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Abstract Let T, be the bilinear Fourier multiplier operator with associated multiplier
o satisfying the Sobolev regularity that sup ||ox|lyys@en) < oo for some s € (n,2n]. In
KEZL

this paper, it is proved that the commutator generated by T, and CMO(R") functions is
a compact operator from LP'(R"™ w1) x LP?(R™, w2) to LP(R™, vz) for appropriate indices
p1,p2,p € (1,00) with % = iJré and weights w1, we such that W = (w1, w2) € Aﬁ/;(RQ”).
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1 Introduction

As it is well known, the study of bilinear Fourier multiplier operator was origined by Coifman

and Meyer. Let o € L>°(R?"). Define the bilinear Fourier multiplier operator T}, by

T (f1, f2)(x) =/ exp(2miz (&1 + &2))o (&1, &2) F f1(&1)F f2(€2)dE1dE, (1.1)

R2n
for f1, fo € Z(R™), where and in the following, F f denotes the Fourier transform of f. Coifman
and Meyer [6] proved that if o € C*(R?"\{0}) satisfies

10810220 (61,62)] < Cay s (|61] + [&a]) = Ut Flo2D (1.2)

for all |a1] + || < s with s > 4n + 1, then T, is bounded from LP*(R™) x LP2(R") to LP(R™)
for all 1 < p1,p2,p < oo with % = p% + p%' For the case of s > 2n 4 1, Kenig-Stein [18] and
Grafakos-Torres [12] improved Coifman and Meyer’s multiplier theorem to the indices § < p < 1
by the multilinear Calderén-Zygmund operator theory. In the last several years, considerable
attention has been paid to the behavior on function spaces for T, when the multiplier satisfies
certain Sobolev regularity condition. A significant progress in this area was obtained by Tomita.
Let ® € .7 (R?") satisfy

DN =

supp® C { (61,62 + 5 < Jéa| + 6ol < 2;
D> (277,27 ) =1 for all (§,&) € R*™\{0}.

KEZ

(1.3)
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For k € Z, set

01 (81,82) = ®(61,82)0(2761,2762) (1.4)

and

N|=

llowllws®eny = (/Rzn(l + &1 + &) | Fou (&, &) d§1d§2>

Tomita [21] proved that if o satisfies the Sobolev regularity that

sup ||low||ws reny < 00 (1.5)
KEZ

for some s € (n,2n], then T, is bounded from LP*(R™) x LP2(R™) to LP(R™) provided that
p1,p2 € (1,00) and 1% = p% + p%. Grafakos and Si [11] considered the mapping properties
from LP1(R™) x LP2(R™) to LP(R") for T,, when o satisfies (1.5) and p1,ps € (22,00), then T
is bounded from LP*(R™) x LP2(R™) to LP(R™) with % = pil + p%. Miyachi and Tomita [20]
considered the problem to find minimal smoothness condition for bilinear Fourier multiplier.

Let .
Joulwesesan = ([ (@ (@11 Foner. &) Pderde)

R2n

where (&) := (14 |€x]2)2. Miyachi and Tomita [20] proved that if

sup |0 [[wer.s2 (m2my < 00 (1.6)
KEZ

for some s1,s2 € (%,n], then T, is bounded from LP*(R") x LP*(R") to LP(R™) for any
p1,p2 € (1,00) and p > % with % = p% + p%. Moreover, they also gave minimal smoothness
condition for which T, is bounded from HP*(R™) x HP2(R"™) to LP(R"™).

The weighted estimates for the operator T, are also of great interest. As it is well known,
when o satisfies (1.2) for some s > 2n + 1, then T, is a standard bilinear Calderén-Zygmund
operator, and then by the weighted estimates with multiple weights for bilinear Calderén-
Zygmund operators, which was established by Lerner et al. [19], we know that for any p;,ps €
[1,00) and p € (0, 00) with % = p% + p%, and weights wy, ws such that @ = (w1, ws) € Az(R?")

(for the definition of Az(R?"), see Definition 1.1 below),

2
ITo (f1, f) |l oo @nwgy S T I Fellzon @ )
k=1

where and in the following, for indices p1,pa, we set p = (p1,p2) and p € (0,00) such that
1% = p% + p%. By developing the ideas used in [19], Bui and Duong [4] established the weighted
estimates with multiple weights for T, when o satisfies (1.2) for some s € (n,2n]. To consider
the weighted estimates for T, when o satisfies (1.5), Jiao [17] introduced the following class of

multiple weights.

Definition 1.1 Let m > 1 be an integer, wy,--- ,wy, be weights, p1,-- ,pm,p € (0,00)
m
with % = kglﬁ, e € O,pr] (1 <k <m)and 7= (r1, -+ ,rm). Set @ = (wy,-- ,wn),
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m P

