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Quasi-periodic Solutions for the Derivative Nonlinear
Schrodinger Equation with Finitely
Differentiable Nonlinearities™*

Meina GAO! Kangkang ZHANG?

Abstract The authors are concerned with a class of derivative nonlinear Schrédinger
equation
iug + Uge +ief (u, u,wt)u, =0, (t,2) € R x [0, 7],

subject to Dirichlet boundary condition, where the nonlinearity f(z1, 22, ¢) is merely finite-
ly differentiable with respect to all variables rather than analytic and quasi-periodically
forced in time. By developing a smoothing and approximation theory, the existence of
many quasi-periodic solutions of the above equation is proved.
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1 Introduction

In this paper we prove the existence of quasi-periodic solutions of the derivative nonlinear
Schrodinger (DNLS for short) equation

iug + ugy + ief (u, @, wt)u, =0 (1.1)

subject to Dirichlet boundary conditions u(¢,0) = 0 = u(t,7), —oo < t < 400, where the
nonlinearity f(z1, 22, ¢) is differentiable for finite times with 21, 22, ¢ and quasi-periodic in time
with frequency vector w = (wy,- -+ ,w,) € R™. Moreover, f(z1,22,¢) € CP(C x C x T™;C) for
some p € R large enough with

f(uvﬂa ¢) = f(U”ﬂv d))a f(_ua -, ¢) = _f(uaav ¢)7 d) eT".

The same as in [18], introducing the inner product in a suitable phase space, for example,
the usual Sobolev space H2([0, 7])

(u,v) = Re/ uvdz,
0
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then (1.1) can be written in the Hamiltonian form

i =—iVH, (1.2)

o) = [ fuPdes [ gwm o (1.3

2
with the “Reality” condition H(u,u,¢) = H(u,u,¢) for ¢ € T", where the gradient of H is
defined with respect to (-,-) and g(z1,22,¢) = —i [, f(z1,¢, ¢)dC.

KAM theory is a powerful tool to deal with the existence of periodic, quasi-periodic or almost
periodic solutions of partial differential equations (PDEs for short) under small perturbations.
The first KAM results for PDEs have been obtained for 1-d semi-linear Schrodinger and wave
equations by Kuksin [14], Craig-Wayne [10, 29], see the references therein. For PDEs in higher
space dimension, the theory has been more recently extended by Bourgain [8], Eliasson-Kuksin
[11], Berti-Bolle [5], and Geng-Xu-You [12]. For unbounded perturbations, the first KAM results
have been proved by Kuksin [15-16] and Kappeler-Péschel [13] for KAV equation (see also [7]),
and more recently by Liu-Yuan [17-19], Zhang-Gao-Yuan [32] for derivative NLS equation,
Baldi-Berti-Montalto [1] for the Hamiltonian quasi-linear perturbations of the KdV equation,
and Berti-Biasco-Procesi [2-3] for derivative NLW equation.

However, the results mentioned above require the analyticity of the perturbations of the
PDEs to overcome the well-known “loss of regularity” problem. By shrinking the width of
the angle variables, one can estimate the solutions of the homological equations and obtain
the convergence of the KAM iterative procedure. For dynamical systems with differentiable
perturbations, it is clear that after finitely many steps all derivatives are exhausted which leads
to the failure of the KAM iteration. To cope with this difficulty, the primary approach is due
to Moser [20-21], which extended the classical KAM theory for nearly integrable Hamiltonian
systems under real-analytic perturbations, to smooth category. The main idea exploited by
Moser is to use a smoothing operator, and re-insert enough regularity into the problem at every
Newton iterative step in order to compensate the loss of regularity. A closely related approach
was given by Nash [24] researching the embedding problem of compact Riemannian manifolds.
In [21], Moser first proved the existence of the invariant curves for area preserving annulus
mappings satisfying the monotone twist property which corresponds to the Hamiltonian system
case in “one and a half” degrees of freedom. The number of derivative of the perturbation is
required to be ¢ > 333, which was later reduced by Riissmann to ¢ > 5 in [26]. For the
Hamiltonian case we refer to [23, 25].

The KAM theory in Moser [20-21] dealt with the persistence of maximal-dimensional in-
variant tori in the context of smooth category. It is natural to ask whether lower-dimensional
tori can be persisted or not. By exploiting a technique following [23], Chierchia-Qian [9] con-
sidered the existence of lower-dimensional elliptic tori of any dimension between one and the
number of degrees of freedom for the nearly integrable Hamiltonian system with finitely differ-
entiable perturbation. The framework of this method is mainly based on an approximation of
the differentiable functions with analytic ones. Zhang [31] proved the existence of the lower-
dimensional invariant tori for the reversible system with finite degrees of freedom under finitely
differentiable perturbation. For infinite dimensional Hamiltonian systems, the research just
began in the last few years, the main results were given by Berti-Bolle-Procesi [4-6]. By using
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a Nash-Moser iterative scheme in scales of the Sobolev functions space, they got the existence
of quasi-periodic solutions which has Sobolev regularity both in time and space for PDEs with
bounded perturbations, such as the NLS and NLW for any spatial dimension.

The perturbation of (1.1) is finitely differentiable. What is more important, the answer is
unbounded. Thus (1.1) is excluded by the above approach. The aim of the present paper is to
construct a large amount of quasi-periodic solutions of small amplitude for the derivative NLS
equation (1.1). More precisely, in the following we consider a class of “vector” derivative NLS
equations:

{mt + Ugy + e f (u, T, wt)u, =0, (t,2) € R x [0, ] (1.4)

iUy — Uyy + ief (u, W, wt)u, =0,

subject to Dirichlet boundary condition u(t,0) = 0 = u(t, 7), where the nonlinearities are quasi-
periodic in time with frequency w € R™ and f(z1, 22,¢) € CP(C x C x T"; C) for some p € RT
large enough and the second equation is the formal complex conjugation of the first one.

We have the following theorem.

Theorem 1.1 Suppose that the nonlinearities f and f are finitely differentiable with p >
100(1 4+ p)(3n + 27 + 1) + 3 + p, where p, p and T are positive constants which will be defined
below, and I C R™ is a compact set of positive Lebesque measure. Then there exists a small
constant € > 0 such that for |e| < €*, a Cantor set II. C II with Meas(II \ II.) — 0 as € — 0,
and for arbitrary w € Il., (1.4) possesses a quasi-periodic solution of frequency w with small

amplitude.

The main ideas of our proof consist of a smoothing technique elaborated in [23] and Newton
iterative scheme. Note that (1.4) is a Hamiltonian PDE, however, we do not use its Hamiltonian
structure explicitly. Instead, we write (1.4) into an abstract nonlinear equation

i —AC+F(Cwt)=0 (1.5)

(see Theorem 2.1), of which we try to construct the quasi-periodic solutions by Newton’s
method. The essential element of Newton’s method is to find the approximate solution by
solving the linearized equation of the original equation. Therefore, at each Newton iteration,
we solve the linearized equation of (1.5)

i — (A + P(wt))n + F(wt) = 0. (1.6)

Moreover, we need to prove the convergence of the iterative process. In order to solve (1.6), we
need to estimate the inverse of (A + P(wt))~!, which is “big” due to the unboundedness of the
perturbation. Hence we do not solve the linearized equation (1.6) directly but do the KAM type
reduction first. Luckily, as we discuss (1.4) under Dirichlet boundary condition, the frequencies
are simple, the reduction process is feasible (see Lemma 3.2 for the details). The Hamiltonian
structure guarantees the reality of A which is necessary in Theorem 1.4 in Liu-Yuan [17]. In
fact we get a new system after the reduction

~

i — (A + P(wt))p + F(wt) =0, (1.7)
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where ﬁ(wt) is much smaller and can be treated as perturbation. Thus we just need to find
the solution for the linearized equation

ip — Ao+ Fwt) =0, (1.8)

where A denotes a diagonal matrix close to A in some sense (see Lemma 4.1 for the details).

