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Abstract The mixed spin P-fields (MSP for short) theory sets up a geometric platform
to relate Gromov-Witten invariants of the quintic three-fold and Fan-Jarvis-Ruan-Witten
invariants of the quintic polynomial in five variables. It starts with Wittens vision and the
P-fields treatment of GW invariants and FJRW invariants. Then it briefly discusses the
master space technique and its application to the set-up of the MSP moduli. Some key
results in MSP theory are explained and some examples are provided.
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1 Gromov-Witten Invariants of Quintics

The counting of genus g curves of degree d on the quintic Calabi-Yau three-folds

Q = {W5 := x5
1 + · · ·+ x5

5 = 0} ⊂ P4

is a challenging problem in enumerative geometry. Since the seminal paper of Candelas, de la

Ossa-Green-Parkes [3], a modified version has been intensively studied in string theory as well

as algebraic geometry via the stable maps of Kontsevich and virtual cycles theory developed

by Li-Tian [23] and Behrend-Fantachi [1].

For d, g ∈ Z, the moduli space of stable maps from genus g nodal curves to Q of degree d is

Mg(X, d) = {[f : C → X] | C nodal, g(C) = g, f∗[C] = d, Aut(f) < ∞}.

The Gromov-Witten invariants are defined as

Ng,d : =

∫
[Mg(X,d)]vir

1 ∈ Q.

One of the main unsolved problems in Gromov-Witten theory is to determine

Fg(q) : =
∑
d

Ng,dq
d.
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From the Super-String theory side, in 1991 Candelas et al. found a closed formula for the

genus zero series F0(q) using T -duality and mirror symmetry (see [3]). In 1993, Bershadsky-

Cecotti-Ooguri-Vafa developed the Kodaira-Spencer theory and determined the genus one series

F1(q) (see [2]). For the higher genus theory, in 2009 Huang-Klemm-Quackenbush determined

Fg(q) for g up to 51 (see [19]).

From the mathematical side, Kontsevich utilized torus localization to calculate the genus

zero GW-invariants N0,d. Givental [16], Lian-Liu-Yau [25] determined the genus zero case F0(q).

Later on, more people worked on this topic. The genus one case F1(q) was solved in 2000’s. The

second named author and Zinger in [24] obtained a formula N red
1,d = N1,d −

1

12
N0,d where N red

1,d

is a series of certain reduced GW-invariants. Using this formula and C∗-localization, Zinger

in [30] succeeded in determining F1(q). Gathmann [15] provided an algorithm for N1,d using

relative GW invariants. For higher genus case, Maulik-Pandharipande found an algorithm (see

[27, Section 3.2]) using the algebraic version of the degeneration formula (see [21] and analogous

degeneration formula [22]) and used it for some theoretical applications. Despite the progress,

a lot of questions on higher genus GW invariants of quintic Calabi-Yau three-folds remain open.

It remains a central problem in Gromov-Witten theory to develop new techniques to calcu-

late all genus GW-invariants of quintic Calabi-Yau three-folds.

2 Witten’s Vision and FJRW Invariants

2.1 Witten’s vision

The same quintic polynomial W5 = x5
1 + · · · + x5

5 can also give a map C5 → C. The

corresponding physical theory is the Landau-Ginzburg theory. In [29], Witten studied phase

transitions involving GW theory on the quintic Q and the LG-model for W5. Mathematically,

the set-up is as follows. Let C∗ act on

C6 = C5 × C = {(x1, · · · , x5, p)}

with weights (1, · · · , 1,−5). Then the map p · W5 : C6 → C is C∗-equivariant. The quotient

[C6/C∗] has two GIT quotients:

((C5 − {⃗0})× C)/C∗ = KP4

and

(C5 × (C− 0))/C∗ = [C5/Z5].

Here [C5/Z5] represents the quotient stack. The field theory valued in KP4 is the GW theory

of the quintic Q and the field theory valued in [C5/Z5] leads to Witten’s spin class. The latter

was generalized to quasi-homogeneous polynomials by Fan-Jarvis-Ruan [12–13], and is called

FJRW theory. Witten’s vision is that these two theories are related via a phase transition.

