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Abstract The authors are concerned with a class of derivative nonlinear Schrödinger
equation

iut + uxx + iϵf(u, u, ωt)ux = 0, (t, x) ∈ R× [0, π],

subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ϕ) is merely finite-
ly differentiable with respect to all variables rather than analytic and quasi-periodically
forced in time. By developing a smoothing and approximation theory, the existence of
many quasi-periodic solutions of the above equation is proved.
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1 Introduction

In this paper we prove the existence of quasi-periodic solutions of the derivative nonlinear

Schrödinger (DNLS for short) equation

iut + uxx + iϵf(u, u, ωt)ux = 0 (1.1)

subject to Dirichlet boundary conditions u(t, 0) = 0 = u(t, π), −∞ < t < +∞, where the

nonlinearity f(z1, z2, ϕ) is differentiable for finite times with z1, z2, ϕ and quasi-periodic in time

with frequency vector ω = (ω1, · · · , ωn) ∈ Rn. Moreover, f(z1, z2, ϕ) ∈ Cp(C × C × Tn;C) for
some p ∈ R+ large enough with

f(u, u, ϕ) = f(u, u, ϕ), f(−u,−u, ϕ) = −f(u, u, ϕ), ϕ ∈ Tn.

The same as in [18], introducing the inner product in a suitable phase space, for example,

the usual Sobolev space H2
0 ([0, π])

⟨u, v⟩ = Re

∫ π

0

uvdx,
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then (1.1) can be written in the Hamiltonian form

u̇ = −i∇H, (1.2)

H(u, u, ϕ) =
1

2

∫ π

0

|ux|2dx+
1

2

∫ π

0

g(u, u, ϕ)uxdx (1.3)

with the “Reality” condition H(u, u, ϕ) = H(u, u, ϕ) for ϕ ∈ Tn, where the gradient of H is

defined with respect to ⟨·, ·⟩ and g(z1, z2, ϕ) = −i
∫ z2
0
f(z1, ζ, ϕ)dζ.

KAM theory is a powerful tool to deal with the existence of periodic, quasi-periodic or almost

periodic solutions of partial differential equations (PDEs for short) under small perturbations.

The first KAM results for PDEs have been obtained for 1-d semi-linear Schrödinger and wave

equations by Kuksin [14], Craig-Wayne [10, 29], see the references therein. For PDEs in higher

space dimension, the theory has been more recently extended by Bourgain [8], Eliasson-Kuksin

[11], Berti-Bolle [5], and Geng-Xu-You [12]. For unbounded perturbations, the first KAM results

have been proved by Kuksin [15–16] and Kappeler-Pöschel [13] for KdV equation (see also [7]),

and more recently by Liu-Yuan [17–19], Zhang-Gao-Yuan [32] for derivative NLS equation,

Baldi-Berti-Montalto [1] for the Hamiltonian quasi-linear perturbations of the KdV equation,

and Berti-Biasco-Procesi [2–3] for derivative NLW equation.

However, the results mentioned above require the analyticity of the perturbations of the

PDEs to overcome the well-known “loss of regularity” problem. By shrinking the width of

the angle variables, one can estimate the solutions of the homological equations and obtain

the convergence of the KAM iterative procedure. For dynamical systems with differentiable

perturbations, it is clear that after finitely many steps all derivatives are exhausted which leads

to the failure of the KAM iteration. To cope with this difficulty, the primary approach is due

to Moser [20–21], which extended the classical KAM theory for nearly integrable Hamiltonian

systems under real-analytic perturbations, to smooth category. The main idea exploited by

Moser is to use a smoothing operator, and re-insert enough regularity into the problem at every

Newton iterative step in order to compensate the loss of regularity. A closely related approach

was given by Nash [24] researching the embedding problem of compact Riemannian manifolds.

In [21], Moser first proved the existence of the invariant curves for area preserving annulus

mappings satisfying the monotone twist property which corresponds to the Hamiltonian system

case in “one and a half” degrees of freedom. The number of derivative of the perturbation is

required to be ℓ > 333, which was later reduced by Rüssmann to ℓ > 5 in [26]. For the

Hamiltonian case we refer to [23, 25].

The KAM theory in Moser [20–21] dealt with the persistence of maximal-dimensional in-

variant tori in the context of smooth category. It is natural to ask whether lower-dimensional

tori can be persisted or not. By exploiting a technique following [23], Chierchia-Qian [9] con-

sidered the existence of lower-dimensional elliptic tori of any dimension between one and the

number of degrees of freedom for the nearly integrable Hamiltonian system with finitely differ-

entiable perturbation. The framework of this method is mainly based on an approximation of

the differentiable functions with analytic ones. Zhang [31] proved the existence of the lower-

dimensional invariant tori for the reversible system with finite degrees of freedom under finitely

differentiable perturbation. For infinite dimensional Hamiltonian systems, the research just

began in the last few years, the main results were given by Berti-Bolle-Procesi [4–6]. By using
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a Nash-Moser iterative scheme in scales of the Sobolev functions space, they got the existence

of quasi-periodic solutions which has Sobolev regularity both in time and space for PDEs with

bounded perturbations, such as the NLS and NLW for any spatial dimension.

The perturbation of (1.1) is finitely differentiable. What is more important, the answer is

unbounded. Thus (1.1) is excluded by the above approach. The aim of the present paper is to

construct a large amount of quasi-periodic solutions of small amplitude for the derivative NLS

equation (1.1). More precisely, in the following we consider a class of “vector” derivative NLS

equations: {
iut + uxx + iϵf(u, u, ωt)ux = 0,

iut − uxx + iϵf(u, u, ωt)ux = 0,
(t, x) ∈ R× [0, π] (1.4)

subject to Dirichlet boundary condition u(t, 0) = 0 = u(t, π), where the nonlinearities are quasi-

periodic in time with frequency ω ∈ Rn and f(z1, z2, ϕ) ∈ Cp(C×C×Tn; C) for some p ∈ R+

large enough and the second equation is the formal complex conjugation of the first one.

We have the following theorem.

Theorem 1.1 Suppose that the nonlinearities f and f are finitely differentiable with p >

100(1 + ρ)(3n + 2τ + 1) + 3 + p, where ρ, p and τ are positive constants which will be defined

below, and Π ⊂ Rn is a compact set of positive Lebesgue measure. Then there exists a small

constant ϵ∗ > 0 such that for |ϵ| < ϵ∗, a Cantor set Πϵ ⊂ Π with Meas(Π \ Πϵ) → 0 as ϵ → 0,

and for arbitrary ω ∈ Πϵ, (1.4) possesses a quasi-periodic solution of frequency ω with small

amplitude.

The main ideas of our proof consist of a smoothing technique elaborated in [23] and Newton

iterative scheme. Note that (1.4) is a Hamiltonian PDE, however, we do not use its Hamiltonian

structure explicitly. Instead, we write (1.4) into an abstract nonlinear equation

iζ̇ − Λζ + F (ζ, ωt) = 0 (1.5)

(see Theorem 2.1), of which we try to construct the quasi-periodic solutions by Newton’s

method. The essential element of Newton’s method is to find the approximate solution by

solving the linearized equation of the original equation. Therefore, at each Newton iteration,

we solve the linearized equation of (1.5)

iη̇ − (Λ + P (ωt))η + F (ωt) = 0. (1.6)

Moreover, we need to prove the convergence of the iterative process. In order to solve (1.6), we

need to estimate the inverse of (Λ+P (ωt))−1, which is “big” due to the unboundedness of the

perturbation. Hence we do not solve the linearized equation (1.6) directly but do the KAM type

reduction first. Luckily, as we discuss (1.4) under Dirichlet boundary condition, the frequencies

are simple, the reduction process is feasible (see Lemma 3.2 for the details). The Hamiltonian

structure guarantees the reality of Λ which is necessary in Theorem 1.4 in Liu-Yuan [17]. In

fact we get a new system after the reduction

iφ̇− (Λ̂ + P̂ (ωt))φ+ F̂ (ωt) = 0, (1.7)
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where P̂ (ωt) is much smaller and can be treated as perturbation. Thus we just need to find

the solution for the linearized equation

iφ̇− Λ̂φ+ F̂ (ωt) = 0, (1.8)

where Λ̂ denotes a diagonal matrix close to Λ in some sense (see Lemma 4.1 for the details).

We remark that P (ωt), F (ωt) and F̂ (ωt) are only differentiable with respect to t. The main

difficulty during the whole procedure is the phenomenon of “loss of regularity”. To overcome

this, we use an approximation theorem which is closely related to the classical theorem due to

Jackson, of which the fundamental observation is that the qualitative property of differentiabil-

ity of a function can be characterized in terms of quantitative estimates for an approximating

sequence of analytic functions. Then we can solve the linearized equation in analytic category

with good estimates to guarantee the convergence of the Newton iterative process.

This paper is organized as follows: In Section 2, we rewrite the derivative NLS equation

(1.4) in infinite coordinates, and this new equation will be our starting point for the following

discussion. What’s more, we list a similar theory to the approximation theory of Jackson, Moser

and Zehnder, which will be used as the basis of our smoothing technique. In Section 3, a KAM

type reduction lemma will be proven with finitely differentiable unbounded perturbation. In

Section 4, we describe the solving procedure of the linearized equation at each step and the

iterative process in details. Finally some technical lemmas are exhibited in Section 5.

2 The Basic Modes

We study (1.4) on some suitable phase space, for example, the usual Sobolev spaceHp
0 ([0, π]).

We rewrite it in infinitely many coordinates by making the ansatz

u(t, x) =
∑
j≥1

qj(t)ϕj(x), ϕj(x) =

√
2

π
sin jx, j ≥ 1. (2.1)

The coordinates are taken from the Hilbert space ℓp of all complex-valued sequences q =

(q1, q2, · · · ) with ∥q∥2p =
∑
j≥1

|qj |2j2p <∞. We fix p > 3
2 later. Then (1.4) can be written as

{
iq̇ −Aq + ϵf̃(q, q, ωt) = 0,

iq̇ +Aq + ϵg̃(q, q, ωt) = 0,
(2.2)

where A = diag(λi : i ≥ 1) with λi = i2 and f̃(q, q, ωt) = −g̃(q, q, ωt). In the following we

consider q, q to be independent, and (1.4) equals to (2.2) when the bar means the complex

conjugate. We investigate the regularity of the nonlinear vector field first. In fact, we have the

following observation.

Lemma 2.1 The nonlinear vector field (f̃(q, q, ϕ), g̃(q, q, ϕ))T defines a finitely differentiable

map from O × Tn into ℓp−1 × ℓp−1, where O denotes some small neighborhood of the origin

in ℓp × ℓp. To be more precise, for any ϕ ∈ Tn, N ∋ ℓ < p − p and k = (k1, · · · , kn) with

0 ≤ |k| := |k1|+ · · ·+ |kn| ≤ ℓ,(∂kf̃
∂ϕk

(q, q, ϕ),
∂kg̃

∂ϕk
(q, q, ϕ)

)T
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:=
( ∂|k|f̃

∂ϕk1
1 · · · ∂ϕkn

n

,
∂|k|g̃

∂ϕk1
1 · · · ∂ϕkn

n

)T

∈ Cℓ−|k|(O; ℓp−1 × ℓp−1), (2.3)

where T means the transpose of a vector.