P=(p1, -, pm) and vy = [[ wy*. We say that @ € Ag/z(R™) if
k=1

1 1

1 m -
P Pk
sup |B|/l/w dx Il B|/wk e dx) < 00,

BCR™ paiet
TPk 11
where and in the following, when p, = 7y, (% Jpw, ™ (x) dx) "r  PE 45 ynderstood as
1
inf TPk
(o wn)
When ry = -+ =1, = 1, Ag/r(R™") is just the weight class A 5(R™") introduced by Lerner

et al. [19]. By some kernel estimates of the operator Ty, Jiao proved that for ¢1,ts € [1,2)
such that % + i = 2, pr € (ty,00) with k& = 1,2, and wy,wo such that @ € A (R%)7
then T, is bounded from LP*(R™ w;) x LP2(R™, wy) to LP(R™, vz). For the weighted estlmates
with A, weights when o satisfies the regularity (1.6) (see [8, 15]), here and in the following, for

p € [1,00), A,(R™) denotes the weight function class Muckenhoupt, and A, (R™) = |J 4,(R").
p21

The commutator of the multiplier operator T, has been considered by many authors. Let
T, be the multiplier operator defined by (1.1), by, by € BMO(R") and b = (by, by). Define the

commutator of b and T, by

(1)) = 3 e Tole (o fo) (@) (L.7)
with -
b1, T )1 (frs £2)(@) = bi(2)To (fr, f2)(@) — Ty (bifu, f2) (@) (18)
and
(ba. T la(fr, f2)(@) = ba(@)To (fr, f2) (@) — T (f1 befo) (). (L9)

Bui and Duong [4] established the weighted estimates with multiple weights for Tgyg when o
satisfies (1.2) for s € (n,2n]. Hu and Yi [16] considered the behavior on LP*(R™) x LP2(R"™) for
T, ; when o satisfies (1.6) for 51,52 € (%,n], and showed that T, 7 enjoys the same L (R") x
LP2(R™) — LP(R™) mapping properties as that of the operator T,. Fairly recently, Hu [14]
considered the compactness of T 7, and proved that if by, b, € CMO(R"), o satisfies (1.6) for
some $1, Sg € (5, ], then for pg € (n/sk,00) (k=1,2) and p € [1,00) with % = p%"‘p%,v T, 5is
a compact operator from LP!(R™) x LP2(R™) to LP(R™), where and in the following, CMO(R")
denotes the closure of C§°(R™) in the BMO(R"™) topology, which coincide with the space of
functions of vanishing mean oscillation (see [3, 7] for details). Zhou and Li [22] considered the
weighted compactness with A, weights for T_;. By combining the ideas used in [2, 14], Zhou
and Li showed that if by,bo € CMO(R"™) and o satisfies (1.6) for some s1,85 € (%, ] then
for pr € (n/sg,0) (k =1,2), p € [1,00) with % = p% + p%, and wy € A, 5, /m(R"), T,zisa
compact operator from LP*(R™ wi) x LP2(R™ wsy) to LP(R™, vgz).

The main purpose of this paper is to consider the weighted compactness of T’ ob with multiple
weights. We will show that if o satisfies (1.5) and by,bs € CMO(R"™), then for appropriate
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indices p1,p2,p € (1,00) with l = i + i, and weights wq,ws such that @ = (wy,ws) €
ﬂ/F(R2 ), T, 7 is compact from Lr (R” wy) X LP2(R™, wsy) to LP(R™, vz). Our main result in

this paper can be stated as follows.

Theorem 1.1 Let o be a multiplier satisfying (1. 5) for some s € (n,2n] and T, be the
operator defined by (1.1). Let t1,t2 € [1,2) such that —I— = o, bi,bo € CMO(R"). Then
for pr € (tx,00) with k = 1,2, p € (1,00) wzth = = —|— = and weights wi,ws such that
W= (w1, ws) € Aq/t«(RQ") and vg € A,(R™), the commutator T is a compact operators from
LPY(R™ wy) x LP2(R™, ws) to LP(R™, vg).

Remark 1.1 It is well known that, the class A 5(R*") with P= (p1,p2) is really large than

2
the weight class [] A,, (R™), and the weighted estimates with multiple weights A 5(R?") are
k=1

more interesting and more refined than the weighted estimates with A4, (R™) x A,,(R") for

the bilinear Calderén-Zygmund operators (see [19]). To prove Theorem 1. 1 we will employ the
idea used in [2, 14]. However, the idea that controlling T' L.5(f1, f2) by H M, s, f which was
used in [14, 22] (even if the function Mx(f1, f2) with 7= (& %) 1ntroduced by [17]) does not

s1’ s
work. To overcome this difficulty, we establish some new estimates for the kernel of T, and

introduce a new subtle bi(sub)linear maximal operator to control T ;

Throughout the article, C' always denotes a positive constant that may vary from line to
line but remains independent of the main variables. We use the symbol A < B to denote
that there exists a positive constant C' such that A < CB. For any set £ C R", xg denotes
its characteristic function. We use B(z, R) to denote a ball centered at x with radius R and
C(z,R) = B(z,R)\B(z,%). For a ball B C R™ and A > 0, we use AB to denote the ball
concentric with B whose radius is A times of B’s. For any v € [1,00], we use 7’ to denote the
dual exponent of v, namely, % + % = 1. For a locally integrable function f, M f denotes the
Hardy-Littlewood maximal function of f, and for 7 € (0, c0),

1
=

M f(z) = (M([f]")(z))
Let M* be the Fefferman-Stein sharp maximal operator. For ¢ > 0, M? denotes the operator
defined by

1
5

M f(x) = (MA(|f]) (@)~

2 A New Maximal Operator

To control the multilinear Calderén-Zygmund operators via the Fefferman-Stein sharp max-

imal operator, Lerner et al. [19] introduced the bi(sub)linear maximal operator M by