2.2 P-fields treatment of GW and FJRW

The notion of P-fields was introduced by Guffin and Sharpe in [18] for genus zero LG-theory

of (KP4 ,W5). Mathematically, the first and second named authors developed the theory of

P-fields for all genus GW invariants.
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We start with LG-theory for KP4 . A field taking values in ((C5 − {⃗0})× C)/C∗ is

ξ = (C,L, φ1, · · · , φ5, ρ),

where C is a complete nodal curve, L is an invertible sheaf on C, φi ∈ H0(C,L) and ρ ∈
H0(L∨5⊗ωC). Since the weights of the action C∗ on C5 and C are (1, · · · , 1) and −5 respectively,

the naive choice is to take φi as a section of L and ρ as that of L∨5, as the equivalence

(idC, c idL) : (C,L) → (C,L), where c ∈ C∗, represents taking quotient by C∗. Instead, as

suggested in [18], we let φi be a section of L and ρ be a section of L∨5 ⊗ ωC. As we will see,

this choice is crucial to the introduction of the cosection in (2.1). Since the origin 0⃗ is removed

from C5, (φ1, · · · , φ5) must be nowhere zero.

Finally we say ξ is stable if Aut(ξ) is finite.

In fact, what we have obtained so far is a stable map to P4 with a P-field. The moduli space

of such objects is

Mg(P4, d)p = {[f,C, ρ] | [f,C] ∈ Mg(P4, d), ρ ∈ H0(C, f∗O(5)⊗ ωC)}.

Note that the data ([f,C], ρ) is equivalent to the data (C,L, φ1, · · · , φ5, ρ) since the map f is

equivalent to the line bundle L = f∗OP4(1) with a nowhere-zero section (φ1, · · · , φ5) of L
⊕5.

The first and second named authors constructed the GW invariants of stable maps with

P-fields as follows. The moduli stack Mg(P4, d)p, relative to the stack D = {(C,L)}, has a

perfect obstruction theory. At ξ = (C,L, φi, ρ), the obstruction sheaf Ob restricted to ξ is

Ob|ξ = H1(L)⊕5 ⊕H1(L∨5 ⊗ ωC).

We define a cosection (a sheaf homomorphism)

σ : Ob → OMg(P4,d)p

as follows: For

(φ̇1, · · · , φ̇5, ρ̇) ∈ H1(L)⊕5 ⊕H1(L∨5 ⊗ ωC) = Ob|ξ,

we define

σ|ξ(φ̇1, · · · , φ̇5, ρ̇) = ρ̇
5∑

i=1

φ5
i + ρ

5∑
i=1

5φ4
i φ̇i. (2.1)

Since ρ̇ ∈ H1(L∨5⊗ωC) and φi ∈ H0(L), the two terms in the RHS of (2.1) lie in H1(L∨5⊗
ωC ⊗L⊗5), which is canonically isomorphic to H1(ωC) ≡ C. Thus the cosection σ takes values

in OMg(P4,d)p . This reveals the technical reason for introducing the twisting ωC to the line

bundle L∨5.1

The degeneracy locus D(σ) of the cosection σ consists of ξ such that σ|ξ is zero, i.e.,

σ|ξ(φ̇1, · · · , φ̇5, ρ̇) = 0 for all φ̇i and ρ̇. Using that the section (φ1, · · · , φ5) is nowhere zero, one

easily sees that (as sets)

D(σ) =
{
ξ ∈ Mg(P4, d)p | ρ = 0 and

5∑
i=1

φ5
i = 0

}
= Mg(Q, d) ⊂ Mg(P4, d).

1In physics literature, taking ρ to be a section of L∨5 twisted by ωC is called twisted by gravity.
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Remark 2.1 We remark that, by taking the first-order variation of the expression p · (x5
1+

· · ·+x5
5), we obtain δρ

∑
φ5
i +ρ

∑
5φ4

i δφi. Substituting δρ by ρ̇, etc., we obtain the expression

of the cosection σ.

