monge-Ampere equations in the conic case. For the purpose of our application, we will consider the complex Monge-Ampere equations in this note. The same result holds for real Monge-Ampere equations.

Let U be a neighborhood of $(0, \dots, 0)$, and u satisfy

$$\det\left(\frac{\partial^2 u}{\partial z_i \partial \overline{z}_j}\right) = e^F |z_1|^{2\beta - 2} \tag{1.1}$$

and

$$c_0^{-1} \omega_\beta \le \sqrt{-1} \partial \overline{\partial} u \le c_0 \omega_\beta$$
, where $c_0 > 0$, (1.2)

where $\beta \in (0, 1)$ and ω_{β} is the standard conic flat metric on \mathbb{C}^n :

$$\omega_{\beta} = \sqrt{-1} \left(\frac{\mathrm{d}z_1 \wedge \mathrm{d}\overline{z}_1}{|z_1|^{2-2\beta}} + \sum_{i=2}^n \mathrm{d}z_i \wedge \mathrm{d}\overline{z}_i \right).$$

Theorem 1.1 Let V be an open neighborhood of $(0, \dots, 0)$, whose closure is contained in U. Then for any $\alpha < \min\{1, \beta^{-1} - 1\}$, there are constants $r_0 > 0$ and C_{α} , which may depend on α , c_0 , V, $\inf \Delta F$ and $\|F\|_{C^1}$, such that for any $x \in V$ and $0 < r < r_0$,

$$\int_{B_r(x)} |\nabla^3 u|^2 \,\omega_\beta^n \le C_\alpha \, r^{2n-2+2\alpha},\tag{1.3}$$

Manuscript received October 13, 2015. Revised August 25, 2016.

¹Beijing International Center for Mathematical Research, Beijing University, Beijing 100871, China; Mathematics Department, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000, USA. E-mail: tian@math.princeton.edu

where $B_r(x)$ denotes the ball with center x and radius r, ∇ is the covariant derivative, Δ denotes the Laplacian and the norm is taken with respect to ω_{β} .

It follows from Theorem 1.1 and the standard arguments, e.g., by using the Green function.

Corollary 1.1 Let u and F be as in Theorem 1.1. Then for any $\alpha \in (0, \beta^{-1} - 1)$ and $\alpha < 1, \partial \overline{\partial} u$ is C^{α} -bounded with respect to ω_{β} .

This corollary was used by Jeffres-Mazzeo-Rubinstein in their proving the existence of Kähler-Einstein metrics with conic singularities. We refer the readers to Appendix B of [3] for details.

Theorem 1.1 has been known to me for some time. The proof is identical to that in [4]. Its arguments were inspired by Giaquinta-Giusti's work (see [2]) on harmonic maps. For years, I had talked about this approach to the $C^{2,\alpha}$ -estimate for complex Monge-Ampere equations in my courses on Kähler-Einstein metrics.

2 The Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by following the arguments in Section 2 of [4]. I will present the proof for complex Monge-Ampere equations in details. In [4], the proof was written for real Monge-Ampere equations, though it also applies to complex Monge-Ampere equations.

Without loss of generality, we may assume $x \in V \cap \{z_1 = 0\}$. In fact, one can apply known estimates (see, e.g., [4]) to u outside the singular set $\{z_1 = 0\}$ of ω_β . If F is smooth on U, we can also apply Calabi's third derivative estimate to u outside $\{z_1 = 0\}$ (see [5]).

Define $\mathbf{B}_{\beta}(r)$ to be the domain in $\mathbb{C} \times \mathbb{C}^{n-1}$ consisting of all (w_1, w') , where $w' = (w_2, \cdots, w_n)$, satisfying

$$|w_1|^2 + |w'|^2 \le r^2$$
 and $w_1 = \rho e^{\sqrt{-1}\theta}$ for $\rho \in [0, r]$ and $\theta \in [0, 2\pi\beta]$. (2.1)

There is an $\overline{r} > 0$ such that $w_1 = \beta^{-1} z_1^{\beta}$, and $w' = (z_2, \dots, z_n)$ defines a natural map from $\mathbf{B}_{\beta}(\overline{r})$ into U. This map is isometric from the interior of $\mathbf{B}_{\beta}(\overline{r})$ onto its image. For convenience, we will use w_1, \dots, w_n as coordinates. By scaling, we may assume that $\overline{r} = 1$.