M(f1, f2)(z = sup H |B|/ |fie(y) |y
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For r1,79 € (0,00), Jiao [17] generalized the operator M, defined the maximal operator Mz by

Mz(f1, f2)(z SUPH |B‘/‘fk Yk) ’“dyk) ;

and established the weighted norm inequalities with multiple weights Aﬁ/;(RQ") for M. Let
4 € R and 71,72 € [1,00). Define the bi(sub)linear maximal operators ./\/lgg and ./\/lgg b

1 T
MU (Fr, f2)(a fsupzm (57 /. 1niray)

1 raa \ 75
X(|2jB| 2J_B|fz(z)| dz)

and

1 s
M? (f1, f2)(z) = SHPZ:?”S2 ®/3|f2(z)|r2dz)

1 7
< (ko nay)
(‘QJB| )y

respectively. It is obvious that for any 6 < 0, z € R™ and k =1, 2,

; (f1, f2)(z) S Mi(f1, f2)(2).

For the case of 6 = 0 and r; = r9 = 1, these operators were introduced by Grafakos et al. in
[9]. Although we do not know if the operator Mj can be applied to prove Theorem 1.1, as
the operator M do in the proof of the weighted compactness of the commutator of multilinear
Calderén-Zygmund operators (see [2]), we will see that the operator ./\/lgkg (k = 1,2) are suitable
replacement of M in our argument.

As it is well known, for a weight w € A, (R"™), there exists a positive constant 6, such that
for any ball B C R™ and any measurable set £ C B,

w(E) _ (B[N
(@) (@) . (2.1)

For a fixed 6 € (0, 1), set
Ry = {w € A (R") : wsatisfies (2.1)}.

Our result concerning the operators ME 5 can be stated as follows.

Theorem 2.1 Let ri,75 € (0,00) and § € R, py € [r1,00) and ps € [rg, ), % = p% p%.

Let wl,wg be weights such that W € AP/T(RQ”) and vg € Ry for some 0 such that 6 <
nf min p1 pz} Then both of the operators M*ér ./\/lgg are bounded from LP*(R™ wp) X
LP2(R™, wq) to LP>°(R™,vg). Moreover, if py € (rg,00) with k = 1,2, then these operators

are bounded from LP*(R™ wq) x LP2(R™ ws) to LP(R™, vg).

To prove Theorem 2.1, we need the following characterization of Aﬁ/F(RQ"), which was

proved in [17].
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Lemma 2.1 Let wy,ws be weights, p1,p2,p € (0,00) with % = =4 p%, rr € (0,px] (k=

1
p1
1,2). Then the following conditions are equivalent:

(i) @ € Ag/r(R*™); 1

™o r
(ii) Vg € AP/T(R”)} and for k = 1,2, Wy, T L c APWk/T(pk—rk)(Rn) if i £ pr oF w,f’“ c
A1 (R™) if ry = py, here £ = L 4 L.

T1 T2

Proof of Theorem 2.1 We first consider the case of py € (g, 00) with k = 1,2. Since the
argument for M?g and ./\/lgg are very similar, we only consider the operator Mgg. We will

employ the ideas used in [9]. Let M be the centered maximal operator defined by
Mg = s ety
B:ball centered atz Vw
As it was pointed out in [9], it suffices to prove that for some ¢1, g2 € (0, 1),
- | fe [P wp \ [T
~5 (f1, f2)( H{ ((*ﬂ) )(x)} : (2.2)

1
Pk

For each fixed k, we know by Lemma 2.1 that w, ™ € A, . /r(pp—ry)(R"), and so there

exists a positive constant o > 1 such that for any ball B,

= = %1 “mo .
" ' — " . 2.3
‘B‘/wk y) N|B|/Bwk (y) dy (2.3)
For k =1,2, let
o = DI o= —" (Prqr — k)
pric+r(pr =) (1= ) Ti(p —7)(1 — qr)
It is obvious that % > 1, v > 1, and
/
Prqe — Tk T(PrqE —Tk) —TR(P —7)(1 — qr)
Qk(pk) - Tk;) = o} (25)

(Prax — 1) — Tk(* - 1)(1 — Q)

An application of the Holder inequality gives that

1

([ inera)™ < ([ 1pwre e wa) ™
([ (provrw) E) T e

and

/B(wi”(y)vllgql(y))_%fllldyé (/Bwl_pifll(y)dy)”z(/vag_l(y)dy)“~ (2.7)
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On the other hand, we have by the inequalities (2.3)—(2.5) that

/
17 91 (P1—r1)

T Pia 7’7—171 (pra1—r1)— T1(‘B 1)(1—qq)
1 — 1
/ w, (y)dy = / w, (y)dy
B B

1 1(p1—r1)
! o1 2171 (P1=m1
1_q171(1717 1) e P11 —"1
SIBl A wy " (y)dy :
B

Note that

1(;_;%(1_@);(;_% o1

M\ @ipr g —r1 /Y N\ Py P P11

Combining the inequalities (2.6)—(2.8) then yields

1 1

([ 1nwra)™ s ([ inere o o o)™

S L1
|B|/w1 ' (y)dy> o
p ()

|B|r1 P1Q1 |/ O LT e .