As ρ are sections of line bundles, the moduli space Mg(P4, d)p is not proper (except when

g = 0), which makes taking degrees of zero-cycles in Mg(P4, d)p meaningless. To define its

analogous GW invariants, we apply the theory of cosection localized virtual cycles, developed

by Kiem and the second named author [20], based on that the degeneracy locus D(σ) is the

moduli space of stable maps to the quintic Q and thus proper.

Theorem 2.1 (see [5]) Applying the theory of cosection localized virtual cycles, one obtains

a cycle

[Mg(P4, d)p]virloc ∈ A∗D(σ) = A∗Mg(Q, d).

Furthermore, let P-fields GW invariants be defined by

Np
g,d =

∫
[Mg(P4,d)p]virloc

1 ∈ Q,

then

Ng,d = (−1)d+g+1Np
g,d.

This result opens a route to realize Witten’s vision that GW invariants of quintic CY three-

folds relate to Witten’s spin class via a phase transition. On one hand, the generating function

of GW invariants Fg(q) =
∑
d

Ng,dq
d, after this theorem, becomes a topological string amplitude

of a field theory valued in ((C5 − 0⃗) × C)/C∗. On the other hand, it is known that Witten’s

spin class is a field theory valued in [C5/Z5]. As ((C5 − 0⃗)× C)/C∗ and [C5/Z5] are two GIT

quotients of
[
(C5 ×C)/C∗], the mentioned phase transition might be realizable in the realm of

algebraic geometry.

Let us recall the field theory valued in [C5/Z5]. This theory originated from Witten’s spin

class (see [29]). Its algebraic constructions (in narrow case) were given by Polishchuk-Vaintrob

[28], and Chiodo [10]. The full theory was developed by Fan-Jarvis-Ruan [12–13], known as

FJRW theory.

In [29], Witten considered the moduli space of 5-spin curves (ΣC,C,L) and constructed a

class (Witten’s spin class) by solving an elliptic system of C∞ sections s of the (hermitian) line

bundle L:2

∂s+ ∂xW (s) = 0, W (x) = x5. (2.2)

Fan, Jarvis and Ruan studied the corresponding system for general quasi-homogeneous polyno-

mials W with broad markings, constructed the analogous Witten’s top Chern class of W , and

used such class to construct FJRW invariants of W .

Toward using variation of GIT quotients of [C6/C∗] to realize Witten’s vision, we will use

Witten’s 5-spin class constructed as the cosection localized virtual cycle (see [6]), analogous to

that of [Mg(P4, d)p]virloc. Like before, a field in

[(C5 × (C− 0))/C∗] = [C5/Z5]

2A 5-spin curve consists of a twisted nodal curve with markings ΣC ⊂ C, and a line bundle L satisfying

L⊗5 ∼= ωlog
C

, where ωlog
C

= ωC(Σ
C).
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consists of

ξ = (ΣC,C,L, φ1, · · · , φ5, ρ),

where (ΣC,C) is a pointed twisted curve with possibly stacky markings ΣC, L is an invertible

sheaf on C, φi ∈ H0(L), and ρ ∈ H0(L∨5 ⊗ ωlog
C ). Since we deleted the origin in C, the section

ρ must be nowhere vanishing and hence L∨5 ⊗ωC
∼= OC, or equivalently L⊗5 ∼= ωlog

C . Therefore

(ΣC,C,L) is a 5-spin curve. (φ1, · · · , φ5) gives five fields. Thus, we get a moduli space of 5-spin

curves with five fields:

M
1
5 ,5p

g,γ = {(C,ΣC,L, φ1, · · · , φ5, ρ) | ρ is nowhere zero}.

Here γ is the monodromy data: If Σj is a stacky marking on C, then µ5 acts on L|Σj with weight

γj = exp
(
2πir
5

)
where 0 ≤ r ≤ 4. We call γ narrow when 0 < r ≤ 4 (if Σj is a scheme-marking,

γj is taken to be 1).

Similar to the GW case, the moduli stack M
1
5 ,5p

g,γ , relative to the stack D = {(ΣC,C,L)},
has a perfect obstruction theory. There exists a cosection

σ : Ob → O
M

1
5
,5p

g,γ

,

which has the same expression as that in (2.1) and whose degeneracy locus is

D(σ) = {ξ ∈ M
1
5 ,5p

g,γ |φi = 0 for all i} = M
1
5

g,γ = {(ΣC,C,L) |L⊗5 ∼= ωlog
C },

which is the moduli space of 5-spin curves.