In terms of coordinates w_1, \cdots, w_n , we have

$$\omega_{\beta} = \sqrt{-1} \, \mathrm{d} w_i \wedge \mathrm{d} \overline{w}_i$$

and covariant derivatives of u become ordinary derivatives, e.g.,

$$u_{i\overline{j}} = \frac{\partial^2 u}{\partial w_i \partial \overline{w_j}}, \quad u_{i\overline{j}k} = \frac{\partial^3 u}{\partial w_i \partial \overline{w_j} \partial w_k}, \cdots.$$

We will denote $\det(u_{k\bar{l}}) u^{i\bar{j}}$ by $U^{i\bar{j}}$, where $(u^{i\bar{j}})$ denotes the inverse of $(u_{i\bar{j}})$.

First we recall two elementary facts.

Lemma 2.1 (see [4, Lemma 2.1]) For each j, $U^{ij}{}_i = 0$, where all derivatives are covariant with respect to ω_{β} .

Proof Recall the identities

$$U^{i\overline{l}}U^{k\overline{j}}u_{i\overline{j}} = \det(u_{p\overline{q}})U^{k\overline{l}}, \text{ where } k, l = 1, \cdots, n.$$

Differentiating them in w_k -direction and summing over k, we get

$$2 \det(u_{p\overline{q}}) U^{k\overline{l}} + U^{i\overline{l}} \det(u_{p\overline{q}}) U^{k\overline{j}} u_{k\overline{j}i} = \det(u_{p\overline{q}})_k U^{k\overline{l}} + \det(u_{p\overline{q}}) U^{k\overline{l}}_k.$$

Then the lemma follows.

Lemma 2.2 (see [4, Lemma 2.2]) For any positive $\lambda_1, \dots, \lambda_n$, we have

$$\left|\frac{\lambda}{\lambda_i}u_{i\overline{i}} - \det(u_{p\overline{q}}) - (n-1)\lambda\right| \le C\sum_{i,j}|u_{i\overline{j}} - \lambda_i\delta_{ij}|^2,\tag{2.2}$$

where $\lambda = \lambda_1 \cdots \lambda_n$, and C is a constant depending only on λ_i and $(u_{i\bar{i}})$.

Proof In [4], (2.2) is proved by the properties of determinants. Here we outline a simpler proof. First by using the homogeneity and positivity of $(u_{i\bar{j}})$, we only need to prove the case when $u_{i\bar{j}} = \delta_{ij}$. Next, if we denote the left-hand side of (2.2) by $f(\Lambda)$, then by a direct computation, f(I) = 0, $\frac{\partial f}{\partial \lambda_i}(I) = 0$ for $i = 1, \dots, n$. Then (2.2) follows from the Taylor expansion of f at I.

In terms of w_1, \dots, w_n , (1.1) becomes

$$\det\left(\frac{\partial^2 u}{\partial w_i \partial \overline{w}_j}\right) = e^F.$$
(2.3)

By a direct computation, we deduce from this

$$u^{i\overline{j}}u_{k\overline{l}i\overline{j}} = u^{i\overline{q}}u^{p\overline{j}}u_{i\overline{j}k}u_{p\overline{q}\overline{l}} + F_{k\overline{l}}.$$
(2.4)

This system resembles the one for harmonic maps whose regularity theory were studied extensively in 70s and 80s. The idea of [4] is to apply the arguments, particularly in [2], from the regularity theory for harmonic maps.

The following lemma follows easily from the Sobolev embedding theorem.