Recall that vz € A,,(R™). Thus for each ball B,

1

([ 1n0ra)™ < (= [ nwreat o o)™

X(%g?)) ‘B‘/w;% Twa)

Similarly, we have that

1RWIPW) T S (A [ IR s e)as)
2i B vi(27B) Jaip

X (V@‘(QjB»% (/QjB wy (z)dz) e,

Therefore, for each fixed x € R™ and ball B containing z,

;263'2_1' |B/ |f1(y)|™ dy (W 2]B|f2(z)|r2dz)5
2 - q"' anon (Vi o
sg{Mﬁw((W) )y} (2B

v i a2 ! 11
5j _%(V@ (2’B) )p2
XE 2972 129 B !

T PR L _ L

T Q)
(2]3\ g U (Yk) yk)

k=1

801

(2.8)
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This, along with the fact that @ € Ay/#(R*") and the fact that valB) < 9-in% Jeads to that

vg(29B) ~
;2&2 \B|/ |fi(y |f’1dy> (|2le‘ ZjB‘f2(Z)|r2dz)G
2 X . ﬁ .
SE{M%((WY)@} ()™ zm (L2 2y
: H (o (242" o™

since 6 < 7. This establishes (2.2).

For the case of py, = r, with k = 1,2, the proof is similar to the case of py € (rg,00) and is
more simple. In fact, for each x € R™ and ball B C R™ containing x, as in the proof of (2.2),

we can verify that for k = 1,2,

(] i)™ < (””“UéB))”l’“IBl*ﬂ{Mﬁm((W))(f)};k

1 1

|B|/wk Wﬁ yk dyk) " pka

which implies that

w

200 % TT (o, ((B1) )}

and then shows that Mgg(fl, f2) is bounded from LP* (R™, w1 ) x LP2(R™, wq) to LP*(R™, v3).

3 Proof of Theorem 1.1
Let o € L*°(R?") and ® € .7 (R?") satisfy (1.3). For k € Z, define
0k (€1, &2) = ©(27761,2776)0 (&1, &2).
Then 74 (£1,&2) = 04(27%&1,27%¢,) and
F 101, 6) = 2" F 10, (271, 2"60),
where F~! f denotes the inverse Fourier transform of f. For a positive integer N, let

N(1,&) = Z Tu(61,6), KV (x;y1,92) = F o™ (@ -y, — ).

[k|<N
For an integer k with 1 < k < m and z,¥;, 92,2’ € R", let
W (z, 25 y1,y2) = KV (23 y1,92) — KV (2'; 41, 92).

Lemma 3.1 Let q1,q2 € [2,00), and s1,82 > 0. Then

([ ([ 17 olameraa)® @) ® <ol

52
Wq1 Taq2 (RZTL)
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For the proof of Lemma 3.1, see Appendix A in [8].

Lemma 3.2 Let o be a bilinear multiplier satisfying (1.5) for some s € [0,00), r1,72 € (1, 2]
and vy € (0,s]. Then for every x € R™ and R > 0,

Lo = A ) s
S@R)TTETEWMEL Lo (f ) (@) + Mi(fr, f2) (@) (3.1)
and
/u . /| R i) ) dnd
SER)TTAIEMYL o (1 f)(@), (3.2)

Furthermore, if v € (0,s] and —y + w+ e+ 1>0, then

/ /| el v ) )
" rz—y1|<
SR TIRTERMD o (1 12)(0) + Mefr, £2)(2)). (3.3)

Proof By the Holder inequality and Lemma 3.1, we have that for each [ € Z,

/ / | F k(= y1, @ — y2) | f1(y1) fo (y2) | dyrdys
lo—yal<2 1R (220 R)

s ([ ([ F - wl
|z—y2|<2!-1R JC(x,2!R)
1

X (2%(z — 1/1))”’3dy1):%dyz):é ﬁ (/ \fzc(yzc)I’“’“dyk)a
k=1 g

B(z,2'R)
2 1

st L ([ )™ (34)
B(z,2'R)

k=1

and

/ / | F G (x = y1, 2 — y2)| f1(y1) fo(y2) | dyrdys
C(z22-1R) JB@2 R)

/
T2

s @zror) ([ ([ 17—y 2lrhay)
C(x,2021—1R) B(z,2'R)
<@e-Aias) F ([ )T ([ e
B(z,2'R) B(z,2!2/ R)

1
s<2f+”“R>”2“(%+%)(/ A)dy)”
B(z,2'R)

1

« (/B@ o o)) . (3.5)
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Therefore,

/ / \F 10 (z — g1, @ = y2)l| f1(y1) fa(y2) | dyrdye
n JC(z,2'R)
S @R TIIEWMEL L (1 ) (@) + Me(fr, f2) (@), (3.6)

which gives (3.1) directly. We can also obtain from (3.5) (with { = 0) that

/ / F G (@ =y, — o)1 f1 (1) F2(y2) | dyr dyeo
|lz—y2| >R J|z— yﬂ<R

e Sen(f e ([ )’
N Z ( B(z,R)| ' ) ( B(z,QjR)| ? | )
< (2KR) YA qul_fﬁ_ n (fl,fQ)(.T)

Finally, (3.6) implies that

Lo el e = w0 ol
mJlr—y1|<

<SR[ [ e e ) Bl v

I——o0 (z,2'R)

SE@R)TTATERMY L o (1 2)(@) + Mef1, f2) (),
since —7y + % + % 4+ 1 > 0. This completes the proof of Lemma 3.2.