The following result holds for non-degenerate quasi-homogeneous polynomialsW and narrow

γ. For the sake of convenience, we only state it in the case W = W5.

Theorem 2.2 (see [6]) Assume that γ is narrow and

W = W5.

Using the theory of cosection localized virtual cycles, one obtains a cycle

[M
1
5 ,5p

g,γ ]virloc ∈ A∗M
1
5

g,γ .

Furthermore, the class [M
1
5 ,5p

g,γ ]virloc is identical to that constructed in [10, 28], and under the

tautological homomorphism ι∗ : A∗M
1
5

g,γ → H∗(M
1
5

g,γ ,Q), it is identical to that constructed in

[12–13].

There is an important subclass of FJRW invariants: Those with the insertion 2
5 . Let C have

k markings with all γj = ζ2 where ζ = exp
(
2πi
5

)
. Define

Θg,k : =

∫
[M

1
5
,5p

g,(γj)
]virloc

1 ∈ Q.

Note that it is zero when k + 2− 2g ̸= 0 mod 5, as then M
1
5 ,5p

g,(γj)
= ∅. It is shown (see [8]) that

{Θg,k}g,k determine all FJRW invariants with descendent (for the quintic singularity), where

an explicit formula will be given in [9]. For this reason we call {Θg,k}g,k the primary FJRW

invariants.
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3 Master Space Technique and Mixed Spin Fields

In the previous section, we discussed the LG-field theoretic description of GW theory of the

quintic and FJRW theory of (C5,W5). Witten’s vision is to link these two theories via a phase

transition with respect to some complexified parameter. The approach by the authors is to

develop a field theory valued in the master space to geometrically realize the “wall-crossings”

of these two field theories.

3.1 Master space technique

Now we explain the master space technique to understand the wall-crossings between KP4

and [C5/Z5].

Consider a C∗-action on C5 × C× P1: For t ∈ C∗,

(x1, · · · , x5, p, [u1, u2])
t : = (tx1, · · · , tx5, t

−5p, [tu1, u2]).

It has a GIT quotient

W : = (C5 × C× P1 − S)/C∗,

where S : = {(xi = 0 = u1) ∪ (ρ = 0 = u2)}.
Consider a C∗-action on W and, to avoid confusions, we call this action T -action. For

t ∈ T = C∗,

(x1, · · · , x5, p, [u1, u2])
t = (x1, · · · , x5, p, [tu1, u2]).

The T -fixed locus is

WT = KP4 ⊔ [C5/Z5] ⊔ {pt}.3 (3.1)

Let D ⊂ W be the T -divisor defined by p = 0. Then D ∼= P5 is compact. Let I ⊂ H∗
T (W ;Q)

be the ideal generated by the T -equivariant Poicaré dual of D. The compactness of D implies

the existence of a Q[α]-linear pushfoward map:∫
W

: I → H∗
T ({pt};Q) = Q[α].

The domain of
∫
W

cannot be extended to H∗
T (W ;Q) since W is non-compact. Moreover,

∫
W

decreases the degree by 12: If µ ∈ I ∩H2k
T (W ;Q) then∫

W

µ ∈ H
2(k−6)
T ({pt};Q) =

{
Qαk−6, k ≥ 6,

{0}, k < 6.

Similarly, there are Q[α]-linear pushforward maps:∫
KP4

: ι∗1I → Q[α],

∫
[C5/Z5]

: ι∗2I → Q[α],

where

ι∗1 : H∗
T (W ;Q) → H∗

T (KP4 ;Q) = Q[H,α]/⟨H5⟩

and

ι∗2 : H∗
T (W ;Q) → H∗

T (C5/Z5;Q) = Q[α]

3Explicitly, KP4 = KP4 × {0}, [C5/Z5] = [C5/Z5]× {∞}, and {pt} = 0⃗×
(
(P1 − {0,∞})/C∗).
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are induced by the inclusions ι1 : KP4 ↪→ W and ι2 : C5/Z5 ↪→ W , respectively. Both
∫
KP4

and∫
[C5/Z5]

decrease the degree by 10.