Lemma 2.3 There is a constant C_{β} , which depends on β , such that for any smooth function h on $\mathbf{B}_{\beta} = \mathbf{B}_{\beta}(1)$ with boundary condition

$$h(\rho e^{\sqrt{-1}2\pi\beta}, w') = e^{\sqrt{-1}2\pi(1-\beta)}h(\rho, w'), \qquad (2.5)$$

we have

$$\int_{\mathbf{B}_{\beta}} |h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w} \leq C_{\beta} \left(\int_{\mathbf{B}_{\beta}} |\mathrm{d}h|^{\frac{2n}{n+1}} \,\mathrm{d}w \wedge \mathrm{d}\overline{w} \right)^{\frac{n+1}{n}}.$$
(2.6)

Note that C_{β} blows up when β tends to 1.

Lemma 2.4 (see [4, Lemma 2.3]) There is some q > 2, which may depend on β , $||u_{i\overline{j}}||_{L^{\infty}}$ and $||F_{i\overline{j}}||_{L^{\infty}}$, such that for any $B_{2r}(y) \subset U$, we have

$$\left(r^{-2n} \int_{B_r(y)} (1+|\nabla \omega|^2)^{\frac{q}{2}} \omega_{\beta}^n\right)^{\frac{q}{2}} \le C r^{-2n} \int_{B_r(y)} (1+|\nabla \omega|^2) \omega_{\beta}^n.$$
(2.7)

where $\omega = \sqrt{-1} \partial \overline{\partial} u$, and C denotes a uniform constant.¹

¹Note that C, c always denote uniform constant though their actual values may vary in different places.

 $G. \ Tian$

Proof First we assume y = x. Define λ_{ij} by

$$\lambda_{i\overline{j}} = r^{-2n} \int_{B_r(x)} u_{i\overline{j}} \,\omega_\beta^n, \quad i,j = 1, \cdots, n.$$
(2.8)

By using unitary transformations if necessary, we may assume $\lambda_{i\overline{j}} = 0$ for any $i \neq j$ and $i, j \geq 2$. It follows from (1.2) that

$$c_0^{-1}\mathbf{I} \leq (\lambda_{i\overline{j}}) \leq c_0\mathbf{I},$$

where ${\bf I}$ denotes the identity matrix.

Choose a cut-off function $\eta: B_r(x) \mapsto \mathbb{R}$ satisfying

$$\eta(z) = 1, \quad \forall z \in B_{\frac{3r}{4}}(x), \quad \eta(z) = 0, \quad \forall z \in B_r(x) \setminus B_{\frac{7r}{8}}(x), \quad |\nabla \eta| \le \frac{8}{r}, \quad |\nabla^2 \eta| \le \frac{64}{r^2}.$$

Using Lemma 2.1 and (2.4), we can deduce

$$c \int_{B_{r}(x)} \eta |\nabla \omega|^{2} \omega_{\beta}^{n} + \int_{B_{r}(x)} \left(\sum_{k=1}^{n} \frac{\lambda}{\lambda_{k}} F_{k\overline{k}} e^{F} - U^{i\overline{j}} (e^{F})_{i\overline{j}} \right) \eta \omega_{\beta}^{n}$$
$$\leq \int_{B_{r}(x)} U^{i\overline{j}} \left(\sum_{k=1}^{n} \frac{\lambda}{\lambda_{k}} u_{k\overline{k}} - \det(u_{p\overline{q}}) - (n-1)\lambda \right) \eta_{i\overline{j}} \omega_{\beta}^{n},$$

where $\lambda_k = \lambda_{k\overline{k}}$ and $\lambda = \lambda_1 \cdots \lambda_n$.