Remark 3.1 Let o be a bilinear multiplier satisfying (1.5) for some s € [0, 00), 71,72 € (1, 2]
and v € (0,s]. As in the proof of (3.2), we can verify that, for each R > 0 and z,y € R with
|I’ - y| < Ra

/ / F 5y — y1,5 — 92) |11 (u1) F(9) dyadyo
ly—y21>R J|ly—y1|<R
5 (QKR) v +T2 M,E‘l),,y+ n + (fh f2)(x) (37)

Lemma 3.3 Let o be a bilinear multiplier satisfying (1.5) for some s € [0,00), r1,72 € (1, 2]
and vy € (0,s]. For R >0 and v € R"™ with |z| > 4R, set

Vi@ = [ [ e w0 b
ly2|<|z| /|y |[<R

and

VR (z) = / / F G n( — o — 92)| o) fo(92) |y dye
21tz |<|y2| <2t x|

[y1|<R

for positive integer I. Then for any weights w1, wa and pg € (rg,00) with k = 1,2,

_ TRESES
V(@) S lef 27 Hka”LPk(R" we)
k=1

1 1 — s — 1 1

1
PT _ o P e T o
X (/ w, 1 1(y)dy> 1 P1 (/ w, o l(z)dz) 2 P2
B(0,R) B(0,|=|)
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and

VE(2) S 2'af) 2"t >H||fk||m(mk

1 1

T T “mo 72 P
X (/ wy ™ (y)dy) (/ wy (z)dz) .
B(0,R) B(0,2|z])

Proof Note that when |y;| < R and |z| > 2R, |x — 31| > 5'. As in the proof of Lemma
3.2, we obtain by Lemma 3.1 and the Holder inequality,

Veile) % </ <lel </ |5 Ll sl =gl )
Y21x|T T=YilZ 5

1 1

x </B(O,R) |f1(y)|rldy>”</B(o7x) |f2(2)|r2dz) 2

1
< @ o) 2B ( )™ x [ inGrd)
B(0,R B(0,]z|)

)

‘ 3,
RSN
N\"“

dy2>

— ok + 4—"
< Ja| 772 )H L5 ll Lok e o)
k=1

e 1 S
X (/ wy ™ l(y)dy)T1 " (/ wy " 1(z)dz) 2o
B(0,R) B(0,|z|)

Similarly, for [ > 1, we have that

vi@s ([ ([ 1F e - - )
C(0,21z]) *J|yl<R

X </B(0,R) |f1(y)|’"1dy)ﬁ(/ o |f2(z)|r2dz)a

< [2la| T2t )H L fill Lo (R o)
k=1

—Pr 1_L - 11
« (/ w, ™ (y)dy) 1 P1 (/ wy " (z)dz) 2 P2
B(0,R) B(0,[2tz])
This completes the proof of Lemma 3.3.

Lemma 3.4 Let o be a multiplier which satisfies (1.5), r1,7“2 € (1,2] such that s € (% +
ot -+ 1) Then for each R > 0, xz,x’ € R™ with |z — /| < B nonnegative integers jy, jo

’I“2’ T1

with j* = maX{Jl,Jz} >2,

(/ (/ W a5 )b )
sz (B(er)) Sj1 (B(I,R))

Proof We employ some estimates in [17]. Without loss of generality, we may assume that

n

|z — 2/|* "7

»—m‘m\

1
dyz) =g

j* =7j1. Forl € Z, set

Wiz, 2's y1,y2) = F 15z —yr, 0 — y2) — F'o(2" —yi, 2’ — y2)
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and

‘ 3
o~
I\J\""

Jigi g, = (/ (/ Wi (z, ' yl,yz)lridzﬂ) dyz)
sz(B(va)) S_71 (B(IwR))

It was pointed out in [17] that

7_L)

Jl?jlva /S (2j1R)7S2_l(s "

On the other hand, by the proof of the inequality (3.6) in [17], we know that

n

Jijr e S 2Mx — 2|2 R)™* —ls—ar =75,

Therefore,

/

(/SJ’Q(B(ryR)) (/Sjl(B(x,R)) W (@, y1,y2)|’”5dy1> dy2>

n

m#“

rS—
|z — /| T
5 E : Jl;j17j2 + E Jl;jhjz S TR .

l: 2t z—a’|<1 l:2Yz—z'|>1

This completes the proof of Lemma 3.4.