Proof Set ξ = (u, u)T ∈ Hp := Hp
0 ×Hp

0 . Introduce a map F defined on Hp × Tn with

F (ξ, ϕ)(x) = (F1(ξ, ϕ)(x), F2(ξ, ϕ)(x))
T = (if(u, u, ϕ)ux, if(u, u, ϕ)ux)

T. (2.4)

We will prove that there exists some neighborhood U of the origin in Hp such that for any

ϕ ∈ Tn and 0 ≤ |k| ≤ ℓ, ∂kF
∂ϕk ∈ Cℓ−|k|(U ; Hp−1). Then (2.3) follows directly.

From the assumption that p > p+ ℓ and 0 ≤ |k| ≤ ℓ, we can find some N being the neigh-

borhood of the origin in C2 such that for a+ b ≤ p−1, all the derivatives ∂k

∂ϕk
∂a

∂za
1

∂b

∂zb
2
f(z1, z2, ϕ)

are bounded on N × Tn. Then we set U denoting the neighborhood of the origin in Hp of

which the element (u, u) has graphs lying in N . We will show that for any ξ ∈ U , ϕ ∈ Tn,
∂kF
∂ϕk (ξ, ϕ) ∈ Hp−1. Using the chain rule we can write

dp−1

dxp−1

∂kF1

∂ϕk
(ξ, ϕ)(x) = i

∑
∗

∂k+a+bf

∂ϕk∂za1∂z
b
2

di1u

dxi1
· · · d

iau

dxia
dj1u

dxj1
· · · d

jbu

dxjb
dmux
dxm

,

where ∗ represents i1+ · · ·+ia+j1+ · · ·+jb+m = p−1. For ξ ∈ U , we have ∥u∥L∞ , ∥u∥L∞ ≤ C

and
∥∥∂k+a+bf(u,u,ϕ)

∂ϕk∂za
1∂z

b
2

∥∥
L∞ ≤ C, which is due to the fact that p+ℓ < p. Thus we can get the estimate

∥∥∥∂kF1

∂ϕk
(ξ, ϕ)

∥∥∥
p−1

:=
∥∥∥ dp−1

dxp−1

∂kF1

∂ϕk
(ξ, ϕ)(x)

∥∥∥
L2

≤ C
∑
∗

∥∥∥di1u
dxi1

∥L2 · · · ∥d
iau

dxia

∥∥∥
L2

∥∥∥dj1u
dxj1

∥∥∥
L2

· · ·
∥∥∥djbu
dxjb

∥∥∥
L2

∥∥∥dmux
dxm

∥∥∥
L2

≤ C
∑
∗

∥u∥i1 · · · ∥u∥ia∥u∥j1 · · · ∥u∥jb∥ux∥m. (2.5)

Then by using the interpolation estimate in Lemma 5.1 in the Appendix, we can get

∥u∥i ≤ C∥u∥
i

p−1

p−1 , ∥u∥j ≤ C∥u∥
j

p−1

p−1 , ∥ux∥m ≤ C∥ux∥
m

p−1

p−1 ≤ C∥u∥
m

p−1
p . (2.6)

Consequently we have
∥∥∂kF1

∂ϕk (ξ, ϕ)
∥∥
p−1

≤ C(p)(∥u∥p+∥u∥p). The estimate corresponding to F2

can be obtained similarly, and we omit the details here. Hence we obtain∥∥∥∂kF1

∂ϕk
(ξ, ϕ)

∥∥∥
p−1

+
∥∥∥∂kF2

∂ϕk
(ξ, ϕ)

∥∥∥
p−1

≤ C(p)(∥u∥p + ∥u∥p). (2.7)

Then the conclusion that ∂kF
∂ϕk defines a map from U into Hp−1 for any ϕ ∈ Tn follows.

Now we investigate the first order Frèchet derivative of ∂kF
∂ϕk with respect to ξ.When |k| = ℓ,

then nothing remains to be done. Hence in the following we assume |k| < ℓ. For any η = (v, v) ∈
Hp, we get

∂k+1F1

∂ξ∂ϕk
(ξ, ϕ)(v)(x) =

d

ds

∂kF1

∂ϕk
(ξ + sη, ϕ)

∣∣∣
s=0

= i
d

ds

( ∂k

∂ϕk
f(u+ sv, u+ sv, ϕ)(ux + svx)

)∣∣∣
s=0
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= i
( ∂k+1f

∂ϕk∂z1
uxv +

∂k+1f

∂ϕk∂z2
uxv +

∂kf

∂ϕk
vx

)
. (2.8)

Note that ∂k+1f
∂ϕk∂z1

, ∂k+1f
∂ϕk∂z2

, ∂
kf

∂ϕk ∈ Cp−ℓ(C× C× Tn; C) and p− ℓ > p, we have∥∥∥ ∂k+1f

∂ϕk∂z1
ux

∥∥∥
p−1

,
∥∥∥ ∂k+1f

∂ϕk∂z2
ux

∥∥∥
p−1

,
∥∥∥∂kf
∂ϕk

∥∥∥
p
≤ C(p)(∥u∥p + ∥u∥p) (2.9)

with a different constant C depending on p. Thus,
∥∥∂k+1F1

∂ξ∂ϕk (ξ, ϕ)(v)
∥∥
p−1

≤ C(p)(∥u∥p +

∥u∥p)(∥v∥p + ∥v∥p), and the same estimate can be obtained for F2. Therefore, for any (ξ, ϕ) ∈
U ×Tn, the first Frèchet derivative ∂k+1F

∂ξ∂ϕk (ξ, ϕ) defines a bounded linear operator from Hp into

Hp−1. Denote B(Hp;Hp−1) as the set of bounded linear operators from Hp into Hp−1, then

we can obtain ∂k+1F
∂ξ∂ϕk : U ⊂ Hp → B(Hp;Hp−1) for all ϕ ∈ Tn. For any other derivative of high

order, we can handle in the same way. By now we have finished the proof.

We set some notations and definitions for the sake of convenience. Set Pp = ℓp × ℓp, and

for ζ = (q, q̃)T ∈ Pp, define the norm ∥ζ∥p := ∥q∥p + ∥q̃∥p. For α ≥ 1, we use Xα and ∥ · ∥Xα to

represent the set of bounded linear operators from
∏
α
Pp into Pp−1 and the corresponding norm

respectively. Here we just focus our attention on α ∈ N for simplicity, and hence in Lemma

2.1 we choose ℓ, |k| ∈ N also. Set X0 := Pp−1. For a given vector R(ζ, ϕ) = (f(ζ, ϕ), g(ζ, ϕ))T,

define

∥R∥Cℓ := sup
0≤|k|≤ℓ

sup
0≤α≤ℓ−|k|

sup
(ζ,ϕ)∈O×Tn

∥∥∥ ∂k+αR

∂ϕk∂qα

∥∥∥Xα

.

For the original system (2.2), set F (ζ, ϕ) = (ϵf̃(ζ, ϕ), ϵg̃(ζ, ϕ))T. Then based on Lemma 2.1, we

conclude that for any 0 ≤ |k| ≤ ℓ, 0 ≤ α ≤ ℓ− |k| and (ζ, ϕ) ∈ O × Tn, ∂k+αF̃
∂ϕk∂ζα (ζ, ϕ) ∈ Xα, the

estimate

∥F (ζ, ϕ)∥Cℓ ≤ ϵ (2.10)

holds true. Then we have the following theorem.

Theorem 2.1 Consider the system

iζ̇ − Λζ + F (ζ, ωt) = 0, ζ = (q, q̃) ∈ Pp, ω ∈ Π, (2.11)

which fulfills the following hypotheses:

(A1)

Λ =

(
A 0
0 −A

)
, (2.12)

where

A = diag(λi : i ≥ 1) (2.13)

with λi = i2.

(A2) The perturbation F (ζ, ϕ) = (F1(ζ, ϕ), F2(ζ, ϕ))
T : O × Tn → Pp−1 is finitely differen-

tiable with respect to ζ and ϕ with

∥F (ζ, ϕ)∥Cℓ ≤ ϵ. (2.14)
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In addition, F2(ζ, ϕ) = −F1(ζ, ϕ) for q̃ = q and ϕ ∈ Tn.

(A3) The first order Frèchet derivative DζF (ζ, ϕ) =
(
P1 P2

P3 P4

)
, where Pi, 1 ≤ i ≤ 4 is a

function from O × Tn into the space of bounded operators from ℓp into ℓp−1. Moreover,

P 1 = PT
1 = −P4, P2 = PT

2 , P 2 = −P3 (2.15)

for q̃ = q and ϕ ∈ Tn.

Then for any

ℓ > 3 + 100(1 + ρ)(3n+ 2τ + 1), (2.16)

where ρ and τ are two fixed positive constants with 0 < ρ < 1
4 and τ > n+3, there exists ϵ∗ > 0

and a Cantor subset Πϵ ⊂ Π with Meas(Π \Πϵ) → 0 as ϵ→ 0, such that for ϵ < ϵ∗ and ω ∈ Πϵ,

(2.11) has a quasi-periodic solution with frequency ω.

From (1.3) in Section 1, we can find a Hamiltonian perturbation P (q, q, ϕ) such that

f̃(q, q, ϕ) = ∂qP and g̃(q, q, ϕ) = −∂qP . Then taking the “Reality” condition of P into ac-

count, we can easily check the assumption (A3). Obviously, we can directly get the conclusion

in Theorem 1.1 from Theorem 2.1, thus we will discuss the proof of Theorem 2.1 in the fol-

lowing. In the remaining part of the present section we list a well known and fundamental

approximation result. Starting from the following lemma, we can set up a sequence of analytic

functions which approximate to the original finitely differential one.

Lemma 2.2 (Jackson, Moser, Zehnder) Let X be a Banach space and f ∈ Cℓ(Rn;X)

for some ℓ > 0 with finite Cℓ norm over Rn. Let ϕ be a radial-symmetric, C∞ function with

support being the closure of the unit ball centered at the origin, where ϕ is completely flat

and takes value 1, and let K = ϕ̂ be its Fourier transform. For all σ > 0, define fσ(x) :=

Kσ ∗ f = 1
σn

∫
Rn K

(
x−y
σ

)
f(y)dy. Then there exists a constant C ≥ 1 depending only on ℓ

and n such that the following holds: For any σ > 0, the function fσ(x) is a real-analytic

function from Cn to X such that if △n
σ denotes the n-dimensional complex strip of width σ,

△n
σ := {x ∈ Cn | |Imxj | ≤ σ, 1 ≤ j ≤ n}, then for all α ∈ Nn such that |α| ≤ ℓ, one has

sup
x∈△n

σ

∥∥∥∂αfσ(x)− ∑
|β|≤ℓ−|α|

∂β+αf(Rex)

β!
(iImx)β

∥∥∥Xα

≤ C∥f∥Cℓσℓ−|α| (2.17)

and for all 0 ≤ s ≤ σ,

sup
x∈△n

s

∥∂αfσ(x)− ∂αfs(x)∥Xα ≤ C∥f∥Cℓσℓ−|α|. (2.18)

Here Xα is the Banach space of bounded operators T :
∏
|α|
(Rn) → X with the norm

∥T∥Xα = sup{∥T (u1, u2, · · ·u|α|)∥ : ∥ui∥ = 1, 1 ≤ i ≤ |α|}.