Using Lemma 2.1, we have

$$\int_{B_r(x)} \left(\sum_{k=1}^n \frac{\lambda}{\lambda_k} F_{k\overline{k}} e^F - U^{i\overline{j}} (e^F)_{i\overline{j}} \right) \eta \,\omega_\beta^n$$
$$= \int_{B_r(x)} \left[e^F F \sum_{k=1}^n \frac{\lambda}{\lambda_k} \eta_{k\overline{k}} - e^F U^{i\overline{j}} \eta_{i\overline{j}} \right] \omega_\beta^n$$
$$\leq r^{-2} \int_{B_r(x)} \left(F^2 + \sum_{i,j=1}^n |u_{i\overline{j}} - \lambda_i \,\delta_{ij}|^2 \right) \omega_\beta^n$$

Then by Lemma 2.2, we can deduce from the above that

$$\int_{B_{\frac{3r}{4}}(x)} |\nabla \omega|^2 \, \omega_{\beta}^n \leq C \, r^{-2} \, \int_{B_r(x)} \left(1 \, + \, \sum_{i,j=1}^n |u_{i\overline{j}} - \lambda_i \delta_{ij}|^2 \right) \omega_{\beta}^n$$

By applying the Sobolev inequality to $u_{1\overline{1}} - \lambda_1, u_{i\overline{j}} - \lambda_i \,\delta_{ij} \,(i, j \ge 2)$ and Lemma 2.3 to $u_{1\overline{i}}, u_{i\overline{1}} \,(i \ge 2)$ in the above, we get

$$\int_{B_{\frac{3r}{4}}(x)} (1+|\nabla\omega|^2) \,\omega_{\beta}^n \leq C \, r^{-2} \Big(\int_{B_r(x)} (1+|\nabla\omega|^2)^{\frac{n}{n+1}} \,\omega_{\beta}^n \Big)^{\frac{n+1}{n}}.$$

This inequality still holds, if we replace $B_r(x)$ by any $B_r(y)$ which is disjoint from the singular set $\{z_1 = 0\}$. This can be proved by using the same arguments, but Lemma 2.3 is not needed. One can easily deduce from this and a covering argument that for any ball $B_{2r}(y) \subset U$,

$$\int_{B_r(y)} (1 + |\nabla \omega|^2) \, \omega_{\beta}^n \, \le \, C \, r^{-2} \, \Big(\int_{B_{2r}(y)} (1 + |\nabla \omega|^2)^{\frac{n}{n+1}} \, \omega_{\beta}^n \Big)^{\frac{n+1}{n}}$$

Then (2.7) follows from Gehring's inverse Hölder inequality (see [1]).

690

Lemma 2.5 (see [4, Lemma 2.4]) For any $y \in V$ and $B_{4r}(y) \subset U$ and $\sigma < r$, we have

$$\int_{B_{\sigma}(y)} |\nabla \omega|^2 \,\omega_{\beta}^n - c \, r^{2n}$$

$$\leq C \left[\left(\frac{\sigma}{r} \right)^{2n-4+2\beta^{-1}} + \left(r^{2-2n} \int_{B_r(y)} |\nabla \omega|^2 \,\omega_{\beta}^n \right)^{\frac{q-2}{q}} \right] \int_{B_r(y)} |\nabla \omega|^2 \,\omega_{\beta}^n. \tag{2.9}$$

Proof Define $v = \sqrt{-1} v_{i\bar{i}} dw_i \wedge d\overline{w}_i$ by solving

$$\sum_{i=1}^{n} \frac{\lambda}{\lambda_i} v_{i\overline{i}} = 0 \quad \text{on } B_r(y), \quad v = \omega \quad \text{on } \partial B_r(y).$$
(2.10)

Multiplying (2.10) by $\hat{w} = \omega - v$, we get

$$\int_{B_r(y)} \sum_{i=1}^n \frac{\lambda}{\lambda_i} \left| \frac{\partial v}{\partial w_i} \right|^2 \omega_\beta^n \leq \int_{B_r(y)} \sum_{i=1}^n \frac{\lambda}{\lambda_i} \left| \frac{\partial \omega}{\partial w_i} \right|^2 \omega_\beta^n.$$

It follows that

$$\int_{B_r(y)} |\nabla v|^2 \,\omega_\beta^n \le C \,\int_{B_r(y)} |\nabla \omega|^2 \,\omega_\beta^n. \tag{2.11}$$