Let 1 be the T -linearized trivial line bundle with weight 1 and let α = c1(1). If µ ∈
I ∩H10

T (W ;Q) then ∫
W

µ ∪ α = α

∫
W

µ = 0.

Applying the localization formula to this vanishing, we obtain

0 =

∫
KP4

(ι∗1µ) ∪ α

α+H
+

∫
[C5/Z5]

(ι∗2µ) ∪ α

−α
+

∫
{pt}

(µ|{pt}) ∪ α

5α(−α)5
,

where α + H, −α and 5α(−α)5 are the T -equivariant Euler classes of the normal bundles to

KP4 , [C5/Z5] and {pt} in W , respectively. We obtain the following wall-crossing formula:∫
KP4

(ι∗1µ) ∪ α

α+H
−
∫
[C5/Z5]

ι∗2µ =
µ|{pt}
5α5

,

where µ
∣∣
{pt} ∈ H10

T (pt;Q) = Qα5.

3.2 Mixed spin P-fields

Now we consider a field theory valued in W . Similar to the case of the field theory of GW

valued in KP4 , the authors introduced the notion of mixed spin P-fields (MSP for short) (see

[7]). An MSP field is

ξ = (ΣC,C,L,N, φ1, · · · , φ5, ρ, ν = [ν1, ν2]).

(ΣC,C) is a pointed twisted curve. L and N are invertible sheaves on C. L is as before but N

is new due to the extra factor of P1 in the master space technique. The sections φi ∈ H0(L)

and ρ ∈ H0(L∨5⊗ωlog
C ) as before. The sections ν1 ∈ H0(L⊗N) and ν2 ∈ H0(N). The sections

ν = [ν1, ν2] is a new field. We also have a narrow condition: φi|ΣC = 0. There are combined

GIT-like stability requirements: The section (φ1, · · · , φ5, ν1) is nowhere vanishing, coming from

excluding {(xi = 0 = u1)} in W ; the section (ρ, ν2) is nowhere vanishing, coming from excluding

{(ρ = 0 = u2)} in W ; and the section (ν1, ν2) is nowhere vanishing, coming from [u1, u2] ∈ P1.

We say ξ is stable if Aut(ξ) is finite. For simplicity, we use φ to represent (φ1, · · · , φ5).

In order to understand why the moduli space of MSP fields geometrically contains the moduli

space of stable maps with P-fields and the moduli space of spin curves with five P-fields, we

examine the moduli space of MSP fields in details.

Let ξ be an MSP field. When ν1 = 0, since (φ1, · · · , φ5, ν1) is nowhere zero, we must have

that (φ1, · · · , φ5) is nowhere zero. Since (ν1, ν2) is nowhere zero, ν2 must be nowhere zero.

Since ν2 is a section of N, N ∼= OC. There is no restriction on ρ. Thus, we have ξ ∈ Mg(P4, d)p

and we get GW theory of the quintic Q.

When ν2 = 0, since (ρ, ν2) is nowhere zero, ρ must be nowhere vanishing. Since ρ is a

section of L∨5 ⊗ ωlog
C , we must have L5 ∼= ωlog

C . Also ν1 must be nowhere zero. Thus, we have

L⊗N ∼= OC, i.e., N ∼= L∨. The sections φ1, · · · , φ5 can be arbitrary. Thus, we have ξ ∈ M
1
5 ,5p

g,(γj)

and get FJRW theory.

When ρ = 0 and φi = 0 for 1 ≤ i ≤ 5, ν1, ν2 must be nowhere zero. Thus, we have N ∼= OC

and L ∼= OC. Hence, we get stable curves.
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Theorem 3.1 (see [7]) The moduli stack Wg,γ,d of stable MSP fields of genus g, mon-

odromy γ = (γ1, · · · , γℓ) of L along ΣC, and degree d = (d0, d∞) of L⊗N and N respectively,

is a separated DM stack of locally finite type.