The function fσ preserves periodicity (i.e., if f is T -periodic in any of its variable xj, so is

fσ). Finally, if f depends on some parameter ξ ∈ Π ⊂ Rn and if the Lipschitz-norm of f and

its x-derivatives are uniformly bounded by ∥f∥LCℓ , then all the above estimates hold with ∥ · ∥
replaced by ∥ · ∥L.
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This lemma is similar to the approximation theory obtained by Jackson, Moser and Zehnder,

and the only difference is that we extend the applied range from Cℓ(Rn;Cn) to Cℓ(Rn;X). The

proof of this lemma consists in a direct check which is based on standard tools from calculus

and complex analysis, for details see [27–28] and the references therein.

Fix a sequence of fast decreasing numbers sν ↓ 0, ν ≥ 0, and s0 ≤ 1
2 , for F (ϕ) ∈ Cℓ(Tn;X)

we can construct a sequence of analytic and quasi-periodic functions F (ν)(ϕ) such that the

following conclusions holds:

(1) F (ν)(ϕ) is analytic on the complex strip Tn
sν of the width sν around Tn.

(2) The sequence of functions F (ν)(ϕ) satisfies the bounds:

sup
ϕ∈Tn

∥F (ν)(ϕ)− F (ϕ)∥ ≤ C∥F∥Cℓsℓν , (2.19)

sup
ϕ∈Tn

sν+1

∥F (ν+1)(ϕ)− F (ν)(ϕ)∥ ≤ C∥F∥Cℓsℓν , (2.20)

where C denotes a constant depending only on n and ℓ.

(3) The first approximate F (0) is “small” with the perturbation F . Precisely speaking, for

arbitrary ϕ ∈ Tn
s0 , we have

∥F (0)(ϕ)∥ ≤ ∥F (0)(ϕ)−
∑
|α|≤ℓ

∂αF (Reϕ)

α!
(iImϕ)α∥+

∥∥∥ ∑
|α|≤ℓ

∂αF (Reϕ)

α!
(iImϕ)α

∥∥∥
≤ C∥F∥Cℓsℓ0 +

ℓ∑
m=0

∥F∥Cmsm0 ≤ C∥F∥Cℓ

ℓ∑
m=0

sm0 ≤ C∥F∥Cℓ ,

where constant C is independent of s0, and the last inequality holds true due to s0 ≤ 1
2 .

(4) From (2.19), we have the equality below. For arbitrary ϕ ∈ Tn,

F (ϕ) = F (0)(ϕ) +

+∞∑
υ=0

(F (ν+1)(ϕ)− F (ν)(ϕ)). (2.21)

3 Reduction Lemma

In this section, we will give an iterative lemma, which is the key part of our proof. Let

m ≥ 0 be the m-th step, we introduce some recursive parameters.

(1) ϵ0 = Cϵ, C denotes a positive constant depending only on n and p,

(2) ϵm = ϵ
(1+ρ)m

0 , where ρ is a small constant satisfying 0 < ρ < 1
4 ,

(3) sm = ϵ
1+ρ
ℓ−3
m with 0 < ρ < ρ < 1

4 , which dominates the width of the angle variable ϕ,

(4) σm = sm
18 , which acts as a bridge from sm to sm+1,

(5) Km =
| ln ϵ

2
3
−ρ

m−1|
σm

and Lm = | ln ϵm|
σm

, which denote the length of the truncation of Fourier

series,

(6) αm = α0

2m , which dominates the measure parameters excluded in the m-th iteration step,

(7) Cλ,m = 1
2

(
1 + 1

2m

)
, hence 1

2 ≤ Cλ,m ≤ 1,

(8) Cω,m =
(
2− 1

2m

)
ϵ

2
3−ρ
0 , hence ϵ

2
3−ρ
0 ≤ Cω,m ≤ 2ϵ

2
3−ρ
0 ,

(9) Cµ,m = C1

(
2 − 1

2m

)
ϵ

5
6 (

2
3−ρ)

0 , hence C1ϵ
5
6 (

2
3−ρ)

0 ≤ Cµ,m ≤ 2C1ϵ
5
6 (

2
3−ρ)

0 , where C1 is a

positive constant depending only on n and τ , and τ is a fixed real number greater than n+ 3.
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Before we give the iterative lemma, we list some notations.

(1) Suppose that Bq,q is the set of bounded linear operators from ℓq into ℓq, and we define

the operator norm of its element by ∥ · ∥q,q. Accordingly, we denote the set of bounded linear

operators from Pq into Pq by Bq,q, and the operator norm of its element by |∥ · ∥|q,q. Hence

from the above section, we can conclude that |∥ · ∥|p,p−1 = ∥ · ∥X1 .

(2) Let Tn
C be the complexification of Tn, and define Tn

s = {ϕ ∈ Tn
C : |Imϕ| = max

1≤i≤n
|Imϕi| <

s}. Then for an analytic function f : Tn
s → B (here B, a Banach space with norm ∥ · ∥B, may

be C,Cn, Xα or Bq,q) is analytic, define

∥f∥Bs := sup
ϕ∈Tn

s

∥f(ϕ)∥B.

Furthermore, if f has an additional (Lipschitz-continuous) dependence on ω ∈ Π, we define the

Lipschitz norm

∥f∥B,L
s := ∥f∥Bs + sup

ϕ∈Tns
ω ̸=ω′∈Π

∥f(ϕ, ω)− f(ϕ, ω′)∥B

|ω − ω′|
.

(3) Choose ϵ and α0 such that

0 < ϵ
5
6 (

2
3−ρ)

0 ≪ α0 ≪ 1. (3.1)

(4) In what follows we use the notations a l b to represent that there exists a constant C

independent of m, ϵ and α0 but may depending on n, τ and ℓ such that a < Cb holds.

(5) Let

Π′ = Π \
∪

k∈Zn\{0}

{
ω ∈ Π : |k · ω| ≤ α0

|k|τ
}
.

Apparently we know that Meas(Π \Π′)l α0.

Lemma 3.1 Assume that at the m-th iteration step, we have a system as follows:

iχ̇ = (Λm + Pm(ωt))χ (3.2)

with χ = (ψ, ψ̃)T ∈ Pp, ω ∈ Πm, m ≥ 1 which satisfies the following hypotheses:

(H1)

Λm =

(
Am 0
0 −Am

)
,

where

Am = diag(λi,m(ω) + µi,m(ωt;ω) : i ≥ 1)

with

0 < λ1,m < λ2,m < · · · < λi,m < · · · , |λi,m − λj,m| ≥ Cλ,m|i2 − j2|.

Moreover, λi,m is Lipschitz-continuous in ω and fulfills the estimate

sup
ω ̸=ω′∈Πm

|λi,m(ω)− λi,m(ω′)|
|ω − ω′|

≤ Cω,mi.

µi,m(ϕ, ω) : Tn
sm ×Πm → C is real analytic in ϕ, Lipschitz-continuous in ω and of zero average,

i.e.,
∫
Tn µi,m(ϕ)dϕ = 0. It also fulfills the following estimates in Tn

sm ×Πm:

|µi,m|sm,τ+1 ≤ Cµ,mi, |µi,m|Lsm ≤ Cω,mi, (3.3)
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where |µ|s,τ+1 =
∑

k∈Zn

|µ̃k|e|k|s|k|τ+1 and µ̃k = 1
(2π)n

∫
Tn µ(ϕ)e

−ik·ϕdϕ denotes the k-th Fourier

coefficient of µ.

(H2) Pm(ϕ, ω) =
( P1,m P2,m

P3,m P4,m

)
: Tn

sm−1−5σm−1
× Πm → X1 is real analytic with respect to ϕ,

Lipschitz-continuous in ω and satisfies the estimate:

∥Pm∥X1,L
sm−1−5σm1

≤ ϵ
2
3−ρ
m−1. (3.4)

Furthermore, for ϕ ∈ Tn and ω ∈ Πm,

P 1,m = PT
1,m = −P4,m, PT

2,m = P2,m, P 2,m = −P3,m. (3.5)

(H3) For any ω ∈ Πm,

|k · ω + λj,m(ω)| ≥ αmj
2

1 + |k|τ
, k ∈ Zn, j ≥ 1, (3.6)

|k · ω + λi,m(ω)− λj,m(ω)| ≥ αm|i2 − j2|
1 + |k|τ

, k ∈ Zn, i, j ≥ 1, i ̸= j. (3.7)

Then there exist Πm+1 ⊂ Πm with Meas(Πm \Πm+1)lαm+1 and Bm(ϕ, ω) : Tn
sm−4σm

×Πm →
Bp,p ∩ Bp−1,p−1 which is real analytic with respect to ϕ ∈ Tn

sm−4σm
, Lipschitz-continuous in

ω ∈ Πm and satisfies

|∥Bm∥|Lp,p,sm−4σm
, |∥Bm∥|Lp−1,p−1,sm−4σm

l ϵ
5
6 (

2
3−ρ)

m−1 (3.8)

such that for any ω ∈ Πm, by the transformation χ = eBm(ωt)φ, (3.2) can be changed into

iφ̇ = (Λm+1 + Pm+1(ωt))φ, φ = (y, ỹ)T ∈ Pp, ω ∈ Πm+1. (3.9)

Moreover, Λm+1, Pm+1 fulfill (H1)–(H3) with m replaced by m+ 1.

The above result is similar to the iteration Lemma 3.2 in [17], and the key part of the proof

is to find a suitable estimate for the solutions of the homological equations with large variable

coefficients. Hence the process is parallel except the following two points: (1) The width of

the angle variable sm relies on ϵm , hence the system (3.2) in our paper has weaker regularity,

(2) ∥Pm∥X1,L
sm is controlled by ϵ

2
3−ρ
m−1 instead of ϵm in [17]. Consequently, we concentrate our

attention on these two aspects in the following.

Proof Now we include our system into a more general framework. Abbreviate the notations

Λm, Am, Pm, λi,m, µi,m, Bm, and ΓKm by Λ, A, P, λi, µi, B and ΓK , and Λm+1, Am+1, Pm+1,

λi,m+1 and µi,m+1 by Λ+, A+, P+, λ+i and µ+
i respectively. Following the procedure in the

proof of Lemma 3.2 in [17], we set χ = eB(ϕ)φ, and pluging into (3.2) yields (3.9), where

Λ+ = Λ+ diag(P ), (3.10)

P+ = {[Λ, B]− iḂ + P − diag(P )−R}+R+ (e−BΛeB − Λ− [Λ, B])

+ (e−BP eB − P )− i
(
e−B d

dt
eB − Ḃ

)
. (3.11)

Thus we need to solve the homological equation for the unknown B:

[Λ, B]− iḂ + (P − diagP )−R = 0, (3.12)
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where B =
(
B1 B2

B3 B4

)
, diagP =

( diag(P1,ii) 0
0 diag(P4,ii)

)
, R =

(
R1 R2

R3 R4

)
. To this end, Bi, 1 ≤ i ≤ 4

should satisfy the homological equations:

− i∂ωB1,ij + (λi − λj)B1,ij + (µi − µj)B1,ij + P1,ij = R1,ij , i, j ≥ 1, i ̸= j, (3.13)

− i∂ωB2,ij + (λi + λj)B2,ij + (µi + µj)B2,ij + P2,ij = R2,ij , i, j ≥ 1, (3.14)

− i∂ωB3,ij − (λi + λj)B3,ij − (µi + µj)B3,ij + P3,ij = R3,ij , i, j ≥ 1, (3.15)

− i∂ωB4,ij + (λj − λi)B4,ij + (µj − µi)B4,ij + P4,ij = R4,ij , i, j ≥ 1, i ̸= j. (3.16)

We only give the details of solving (3.13) in the following, and (3.14)–(3.16) can be handled in

the same way. In view of the proof of Lemma 3.2 in [17], we can obtain the estimates of the

elements of B1. Precisely speaking, we have the following statements:

(1) B1,ii = 0.