We remark that P(wt), F(wt) and F (wt) are only differentiable with respect to ¢. The main
difficulty during the whole procedure is the phenomenon of “loss of regularity”. To overcome
this, we use an approximation theorem which is closely related to the classical theorem due to
Jackson, of which the fundamental observation is that the qualitative property of differentiabil-
ity of a function can be characterized in terms of quantitative estimates for an approximating
sequence of analytic functions. Then we can solve the linearized equation in analytic category
with good estimates to guarantee the convergence of the Newton iterative process.

This paper is organized as follows: In Section 2, we rewrite the derivative NLS equation
(1.4) in infinite coordinates, and this new equation will be our starting point for the following
discussion. What’s more, we list a similar theory to the approximation theory of Jackson, Moser
and Zehnder, which will be used as the basis of our smoothing technique. In Section 3, a KAM
type reduction lemma will be proven with finitely differentiable unbounded perturbation. In
Section 4, we describe the solving procedure of the linearized equation at each step and the
iterative process in details. Finally some technical lemmas are exhibited in Section 5.

2 The Basic Modes

We study (1.4) on some suitable phase space, for example, the usual Sobolev space HE ([0, 7).
We rewrite it in infinitely many coordinates by making the ansatz

2 . .
u(t,z) = qu(t)gbj(x), bj(z) = \/;smjx, j>1. (2.1)
Jj=1
The coordinates are taken from the Hilbert space ¢P of all complex-valued sequences q =

(q1,q2,--+) with [|g]|2 = > [g;|*j* < co. We fix p > 3 later. Then (1.4) can be written as
i>1

{iq — Aq+ef(q,q,wt) = (2.2)

0,

ig + A7 + €g(q,q,wt) = 0,

where A = diag(\; : i > 1) with \; = i? and f(q, g,wt) = —g(q,q,wt). In the following we

consider ¢,q to be independent, and (1.4) equals to (2.2) when the bar means the complex

conjugate. We investigate the regularity of the nonlinear vector field first. In fact, we have the
following observation.

Lemma 2.1 The nonlinear vector field (f(q,G, ¢),9(q,q, ¢))T defines a finitely differentiable
map from O x T™ into P~ x (P~ where O denotes some small neighborhood of the origin

in L2 x £P. To be more precise, for any ¢ € T", N> L <p—p and k = (k1, -+ ,kn) with
0 < [kf = k1] + -+ [kn| <,

OF, oG, T

(W(qaqa¢>7?&(qvqa¢))
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B ( oIkl F olklg

T
, e CIFl(O; p=1 x p7 1, (2.3)
OBt -~ O a¢?-~-a¢%w)

where T means the transpose of a vector.

Proof Set & = (u,u)" € H? := HY x HY}. Introduce a map F defined on H? x T" with

F(& ¢)(z) = (F1(€,0) (), F2(&, 0) ()" = (if (u, T, ¢)ua, if (u, T, ¢)ua) " (2.4)

We will prove that there exists some neighborhood U of the origin in H? such that for any

peTand 0 < |k| <0, 2L o € CM(U; HP™). Then (2.3) follows directly.

From the assumption that p > p + £ and 0 < |k| < ¢, we can find some N being the neigh-
borhood of the origin in C? such that for a +b < p—1, all the derivatives %%%f(zl, 22, )
are bounded on N x T™. Then we set U denoting the neighborhood of the origin in H? of
which the element (u,u) has graphs lying in /. We will show that for any £ € U, ¢ € T",

a ¢’“ L (¢, ) € HP~1. Using the chain rule we can write

dr—1 oFFy . Z oFtatbf qivy  dleqdimw dewdu,
dzp—1 9¢k B 09k02025 der date dzir dade da™’

where * represents iy +---+iq+j1+- - -+ +m = p—1. For £ € U, we have |[ul| e, ||[T]|z=~ < C

k+a+b =
and H %TW HLw < C, which is due to the fact that p+¢ < p. Thus we can get the estimate
1 2

k -1 gk
[ €0l = H%%@»W p
dity dieq diha divu d™uy,
= C’Z‘ dx’l . |d:vla : L2 deﬁ L2 dxz’i L2
< CZHUHM' [ P [P | P (2.5)
Then by using the interpolation estimate in Lemma 5.1 in the Appendix, we can get
Julls < CllZE, Wl < CIIEL, el < Clue 22T < ClullF™™. (26)

Consequently we have | aakfkl &9 o1 S

can be obtained similarly, and we omit the details here. Hence we obtain

C(p)(|lullp + |l@llp)- The estimate corresponding to F

k
|[Z o,

OFFy
8(;5’“ H 1

| FRes)] < cwul, +lal,). @)

Then the conclusion that 2-£ defines a map from & into H?~! for any ¢ € T™ follows.

aqsk
Now we investigate the first order Frechet derivative of g ¢I’: with respect to . When |k| = ¢,

then nothing remains to be done. Hence in the following we assume |k| < £. For any n = (v,7) €

HP, we get
3! _do*R
. d

k
=i - (a%kf(u + 50, + 57, ) (uq + va))

s=0
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8k+1f 8k+1f akf
:. Uy h— 3:7 A . Yx 2
<6¢k821u Ut adk 0z U ggR” ) (2:8)
Note that §¢:$2{ , gg:;zfg, g;k € CP~Y(C x C x T™; C) and p — £ > p, we have
ak+1f akJrlf
T ) < 2.
|5 ]| |5 e H Cp)(lull, + Ifall,) (2.9)

with a different constant C' depending on p. Thus, H%(ﬁ, ¢)(U)pr1 < C(p)(|lull, +
I1@llp) (vl + 17]lp), and the same estimate can be obtained for Fy. Therefore, for any (&, ¢) €
U x T™, the first Fréchet derivative ‘g?T;f(E , @) defines a bounded linear operator from H? into
HP~!. Denote B(H” HP~1) as the set of bounded linear operators from H? into HP~!, then
we can obtain 2 o0eo (;E U C H? — B(HP; HP~!) for all ¢ € T". For any other derivative of high
order, we can handle in the same way. By now we have finished the proof.

We set some notations and definitions for the sake of convenience. Set PP = /P x (P, and
for ¢ = (q,q)" € PP, define the norm ||¢||, := |/q|l, + [|¢]|- For o > 1, we use X, and | - ||¥* to

represent the set of bounded linear operators from [] PP into PP~! and the corresponding norm

[0
respectively. Here we just focus our attention on a € N for simplicity, and hence in Lemma
2.1 we choose ¢, |k| € N also. Set X, := PP~L. For a given vector R((, ¢) = (f(¢,9),9(¢, )7,
define

I] A
R||ce := sup sup sup —

T oSlkl<t0<asio k] (C.o)cOxTn || DPFDG
For the original system (2.2), set F'((,¢) = (ef(C, #),€3(¢, ¢))T. Then based on Lemma 2.1, we

conclude that for any 0 < |k| < £, 0 < a <{—|k| and ({,¢) € O x T", %(C,gﬁ) € X,, the

estimate

[F(¢ )llce <€ (2.10)

holds true. Then we have the following theorem.

Theorem 2.1 Consider the system

i —AC+ F(Cwt) =0, (=(qq) €P, well, (2.11)
which fulfills the following hypotheses:
(A1)
A= (54 _j) , (2.12)
where
A=diag(A\;: 1> 1) (2.13)
with \; = i%.

(A2) The perturbation F((,¢) = (F1(¢,¢), Fo(¢,0))T : O x T — PP~L s finitely differen-
tiable with respect to ¢ and ¢ with

IF(C )llce < e (2.14)
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In addition, F5(¢,¢) = —F1(¢, ¢) for =G and ¢ € T™.
(A3) The first order Fréchet derivative D:F((,¢) = (5; gi), where P;, 1 < i < 44sa
function from O x T™ into the space of bounded operators from P into {P~1. Moreover,

Pi=P'=-P, P,=Pf Py=-P (2.15)

for g =7q and ¢ € T™.
Then for any

¢>34100(1 + p)(3n + 27 + 1), (2.16)

where p and T are two fized positive constants with 0 < p < i and T > n+3, there exists € > 0
and a Cantor subset 11¢ C I with Meas(II\ II¢) — 0 as € — 0, such that for e < €* and w € 1I¢,
(2.11) has a quasi-periodic solution with frequency w.