Lemma 3.5 Let o be a multiplier which satisfies (1.5) for some s € (n,2n], t1,t2 € [1,2)
such that % + i = 2. Let pp € (tg,00) for k = 1,2 and wi,wy be weights such that @ €

n

Aﬁ/;(RQ"). Then for by, by € BMO(R"),

2 2
1T, 5(f1, f2)ll Lo ®n v Z”ijBMO(R") H | el Low (R7 ) -
j=1 k=1

Proof The proof here is fairly standard (see [4, 17]). For each fixed positive integer N, let
T, n be the bilinear operator with kernel K N in the sense that

Ton(f1, f2)(z) = . KN (5 y1,92) f1(y1) f2(y2)dyr dys. (3-8)
R n
Let b1,b2 € BMO(R"), [b1,T, n]1 and [b2, T, N]2 be the commutator of Ty, as in (1.8) and

(1.9) respectively As in the proof of Theorem 3.1 in [17], we can prove that if r1,rs € (1,2]
such that & > - + L then for € € (0,¢) with § =+ + %,

Mf([bk,Ta,N]k(fth))(x)S bkl BMo @n) (M7 (f1, fo) () + Mi(To N (f1, f2))(2))-

Now let py € (tg,00), wy, ws be weights such that @ € Aﬁ/;(]Rzn). We can choose 6 € (0,1)
which is close to 1, such that @ € Aéﬁ/g(RQ”) and r, = %’C < pi for kK = 1,2. Recall that by
Lemma 2.2, 1 € Aﬁ/t—(RQ") implies that vy € A,/ (R"). It then follows that for k = 1,2,

1[bx, To N1k (f1s f2)ll Lo (®n v ) S NbkllBMO @R (M2 (To, 8 (f1, f2))ll Lo (7 0)
+ IMe(f1, f2)llLe@n v)

2
S bkllsyoey [T 15l ox @ )
k=1
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if by,be € L°(R™). Note that for by, by € L>°(R™) and fi, fo € L (R"),

]\}glloo[bk7Ta,N]k(f1, f2)(@) = [br, To |k (f1, f2)(x)

holds for almost everywhere x € R™. Thus, by the Fatou lemma, for k = 1,2, by, by € L (R")
and f1, fo € S (R"™),

2

1ok, T 1k (f15 f2) |l v &7 v S &l BMO RN H | frll Lok R7 )
k=1

This, via a standard argument leads to our desired conclusion.

For a positive integer N, let .7, ny be the operator defined by

>0

TN (f1, f2)(x) = sup ’/ | | KN (25 y1,92) f1(y1) f2(y2)dyrdys |-
max |T—Yk|>€

Lemma 3.6 Let o be a multiplier which satisfies (1.5) for some s € (n,2n], r1,r2 € (1,2]

such that s € ( + et et 1). Then for any v < &+, 7 € (0,min{l,r}) with
i —l—r—, and:ceR"
2
N1 f2)(@) S My (o (fr J2) (@) + 3 MED o (1, fo) (@),
k=1

Proof We employ the ideas used in [9, 13]. For each fixed € > 0, let
Ty N e(f1, f2)(2) = / - KN (@ y1,92) f1(y1) fa(y2) dyrdys
(IR, [P Uk]>e

and
Lo (1 ) o) = [ K ) Rl
min |r—yg|>€

For functions f; and fs, let

Frr) = fe@i)XB@oWr),  fer) = folyr) Xz .o k), k=1,2.

A trivial computation shows that for y € B(x, %),

To.vie(f1, f2) (2, 2)] < |Tonie( 1o f2) (@, 7) = Tonse (1, f2) (0, )|
+ |To e (f1, 2) (0, 7))

5/ - W (@, y3 91, y2) fr(y1) fo (y2) [dyrdys
min |z—yr|>e€

1<k<2

+|Ton(f1, £2)(y) = To N (f1 f2)(y)]
+|To N (L )W) + [ Ton (£ £3) (W) (3.9)
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We obtain from Lemma 3.5 that

‘ 3
=N~
[~

o

S / / IWN(w,y;yl,yz)V'ldyl)
jlz Z1 Sjy (B(,€)) Sj, (B(x,€))

1

[ i)
Sy, (B(w,€))
S Mi(fi, f2)(2).

dyz) i

X
T !
/

(3.10)
On the other hand, it follows from (3.7) that for y € B(

z, %),
T (f1, £ ()] + |T0N<ff,f5>< )
S D (@t “ZMH+ o (1, f2) (@)
|[k|<N:2re>1 k=1
2

K _ n o on k
+ Y @R Y MY L (L )@)

|k|<N:2re<1 k=1

2
SO M a i (f1 ) (), (3.11)
k=1

where in the last inequality, we have invoked the estimate

ML o n () (@) SMEL o (f1 ) @),

since —s + & + ;& < —y+ ;= + > Similarly, we have that

T e(f1, f2) (@) = Tovic(fr, f2) (@, )|

A

[ -t 1K a5 0213 ) ) e

2, [ ukl<e

2
SO Mo () (@), (3.12)
k=1

Combining the estimates (3.9)~(3.12) then leads to that for y € B(z, §),
I To,n:e(f1, f2) ()] S \TU,N;e(fbfﬁ(xax” ZM(k R (fl»f2)( )
k=1
S Ton (frs f2) @) + [ To,n (f15 £2) ()] + ZMT I N (fl,f2)($)-

Recall that T, y is bounded from L™ (R™) x L™(R™) to L™*°(R") (see [8, 17])

Applying
the argument in the proof of the Kolmogorov inequality (see also [9, 13]), tells us that for



Weighted Compact Commutator of Bilinear Fourier Multiplier Operator 809

7 € (0, min{1,7}),

1 =

(e | Ton(h i) dy)

| ( €, 2)| B(z,5)
2 1
rkd Tk
1;[ <|B ‘T € | B(x,e€) |fk(yk)| yk)
Therefore, for each x € R™ and € > 0,
Tl D@1 S (et [ T )7y

|B(;I,‘, §)| B(z,5)

(e
|B(z, §)| B(z,%)

2
Y ML (1 ) (@)

k=1

T (F S3) ) dy)”

< M(To n(f1, f2)) ZMf"k)—’H— o (f1.f2) (@),

which gives us the desired conclusion.