(2) For (i, j) with 0 < |λi − λj | < 2Km,

∥B1,ij∥Lsm−4σm
l

1

α2
mσ

2n+2τ+1
m γij

e
8Cµ,mγij(sm−σm)

α0 ∥P1,ij∥Lsm−σm
. (3.17)

(3) For (i, j) with |λi − λj | ≥ 2Km,

∥B1,ij∥Lsm−4σm
l

1

σ2n+1
m

1

γij
∥P1,ij∥Lsm−σm

. (3.18)

By the assumptions Cµ,m ≤ 2C1ε
5
6 (

2
3−ρ)

0 , γij = |i2 − j2| ≤ 2λij ≤ 4Km, sm − σm = 15σm =

17
| ln ϵ

2
3
−ρ

m−1|
Km

, we can obtain

8Cµ,mγij(sm − σm)

α0
≤

1088C1ε
5
6 (

2
3−ρ)

0 | ln ϵ
2
3−ρ
m−1|

α0
. (3.19)

It follows from (3.1) that
1088C1ε

5
6
( 2
3
−ρ)

0

α0
≤ 1

10 . Consequently, we have

∥B1,ij∥Lsm−4σm
l

ϵ
− 1

10 (
2
3−ρ)

m−1

α2
mσ

2n+2τ+1
m

∥P1,ij∥Lsm−σm

γij
. (3.20)

Taking (3.18) and (3.20) into account and using Lemma 5.2 in the Appendix, we get the estimate

of B1 = (B1,ij)i,j≥1:

∥B1∥Lp,p,sm−4σm
, ∥B1∥Lp−1,p−1,sm−4σm

l
ϵ
− 1

10 (
2
3−ρ)

m−1

α2
mσ

3n+2τ+1
m

∥P1∥Lp,p−1,sm l
ϵ

9
10 (

2
3−ρ)

m−1

α2
mσ

3n+2τ+1
m

. (3.21)

In view of (3.1), we can set ϵ
1

200
0 ≤ α0. Then by the definition of αm and ϵm, we get

αm ≥ ϵ
1

200
m for any m ≥ 0. (3.22)

Taking the definition of σm into account, together with (3.21) and (3.22), we have the following

estimate:

∥B1∥Lp,p,sm−4σm
, ∥B1∥Lp−1,p−1,sm−4σm
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l
ϵ

9
10 (

2
3−ρ)

m−1

α2
mσ

3n+2τ+1
m

l
ϵ

9
10 (

2
3−ρ)

m−1

ϵ
1

100
m ϵ

(1+ρ)(3n+2τ+1)
ℓ−3

m

l ϵ
9
10 (

2
3−ρ)− 1

100 (1+ρ)− 3n+2τ+1
ℓ−3 (1+ρ)(1+ρ)

m−1 . (3.23)

From the assumption

ℓ > 3 + 100(1 + ρ)(3n+ 2τ + 1), 0 < ρ < ρ <
1

4
, (3.24)

we can obtain 9
10

(
2
3 −ρ

)
− 1

100 (1+ρ)−
3n+2τ+1

ℓ−3 (1+ρ)(1+ρ) > 9
10

(
2
3 −ρ

)
− 1

50 (1+ρ) >
5
6

(
2
3 −ρ

)
.

Consequently, we have

∥B1∥Lp,p,sm−4σm
, ∥B1∥Lp−1,p−1,sm−4σm

l ϵ
5
6 (

2
3−ρ)

m−1 . (3.25)

For the other terms of B, i.e., B2, B3, B4, the same results can be obtained. Thus, we finally

get the estimate for B:

|∥B∥|Lp,p,sm−4σm
, |∥B∥|Lp−1,p−1,sm−4σm

l ϵ
5
6 (

2
3−ρ)

m−1 . (3.26)

The remaining estimates for λ+, µ+ and the new perturbed term P+ can be handled in the

classical way, and we do not give the proof here. For the detail we can refer to [30], and we just

need to verify (3.5) for P+.

From (3.13)–(3.16), it is easy to see that for real ϕ, i.e., ϕ ∈ Tn,

B1(ϕ, ω) = −BT
1 (ϕ, ω) = B4(ϕ, ω), B2(ϕ, ω) = BT

2 (ϕ, ω), B2(ϕ, ω) = B3(ϕ, ω). (3.27)

Then by a direct calculation, we can obtain that R satisfies (3.5). Furthermore, from Lemma

5.3 in Appendix, together with the fact that Λ satisfies (3.5) and

e−BP eB = P + [P,B] +
1

2!
[[P,B], B] + · · · ,

e−BΛeB = Λ+ [Λ, B] +
1

2!
[[Λ, B], B] + · · · ,

e−B d

dt
(eB) = Ḃ +

1

2!
[Ḃ, B] +

1

3!
[[Ḃ, B], B] + · · · ,

we can conclude that P+ satisfies (3.5). Till now we complete the proof of this lemma.

Remark 3.1 In the following, for a block matrix P (ϕ) =
(
P1 P2

P3 P4

)
, if the components Pi, 1 ≤

i ≤ 4 satisfy (3.5) for real ϕ, we call P (ϕ) satisfies (3.5). Similarly, for a given operator

B(ϕ) =
(
B1 B2

B3 B4

)
, if (3.27) can be fulfilled for any real ϕ, we call B(ϕ) satisfies (3.27).

We can obtain a more general reduction lemma below by applying Lemma 3.1.

Lemma 3.2 Suppose that at the m-th iteration step, we have a system as follows:

iη̇ = (Λ + Pm(ωt))η, η = (v, ṽ) ∈ Pp, ω ∈ Πm, m ≥ 1 (3.28)

with Λ in (2.12), and Πm described by (H3) in Lemma 3.1. Moreover, Pm(ϕ, ω) : Tn×Πm → X1

has the form Pm(ϕ, ω) =
∑

1≤i≤m

Pi(ϕ, ω). In addition, Pi(ϕ, ω) can be written as

Pi(ϕ, ω) = P
(i)
i (ϕ, ω) +

∑
ν≥i

(P
(ν+1)
i (ϕ, ω)− P

(ν)
i (ϕ, ω)), 1 ≤ i ≤ m (3.29)
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and for ν ≥ i, P
(ν)
i (ϕ, ω) : Tn

sν ×Πm → X1 is real analytic in ϕ ∈ Tn
sν , Lipschitz-continuous in

ω and satisfies (3.5). Moreover, we have the following estimates:

∥P (i)
i ∥X1,L

si l ϵ
2
3−ρ
i−1 , ∥P (ν+1)

i − P
(ν)
i ∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ i. (3.30)

Then there exists Um(ϕ, ω) defined on Tsm−4σm × Πm with Um(ϕ, ω) = eB1(ϕ,ω) · · · eBm(ϕ,ω),

where Bi(ϕ, ω) satisfies (3.27) and the following estimates:

|∥Bi(ϕ, ω)∥|Lp,p,si−4σi
, |∥Bi(ϕ, ω)∥|Lp−1,p−1,si−4σi

l ϵ
5
6 (

2
3−ρ)

i−1 , 1 ≤ i ≤ m (3.31)

such that by the transformation η = Um(ωt, ω)φ, (3.28) can be changed into

iφ̇ = (Λm+1 +Qm+1(ωt))φ, φ = (y, ỹ) ∈ Pp, ω ∈ Πm+1, (3.32)

where Λm+1 fulfills (H1) in Lemma 3.1 with m replaced by m+1, and Qm+1(ϕ, ω) : Tn×Πm+1 →
X1 can be written as

Qm+1(ϕ, ω) = Q̃
(m+1)
m+1 +

∑
ν≥m+1

(Q
(ν+1)
m+1 (ϕ, ω)−Q

(ν)
m+1(ϕ, ω)) (3.33)

with Q̃
(m+1)
m+1 (ϕ, ω), Q

(ν)
m+1(ϕ, ω) being real analytic in ϕ ∈ Tn

sν , Lipschitz-continuous in ω ∈ Πm+1

and satisfying (3.5) as well as the estimates:

∥Q̃(m+1)
m+1 ∥X1,L

sm+1
l ϵ

2
3−ρ
m , ∥Q(ν+1)

m+1 −Q
(ν)
m+1∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m+ 1. (3.34)

Proof We proof this lemma by induction. When m = 1, we have

P 1 = P1 = P
(1)
1 +

∑
ν≥1

(P
(ν+1)
1 − P

(ν)
1 ) (3.35)

with

∥P (1)
1 ∥X1,L

s1 l ϵ
2
3−ρ
0 , ∥P (ν+1)

1 − P
(ν)
1 ∥X1,L

sν l ϵ1+ρ
ν . (3.36)

Consider the system

iη̇ = (Λ + P
(1)
1 (ωt))η, η ∈ Pp, ω ∈ Π1, (3.37)

and it is easy to check the hypotheses (H1)–(H3) in Lemma 3.1 are satisfied. Applying Lemma

3.1 to (3.37), we can find a set Π2 ⊂ Π1 and a linear transformation η = eB1φ such that (3.37)

is changed into

iφ̇ = (Λ2 + P̃2(ωt))φ, φ ∈ Pp, ω ∈ Π2,

where Λ2 and P̃2 satisfy (H1)–(H3) in Lemma 3.1 withm = 2.Moreover, the operator B1(ϕ, ω) :

Tn
s1−4σ1

×Π1 → Bp,p ∩Bp−1,p−1 satisfies the estimate:

|∥B1∥|Lp,p,s1−4σ1
, |∥B1∥|Lp−1,p−1,s1−4σ1

l ϵ
5
6 (

2
3−ρ)

0 . (3.38)
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Hence by the same transformation, in view of the expansion (3.35), the original equation (3.28)

for m = 1 can be changed into

iφ̇ = (Λ2 + P̃2)φ+
∑
ν≥1

e−B1(P
(ν+1)
1 − P

(ν)
1 )eB1φ := (Λ2 + Q̃

(2)
2 )φ+

∑
ν≥2

(Q
(ν+1)
2 −Q

(ν)
2 )φ,

where

Q̃
(2)
2 = P̃2 + e−B1(P

(2)
1 − P

(1)
1 )eB1 , Q

(ν)
2 = e−B1P

(ν)
1 eB1 , ν ≥ 2.

Let Q2 = Q̃
(2)
2 +

∑
ν≥2

(Q
(ν+1)
2 −Q

(ν)
2 ). Thus from (3.36) and (3.38), we obtain

∥Q̃(2)
2 ∥X1,L

s2 l ϵ
2
3−ρ
1 , ∥Q(ν+1)

2 −Q
(ν)
2 ∥X1,L

s2 l ϵ1+ρ
ν , ν ≥ 2, (3.39)

which means that the lemma is true for m = 1.