From (1.3) in Section 1, we can find a Hamiltonian perturbation P(q,q,¢) such that
f(q,q, ¢) = 0zP and g(q,q,¢) = —9,P. Then taking the “Reality” condition of P into ac-
count, we can easily check the assumption (A3). Obviously, we can directly get the conclusion
in Theorem 1.1 from Theorem 2.1, thus we will discuss the proof of Theorem 2.1 in the fol-
lowing. In the remaining part of the present section we list a well known and fundamental
approximation result. Starting from the following lemma, we can set up a sequence of analytic
functions which approximate to the original finitely differential one.

Lemma 2.2 (Jackson, Moser, Zehnder) Let X be a Banach space and f € C*(R™; X)
for some £ > 0 with finite C* norm over R™. Let ¢ be a radial-symmetric, C> function with
support being the closure of the unit ball centered at the origin, where ¢ is completely flat
and takes value 1, and let K = ngS be its Fourier transform. For all o > 0, define f,(x) :=
K, x f = a%fRn K(%)f(y)dy. Then there exists a constant C' > 1 depending only on £
and n such that the following holds: For any o > 0, the function f,(x) is a real-analytic
function from C™ to X such that if AY denotes the n-dimensional complex strip of width o,
AV :={z € C"| |Imz,;| <o, 1 <j < n}, then for all « € N such that |o] < £, one has

0 folx) = Y w(ﬂmx)ﬁ“xa§C||f||cm‘*‘“| (2.17)

sup |
18|<t—]al p

TEAT

and for all 0 < s < o,

sup 0% fo () = 0 fo (@) | ¥ < C|| fllgeo™ 1o, (2.18)
zeAD

Here X, is the Banach space of bounded operators T : [[(R™) — X with the norm

x|
1T . = sup{[|T (ur, uz, - - wja): [Juall =1, 1 <i < af}.

The function f, preserves periodicity (i.e., if f is T-periodic in any of its variable x;, so is
fo). Finally, if f depends on some parameter £ € II C R™ and if the Lipschitz-norm of [ and
its x-derivatives are uniformly bounded by ||f||5., then all the above estimates hold with | - ||

replaced by || - ||~.
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This lemma is similar to the approximation theory obtained by Jackson, Moser and Zehnder,
and the only difference is that we extend the applied range from C*(R"; C") to C*(R"; X). The
proof of this lemma consists in a direct check which is based on standard tools from calculus
and complex analysis, for details see [27-28] and the references therein.

Fix a sequence of fast decreasing numbers s, | 0, v > 0, and s < %, for F(¢) € CY(T"; X)
we can construct a sequence of analytic and quasi-periodic functions F(V)(qb) such that the
following conclusions holds:

(1) F")(¢) is analytic on the complex strip T? of the width s, around T".

(2) The sequence of functions F(*)(¢) satisfies the bounds:

sup IF®)(¢) = F(9)Il < C||Fllgesy, (2.19)
S |F@ () = FM ()| < C||F ey, (2.20)
s

where C' denotes a constant depending only on n and ¢.
(3) The first approximate F (0) is “small” with the perturbation F. Precisely speaking, for
arbitrary ¢ € T , we have

PO < 1700) ~ 3 TR i gy 1| 32 FEED e

o<t laf <2
£ £
<C|Fllcesg+ Y IIFllomsg' < Cl|Flloe Y 55" < CFllce,
m=0 m=0

where constant C is independent of s, and the last inequality holds true due to sq < 1.

2
(4) From (2.19), we have the equality below. For arbitrary ¢ € T™,
F(¢) = FO(¢) + Z F@H(¢) — F) (). (2.21)

3 Reduction Lemma

In this section, we will give an iterative lemma, which is the key part of our proof. Let
m > 0 be the m-th step, we introduce some recursive parameters.

(1) eo = Ce, C denotes a positive constant depending only on n and D,
(2) € = eéHp) where p is a small constant satisfying 0 < p <

itp
3

)
(3) sm = eﬁl‘ with 0 < p < p < 1, which dominates the width of the angle variable ¢,
) T, which acts as a brldge from s, to spo1,

)

2_
1 . . .
[ty 41 and L,, Ilgil which denote the length of the truncation of Fourier

series,

(6) a = 5, which dominates the measure parameters excluded in the m-th iteration step,

( )C’Am— %(1—1— 2m) hence 1 <C’>\m <1,

2_
(2 zm) 8- , hence 60 r< Com < 260 -
_ 1y 2(3-n) 2(3-») 2(3-») :

(9) C’Wn =C1(2 - 55)€§ , hence C1€f < Cpum < 2076 , where C; is a

positive constant depending only on n and 7, and 7 is a fixed real number greater than n + 3.
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Before we give the iterative lemma, we list some notations.
(1) Suppose that B%? is the set of bounded linear operators from ¢7 into ¢4, and we define

the operator norm of its element by || - ||43. Accordingly, we denote the set of bounded linear
operators from P? into P7 by B9, and the operator norm of its element by || - ||[47. Hence
from the above section, we can conclude that ||| - |||, p—1 = | - [|¥*.

(2) Let T be the complexification of T", and define T% = {¢ € T : [Im¢| = max [Ime;| <
s}. Then for an analytic function f : T? — B (here B, a Banach space with norr;lﬂ B

be C,C", X, or B%9) is analytic, define

1115 == sup || f(¢)]".
$ET?

, may

Furthermore, if f has an additional (Lipschitz-continuous) dependence on w € II, we define the
Lipschitz norm

Hf(¢7w) — f(¢7 wl)”lg.

£ = 1715+ sup

ety |w — |
w#w! €11
(3) Choose € and «g such that
5(3-p)
0<ef? Lo K 1. (3.1)

(4) In what follows we use the notations a < b to represent that there exists a constant C
independent of m, e and oy but may depending on n, 7 and ¢ such that a < Cb holds.
(5) Let

=1\ U {wEH: k- w| < ZOT}.
kezZn\{0} | ‘

Apparently we know that Meas(IT \ II') < ay.

Lemma 3.1 Assume that at the m-th iteration step, we have a system as follows:

ix= (Am + Pm("")t))x (32)
with x = (1/),1Z)T € PP, w e Il,,, m > 1 which satisfies the following hypotheses:
(H1)
Am 0
where
Ay, = diag( i (w) + pim (wt;w) 1 @ > 1)
with

0< )\Lm < /\z’m << Ai,m SR |)\i,m — )\j,m| > CA7m|i2 —j2|.
Moreover, \; ., s Lipschitz-continuous in w and fulfills the estimate

qup o) = i)
wHw’ €Ty, |w — ']

< Cw,mi-

pim (P, w) : Ty x Il — C is real analytic in ¢, Lipschitz-continuous in w and of zero average,
i€, Jpn tim(9)de = 0. It also fulfills the following estimates in T? X IL,:

I/ui,nb|sm,'r+1 S C;L,’rnia ‘,Ui,'rn|§m S Cw,nbia (33)
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where |u|sr41 = ng:n ik |e®15 k|7 and fix = ﬁ Jpn 11(¢)e*?d¢ denotes the k-th Fourier

coefficient of .
Pim P2m n ; ; ;
(H2) P (o,w) = (PS'm P Ve T2 s, ¥ Iy — Xy is real analytic with respect to ¢,
Lipschitz-continuous in w and satisfies the estimate:

Wi

|| P || 2X2+4 <e h. (3.4)

Sm—1—50m; — “m—
Furthermore, for ¢ € T,, and w € 11,,,

Fl,nb = PEnL = _P4,ma Pg P2,m7 ?2,771 = _P3,7n- (35)

,m

(H3) For any w € IL,,,

2
QmJ .
k' )\m > 9 k va 2 ]-7 :
i — 52| n . L
k- w+ Xiim (W) = Ajm (w)| = Wa keZ" 1,7 =1, i#]. (3.7)

Then there exist 11,11 C Iy, with Meas(Ily, \ Ilyy1) < g1 and By (¢ w): TD 4, X Tl —
BPP N BP~LP=L which is real analytic with respect to ¢ € TS 45, Lipschitz-continuous in
w € 11, and satisfies

$(3-)
1B I 11Bum 15 <€’ (3.8)

DsPsSm —40m? p—1,p—1,8m—4dom m—

such that for any w € Il,,,, by the transformation x = ePm“D . (3.2) can be changed into

ip= (Aerl + Perl(Wt))(pv Y= (%@T EPP, we g1 (39)

Moreover, Apy1, Pmt1 fulfill (H1)—(H3) with m replaced by m + 1.