Let ¢ be a non-negative function in C§°(R3"), which satisfies that supp ¢ C {(x,y1,y2) :
max{|z|, |y, [y2]} < 1}, [zan @(u)du = 1. For 8 > 0, let X = x”(x, y1,y2) be the characteristic
function of the set { T, Y1,Y2) max |a: —yk| > 35 } and let

VP (x5 y1,92) = @5 * X7 (25 Y2, 92),

where pg(z,y1,y2) = (g)fgncp(%,%,%). As it was pointed out in [2], ¥# € C®(R3"),
91z < 1, supp¥? € {(@;y1,2) : max |z —ye| = B}, and ¢ (2,51, 32) = 1if max |z —ye| >

203. For a fixed N € N| let Tm N be the blhnear operator defined by

T v (f1, f2) (@) = | 0P (59, 2) KN (239, 2) f1(y) f2(2)dyde. (3.13)

R2n

As usual, for by,by € BMO(R™), let [b1,T£N]1, [bQ,TﬁN]g be the commutators of TﬁN as in
(1.8)-(1.9).

Lemma 3.7 Let o be a multiplier satisfying (1.5) for some s € (n,2n], Ty, N and TﬁN
be the operators defined by (3.8) and (3.13) respectively. Let r1,72 € (1,2] such that s €
( +Ln4n +1) Then for any v < = + ;t,

ro’ ry

B3, T )i (1, £2)(@) = B3, TEAN (s ) @) S BMED oo (1 f)@) (314)

Proof Without loss of generality, we assume that ||Vbj||p«®n) = 1. We deduce from
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Lemma 3.2 that

(b, To ) (f1s f2) (@) = [0, T2 N5 (1, f2) ()]

> / & — g3 l|F 5 — g1, 2 — y2)|| Fa(92) Fe () |y dy
KEZ max|x yr| <28

B3 @BTTEIEWMIL o (1 ) (@) + Me(fr, f2) (@)

KEZL:2%B>1

63 @ATTITE WML L (A ) (@) Me(fr, f2) (@)
KREZ:2RB<1

ML o (1, f2) (@),

This completes the proof of Lemma 3.7.

Lemma 3.8 Letr € (1,00), w € A.(R™), K C L"(R™,w). Suppose that
(i) K is bounded in L™ (R™, w);
(i) Ahm f‘x|>A |f (2)]"w(z) dz = 0, uniformly for f € K;
(iii) [[f(-) = fC 4+ D) Lr@n,w) — 0 uniformly for f € K as [t| — 0.
Then K is precompact in L™ (R™, w).

This lemma was given in [5].

Proof of Theorem 1.1 We will employ some ideas from [2]. By Lemma 3.5, it suffices
to prove that when by,by € C3°(R™), the conclusion in Theorem 1.1 is true for Tg,g. We
only consider [by,T,]; for simplicity. Without loss of generality, we assume that [[b1 || e (rn) +
Vb1l oo rny = 1.

Let tl,tg € (1,2] such that 2 = ;- —i— t2= pr € (tg,00) with k = 1,2, wy, ws be weights
such that @ € Ap/g(RQ”). Recalling that vg € As(R™), we know that vz € Ry for some
0 € (0,1). Also, by Corollary 2.1 in [17], we can choose § € (0,1) which is close to 1, such that
W € Asyp(R*™) and

S ) 0 tk

. L, pr>2L (k=1,2).

" t1+ + Dk 5 ( )
Let%:——i—gandrk—t—"Wlthk—l? We claim that for each 8 € (0,1) and € > 0,

(a) there exists a constant A = A(e) which is independent of N, f; and fs, such that

1 2
([, Tt ) @pra@)” S e Il sl 619
x|> k=1

(b) there exists a constant p = p. which is independent of N, f; and fs, such that for all
uw € R™ with 0 < |u] < p,

II[bh Ty (o f2) (A u) = (b1, Ty (1 £2) )l oo
Se H I fiell Low @ ) - (3.16)

k=1
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If we can prove this, it then follows from the Fatou lemma that both (3.15) and (3.16) are
true with fi1, fo € S(R™) and T’BN is replaced by T2, here T? is defined by

2(fr, f2) (@ Z WP (w39, 2)F 1 Gn(ws 1, 2) fi(y) fo(2)dyd,
KEZ

Since .(R™) is dense in LP*(R™, wy,), we then know that (3.15) and (3.16) are true when TﬁN
is replaced by T/2. This, via Lemma 3.8, tells us that [b;, T?]; is compact from LP*(R"™ w;) x
LP2(R™ wsy) to LP(R™,vz). On the other hand, (3.14) together with the Fatou lemma and a

familiar density argument, leads to that

b1, Tol1(f1s f2) = 01, TEN1 (frs fo) | o e ) S 5]:[ | f 1 Lok 7 ) -

Therefore, [b1,T,]1 is compact from LP*(R™ wq) x LP2(R™ ws) to LP(R™, vz).
We first prove the conclusion (a). Let R > 0 be large enough such that suppb; C B(0, R).
For every fixed x € R™ with |z| > 2R, set