Now suppose that the lemma is true for m− 1. At the m-th step, rewrite the system (3.28)

as

iη̇ = (Λ + Pm−1(ωt) + Pm(ωt))η, ω ∈ Πm.

By induction, we can find a coordinate transformation η = Um−1χ with Um−1 = eB1 · · · eBm−1

and Πm ⊂ Πm−1 changing the equation

iη̇ = (Λ + Pm−1(ωt))η, ω ∈ Πm−1 (3.40)

into

iχ̇ = (Λm +Qm(ωt))χ, χ ∈ Pp, ω ∈ Πm, (3.41)

where

Qm = Q̃(m)
m +

∑
ν≥m

(Q(ν+1)
m −Q(ν)

m ) (3.42)

and

∥Q̃(m)
m ∥X1,L

sm−6σm
l ϵ

2
3−ρ
m−1, ∥Q(ν+1)

m −Q(ν)
m ∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m. (3.43)

Differentiating the transformation η = Um−1χ with respect to t, we have η̇ = U̇m−1χ+Um−1χ̇.

Inserting it into (3.28) and in view of (3.29), we can obtain the new system:

iχ̇ = (Λm +Qm + (Um−1)−1PmU
m−1)χ

= Λmχ+ (Q̃(m)
m + (Um−1)−1P (m)

m Um−1)χ

+
∑
ν≥m

(Q(ν+1)
m −Q(ν)

m + (Um−1)−1(P (ν+1)
m − P ν

m)Um−1)χ

:= (Λm + P̂m)χ+
∑
ν≥m

(P̂ (ν+1)
m − P̂ (ν)

m )χ, (3.44)

where

∥P̂m∥X1,L
sm l ϵ

2
3−ρ
m−1, ∥P̂ (ν+1)

m − P̂ (ν)
m ∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m. (3.45)



Quasi-periodic Solutions for the DNLS with Finitely Differentiable Nonlinearities 773

Consequently based on Lemma 3.1, there exist Πm+1 ⊂ Πm with Meas(Πm\Πm+1) l αm+1,

and Bm(ϕ, ω) : Tn
sm−4σm

×Πm → Bp,p ∩Bp−1,p−1 satisfying

|∥Bm∥|Lp,p,sm−4σm
, |∥Bm∥|Lp−1,p−1,sm−4σm

l ϵ
5
6 (

2
3−ρ)

m−1 . (3.46)

By the transformation χ = eBm(ωt)φ, we can change (3.44) into

iφ̇ = (Λm+1 + P̃m+1)φ+
∑
ν≥m

e−Bm(P̂ (ν+1)
m − P̂ (ν)

m )eBmφ (3.47)

with

∥P̃m+1∥X1,L
sm−5σm

l ϵ
2
3−ρ
m , ∥e−Bm(P̂ (ν+1)

m − P̂ (ν)
m )eBm∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m. (3.48)

Let Q̃
(m+1)
m+1 = P̃m+1 + e−Bm(P̂

(m+1)
m − P̂

(m)
m )eBm , Q

(ν)
m+1 = e−Bm P̂

(ν)
m eBm , ν ≥ m + 1. Then

from the assumption 0 < ρ < 1
4 we obtain

∥Q̃(m+1)
m+1 ∥X1,L

sm+1
l ϵ

2
3−ρ
m , ∥Q(ν+1)

m+1 −Q
(ν)
m+1∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m+ 1. (3.49)

Set Um := Um−1 · eBm , then the lemma is true for m, and we finish the proof.

4 Iteration Process and Proof of Theorem 2.1

Lemma 4.1 Let us consider the system

iφ̇− Λm+1φ+ F̂m = 0, φ = (y, ỹ) ∈ Pp (4.1)

defined on Tn
sm−5σm

× Πm+1, where Λm+1 and Πm+1 fulfill the hypotheses (H1) and (H3) in

Lemma 3.1 with m replaced by m+ 1, and the vector field F̂m(ϕ, ω) = (f̂m(ϕ, ω), ĝm(ϕ, ω))T :

Tn
sm−5σm

× Πm+1 → Pp−1 is real analytic in ϕ ∈ Tn
sm−5σm

, Lipschitz-continuous in Πm+1 and

satisfies the estimate

∥F̂m∥X0,L
sm−5σm

l ϵm. (4.2)

Furthermore, we assume ĝ(ϕ, ω) = −f̃(ϕ, ω) for any ϕ ∈ Tn and ω ∈ Πm+1. Then there

exists a quasi-periodic solution φm+1(ϕ, ω) = (ym+1(ϕ, ω), ỹm+1(ϕ, ω))
T which is real analytic

in ϕ ∈ Tn
sm−9σm

and Lipschitz-continuous in ω ∈ Πm+1 such that

iφ̇m+1 − Λm+1φm+1 + F̂m = rm (4.3)

with rm = (r1m, r
2
m) and

∥φm+1∥Lp,sm−9σm
l ϵ

5
6
m, ∥rm∥X0,L

sm−9σm
l ϵ

3
2
m. (4.4)

In addition, for any ϕ ∈ Tn, we have

ỹm+1 = ym+1, r2m = −r1m. (4.5)
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Proof Abbreviate the notations Λm+1, Am+1, F̂m, f̂m, ĝm, rm, λi,m+1, µi,m+1, φm+1,

ym+1, ỹm+1 and ΓLm by Λ, A, F̂ , f̂ , ĝ, r, λi, µi, φ, y, ỹ and ΓL, respectively. Then (4.3) can

be written as {
iẏ −Ay + f̂ = r1,

i ˙̃y +Aỹ + ĝ = r2.
(4.6)

In the following we just find the solution to the first equation, and the second one can be solved

similarly. Set r = (r1, r2) and let r1 be an infinite vector with elements r1j :

r1j =

{
0, |λj | < 2Lm,

(1− ΓL)(f̂j − µjyj), |λj | ≥ 2Lm,
(4.7)

where ΓL is the truncation operator ΓLf =
∑

|k|≤L

f̂ke
ik·ϕ. Then yj satisfies equations as follows:

(1) For j with 0 < |λj | < 2Lm,

−i∂ωyj + λjyj + µj(ϕ)yj = f̂j . (4.8)

(2) For j with |λj | ≥ 2Lm,

−i∂ωyj + λjyj + ΓL(µj(ϕ)yj) = ΓLf̂j , ΓLyj = yj . (4.9)

Now we solve the homological equations (4.8)–(4.9) with large variable coefficient. First let

us consider (4.8). By (3.3) and (3.6), we have |µj |sm−5σm,τ+1 ≤ Cµ,m+1j ≤ Cµ,m+1j
2. Then

applying Theorem 1.4 in [17] to (4.8), we have

∥yj∥sm−7σm
l

1

αm+1j2σ
n+τ
m

e
2Cµ,m+1j2(sm−6σm)

α0 ∥f̂j∥sm−6σm
. (4.10)

In view of Cµ,m+1 ≤ 2C1ϵ
5
6 (

2
3−ρ)

0 , j2 ≤ 2λj,m+1 ≤ 4Lm, and sm − 6σm = 12σm = 12 | ln ϵm|
Lm

, we

have

2Cµ,m+1j
2(sm − 6σm)

α0
≤ 192C1ϵ

5
6 (

2
3−ρ)

0 | ln ϵm|
α0

. (4.11)

Thus by (3.1) we can obtain

192C1ϵ
5
6 (

2
3−ρ)

0

α0
≤ 1

20
. (4.12)

Hence from (4.10)–(4.12), we conclude that

∥yj∥sm−7σm l
ϵ
− 1

20
m

αm+1σ
n+τ
m

∥f̂j∥sm−6σm

j2
. (4.13)

Next we consider (4.9). By (3.3), we have∑
k∈Zn

|(µ̂j)k|e|k|(sm−6σm) ≤ |µj |sm−6σm,τ+1 ≤ Cµ,m+1j. (4.14)
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In view of Cµ,m+1 ≤ 2C1ϵ
5
6 (

2
3−ρ)

0 , j ≤ 2|λj |
j , we have Cµ,m+1j ≤ 4C1ϵ

5
6 (

2
3−ρ)

0
|λj |
j ≤ |λj |

4j .Applying

Lemma 2.6 in [17] to (4.9), we have

∥yj∥sm−7σm l
1

|λj |σn
m

∥f̂j∥sm−6σm , (4.15)

∥(1− ΓL)µjyj∥sm−7σm
l

1

jσn
m

e−
9Lmσm

10 ∥f̂j∥sm−6σm
. (4.16)

Taking (4.13) and (4.15) into account, using Lemma 5.2 in Appendix, we can get the estimate

of the ℓp-norm of y = (yj)j≥1:

∥y∥p,sm−7σm l
ϵ
− 1

20
m

αm+1σ
2n+τ
m

∥f̂∥p−1,sm−5σm . (4.17)

For the estimate of the Lipschitz norm, we proceed as follows. Given a function B of ω, set

△B = B(ω)−B(ω′). Applying △ to (4.8)–(4.9), we obtain the following assertions:

(1) For 0 < |λj | < 2Lm,

− i∂ω(△yj) + λj(ω)(△yj) + µj(ϕ, ω)(△yj)
= i∂△ωyj(ω

′)− (△λj +△µj)yj(ω
′) +△f̂j . (4.18)

(2) For |λj | ≥ 2Lm,

− i∂ω(△yj) + λj(ω)(△yj) + ΓL(µj(ϕ, ω)(△yj))
= i∂△ωyj(ω

′)− ΓL((△λj +△µj)yj(ω
′)−△f̂j). (4.19)

Applying Theorem 1.4 in [17] to (4.18), for 0 < |λj | < 2Lm, we obtain

∥△yj∥sm−9σm l
1

α2
m+1σ

2n+2τ+1
m

ϵ
− 1

10
m

j2
(∥f̂j∥sm−6σm |△ω|+ ∥△f̂j∥sm−6σm). (4.20)

Then applying Lemma 2.6 in [17] to (4.19), for |λj | ≥ 2Lm, we have

∥△yj∥sm−9σm l
1

σ2n+1
m j2

(∥f̂j∥sm−6σm |△ω|+ ∥△f̂j∥sm−6σm), (4.21)

∥(1− ΓL)(µj△yj)∥sm−9σm l
ϵ

9
10
m

jσn+1
m

(∥f̂j∥sm−6σm |△ω|+ ∥△f̂j∥sm−6σm). (4.22)

Then from (4.20)–(4.21), using Lemma 5.2 in Appendix, we get

∥△y∥p,sm−9σm l
ϵ
− 1

10
m

α2
m+1σ

3n+2τ+1
m

(∥f̂∥p−1,sm−5σm |△ω|+ ∥△f̂∥p−1,sm−5σm). (4.23)

Divided by |△ω|, together with (4.17), we obtain

∥y∥Lp,m−9σm
l

ϵ
− 1

10
m

α2
m+1σ

3n+2τ+1
m

∥f̂∥Lp−1,sm−5σm
. (4.24)



776 M. N. Gao and K. K. Zhang

The estimate for ỹ is the same as y in (4.24). Hence we have

∥φ∥Lp,sm−9σm
l

ϵ
− 1

10
m

α2
m+1σ

3n+2τ+1
m

∥F̂∥X0,L
sm−5σm

l
ε

9
10
m

α2
mσ

3n+2τ+1
m

. (4.25)

In view of the definition of σm and (3.22), we have

∥φ∥Lp,sm−9σm
l ϵ

9
10−

1
100−

(1+ρ)(3n+2τ+1)
ℓ−3

m l ϵ
5
6
m, (4.26)

where the last inequality follows from the assumption on ℓ in (2.16).