The above result is similar to the iteration Lemma 3.2 in [17], and the key part of the proof
is to find a suitable estimate for the solutions of the homological equations with large variable
coefficients. Hence the process is parallel except the following two points: (1) The width of
the angle variable s,, relies on ¢, , hence the system (3.2) in our paper has weaker regularity,
(2) || P X2+~ is controlled by ei_fi instead of €, in [17]. Consequently, we concentrate our
attention on these two aspects in the following.

Proof Now we include our system into a more general framework. Abbreviate the notations
Ay Ay Py Nijms tim, Bm, and ', by A, A, P, A\, p;, B and ', and Apg1, Amt1, Prtis
Niom+1 and f; mi1 by AT, AT PYOAT and ) respectively. Following the procedure in the
proof of Lemma 3.2 in [17], we set x = eB(®)p, and pluging into (3.2) yields (3.9), where

Ay = A+ diag(P), (3.10)
P, ={[A,B] —iB + P — diag(P) — R} + R+ (e BAe® — A — [A, B))

d .
+ (e BPef — P) — i(e*BaeB - B). (3.11)
Thus we need to solve the homological equation for the unknown B:

[A, B] —iB + (P — diagP) — R =0, (3.12)
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where B = (Bl B2) diagP = (diag((fl’“) diag(PZ“)), R = (g; gi). To this end, B;, 1 <i<4

should satisfy the homological equations:

—10,B1,ij + (M — Aj)Buij + (i — 1) B1ij + Py = R, 4,5 > 1, i # 4, (3.13)
—10,B2ij + (N + Xj)Baij + (i + 115)Baij + Posj = Rayj, 1,7 > 1, (3.14)
— 10, B3,ij — (Ni + Xj)Bsij — (pi + p15)Bsij + P3ij = Raj, 1,7 > 1, (3.15)
—i0,By,ij ()\j —Xi)Baij + (5 — pi)Baij + Pasj = Rajj, 4,521, 0 % 4. (3.16)

We only give the details of solving (3.13) in the following, and (3.14)—(3.16) can be handled in
the same way. In view of the proof of Lemma 3.2 in [17], we can obtain the estimates of the
elements of By. Precisely speaking, we have the following statements:

(1) BL“‘ = 0.
(2) For (i,7) with 0 < |A\; — )\J| < 2K,
r 1 8Cu,m7Yij(sm—om)
||Bl,’ij Hsmfélam < 2 2n+27+1 € «0 le 17 Hsmfcr (317)
Om, Vij
1
HBl ij Hsm—40'm < O_2n+1 ||P1 ij ||sm—(fm (318)
By the assumptions C), ym < 20156(3 p), Vij = li2 — j2| < 2Xij < 4K, Sm — o = 150y, =
7m we can obtain
2(3-n) 2-0p
8OH»m'71J(sm - Um) S 108801606 : |1n67§171 (3.19)
() )]
p)
Tt follows from (3.1) that % < 1. Consequently, we have
—15(3-0)
%“’13 1PLisll5 o
1B1i 5, 40, < g ”; : (3.20)
m Om ij

Taking (3.18) and (3.20) into account and using Lemma 5.2 in the Appendix, we get the estimate

of By = (Buij)ij>1:
—1%1(%—9) 61%(%—/3)
m— m—
HBl DsPsSm—40m) ”Blnp Lp—1lsm—4om < 5 Bnfortl |P1||p,p Lsm < 3 3nyoryl (3:21)
o om a2 om
_1
In view of (3.1), we can set 2 < ag. Then by the definition of a,,, and €,,, we get
_1_
Q> €790 for any m > 0. (3.22)

Taking the definition of ¢, into account, together with (3.21) and (3.22), we have the following
estimate:

1By

L
PsPsSm—40m? ||Bl HP—LP—LSm —4om
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o o 5% (3—0)— 1hs (147)— 224255 (1) (147)
m—1 m—1 15(3-P)— 155 i
a2, gt < T pGerEan < €m—1 e - : (3.23)
enem P
From the assumption
1
¢>3+100(1+p)(3n + 27 + 1), O<ﬁ<p<1, (3.24)
we can obtain 15 (2 —p) — 155 (1+70) — 2222 (14 p)(1+40) > (3 —p) — 5 (1+p) > 2(2—p).
Consequently, we have
( )
HBl||p,p,sm—4Um ||Bll|§—1,p—l,sm—4o'm < 6 3 7 . (325)

For the other terms of B, i.e., By, B3, B4, the same results can be obtained. Thus, we finally
get the estimate for B:

5(2_
BIIE p st BUIE-1 ot 0t < iy - (3.26)
The remaining estimates for A*, u™ and the new perturbed term P™ can be handled in the
classical way, and we do not give the proof here. For the detail we can refer to [30], and we just
need to verify (3.5) for P*.
From (3.13)—(3.16), it is easy to see that for real ¢, i.e., ¢ € T,

El((bvw) = _BlT(¢vw) = B4(¢7w)7 B2(¢vw) = BQT(QS’ OJ), §2(¢aw) = BS(¢7W)' (327)

Then by a direct calculation, we can obtain that R satisfies (3.5). Furthermore, from Lemma
5.3 in Appendix, together with the fact that A satisfies (3.5) and

1
e BPeP =P+ [P B]+ 5[[P,B],B} 4o,

1
e Phe” = A+ [A,B] + 5[ BLB] + -,

—sd

1 ..
dt [[BaB]’B]+"'

(eB) = B+ [BB]—i—g

2!

)

we can conclude that P satisfies (3.5). Till now we complete the proof of this lemma.

Remark 3.1 In the following, for a block matrix P(¢) :( 2 11;21 ), if the components P;, 1 <
i < 4 satisfy (3.5) for real ¢, we call P(¢) satisfies (3.5). Similarly, for a given operator
B(¢) = (g; gi), if (3.27) can be fulfilled for any real ¢, we call B(¢) satisfies (3.27).

We can obtain a more general reduction lemma below by applying Lemma 3.1.

Lemma 3.2 Suppose that at the m-th iteration step, we have a system as follows:
in=A+P"(wt))n, n= (o) ePl well,, m>1 (3.28)

with A in (2.12), and 11, described by (H3) in Lemma 3.1. Moreover, P™(¢,w) : T"xIL,, = X3
has the form P™(p,w) = Y. Pi(¢,w). In addition, P;(¢,w) can be written as

1<i<m

Pi(¢w) = PO (g,w) + 3 (P (pyw) - P ($w), 1<i<m (3.20)

v>4
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and forv > 1, P (qb, ) T% x 1L, — Xy is real analytic in ¢ € T} , Lipschitz-continuous in
w and satisfies (3.5). Moreover, we have the following estimates:

IPOIXE 372, |[PUHD - POXLE g ey >, (3.30)

5u+1

Then there exists U™ (¢,w) defined on Ty _45, X I, with U™ (p,w) = eB1(0w) ... eBm(éw)
where B;(p,w) satisfies (3.27) and the following estimates:

||| Z(¢7w)|||p,p,s7ﬂ,f4aiv H| Z(¢’W)H|p71,p71,si74ai < €i—1 ’ St=m ( . )

such that by the transformation n = U™ (wt,w)p, (3.28) can be changed into

ip=(Apy1 + Quir(wt))p, 0= (y,9) € PP, we i, (3.32)

where Ay, 1 fulfills (H1) in Lemma 3.1 with m replaced by m+1, and Q41 (¢, w) : T <1141 —
X1 can be written as