Multiplying (2.4) by \hat{w} and integrating by parts, we have

$$\int_{B_r(y)} u^{p\overline{q}} u_{i\overline{k}p} \widehat{w}_{k\overline{i}\overline{q}} \,\omega_{\beta}^n \leq \int_{B_r(y)} \left(\widehat{w}^{k\overline{l}} u^{i\overline{q}} u^{p\overline{j}} u_{i\overline{j}k} u_{p\overline{q}\overline{l}} - \widehat{w}_i F_{\overline{i}} \right) \omega_{\beta}^n$$

Using the assumption that ∇F is bounded, we can easily deduce from this

$$\int_{B_r(y)} |\nabla \widehat{w}|^2 \,\omega_\beta^n \le c \left(r^{2n} + \int_{B_r(y)} \left(|\widehat{w}| + |u_{i\overline{j}} - \lambda_i \delta_{ij}|^2 \right) |\nabla \omega|^2 \,\omega_\beta^n \right). \tag{2.12}$$

By Lemma 2.4 and the Poincare inequality, we have

$$\int_{B_{r}(y)} |u_{i\overline{j}} - \lambda_{i}\delta_{ij}|^{2} |\nabla\omega|^{2} \omega_{\beta}^{n}$$

$$\leq r^{2n} \left(r^{-2n} \int_{B_{r}(y)} |\nabla\omega|^{q} \omega_{\beta}^{n}\right)^{\frac{2}{q}} \left(r^{-2n} \int_{B_{r}(y)} |u_{i\overline{j}} - \lambda_{i}\delta_{ij}|^{\frac{2q}{q-2}} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}}$$

$$\leq C \left(r^{-2n} \int_{B_{r}(y)} |u_{i\overline{j}} - \lambda_{i}\delta_{ij}|^{2} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}} \int_{B_{r}(y)} (1 + |\nabla\omega|^{2}) \omega_{\beta}^{n}$$

$$\leq C \left(r^{2-2n} \int_{B_{r}(y)} |\nabla\omega|^{2} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}} \int_{B_{r}(y)} (1 + |\nabla\omega|^{2}) \omega_{\beta}^{n}.$$
(2.13)

Without loss of generality, we may assume that $q \ge 2(q-2)$. Since \hat{w} vanishes on $\partial B_r(y)$, its

 L^2 -norm is controlled by the L^2 -norm of $|\nabla \hat{w}|$ and consequently, of $|\nabla \omega|$. Then we have

$$\int_{B_{r}(y)} |\widehat{w}| |\nabla\omega|^{2} \omega_{\beta}^{n}$$

$$\leq r^{2n} \left(r^{-2n} \int_{B_{r}(y)} |\nabla\omega|^{q} \omega_{\beta}^{n}\right)^{\frac{2}{q}} \left(r^{-2n} \int_{B_{r}(y)} |\widehat{w}|^{\frac{q}{q-2}} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}}$$

$$\leq C' \left(r^{-2n} \int_{B_{r}(y)} |\widehat{w}|^{2} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}} \int_{B_{r}(y)} (1 + |\nabla\omega|^{2}) \omega_{\beta}^{n}$$

$$\leq C \left(r^{2-2n} \int_{B_{r}(y)} |\nabla\widehat{w}|^{2} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}} \int_{B_{r}(y)} (1 + |\nabla\omega|^{2}) \omega_{\beta}^{n}$$

$$\leq C \left(r^{2-2n} \int_{B_{r}(y)} |\nabla\omega|^{2} \omega_{\beta}^{n}\right)^{\frac{q-2}{q}} \int_{B_{r}(y)} (1 + |\nabla\omega|^{2}) \omega_{\beta}^{n}.$$
(2.14)

Next, we recall a simple lemma which can be proved by standard methods.