We handle with the estimate of the remaining part r1 as in [17]. First, we divide r1 into

three parts, that is r1 = r11 + r12 + r13, where r
1
1 and r12 have the vector elements as follows:

r11,j =

{
0, 0 < |λj | < 2Lm,
(1− ΓL)(−µjyj), |λj | ≥ 2Lm,

(4.27)

r12,j =

{
−(1− ΓL)f̃j , 0 < |λj | < 2Lm,
0, |λj | ≥ 2Lm,

(4.28)

and r13 is the truncation of f̂ , that is r13 = (1− ΓL)f̂ . From (4.16), (4.22) and

∥(1− ΓL)△µjyj∥sm−9σm l
e−Lmσm

σn
m

∥△µj∥sm−7σm∥yj∥sm−7σm

l
ϵm
σ2n
m

∥f̂j∥sm−6σm

j
|△ω|, (4.29)

we get

∥r11∥Lp−1,sm−9σm
l

ϵ
9
10
m

σ3n+1
m

∥f̃∥Lp−1,sm−5σm
l

1

3
ϵ

3
2
m (4.30)

by Lemma 5.2 in Appendix. Since

∥r12,j∥sm−7σm ≤
∑

|k|>Lm

|(̂f̂j)k|e|k|(sm−7σm) ≤ ∥f̂j∥sm−5σm

∑
|k|>Lm

e−2|k|σm

l
e−Lmσm

σn
m

∥f̂j∥sm−5σm l
ϵm
σn
m

∥f̂j∥sm−5σm ,

applying Lemma 5.2 in Appendix, we obtain

∥r12∥p−1,sm−7σm ≤ ϵm
σ2n
m

∥f̂∥p−1,sm−5σmmax{j : |λj | ≤ 2Lm}

l
ϵmLm

σ2n
m

∥f̂∥p−1,sm−5σm
l
ϵm| ln ϵm|
σ2n
m

∥f̂∥p−1,sm−5σm

l
ϵ

9
10
m

σ2n
m

∥f̂∥p−1,sm−5σm l
1

3
ϵ

1
2
m∥f̂∥p−1,sm−5σm .

Applying again Lemma 5.2 in Appendix to △r12 = r12(ω)−r12(ω′), we get ∥r12∥Lp−1,sm−9σm
l 1

3ϵ
3
2
m.

Foe r13, we obtain

∥r13∥Lp−1,sm−9σm
≤ e−Lmσm

σn
m

∥f̂∥Lp−1,sm−5σm
l

1

3
ϵ

3
2
m. (4.31)
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By the same method, we can obtain the estimate with respect to r2, and consequently we have

∥r∥X0,L
sm−9σm

l ϵ
3
2
m. (4.32)

In view of g̃(ϕ, ω) = −f̃(ϕ, ω), we can get (4.5) by a direct calculation. Now we finish the proof.

Remark 4.1 (1) For a given vector F (ϕ) = (F1(ϕ), F2(ϕ))
T, if for any ϕ ∈ Tn, we have

F2(ϕ) = −F1(ϕ), (4.33)

then we say that the vector F satisfies (4.33).

(2) Given an operator P (ϕ) fulfilling (3.5), and ζ(ϕ) = (y(ϕ), ỹ(ϕ))T, we assume that ỹ = y

for real ϕ. Then it is easy to conclude that the vector P (ϕ)ζ(ϕ) satisfies (4.33).

(3) Given B(ϕ) =
(B1(ϕ) B2(ϕ)
B3(ϕ) B4(ϕ)

)
such that for any real ϕ,

B1(ϕ) = B4(ϕ), B2(ϕ) = B3(ϕ), (4.34)

then we call that B(ϕ) satisfies (4.34). It is easy to check that the operator eB(ϕ) fulfills (4.34)

if B(ϕ) satisfies (4.34).

(4) Given an operator B(ϕ) satisfying (4.34) and a vector F (ϕ) satisfying (4.33), we can

obtain that the vector B(ϕ)F (ϕ) satisfies (4.33).

Now with the above preparation work at hand, we begin to make the Newton iteration

process clear. Setting F(ζ) = iζ̇ − Λζ + F (ζ, ϕ), we have the following lemma.

Lemma 4.2 (Iteration Lemma) Assume that for m ≥ 1, at the m-th iteration step, we have

a solution ζm(ϕ, ω) = (qm(ϕ, ω), q̃m(ϕ, ω))T : Tn
sm ×Πm → O fulfilling the following hypotheses:

(T1) ζm(ϕ, ω) has an expansion of the form ζm(ϕ, ω) =
∑

1≤i≤m

ηi(ϕ, ω), where for any

1 ≤ i ≤ m, ηi(ϕ, ω) = (vi(ϕ, ω), ṽi(ϕ, ω))
T is real analytic in ϕ ∈ Tn

si−1−9σi−1
, Lipschitz-

continuous in ω ∈ Πi, and satisfies the estimate

∥ηi∥Lp,si−1−9σi−1
l ϵ

5
6
i−1. (4.35)

Moreover, ṽi = vi for any real ϕ.

(T2) ζm is an ϵm-approximate solution to the system (2.11), that is, ∥F(ζm)∥X0

Tn×Πm
l ϵm.

In addition, we have

F(ζm) = hm + P̌mηm +
∑

1≤i≤m−1

∑
ν≥m−1

(P̌
(ν+1)
i − P̌

(ν)
i )ηi

+
∑

0≤i≤m−1

∑
ν≥m−1

(G
(ν+1)
i −G

(ν)
i ) + gm, (4.36)

which satisfies the following assumptions:

(a) hm(ϕ, ω) = (h1m(ϕ, ω), h2m(ϕ, ω))T is real analytic in ϕ ∈ Tn
sm and fulfills the estimate

∥hm∥X0,L
sm l ϵ

3
2
m−1.

In addition, hm(ϕ, ω) satisfies (4.33) for any ω ∈ Πm.
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(b) P̌m = ˜̌P (m)

m +
∑

ν≥m

(P̌
(ν+1)
m −P̌ (ν)

m ) and ˜̌P (m)

m : Tn
sm×Πm → X1, P̌

(ν)
m (ϕ, ω) : Tn

sν ×Πm →

X1, ν ≥ m are real analytic in ϕ ∈ Tn
sν , Lipschitz-continuous in ω and satisfies (3.5). Moreover,

we have the following estimates:

∥ ˜̌P (m)

m ∥X1,L
sm l ϵ

2
3−ρ
m−1, ∥P̌ (ν+1)

m − P̌ (ν)
m ∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m. (4.37)

(c) For 1 ≤ i ≤ m − 1 and ν ≥ m − 1, P̌
(ν)
i (ϕ, ω) : Tn

sm × Πm → X1 is real analytic in

ϕ ∈ Tn
sν , Lipschitz-continuous in ω and fulfills (3.5) as well as the estimates:

∥P̌ (ν+1)
i − P̌

(ν)
i ∥X1,L

sν+1
l ϵ1+ρ

ν . (4.38)

(d) For 0 ≤ i ≤ m − 1 and ν ≥ m − 1, G
(ν)
i (ϕ, ω) : Tn

sm × Πm → X0 is real analytic in

ϕ ∈ Tn
sν , Lipschitz-continuous in ω and fulfills (4.33) and the estimates:

∥G(ν+1)
i −G

(ν)
i ∥X0,L

sν+1
l ϵ1+ρ

ν . (4.39)

(e) For m ≥ 1,

gm =

∫ 1

0

D2
ζf(ζm−1 + sηm, ϕ)η

2
m(1− s)ds. (4.40)

Then there exists Πm+1 ⊂ Πm with Meas(Πm \Πm+1)lαm+1 and a quasi-periodic solution

ζm+1(ϕ, ω) defined on Tn
sm+1

× Πm+1 such that (T1) and (T2) hold true with m replaced by

m+ 1.

Proof Set ζm+1 = ζm + ηm+1, then

F(ζm+1) = F(ζm) +DζF(ζm)ηm+1 +

∫ 1

0

D2
ζF (ζm + sηm+1)η

2
m+1(1− s)ds

= F(ζm) + iη̇m+1 − Ληm+1 +DζF (ζm)ηm+1 +

∫ 1

0

D2
ζF (ζm + sηm+1)η

2
m+1(1− s)ds

=: F(ζm) + iη̇m+1 − Ληm+1 + Pmηm+1 + gm+1. (4.41)

First let us investigate the higher order term gm. For convenience, we set

D2
ζF (ζm−1 + sηm, ϕ) := A(ζ̃sm(ϕ, ω), ϕ) := Tm(ϕ, ω, s)

with D2
ζF (ζ, ϕ) = A(ζ, ϕ), ζ̃sm(ϕ, ω) = ζm−1(ϕ, ω) + sηm(ϕ, ω). Then for a fixed constant s, we

can obtain

∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3
=

∑
j1+···+jk+i=ℓ−3

∂i

∂ϕi
∂kA

∂ζk
∂j1 ζ̃sm
∂ϕj1

· · · ∂
jk ζ̃sm
∂ϕjk

. (4.42)

Observe that for 0 ≤ s ≤ 1,

∥ζ̃sm∥Lp,sm = ∥ζm−1 + sηm∥Lp,sm l
∑

1≤i≤m

ϵ
5
6
i−1 ≪ 1, (4.43)
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then in view of i+ k ≤ ℓ− 3, we have∥∥∥ ∂i

∂ϕi
∂kA

∂ζk

∥∥∥
sm

≤ ∥F (ζ, ϕ)∥Cℓ . (4.44)

Here the norm is defined as the operator norm from
∏
k

Pp to X2. Thus we have

∥∥∥∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3

∥∥∥X2

Tn
≤ ∥F∥Cℓ

∑
ji+···+jk+i=ℓ−3

∥∥∥∂j1 ζ̃sm
∂ϕj1

∥∥∥
p,Tn

· · ·
∥∥∥∂jk ζ̃sm
∂ϕjk

∥∥∥
p,Tn

. (4.45)

For the estimate of the Lipschitz norm, we proceed as follows: As what mentioned before, for

a given function T (ω), set △T = T (ω)− T (ω′). Applying △ to (4.42) we can obtain

△∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3
=

∑
j1+···+jk+i=ℓ−3

△
( ∂i

∂ϕi
∂kA

∂ζk

)∂j1 ζ̃sm
∂ϕj1

· · · ∂
jk ζ̃sm
∂ϕjk

+
∑

j1+···+jk+i=ℓ−3

∂i

∂ϕi
∂kA

∂ζk
△
(∂j1 ζ̃sm
∂ϕj1

)
· · · ∂

jk ζ̃sm
∂ϕjk

+ · · ·+
∑

j1+···+jk+i=ℓ−3

∂i

∂ϕi
∂kA

∂ζk
∂j1 ζ̃sm
∂ϕj1

· · ·△
(∂jk ζ̃sm
∂ϕjk

)
.