Qui1(d,w) = QU + S QU (6,w) — QY1 (6,w)) (3.33)

v>m+1

with @5,7:11) (¢, w), Qm+1(¢a w) being real analytic in ¢ € T , Lipschitz-continuous inw € I, 41

and satisfying (3.5) as well as the estimates:

~(m+1 P +1
IQUED XL < b QUID — QW)L Xt <t v m 1, (3.34)

Proof We proof this lemma by induction. When m = 1, we have

(1) (l/+1) (V)
P! - ; ) (3.35)
with
IPOISE <™, PP = PRI < et (3.36)
Consider the system
in=(A+P (wt))n, nePr, well, (3.37)

and it is easy to check the hypotheses (H1)—(H3) in Lemma 3.1 are satisfied. Applying Lemma
3.1 to (3.37), we can find a set IIy C II; and a linear transformation 1 = e such that (3.37)
is changed into

:(A2+ﬁ2(wﬂ)¢a (PGPP7 WEHZ’

where A, and P, satisfy (H1)—(H3) in Lemma 3.1 with m = 2. Moreover, the operator By (¢,w) :
n x II; — BPP NPBP~1.r—1 gatisfies the estimate:

51740'1

5 (3 )
HlBlHlpp,sl 401 |HBl|Hp 1,p—1,s1—401 <68 5T (338)
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Hence by the same transformation, in view of the expansion (3.35), the original equation (3.28)
for m = 1 can be changed into

= (Ao + P+ Y e B (P — PYePrp = (A + Q)+ D (QY TV — QY )e,

v>1 v>2

where
~é2) _ f’g 4o B (P1(2) _ Pl(l))eBl, qu) _ efB1p1(”)eB17 v > 2.

Let Qo = @52) + > (Qéyﬂ) - éu)). Thus from (3.36) and (3.38), we obtain
v>2

2

||Q22)HX1, § p, HQéL/Jrl) (V)”Xl, v > 27 (339)

which means that the lemma is true for m = 1.
Now suppose that the lemma is true for m — 1. At the m-th step, rewrite the system (3.28)

as
in = (A+ P™" Y wt) + P (wt))n, well,.
By induction, we can find a coordinate transformation n = U™~y with U™~ = eB1...eBm—1
and II,, C II,,_; changing the equation
in=(A+P" Ywt))y, well, (3.40)
into
X = Am + Qum(wt))x, x €PP, welly,, (3.41)
where
Qm = Q5 + Y QY — Q) (3.42)
v>m
and
Q51 e, < en i QY = QRIS <@ vzm. (3.43)

Differentiating the transformation n = U™~ 1y with respect to ¢, we have 1) = Um_lx—l— Um1y.
Inserting it into (3.28) and in view of (3.29), we can obtain the new system:
iX=(Am+Qm+ (Umil)ilmeWhl)X
= Anx + (@ + (UM TRIMUT
+ Z 1/+1) (V) + (Umfl)fl(PT(ri/+1) _ Prtr/L)Umfl)X

v>m

= (Am +Pr)x + > (P — PW)y, (3.44)

v>m

where

IPallXE < el B - POIXE < ebte, v >m, (3.45)

m—1>
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Consequently based on Lemma 3.1, there exist 11,41 C II,,, with Meas(IL;, \IL,;,11) < @pmr1,
and By, (¢,w): T x I, — BPP N BP~LP~1 gatisfying

s —40,
5(2_p)

|||Bm|||p,p,smf4om |HBm|||p 1,p—1,8m—40om < 67671—31 g . (346)

By the transformation x = e®m (Y, we can change (3.44) into
i = (A1 + P+ ) e P (P — PP (3.47)

v>m
with

VPt 5, < eh ) e B (BUHD - PO XL <2, yzm. (3.48)
Let Qi::fll) = Py +e (]37(,1"“1) - 13,%’”’) Q(VJr1 = e BupWePn 1 > m+ 1. Then

from the assumption 0 < p < i we obtain

QUL < b IQUAD — QW XL ey > 1 (3.49)

Sm+1 Sv41

Set U™ := U™ ! .eBm then the lemma is true for m, and we finish the proof.

4 Tteration Process and Proof of Theorem 2.1

Lemma 4.1 Let us consider the system

i) — Apy1p+ Fro=0, ¢=(y,9) PP (4.1)

defined on TY 5, X Ilyq1, where Ayyyr and Il fulfill the hypotheses (H1) and (H3) in
Lemma 3.1 with m replaced by m + 1, and the vector field ﬁm(gﬁ,w) = (fm(b,w), Gon (¢, w)) T
’H‘n

5 5oy X my1 = PP7 L s real analytic in ¢ € T? Lipschitz-continuous in 1,11 and

Sm—50m )

satisfies the estimate

1En 205, < em (4.2)
Furthermore, we assume g(¢,w) = —f(gé,w) for any ¢ € T™ and w € Il,,,41. Then there
exists a quasi-periodic solution @,i1(d,w) = Yma1(d W), Ymr1(d,w))T which is real analytic
in ¢ €Ty g, and Lipschitz-continuous in w € 1L, 1 such that

iOmi1 — Amp19my1 + Frn =T (4.3)
; — (el 2
With 1 = (ry,,75,) and
L 8 Xo,L b
‘|<pm+1||p,sm—90m < €m, ||T'm||9m —90 ., < E€m. (44)

In addition, for any ¢ € T™, we have

Umt1 =Tmits T = T (4.5)
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Proof Abbreviate the notations A,41, Amt1, ﬁm, fm, Tms Tmy> Nim+1, Him+1, Pmtis
Ym+1s Um+1 and T by A A, F, f, G, r, i, i, ©, y, ¥ and T'p, respectively. Then (4.3) can
be written as

{iy—Ay—i-]?: rt (4.6)

i+ A+ =12

In the following we just find the solution to the first equation, and the second one can be solved

similarly. Set r = (r!,7?) and let r! be an infinite vector with elements rjl:

0, Ajl < 2L,
(R (TSP v o
where I'y, is the truncation operator I'p, f = ) ]?keik"z’. Then y; satisfies equations as follows:
(1) For j with 0 < |\;| < 2L, =
—i0,y; + Ay + 1 (@)y; = - (4.8)
(2) For j with |\;| > 2L,
—10,y; + Ajy; + Do (@)y;) =To . Tryy =wv;. (4.9)

Now we solve the homological equations (4.8)—(4.9) with large variable coefficient. First let
us consider (4.8). By (3.3) and (3.6), we have |ujls,. —50m 741 < Cum+1J < Cpms1j2. Then
applying Theorem 1.4 in [17] to (4.8), we have

1 2C, m4132(sm—6am)

Yl s —70,m < me 0 | £ill 5 —600m - (4.10)

502
In view of Cy i1 < 20163(3 p), 7% <2X\jmi1 <ALy, and s, — 60y, = 120, = 12%, we

have

2C)um+15%(5m = 60m) _ 192C1e8 ™ e,

4.11
o p” (4.11)
Thus by (3.1) we can obtain
5(3-0)
192 58 1
192Ceg * 7 1 (4.12)
«p 20
Hence from (4.10)—(4.12), we conclude that
SV
€m’ jllsm—60
il sm—Tom < = . 4.13
1950 ¢ e L2l (4.13)
Next we consider (4.9). By (3.3), we have
> 1) kle®Iem=6m) < sl 6o ri1 < Chuimer . (4.14)

kezn
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5(2_ _ 5(2_5) [\, .
In view of Cpy 41 < 26’168'(3 p)7 1< @,we have Cp m+17 < 40168(3 P) I’\j?l < |i‘J’.|.Applying

Lemma 2.6 in [17] to (4.9), we have
1

N9 llsm—70m < WHfj”smfﬁaw (4.15)
I m
1 9tmom, ~
1 =T L)yl 70, < R 1/l —60- (4.16)
m

Taking (4.13) and (4.15) into account, using Lemma 5.2 in Appendix, we can get the estimate
of the ¢P-norm of y = (y;);>1:

_ 1
€m20 I
PiSm—Tom < m”f”wl,sm%am' (4.17)

ly

For the estimate of the Lipschitz norm, we proceed as follows. Given a function B of w, set
AB = B(w) — B(w'). Applying A to (4.8)—(4.9), we obtain the following assertions:

(1) For 0 < |Aj| < 2Ly,

—10,(Ay;) + X (w)(Ay;) + (o, w)(Ay;)
= 1000y (W) — (AN + Dpj)y; (') + Afj. (4.18)

(2) For |A;| > 2L,,,

—10,(Dy;) + A (W) (Ayy) +TL(pi(d,w)(Ayy))
= 1080y () = TL((AN; + Dpy)y; () = D). (4.19)

Applying Theorem 1.4 in [17] to (4.18), for 0 < |A;| < 2L,,, we obtain

1
1 em'® |~ ~
18Y;llsm~900 < 5573757 —3~ (1fillsm—60m | 20| + 1A Fjlls0—60 ) - (4.20)
A 10m J

Then applying Lemma 2.6 in [17] to (4.19), for |\;| > 2L,,, we have

1 -~ ~
18Y;ls, 90 < W(Hfjllsmfeaamlﬁwl N AFill s —60m)s (4.21)
5
ey e ~
(1 =Tr) (15 Y |50 —90, < W(||fj|\sm—6<rm|ﬂw| + 1A fillsp—60,m)- (4.22)

Then from (4.20)—(4.21), using Lemma 5.2 in Appendix, we get

1
10

67 A~ ~
129lp,sm-90m < —5zmg5r 71 (Iflp-1.5m ~50, | A0 + 1A Flp- 1,5, 50,)- (4.23)
OéerlUm

Divided by |Aw]|, together with (4.17), we obtain

— L
10

L € 2L
191, —90,, < W\Uﬂpq,m—saw (4.24)

m—+1¥Ym
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The estimate for ¥ is the same as y in (4.24). Hence we have

C E;z% 7501 X0,L Er%
0,
||S0||p75m_9‘77n < Oé72n+10§nn+27-+1 ||F||Sm750m : a%la%"“f“'

In view of the definition of o, and (3.22), we have
1 (A+p)(Bn+27+1) 5

o1 5
lellzs,~90, <em ™ T <,

where the last inequality follows from the assumption on ¢ in (2.16).

(4.25)

(4.26)

We handle with the estimate of the remaining part r! as in [17]. First, we divide r! into
three parts, that is 71 = r{ + ] + r}, where r{ and r} have the vector elements as follows:

rl__{o, 0 < [Aj] < 2L,
o (I =Tr)(=p5y5)s [Nl = 2L,

a_[=0=T0)f  0< || < 2L,
w0, Al > 2L,

and 73 is the truncation of 7, that is ri=(1- I‘L)f. From (4.16), (4.22) and

—Lpmom

e ,
L e L o e
m
< %m|ﬁw|,
Om
we get
15 1
c ¢ flIE 3
||r:]l.Hp71-,Sm790-m < %ﬂ”f”pflvsmfsg’" < §6%
Om

by Lemma 5.2 in Appendix. Since

- N
Il —row < D2 1RO < [ Fill, 50, Y e72Hm

|k|>Lm [k|>Lom,
— Lo
e m m o~ 6 o~
< Tnfj”smfwm < £||fj||sm750m7

applying Lemma 5.2 in Appendix, we obtain

€Em | .
||7"%||p71,sm770m < UTmanprl,smfwmmaX{] |Ajl < 2L}

m
€mLm \ em|Inen| =~
X Z%?m Hf||p_l757n_5o'7n < mTf||pr_lxsnL_5U7n

9

€ry |~ 11~
: ﬁ||f||p7155m750m < *fmanpfl,smeam'

m 3

(4.27)

(4.28)

(4.29)

(4.30)

3
Applying again Lemma 5.2 in Appendix to Arg = r3(w) —r3(w’), we get |r3]|5 g, <3

Foe ri, we obtain

1L e~ fmom .
HT?)”p—l,sm—Qam < 7n‘|f||p—1,sm—5am <
Om

Q)
Sl

W =

(4.31)
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By the same method, we can obtain the estimate with respect to r2, and consequently we have

3
)25, < €. (4.32)

Sm—90m

In view of §(¢,w) = — f(¢,w), we can get (4.5) by a direct calculation. Now we finish the proof.
Remark 4.1 (1) For a given vector F(¢) = (F1(¢), Fa(¢))T, if for any ¢ € T", we have

Fy(¢) = —Fi(9), (4.33)

then we say that the vector F' satisfies (4.33).
(2) Given an operator P(¢) fulfilling (3.5), and ((¢) = (y(¢),7(4))T, we assume that y =7y
for real ¢. Then it is easy to conclude that the vector P(¢)((¢) satisfies (4.33).

(3) Given B(¢) = (g;gig gigi;) such that for any real ¢,

Bi(¢) = Ba(¢), Ba(¢) = B3(9), (4.34)

then we call that B(¢) satisfies (4.34). It is easy to check that the operator eZ(®) fulfills (4.34)
if B(¢) satisfies (4.34).

(4) Given an operator B(¢) satisfying (4.34) and a vector F(¢) satisfying (4.33), we can
obtain that the vector B(¢)F(¢) satisfies (4.33).

Now with the above preparation work at hand, we begin to make the Newton iteration
process clear. Setting F({) = iC — AC+ F(¢, ¢), we have the following lemma.

Lemma 4.2 (Iteration Lemma) Assume that for m > 1, at the m-th iteration step, we have
a solution (m(d,w) = (qm (¢, w), Gm (¢, w))T : T%  x 1Ly, — O fulfilling the following hypotheses:
(T1) (m(@,w) has an expansion of the form (m(d,w) = > ni(¢,w), where for any

1<i<m
1 <i<m,n(pw) = (vi(d,w),v(p,w))" is real analytic in ¢ € T o, ., Lipschitz-
continuous in w € Il;, and satisfies the estimate
c 3
||"72 PsSi—1—90;_1 < Ei—l‘ (4‘35)

Moreover, v; = v; for any real ¢.
(T2) Cm is an ey, -approzimate solution to the system (2.11), that is, | F(Cm)mdsrr. < €m-

m

In addition, we have

-F(cm) = hm + pmnm + Z Z (pi(y+1) - Pz(y))nt

1<i<m—1v>m—1

Y > @ =6+ g, (4.36)

0<i<m—1v>m—1
which satisfies the following assumptions:

(a) him(¢,w) = (Rl (d,w), h2,(¢,w))T is real analytic in ¢ € T? —and fulfills the estimate

3
|20 <€

Sm m—1-

In addition, h,,(¢,w) satisfies (4.33) for any w € II,,.
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. ~ (m) . . ~ (m) .
(b) B =P, + % (BT Py and P,, " 2 TP xTL,, — X1, BY(¢,w) : T2 xTL,, —
v>m
X1, v > m are real analytic in ¢ € TY , Lipschitz-continuous in w and satisfies (3.5). Moreover,
we have the following estimates:
(m) 2_ . .
m V5 <en BTV = BRISE <at, v2m. (4.37)

m—1» Sy+41

1P

C o1 <l<m— an I/>m— 5 v ,w . ns X m_> 1 1S rea ana?/lc m
d) S ) 7;p chitz-continuous 1n n U llS 3.5 as well as t (& Estzmates.
]Inu L S h tZ 0 t ous w a d l h

1P = PUXE < et (4.38)

Su41

(d) Foro<i<m-—1landv>m-—1, Ggu)(@w) o Ty x 1Ly, — Xo is real analytic in
€ , Lipschitz-continuous in w and fulfills (4. and the estimates:
¢ € Ty , Lipsch d fulfills (4.33 d th

G — G| X0k < elte, (4.39)
(e) Form >1,
1
G = / DEf(Conrt + 811 )12 (1 — 5)ds. (4.40)

Then there exists 1 C I, with Meas(IL,, \ I,;,11) < amy1 and a quasi-periodic solution
Cm+1(d,w) defined on Ty X i1 such that (T1) and (T2) hold true with m replaced by
m+ 1.