Lemma 2.6 Let h be any harmonic function on $\mathbf{B}_{\beta} = \mathbf{B}_{\beta}(1)$, such that

$$h(\rho \mathrm{e}^{\sqrt{-1}2\pi\beta}, w') = \mathrm{e}^{\sqrt{-1}2\pi(1-\beta)}h(\rho, w'), \quad \int_{\mathbf{B}_{\beta}} |\mathrm{d}h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w} < \infty.$$
(2.15)

Then for any r < 1,

$$\int_{\mathbf{B}_{\beta}(r)} |\mathrm{d}h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w} \leq Cr^{2n-4+2\beta^{-1}} \int_{\mathbf{B}_{\beta}} |\mathrm{d}h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w}.$$
(2.16)

Note that the exponent $2n - 4 + 2\beta^{-1}$ is sharp, since we have the harmonic function $w_1^{\frac{1-\beta}{\beta}}$ on \mathbf{B}_{β} .

In fact, we only need a weaker version of Lemma 2.6 in the subsequent arguments: In addition to the assumption (2.15), we may further assume

$$\frac{\partial h}{\partial z_1}(\rho e^{\sqrt{-1}2\pi\beta}, w') = e^{\sqrt{-1}2\pi(1-\beta)}\frac{\partial h}{\partial z_1}(\rho, w').$$

Remark 2.1 If we replace (2.15) by

$$h(\rho \mathrm{e}^{\sqrt{-1}2\pi\beta}, w') = h(\rho, w'), \quad \int_{bB_{\beta}} |\mathrm{d}h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w} < \infty, \tag{2.17}$$

then we have a better estimate

$$\int_{\mathbf{B}_{\beta}(r)} |\mathrm{d}h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w} \leq Cr^{2n} \int_{\mathbf{B}_{\beta}} |\mathrm{d}h|^2 \,\mathrm{d}w \wedge \mathrm{d}\overline{w}.$$

Now we apply Lemma 2.6 to our v above. If we write $v = \sqrt{-1} v_{i\overline{j}} dw_i \wedge d\overline{w}_j$, then each coefficient $v_{i\overline{j}}$ is a harmonic function in either Lemma 2.6 or Remark 2.1 with respect to the coordinates $\widetilde{w}_i = \sqrt{\frac{\lambda_i}{\lambda}} w_i$. Thus, by Lemma 2.6 and a standard scaling trick, we can deduce for $\sigma < r$,

$$\int_{B_{\sigma}(y)} |\nabla v|^2 \,\omega_{\beta}^n \leq C \left(\frac{\sigma}{r}\right)^{2n-4+2\beta^{-1}} \,\int_{B_r(y)} |\nabla v|^2 \,\omega_{\beta}^n. \tag{2.18}$$

A Third Derivative Estimate for Monge-Ampere Equations with Conic Singularities

We observe

$$\begin{split} \int_{B_{\sigma}(y)} |\nabla \omega|^2 \, \omega_{\beta}^n &\leq 2 \int_{B_{\sigma}(y)} \left(|\nabla \widehat{w}|^2 \, + \, |\nabla v|^2 \right) \omega_{\beta}^n \\ &\leq 2 \int_{B_{r}(y)} |\nabla \widehat{w}|^2 \, \omega_{\beta}^n \, + \, 2 \int_{B_{\sigma}(y)} \, |\nabla v|^2 \, \omega_{\beta}^n \, . \end{split}$$

Hence, by (2.11) and (2.18), we get

$$\int_{B_{\sigma}(y)} |\nabla \omega|^2 \,\omega_{\beta}^n \leq \int_{B_r(y)} \left(2 \,|\nabla \widehat{w}|^2 + c \left(\frac{\sigma}{r}\right)^{2n-4+2\beta^{-1}} |\nabla \omega|^2 \right) \omega_{\beta}^n. \tag{2.19}$$

Clearly, (2.9) follows from (2.12)-(2.14) and (2.19).

In view of (2.9), we need the following lemma.

Lemma 2.7 (see [4, Lemma 2.5]) For any $\epsilon_0 > 0$, there is an ℓ depending only on ϵ_0 , $\|\Delta u\|_{L^{\infty}}$ and $\inf \Delta F$ satisfying that for any $\tilde{r} > 0$ with $B_{\tilde{r}}(y) \subset U$, there is $r \in [2^{-\ell}\tilde{r}, \tilde{r}]$, such that

$$r^{2-2n} \int_{B_r(y)} |\nabla \omega|^2 \, \omega_\beta^n \le \epsilon_0.$$
(2.20)

Proof It follows from (2.4) that

$$\Delta' \Delta u = u^{i\overline{j}} u^{p\overline{q}} u_{i\overline{q}k} u_{\overline{j}p\overline{k}} + \Delta F, \qquad (2.21)$$

where Δ' denotes the Laplacian of ω .