Observe that

△
( ∂i

∂ϕi
∂k

∂ζk
A(ζ̃sm(ϕ, ω), ϕ)

)
=

∂i

∂ϕi
∂k+1

∂ζk+1
A(θζ̃sm(ϕ, ω) + (1− θ)ζ̃sm(ϕ, ω′), ϕ)△ζ̃sm, (4.46)

then in view of i+ k + 1 ≤ ℓ− 2, we have∥∥∥ ∂i

∂ϕi
∂k+1

∂ζk+1
A(θζ̃sm(ϕ, ω) + (1− θ)ζ̃sm(ϕ, ω′)

∥∥∥
Tn

≤ ∥F (ζ, ϕ)∥Cℓ , (4.47)

where the norm is defined as the operator norm from
∏
k+1

Pp to X2. Thus

∥∥∥△∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3

∥∥∥X2

Tn
≤ ∥F∥Cℓ∥△ζ̃sm∥p,Tn

∑
ji+···+jk+i=ℓ−3

∥∥∥∂j1 ζ̃sm
∂ϕj1

∥∥∥
p,Tn

· · ·
∥∥∥∂jk ζ̃sm
∂ϕjk

∥∥∥
p,Tn

+ ∥F∥Cℓ

∑
ji+···+jk+i=ℓ−3

∥∥∥△(∂j1 ζ̃sm
∂ϕj1

)∥∥∥
p,Tn

· · ·
∥∥∥∂jk ζ̃sm
∂ϕjk

∥∥∥
p,Tn

+ · · ·+ ∥F∥Cℓ

∑
ji+···+jk+i=ℓ−3

∥∥∥∂j1 ζ̃sm
∂ϕj1

∥∥∥
p,Tn

· · ·
∥∥∥△(∂jk ζ̃sm

∂ϕjk

)∥∥∥
p,Tn

.

Divided by |△ω|, together with (4.43) and (4.45), we can obtain∥∥∥∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3

∥∥∥X2,L

Tn
≤ ∥F∥Cℓ

∑
ji+···+jk+i=ℓ−3

∥∥∥∂j1 ζ̃sm
∂ϕj1

∥∥∥L
p,Tn

· · ·
∥∥∥∂jk ζ̃sm
∂ϕjk

∥∥∥L
p,Tn

. (4.48)

Applying Cauchy estimate with respect to ηi on Tn
si−1−9σi−1

, together with the definition of

sm, we get for 0 ≤ j ≤ ℓ− 3, 1 ≤ i ≤ m,∥∥∥∂jηi
∂ϕj

∥∥∥L
p,Tn

l j!ϵ
5
6−

j(1+ρ)
ℓ−3

i−1 , (4.49)
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thus

∥∥∥∂j ζ̃sm
∂ϕj

∥∥∥L
p,Tn

l
∑

1≤i≤m

ϵ
5
6−

j(1+ρ)
ℓ−3

i−1 l


1,

5

6
− j(1 + ρ)

ℓ− 3
≥ 0,

ϵ
5
6−

j(1+ρ)
ℓ−3

m−1 ,
5

6
− j(1 + ρ)

ℓ− 3
< 0.

(4.50)

Set Ω =
{
j ≥ 0 : 5

6 −
j(1+ρ)
ℓ−3 < 0

}
=

{
j ≥ 0 : j > 5(ℓ−3)

6(1+ρ)

}
. Consequently, from (4.50) we obtain

∥∥∥∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3

∥∥∥X2,L

Tn
≤ ∥F∥Cℓ

∑
ji+···+jk+i=ℓ−3

∥∥∥∂j1 ζ̃sm
∂ϕj1

∥∥∥L
p,Tn

· · ·
∥∥∥∂jk ζ̃sm
∂ϕjk

∥∥∥L
p,Tn

≤ ∥F∥Cℓ

∑
⋆

ϵ
5
6−

ji1
(1+ρ)

ℓ−3

m−1 · · · ϵ
5
6−

jit
(1+ρ)

ℓ−3

m−1

≤ ∥F∥Cℓ

∑
⋆

ϵ
5
6 t−

(ji1
+···+jit

)(1+ρ)

ℓ−3

m−1 , (4.51)

where ⋆ means the admissible index set with t indices ji1 , · · · jit lying in Ω. Then 5
6 t −

(ji1+···+jit )(1+ρ)

ℓ−3 ≥ − 1
6 − ρ, and thus

∥∥∥∂ℓ−3Tm(ϕ, ω, s)

∂ϕℓ−3

∥∥∥X2,L

Tn
l ϵ

− 1
6−ρ

m−1 .

By integrating with respect to s, we have

Nm(ϕ, ω) :=

∫ 1

0

Tm(ϕ, ω, s)(1− s)ds : Tn ×Πm → X2

with ∥Nm∥Lcℓ−3 l ϵ
− 1

6−ρ
m−1 . Now we apply Lemma 2.2 to Nm, then for {sν}ν≥m, in view of (2.21),

we obtain Nm(ϕ, ω) = N
(m)
m +

∑
ν≥m

(N
(ν+1)
m −N

(ν)
m ), where for ν ≥ m, N

(ν)
m (ϕ, ω) is analytic in

ϕ ∈ Tn
sν , Lipschitz-continuous in ω ∈ Πm and satisfies

∥N (m)
m ∥X2,L

sm l ∥Nm∥Lcℓ−3 l ϵ
− 1

6−ρ
m−1 , ∥N (ν+1)

m −N (ν)
m ∥X2,L

sν l ∥Nm∥Lcℓ−3s
ℓ−3
ν l ϵ

− 1
6−ρ

m−1 ϵ1+ρ
ν .

Then from (4.40), together with (4.35), we get

gm = N (m)
m η2m +

∑
ν≥m

(N (ν+1)
m −N (ν)

m )η2m := G(m)
m +

∑
ν≥m

(G(ν+1)
m −G(ν)

m ), (4.52)

and for ν ≥ m, in view of the assumption that 0 < ρ < 1
4 , we have

∥G(m)
m ∥X0,L

sm l ϵ
− 1

6−ρ
m−1 ϵ

5
3
m−1 l ϵ

3
2−ρ
m−1 l ϵ1+ρ

m−1, ∥G(ν+1)
m −G(ν)

m ∥X0,L
sν+1

l ϵ
− 1

6−ρ
m−1 ϵ1+ρ

ν ϵ
5
3
m−1 l ϵ1+ρ

ν .

Set Fm = hm+ ˜̌P (m)

m ηm+
∑

1≤i≤m−1

(P̌
(m)
i − P̌

(m−1)
i )ηi+

∑
0≤i≤m−1

(G
(m)
i −G

(m−1)
i )+G

(m)
m . Then

Fm(ϕ, ω) is real analytic in ϕ ∈ Tn
sm , Lipschitz-continuous in ω ∈ Πm and satisfies (4.33) and

the estimate

∥Fm∥Lsm,Pp−1 l ϵ
3
2
m−1 + ϵ

2
3−ρ
m−1ϵ

5
6
m−1 +mϵ1+ρ

m−1 l ϵ1+ρ
m−1 = ϵm. (4.53)
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In addition

F(ζm)− Fm =
∑

1≤i≤m

∑
ν≥m

(P̌
(ν+1)
i − P̌

(ν)
i )vi +

∑
0≤i≤m

∑
ν≥m

(G
(ν+1)
i −G

(ν)
i ). (4.54)

In the following we get down to find the solution ηm+1 of the homological equation

iη − Λη + Pmη + Fm = 0. (4.55)

Now let us give some more analysis concerning the operator Pm(ϕ) := DζF (ζm, ϕ) defined in

(4.36). Using Taylor’s formula, we have

Pm = DζF (ζm) = DζF (ζm−1) +

∫ 1

0

D2
ζF (ζm−1 + sηm)ηmds,

then by induction, we get

Pm = DζF (ζ1) +

∫ 1

0

D2
ζF (ζ1 + sη2)η2ds+ · · ·+

∫ 1

0

D2
ζF (ζm−1 + sηm)ηmds

:=
∑

1≤i≤m

Pi. (4.56)

For 2 ≤ i ≤ m, we set Ti(ϕ, ω, s) := D2
ζF (ζi−1 + sηi, ϕ),Mi(ϕ, ω) :=

∫ 1

0
Ti(ϕ, ω, s)ds. Thus by

the same analysis as above, we have

∥Ti(ϕ, ω, s)∥LCℓ−3 l ϵ
− 1

6−ρ
i−1 , ∥Mi(ϕ, ω)∥LCℓ−3 l ϵ

− 1
6−ρ

i−1 , 2 ≤ i ≤ m. (4.57)

Hence, by applying Lemma 2.2, we can obtain Mi =M
(i)
i +

∑
ν≥i

(M
(ν+1)
i −M

(ν)
i ) with

∥M (i)
i ∥X2,L

si l ϵ
− 1

6−ρ
i−1 , ∥M (ν+1)

i −M
(ν)
i ∥X2,L

sν+1
l ϵ

− 1
6−ρ

i−1 ϵ1+ρ
ν . (4.58)

Accordingly, for 2 ≤ i ≤ m,

Pi =M
(i)
i ηi +

∑
ν≥i

(M
(ν+1)
i −M

(ν)
i )ηi := P

(i)
i +

∑
ν≥i

(P
(ν+1)
i − P

(ν)
i ). (4.59)

Taking (4.35) into account, we have

∥P (i)
i ∥X1,L

si l ϵ
− 1

6−ρ
i−1 ϵ

5
6
i−1 l ϵ

2
3−ρ
i−1 , ∥P (ν+1)

i − P
(ν)
i ∥X2,L

sν+1
l ϵ

− 1
6−ρ

i−1 ϵ1+ρ
ν ϵ

5
6
i−1 l ϵ1+ρ

ν .

For i = 1, we have

DζF (ζ1) = DζF (0, ϕ) +

∫ 1

0

D2
ζF (sη1)η1ds, (4.60)

where DζF (0, ϕ) ∈ Cℓ−1(Tn, X1) satisfies ∥DζF (0, ϕ)∥Cℓ−1 l ϵ0, and the second term can be

handled similarly. Then by applying Lemma 2.2, we can obtain

DζF (0, ϕ) = P
(1)
0 +

∑
ν≥1

(P
(ν+1)
0 − P

(ν)
0 ), (4.61)
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where

∥P (1)
0 ∥X1

s1 l ϵ0, ∥P (ν+1)
0 − P

(ν)
0 ∥X1

sν+1
l ϵ0s

ℓ−1
v l ϵ1+ρ

ν , ν ≥ 1. (4.62)

Hence we have P1 = P
(1)
1 +

∑
ν≥1

(P
(ν+1)
1 − P

(ν)
1 ) with

∥P (1)
1 ∥X1

s1 l ϵ
2
3−ρ
0 , ∥P (ν+1)

1 − P
(ν)
1 ∥X1

sν+1
l ϵ1+ρ

ν , ν ≥ 1. (4.63)

It is easy to verify that Pm fulfills the hypotheses in Lemma 3.2, then we can find an operator

Um(ϕ, ω) defined on Tn
sm−4σm

× Πm fulfilling (4.34) and the corresponding coordinate trans-

formation η = Um(ωt, ω)φ. Differentiating it with respect to t, we have η̇ = U̇mφ + Umφ̇.