Proof Set (11 = Gn + Mimy1, then

1
F(Cmt1) = F(Cm) + DeF (Cm)hm+1 +/0 DgF(Cm + 577m+1)7772n+1(1 —s)ds

1
= ]:(Cm) + i1 — Anerl + DCF(Cm)nerl +/ DgF(Cm + 377m+1)777%q+1(1 - S)ds
0
=t F(Cm) + im+1 — Amtr + P g1 + G- (4.41)
First let us investigate the higher order term g,,. For convenience, we set
DEF (Gt + 81m: ) := A(G(6,w), 8) = Tn(9,w, )

with DEF((, o) = A((, 9), gfn(gb,w) = (m—-1(¢,w) + sNm(d,w). Then for a fixed constant s, we
can obtain

'3, 9 OkAPNCE 9In(E
5¢£(¢:;W?S) - Z dei Ak 3¢§Zn a¢§:l~ (4.42)
Jrttjeti=e—3
Observe that for 0 < s <1,
~ 5
IG5 o = Cme1 + smmllfs,, < D €l <1, (4.43)

1<i<m
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then in view of i + k < ¢ — 3, we have

|55
dg OCF

<IF (¢ 9)llce- (4.44)

Sm

Here the norm is defined as the operator norm from H PP to Xs. Thus we have

| >,
p,Tn 8¢jk

LTy, 3 Hi;;f
Jitetikti=

(4.45)

p,T"

For the estimate of the Lipschitz norm, we proceed as follows: As what mentioned before, for
a given function T'(w), set AT = T(w) — T'(w'). Applying A to (4.42) we can obtain
—3 i 9k j1 s jk S
= ngw?:w’ 2 - 2 A(a%igcf) 3a¢§:n 8a¢§l”
g1 ieti=0-3
9 OFA NG ORC
Z 9 aCk A( a¢§71n) o a¢§:1
Jrbeinbi=0-3

d Ok A9, dinCs,
2. g OCk dgpin "A< Depir )

+

Jit-+ieti=L-3
Observe that
81’ 8k . 81 ak+1 - - -
(55 50 AGn(6.9).9)) = 55 5 ABGL(6,0) + (1= 0C(9,6), 9)AG,,  (446)

then in view of i + k + 1 < £ — 2, we have

z ak+1 . ~ ,
| 5 e A 6.0 + (1= 0G0, < 1FC D (447)
where the norm is defined as the operator norm from [] PP to X5. Thus
k+1
3T (8w, ) || X2 8¢ &
o= S22 " <Pl Al > 522 5
—3 n mllp, 1 n k n
’ ol T Jl+-~+jk+i_f3‘ it llip,T O¢ix llp,T
"G G,
1 Flce 2 HA( Dpin ) pIn H i lpn

Jite e ti=t=3

G,
+o o [|F e Z H ,

8 J1
Jite o tieti= ¢

Divided by |Aw]|, together with (4.43) and (4.45), we can obtain

pTn HA<88J;§§L) Hpﬂrn'

03T (¢, w, 5) ‘ X2,L ONCs 1L DI 1L
e e T2 D D ot g [ e
£—3 n n n
99 : Jit ik ti=t—3 07 llp.w 97+ llpT
Applying Cauchy estimate with respect to n; on TY, | g, |, together with the definition of

Sm, wegetfor 0 <j</f—-3,1<¢<m,

5__J(1+p)
6

<jlef | 7%, (4.49)

|51,
0¢J

p,T™
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thus
5 j(1+p)
_ 1 A A
3JCS %_;(21:%,;) ’ 6 (-3 =7
H 8¢J p,Tn * 1;m6i—1 < e%_j(elj;) §7 ](1 +p) <0 (4-50)
T meh 6 (-3

Set Q = {j >0: %— % < O} = {j >0: j> 2((f+i)} Consequently, from (4.50) we obtain

H8573Tm(¢,%8) ‘ Xo,L < Il Z HaJICS Hajkgﬁl c
a(bé—?) T ct i p'ﬂ‘" 8¢]k p,Tn
57171(1+p) 5 Jig(L+pe)
<||F|\cfzm1” ERCINE
it_(J,,lJr +3i, ) (1+p)
SHFllee p ey 7 ; (4.51)

*

where * means the admissible index set with ¢ indices j;,,---7j;, lying in Q. Then 2

ji i, ) (L
w > 7% — p, and thus

X2,L

03T (9, w, 5)
| =5

Tn

By integrating with respect to s, we have
1
Ny (¢, w) = / TP, w, s)(1 — s)ds : T" x II,;, = X»
0

with || N[5 5 < e;ézp. Now we apply Lemma 2.2 to Ny, then for {s,},>m, in view of (2.21),
we obtain Ny, (¢,w) = NS 4 > (Néfﬂ) - Néf)), where for v > m, Néf)(qb,w) is analytic in

v>m
¢ € Ty , Lipschitz-continuous in w € 1I,,, and satisfies

1_ _1_
INSIREE < INmlfems < 671", INGHY = NEISHE < | Nl Gimasy, ™ < e,21 e
Then from (4.40), together with (4.35), we get

= N2 + YT (NEHD - N2 = G + Y (G - G, (4.52)

v>m v>m

and for v > m, in view of the assumption that 0 < p < %, we have

3_
2

_1_ 5
IGSIIE < e fy ed g < enh <eb®, [GEHD = G X0 < 6, 51 el el | < el

m

~(m) . .
Set Fpp =hm+P,, i+ S (P =B Dy 3 (G =G+ GO Then

1<i<m—1 0<i<m—1
Fn(¢,w) is real analytic in ¢ € T} , Lipschitz-continuous in w € II,, and satisfies (4.33) and
the estimate

| || 1 < em 1+ efn ple,‘;b 1 —|—mein+p1 < ei:'pl = €. (4.53)
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In addition
Fo-Fum 3 S A 5 S 6 s

In the following we get down to find the solution 7,41 of the homological equation
in—An+ P"n+ F,, =0. (4.55)

Now let us give some more analysis concerning the operator P™(¢) := D¢ F (¢, ¢) defined in
(4.36). Using Taylor’s formula, we have

1
P = DCF(Cm) = DCF(Cm—l) +/ DgF(gm—l + S’I]m)’I]mdS,
0

then by induction, we get

1 1
P™ = D:F(G) + / DZF(Cy + smz)meds + -+ + / DZF((m—1 + 81m)1mds
0 0

> P (4.56)

1<i<m

For 2 < i < m, we set Tj(¢,w,s) := D?F(Ciﬂ + sni, ¢), Mi(p,w) := fol T;(¢,w, s)ds. Thus by
the same analysis as above, we have

1 1
ITi(d, w0, )| Gea <€ ") IMi(¢,w)|Gea <% ", 2<i<m. (4.57)

Hence, by applying Lemma 2.2, we can obtain M; = Mi(i) + > (M}VH) — M(D)) with

K3

v>i
ML < e 870 MY — M XE < e, (4.58)
Accordingly, for 2 <1i < m,
Py= MU+ 3 (M = My = PO+ 3PV - P, (4.59)
v>i v>i
Taking (4.35) into account, we have
IPONXE < 87 Pek < el [P — POXoE <87 ekt | < el
For i = 1, we have
1
DeF() = DeP(0.6) + | DEF(smms, (4.60)

where D¢ F(0,¢) € C*~H(T", X;) satisfies | D¢ F(0, ¢)|lce-1 < €0, and the second term can be
handled similarly. Then by applying Lemma 2.2, we can obtain

DcF(0,¢) = SV + 3 (Y — B, (4.61)

v>1
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where
IPSIX < eo, [IPS TV — PN <eostt < ekt v >0 (4.62)
Hence we have P, = P{") + 3 (P{*™) — P")) with
v>1
IPOIX < ef ™, PRI — POIN <t v 1. (4.63)

It is easy to verify that P™ fulfills the hypotheses in Lemma 3.2, then we can find an operator
U™(¢,w) defined on T} _, ~ x II, fulfilling (4.34) and the corresponding coordinate trans-
formation n = U™(wt,w)p. Differentiating it with respect to ¢, we have 7 = Ump + U™,
Inserting it into (4.55), we obtain

i = Apy1o+ Qmirp + F\m =0, (4.64)
where Q41 is defined by (3.33)—(3.34) and

11304, = 1U™) T Fn |29 < €. (4.65)

Sm—40m T

Moreover, we can conclude that F,, satisfies (4.33) in view of Remark 4.1 in this section.