Let η be a non-negative function on $B_r(y)$ satisfying that $\eta(z) = 1$ for any $z \in B_{r/2}(y)$, $\eta(z) = 0$ for any z near $\partial B_r(y)$ and $r^2 |\nabla^2 \eta| \leq 4$. Then

$$\int_{B_r(y)} \eta |\nabla \omega|^2 \omega_\beta^n \le C r^{2n} - \int_{B_r(y)} \Delta' \eta (M_r - \Delta u) \omega^n$$
$$\le C r^{2n} - 4r^{-2} \int_{B_r(y)} (M_r - \Delta u) \omega^n, \qquad (2.22)$$

where $M_r = \sup_{B_r(y)} \Delta u$.

Set $Z = M_r - \Delta u - c r^2$. It follows from (2.21) that for a suitable constant c > 0, $\Delta' Z \leq 0$, i.e., Z is super-harmonic with respect to ω . Since ω is equivalent to ω_β , we can apply the standard Moser iteration to Δ' to get

$$r^{-2n} \int_{B_r(y)} Z\,\omega^n \le C\,\Big(\inf_{B_{\frac{r}{2}}(y)} Z\,+\,r^2\Big).$$

It follows that

$$r^{2-2n} \int_{B_r(y)} |\nabla \omega|^2 \, \omega_\beta^n \leq C \left(M_r - M_{\frac{r}{2}} + r^2 \right).$$

Hence, if (2.20) does not hold for $r = \tilde{r}, 2^{-1}\tilde{r}, \cdots, 2^{-k}\tilde{r}$, then

$$k \epsilon_0 \leq C \left(M_{\widetilde{r}} - M_{2^{-k}\widetilde{r}} + 2 \, \widetilde{r}^2 \right).$$

This is impossible if k is sufficiently large. So the lemma is proved.

Now we complete the proof of Theorem 1.1. Choose $\xi = \lambda^{2\alpha}$ and $\lambda \in (0, 1)$, such that

$$(1+C) \lambda^{2(\beta^{-1}-1-\alpha)} \leq \frac{1}{2}.$$

Next we choose ϵ_0 and r_0 sufficiently small, such that

$$(C\,\epsilon_0^{\frac{q-2}{q}} + c\,r_0^2)\,\lambda^{2-2n-2\alpha} \le \frac{1}{2}$$

Then we can deduce from (2.9) that for $\sigma = \lambda r$ and $r \leq r_0$ satisfying (2.20),

$$\sigma^{2\nu} + \sigma^{2-2n} \int_{B_{\sigma}(y)} |\nabla \omega|^2 \, \omega_{\beta}^n \leq \xi \left(r^{2\nu} + r^{2-2n} \int_{B_r(y)} |\nabla \omega|^2 \, \omega_{\beta}^n \right),$$

where $\nu = \beta^{-1} - 1 > \alpha$. Then (1.3) follows again from this and a standard iteration.

References

- Gehring, W., The L^p-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130, 1973, 265–277.
- Giaquinta, M. and Giusti, E., Nonlinear elliptic systems with quadratic growth, Manuscripta Math., 24(3), 1978, 323–349.
- [3] Jeffres, T., Mazzeo, R. and Rubinstein, Y., Kähler-Einstein metrics with edge singularities (with an appendix by C. Li and Y. Rubinstein), Annals of Math., 183, 2016, 95–176.
- [4] Tian, G., On the existence of solutions of a class of Monge-Ampere equations, Acta Mathematica Sinica, 4(3), 1988, 250–265.
- [5] Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, I, Comm. Pure Appl. Math., 31, 1978, 339–411.