Inserting it into (4.55), we obtain

iφ̇− Λm+1φ+Qm+1φ+ F̂m = 0, (4.64)

where Qm+1 is defined by (3.33)–(3.34) and

∥F̂m∥X0,L
sm−4σm

= ∥(Um)−1Fm∥X0,L
sm l ϵm. (4.65)

Moreover, we can conclude that F̂m satisfies (4.33) in view of Remark 4.1 in this section.

Consider the system iφ̇ − Λm+1φ + F̂m = 0 defined on Tn
sm−4σm

× Πm+1, then applying

Lemma 4.1, we can find a solution φm+1(ϕ, ω) such that

iφ̇m+1 − Λm+1φm+1 + F̂m = rm

with

∥φm+1∥Lp,sm−9σm
l ϵ

5
6
m, ∥rm∥X0,L

sm−9σm
l ϵ

3
2
m. (4.66)

Hence (4.64) becomes

iφ̇m+1 − Λm+1φm+1 +Qm+1φm+1 + F̂m = Qm+1φm+1 + rm. (4.67)

Let ηm+1 = Um+1φm+1, from (3.31) and (4.66) we have

∥ηm+1∥Lp,sm−9σm
l ϵ

5
6
m. (4.68)

Taking (3.31) and (3.33)–(3.34) into account, the homological equation (4.55) has the form:

iη̇m+1 − Ληm+1 + Pmηm+1 + Fm

= iU̇mφm+1 + iUmφ̇m+1 − ΛUmφm+1 + PmUmφm+1 + Fm

= Um(iφ̇m+1 − (Um)−1ΛUmφm+1 + (Um)−1PmUmφm+1 + i(Um)−1U̇mφm+1 + (Um)−1Fm)

= Um(iφ̇m+1 − Λm+1φm+1 +Qm+1φm+1 + F̂m)

= Um(Qm+1φm+1 + rm) = UmQm+1(U
m)−1ηm+1 + Umrm

:= hm+1 + P̌m+1ηm+1, (4.69)

where P̌m+1 = ˜̌P (m+1)

m+1 +
∑

ν≥m+1

P̌
(ν+1)
m+1 − P̌

(ν)
m+1 satisfies

∥ ˜̌P (m+1)

m+1 ∥X1,L
sm+1

l ϵ
2
3−ρ
m , ∥P̌ (ν+1)

m+1 − P̌
(ν)
m+1∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ m+ 1, (4.70)
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and hm+1(ϕ, ω) is real analytic in ϕ ∈ Tn
sm+1

with

∥hm+1∥X0,L
sm+1

l ϵ
3
2
m. (4.71)

Consequently, from (4.41), (4.54) and (4.69), we can obtain

F(ζm+1) = hm+1 + P̌m+1ηm+1 +
∑

1≤i≤m

∑
ν≥m

(P̌
(ν+1)
i − P̌

(ν)
i )ηi

+
∑

0≤i≤m

∑
ν≥m

(G
(ν+1)
i −G

(ν)
i ) + gm+1,

and from (4.38)–(4.39), (4.68), (4.70)–(4.71) and Remarks 4.1 in this section, we get that

∥F(ζm+1)∥X0

Tn×Πm
l ϵm+1

and all the assumptions in (T1) and (T2) hold with m replaced by m+1. By now we finish the

proof.

Proof of Theorem 2.1 It remains to find the first approximate solution η1 to (2.11) and

then to show that (T1) and (T2) in Lemma 4.2 are true for m = 1. By using Taylor’s formula

we have

F(ζ1) = F(0) +DζF(0)η1 +

∫ 1

0

D2
ζF(sη1)η

2
1(1− s)ds

= F (0, ϕ) + iη̇1 − Λη1 +DζF (0, ϕ)η1 +

∫ 1

0

D2
ζF (sη1)η

2
1(1− s)ds

:= F0(ϕ) + iη̇1 − Λη1 + P0(ϕ)η1 + g1, (4.72)

where F0(ϕ) ∈ Cℓ(Tn;X0) and P0(ϕ) ∈ Cℓ−1(Tn;X1) satisfy

∥F0(ϕ)∥Cℓ , ∥P0(ϕ)∥Cℓ−1 ≤ ∥F (q, ϕ)∥Cℓ l ϵ0. (4.73)

Then applying Lemma 2.2 to F0(ϕ), we get F0 = F
(0)
0 +

∑
ν≥0

(F
(ν+1)
0 − F

(ν)
0 ) with

∥F (0)
0 ∥X0

s0 l ϵ0, ∥F (ν+1)
0 − F

(ν)
0 ∥X0

sν+1
l ϵ0s

ℓ
ν l ϵ1+ρ

ν , ν ≥ 0. (4.74)

From (4.61)–(4.62), we get P0 = P
(0)
0 +

∑
ν≥0

(P
(ν+1)
0 − P

(ν)
0 ) with the estimate

∥P (0)
0 ∥X1

s0 l ϵ0, ∥P (ν+1)
0 − P

(ν)
0 ∥X1

sν+1
l ϵ1+ρ

ν , ν ≥ 0. (4.75)

The homological equation we hope to investigate is

iη̇ − Λη + P0η + F
(0)
0 = 0. (4.76)

Fix k, i and j and set Rkij :=
{
ω ∈ Π′ : |k · ω + i2 − j2| ≤ α0|i2−j2|

1+|k|τ
}
, i ̸= j, Π0 := Π′ \( ∪

k∈Zn,i̸=j

Rkij

)
. Then it is easy to check Meas(Π′ \Π0)lα0. Hence from Lemma 3.2 in [17] we

know that for ω ∈ Π0, there exists an operator B0(ϕ, ω) : Tn
s0−4σ0

×Π0 → Bp,p ∩Bp−1,p−1 and

|∥B0∥|Lp,p,s0−4σ0
, |∥B0∥|Lp−1,p−1,s0−4σ0

l ϵ
5
6
0 (4.77)
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such that by the coordinate transformation η = eB0φ, we can change the system iη̇ = (Λ+P
(0)
0 )η

into the new system iφ̇ = (Λ1 + P̃1)φ, where Λ1 apparently fulfills (H1) in Lemma 3.1 and

∥P̃1∥X1,L
s1 l ϵ

3
2
0 . Then by the same transformation, (4.76) can be changed into

iφ̇− Λ1φ+ P̃1φ+
∑
ν≥0

e−B0(P
(ν+1)
0 − P

(ν)
0 )eB0φ+ e−B0F

(0)
0 = iφ̇− Λ1φ+Q1φ+ F̂0 = 0

with Q1 = Q̃
(1)
1 +

∑
ν≥1

(Q
(ν+1)
1 −Q

(ν)
1 ) and

Q̃
(1)
1 := P̃1 + e−B0(P

(1)
0 − P

(0)
0 )eB0 , Q

(ν)
1 = e−B0P

(ν)
0 eB0 , ν ≥ 1.

In addition, from (4.75) and (4.77) we obtain

∥Q̃(1)
1 ∥X1,L

s1 l ϵ
3
2
0 + ϵ1+ρ

0 l ϵ1+ρ
0 , ∥Q(ν+1)

1 −Q
(ν)
1 ∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ 1.

Applying Lemma 4.1, we can find a real analytic solution φ1(ϕ) such that

iφ̇1 − Λ1φ1 + F̂0 = r0

and ∥φ1∥Lp,s0−9σ0
l ϵ

5
6
0 , ∥r0∥

X0,L
s0−9σ0

l ϵ
3
2
0 . Setting η1 = eB0φ1, similarly to (4.69), we conclude

iη̇1 − Λη1 + P0η1 + F
(0)
0 = P̌1η1 + h1,

where

P̌1 = eB0Q1e
−B0 = ˜̌P (1)

1 +
∑
ν≥1

(P̌
(ν+1)
1 − P̌

(ν)
1 ), h1 = eB0r0.

Hence

∥ ˜̌P (1)

i ∥X1,L
s1 l ϵ1+ρ

0 , ∥P̌ (ν+1)
1 − P̌

(ν)
1 ∥X1,L

sν+1
l ϵ1+ρ

ν , ν ≥ 1, ∥h1∥X0,L
s1 l ϵ

3
2
0 . (4.78)

Thus by setting G
(ν)
0 = F

(ν)
0 for ν ≥ 0, we obtain

F(η1) = h1 + P̌1η1 +
∑
ν≥0

(G
(ν+1)
0 −G

(ν)
0 ) + g1,

which fulfills (T1)–(T2) in Lemma 4.2 with even better estimates.

Finally, letting Πϵ =
∩
i≥0

Πi, ζ
∞(ωt, ω) = lim

m→∞
ζm(ωt, ω) = (q∞(ωt, ω), q̃∞(ωt, ω)), then

ζ∞(ωt, ω) is a quasi-periodic solution of frequency ω ∈ Πϵ for (2.11) and q̃∞(ωt, ω) = q∞(ωt, ω).

In addition, Meas(Π\Πϵ)l
∑
m≥0

αmlα0(ϵ) → 0, as ϵ→ 0 and ∥ζ∞(ϕ, ω)∥p,Tn×Πϵl
∑
m≥1

ϵ
5
6
m−1lϵ

5
6 .

We finally finish the proof of Theorem 2.1, and the proof of Theorem 1.1 immediately follows.

5 Appendix

Lemma 5.1 Define the Sobolev space

Hp([0, 2π]) =
{
u(x) : u(0) = u(2π), ∥u∥p :=

(∫ 2π

0

∣∣∣dpu
dxp

∣∣∣2dx) 1
2

<∞
}
.

Then we have the interpolation estimate below

∥u∥m−n
r ≤ ∥u∥m−r

n ∥u∥r−n
m for 0 ≤ n < r < m ≤ p.
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Proof The proof can be found in [22], we omit it here.

Lemma 5.2 Let F = (Fij)i,j≥1 be a bounded operator on ℓ2. Assume that the matrix

elements (Fij) are analytic functions of ϕ ∈ Tn
s . Let R = (Rij)i,j≥1 be another operator with

matrix elements depending analytically on ϕ ∈ Tn
s′ and ∥Rij∥s′ ≤ 1

|i−j|∥Fij∥s−σ, i ̸= j, and

Rii = 0. Then R is a bounded operator on ℓ2 and ∥R∥s′ ≤ 4n+1

σn ∥F∥s. Moreover, let f = (fj)j≥1

be a vector in ℓ2 with the vector elements fj being analytic function of ϕ ∈ Tn
s . Assume that

r = (rj)j≥1 is another vector of which the vector elements depend analytically on ϕ ∈ Tn
s′ and

∥rj∥s′ ≤ 1
j ∥fj∥s−σ, j ≥ 1. Then r ∈ ℓ2 and the ℓ2-norm ∥r∥s′ ≤ 4n+1

σn ∥f∥s.

Proof The proof of this lemma can be found in [17].

Lemma 5.3 Let P =
(
P1 P2

P3 P4

)
be an operator with the elements Pi, 1 ≤ i ≤ 4 fulfilling

(3.5), B =
(
B1 B2

B3 B4

)
be another operator satisfying

B1 = −BT
1 = B4, B2 = BT

2 , B2 = B3. (5.1)

Then the operator [P,B] = PB −BP satisfies (3.5) also.

Proof The conclusion of this lemma can be obtained by a direct calculation.
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