Consider the system ip — Ap190 + ﬁ = 0 defined on T? x I;,41, then applying

Sm—40m

Lemma 4.1, we can find a solution ¢;,+1(¢,w) such that

i¢m+1 - Am+190m+1 +Fn=rn

with
5 3
lom+1 §7sm_90m <€&m, ||7’m||§27_£90m < €. (4.66)
Hence (4.64) becomes
i<pm+l - Am+190m+1 + Qm+l§0m+1 + ﬁ = Qm+190m+1 + Tme- (467)

Let i1 = U™ 11, from (3.31) and (4.66) we have

411 0, < (4.68)
Taking (3.31) and (3.33)—(3.34) into account, the homological equation (4.55) has the form:
41 — A1 + P N1 + Fiyy
= iU Omy1 + U™ Pmy1 — AU Omi1 + PU™0mi1 + Fin
= U™ (igmi1 = (U™) AU pmir + (U™) T U™ s +3(U™) 7 U pmps + (U™) 7 Fo)
= U™ (i¢mi1 — Ay 19mi1 + Qmi1Pme1 + Fin)
= U™(Qm+1Pm+1 +7m) = UM Quuit (U™) i1 + UM

= hm+1 + pm—i—lnm-i-lv (469)
. ~ (m+1)
where Ppp1 =P, + Y Pfri’_tll) ng_l satisfies
v>m+1

T ||sm+1<esa PoBYED — B IXE <l > mt 1, (4.70)

5u+1
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and A 41(¢,w) is real analytic in ¢ € Ty || with

3
X07 2

M 305 < e (4.71)

Consequently, from (4.41), (4.54) and (4.69), we can obtain

FGms1) = bt 4 Poginmr + 3 > (P = Py,

1<i<mv>m

+ Y D@ =G+ g,

0<i<mv>m

and from (4.38)—(4.39), (4.68), (4.70)—(4.71) and Remarks 4.1 in this section, we get that

X
IF(Cmt 1), < €mtr

and all the assumptions in (T1) and (T2) hold with m replaced by m + 1. By now we finish the
proof.

Proof of Theorem 2.1 It remains to find the first approximate solution 7; to (2.11) and
then to show that (T1) and (T2) in Lemma 4.2 are true for m = 1. By using Taylor’s formula
we have

F(61) = F(0) + D¢ F(0)m +/0 DZF(sm)ni(1 — s)ds

1
— F(0,6) + iy — A + D F(0, 8 + / DEF (s )2 (1 — s)ds
0
= Fo(é) + i — At + Po(é)m + g1, (4.72)

where Fy(¢) € C*(T™; Xo) and Py(¢) € C*~1(T™; X;) satisfy

[Fo(@)llce: Po(@)llce-r < 11F (g, 8)llcr < eo. (4.73)
Then applying Lemma 2.2 to Fy(¢), we get Fy = Féo) + > (Féyﬂ) — FOV)) with
v>0
IFSONX0 < eo,  [|FS ™) — X0 < eost < e, v >0, (4.74)

From (4.61)—(4.62), we get Py = Péo) + > (Péuﬂ) - P(g'/)) with the estimate
v>0

P15 <o, 1P = PRI, <t v o, (4.75)
The homological equation we hope to investigate is
in — An+ Pon + F” =0. (4.76)

Fix k,i and j and set Ryi; = {w € I: [k-w 4% — j2| < agﬁw Yo # Mo o= 10\

U Rkij)- Then it is easy to check Meas(I' \ Iy) < cg. Hence from Lemma 3.2 in [17] we
kEZL™ i#]
know that for w € Ily, there exists an operator By(¢,w) : T?

S0 —40’0

x Iy — BPP N BP~LP~L and

5

|HBOHp,p,so —400> |||BO|||p 1,p—1,s0—40¢ <€O (477)
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such that by the coordinate transformation n = e®0p, we can change the system in = (A—i—PéO))n
into the new system ip = (A1 + Pi)p, where Ay apparently fulfills (H1) in Lemma 3.1 and

~ 3
| Py[|X1# < €. Then by the same transformation, (4.76) can be changed into

ip— Mg+ Pro+ e BRI - P)ePop + e PR =i — Mip+ Qo+ Fy = 0
v>0

with Q1 = Q1Y + (@) — Q")) and

v>1
~§1) = Py e Bo (Po(l) - Péo))eBO, Qg”) = e_BOPO(V)eBO, v>1.
In addition, from (4.75) and (4.77) we obtain
Q13 < + ™ <e™, QP - QNN <t vzl

Applying Lemma 4.1, we can find a real analytic solution ¢1(¢) such that

isbl —Mor+Fy =710

and [Jo1 15 o o0, < e§, HTOH?;O’%O < 60 Setting 11 = eBo¢py, similarly to (4.69), we conclude
i’f]l A’I]l + P0771 + FO( ) P17]1 + hl,
where @
Py =ePoQePo =P, + Z(Pl(V—H) — Pl(u)), hy = eBorg.
v>1
Hence

1B 1 < e, B PO <o, uz

Sy41 = 4

|50 < €5 (4.78)
Thus by setting Géu) = FO(V) for v > 0, we obtain

F(m) =hy+ Py + Z(Géu-i-l) _ G(”)) + g1,
v>0
which fulfills (T1)—(T2) in Lemma 4.2 with even better estimates.
Finally, letting II¢ = () II;, (*°(wt,w) = li_r>n Cm(wt,w) = (¢ (wt,w), ¢ (wt,w)), then
ZZO m o0
(™ (wt,w) is a quasi-periodic solution of frequency w € II€ for (2.11) and ¢*° (wt,w) = q (wt,w).
In addition, Meas(II\IT)< 3" am<ag(e) — 0,as € — 0 and [[¢ (¢, w) || xcre < 32 €6, <es.
m>0 m>1
We finally finish the proof of Theorem 2.1, and the proof of Theorem 1.1 immediately follows.

5 Appendix

Lemma 5.1 Define the Sobolev space

27 1
dPu |2 3
P _ . _ —
17((0,27)) = {u() : w(0) = u(2r), ull, (/0 o) < oo}
Then we have the interpolation estimate below

ull*~ < full ™" lully, ™ for 0<n<r<m<p.
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Proof The proof can be found in [22], we omit it here.

Lemma 5.2 Let F' = (Fjj)i;>1 be a bounded operator on 2. Assume that the matric
elements (Fy;) are analytic functions of ¢ € T%. Let R = (R;;); j>1 be another operator with
matriz elements depending analytically on ¢ € T? and ||R;j|ls < ﬁHFz—jHS,(,,i # 4, and
Ri; = 0. Then R is a bounded operator on (* and ||R||y < *=||F|s. Moreover, let f = (f;);>1

be a vector in % with the vector elements f; being analytic function of ¢ € T™". Assume that

4n,+1

r = (75)j>1 s another vector of which the vector elements depend analytically on ¢ € T%, and
. n+1
7l < %||fj||s_g, j > 1. Thenr € (% and the >-norm |r|ly < 2| f]]s.

Proof The proof of this lemma can be found in [17].

Lemma 5.3 Let P = (2 gi) be an operator with the elements P;, 1 < i < 4 fulfilling
(3.5), B= (g; gj) be another operator satisfying

B,=-Bf=B,;, By=Bj, By=Bs. (5.1)

Then the operator [P, B] = PB — BP satisfies (3.5) also.

Proof The conclusion of this lemma can be obtained by a direct calculation.
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