UE () = / / KN (@ — 0,2 — )| f1 () Fa(92) |y
y2|<|z| J|y1|<R

and
UR () = / / KN (2 — oz — )| () fa(92) gy
2Lzl <|y2| <2t z| J|y1|<R

We deduce from Lemma 3.3 that for integers N > 0 and [ > 0,

Z V,fl(x)+ Z

K:2FR>1 k:2FR<1

2
S (@) R 4+ @) TR [T Il e ey

=R S\
(B ) (e B e
B(0,R) B(0,2!]z])

if we choose v < = + >. Let A > 4R. Recall that p > 1. It then follows directly that

(/2J1A<I|<2M ’[bl’ UN] (f1, f2)(= )’ (:E)dz)

=

[e%} 1

< (/ UR (x) pm;,(x)dx) !
; 217 TA<|z|<27 A ‘ A ‘
oo 1 ] ] 2

N (/ )dy) T A) TR T el ee e
; B(0,27 A) kl;[l (R )

T T El]
/ B(0,R) y)dy> </B(o,21+a'A) w2 (Z)dz>
3 (/B(O,M o))

=0

T =

(PHA) TR T T H | frell Lo (e )
k=1

Ty T2 72 P2
W, (z)dz .
B(0,21+1 A)

- 1
T

U= ™ 09"
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~ % I+ A) s
; (/B(O)m) Vw(y)dy) (27T A)°R

SRS T
1 a1
ot Y
X( wy (y)dy) ( Wy
B(0,R) B(0,21+7 A)
o0
<R T

(2l+]A) s+ 4o

=0
s (%)Lﬁ_ﬁﬂ‘s*n*%)

On the other hand, noting that w; ™
such that

1

P1

€ A (R™), there exists a constant ¢ € (
1
7T 5
/ wy 7
B(0,R)

’ 7“1 + )
which, in turn, implies that

1
Pl _
1

o0

(y1)dyr < ( ]H)RAA)”C/ w,
B(0,2i+1A)

(y1)dys,
l . n n
([ vaa)” @y mE
=0 \J/B(0,214)
_’j—}l oy Tz 757
X ( wy (y )dy) ( W, (z)dz)
B(0,R) B(0,21+3 A)
< (R)W T T (o nGh T )
A
if we choose

non on
ve (—nC+ + o2 L.
T2 1 T2
Thus, for b; € C§°(R™), we have that for some constant n > 0

PRy T

([ |ozini @] vataz)" s (5)" TL o @)
|z|>A

This leads to the conclusion (a)

We turn our attention to conclusion (b). Let

Set

( n)
LT
WNﬁ(x+u,x' Y1, Y2)

and set

KNB(z 4 u; y1,90)

KNP (5 y1,y2)

(1. fo) @) <b1<x>—b1<x+u>>/
J5

R2n

KNﬂ<x7y7z)f1(y)f2(z)dydzv
(f1, f2)(2) /]R?" WPz + u, 23y, 2) (b1 (y) — bi(z + w)) f1(y) f2(2)dydz
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As in the proof of Lemma 3.7, we obtain by Lemma 3.2 that

‘ - KNP (z3y1,y2) f1(y1) f2(y2)dyrdys

—/ KN (2391, 92) f1(y1) f2(y2)dyrdys
max |z—y|>23

5/ |KN (2591, y2) 1 f1 (y1) f (y2) [dyr dys
,8<max |z—yK|<28

Thus,
I ) @) S ful(To (fr f2)(0) + ML oo (f1, F2) (@) (3.17)

Note that 1% ( +u; y13y2) — P (391, 2)| < L4, and

W (24w, 291, 90)| < WN (24w, 25 y1,42)[9° (2 4+ ws y15 )|
+ KN (2591, y2) [P (2 + w15 92) — 8 (2391, 92)|-

Let |u] < . By Lemma 3.2 and Lemma 3.4 and the argument used in the proof of Lemma 3.7,

we deduce that

R R@IS [ G ) ) e
sl >3
u
+ |B| max [a—yx| <35 |KN (2591, y2) f1(y2) f2 (y2) | dyr dyo

max \a: yk|>B

S / / (W (2,2 +uyy, 2)|"1dy ) T dz
2 2 (B(,8)) /85, (B, §) ) )

J1,52>0
max{ji,j2}>1

1 1
“(/. nran) ™ ([ BE)dz)
S, (B(z,2)) Sj, (B(z,5))

lul 1
+ ?Mfﬁ ),7+%+%(f17f2)(x)
_mn_ n 2

< T Ifk(yk)IT’“dyk)
2 27" B(z, 2)|= S, (B(x,2))

max{j1,j2}>1 k=1

S
M\‘H

'Z'Mf%+ a1 f2)(@)
S (M)QM?)_WTL%(fl,fQ)(x) (3.18)
with o = mm{l s— 2 — —} Note that

2
b1, T2 w1 (f1, f2) (@ +w) = [b1, T2 G (s £2) (@) S0 30 o) (e
k=1
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The conclusion (b) now follows from (3.17)—(3.18), Lemma 3.6 and Theorem 2.1, if we choose
7y such that 0 < —y + = + <nfmin {1, L}

p1’ p2
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