The moduli stack Wg,γ,d admits a natural T -action: For t ∈ T ,

(ΣC,C,L,N, φ, ρ, ν1, ν2)
t := (ΣC,C,L,N, φ, ρ, tν1, ν2).

Wg,γ,d is not proper since φ and ρ are sections of invertible sheaves. Thus, we cannot integrate

on this stack. However, there exists a cosection of its obstruction sheaf. Using the arguments

similar to GW case and LG case, we have the following theorem.

Theorem 3.2 (see [7]) The moduli stack Wg,γ,d has a T -equivariant perfect obstruction

theory, an equivariant cosection σ of its obstruction sheaf, and thus carries an equivariant

cosection localized virtual cycle

[Wg,γ,d]
vir
loc ∈ AT

∗ W
−
g,γ,d,

where W−
g,γ,d is the degeneracy locus of σ, i.e.,

W−
g,γ,d : = (σ = 0) = {ξ ∈ Wg,γ,d |C = (φ = 0) ∪ (φ5

1 + · · ·+ φ5
5 = 0 = ρ)}.

In order to integrate on W−
g,γ,d, one needs it to be proper. In fact, we have the following

theorem.

Theorem 3.3 (see [7]) The degeneracy locus W−
g,γ,d is a proper T -DM stack of finite type.

From the proof of the properness, we see a phenomenon which creates line bundles’ spin

structures in the LG-phase via a limit of a family of P-fields in CY-phase. We give this phe-

nomenon the name “Landau-Ginzburg transition”(or CY-to-LG transition). It is under this

phenomenon that FJRW theory captures the ghosts’ contributions in GW theory in the realm

of MSP moduli. Here, a map f from a curve C to P4 or Q is called a ghost if there are

positive-genus components of C that are contracted to points by f . Over ghosts, P-fields can

be nonvanishing, and such P-fields contribute to GW invariants of the quintic as “counting

ghosts”. For example, in Li-Zinger formula N1,d = N red
1,d + 1

12N0,d, the number 1
12 comes from

the contribution by P-fields. When genus increases, such a contribution is difficult to locate.

The MSP program provides a platform by which the ghosts’ contributions can be captured in

another phase (LG-phase) instead.

Example 3.1 The graph of T -fixed points of W−
1,∅,(1,0).

The curves are elliptic curves without markings, degL = 1, and degN = 0. The graph type

of fixed points which have contributions to the computations are of the four types Γ1, Γ2, Γ3,

Γ4 depicted in Figure 1.

Some explanations of the figure are in order. The bottom horizontal line corresponds to

ν1 = 0. The middle horizontal line corresponds to φ = 0 and ρ = 0. The top horizontal line

corresponds to ν2 = 0. A vertex represents a connected curve if it is stable (called a stable

vertex), or a node if it has two edges, or, if it has only one edge attached to it, a single non-nodal

point on the curve (the edge). For each vertex, g represents the genus of the curve. If it is not

a stable vertex, we use g = 0 here even though it doesn’t represent a rational curve. An edge

is a rational curve. The number near an edge is the degree of L on the curve. A stable vertex

on the horizontal lines 0, 1,∞ means ν1 = 0, φ = 0 = ρ, or ν2 = 0 on the curve respectively.
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Figure 1 Graphs for g = 1, γ = ∅, d = (1, 0)

To be more precise, the graph Γ1 represents an elliptic curve with degree 1 line bundle L on

the curve and ν1 = 0 on the whole curve. So it corresponds to stable maps from elliptic curves

to the quintic Q with degree 1. The graph Γ2 represents a union of an elliptic curve E with a

rational curve E0 intersecting at one node. E is a stable vertex on the bottom horizontal line.

E0 is the edge. The degree of L is 0 on the elliptic curve and 1 on the rational curve. The graph

Γ3 is similar to Γ2, a union of an elliptic curve E and a rational curve E0 intersecting at one

node. E is a stable vertex on the middle horizontal line and E0 is the edge. On E, φ = 0 = ρ

and both L and N are trivial. Thus, it represents the moduli space of elliptic curves with one

marking coming from the node. The graph Γ4 represents a union of two rational curves E0

and E∞ and an elliptic curve E. On the lower edge E0, deg(L|E0) = 1 and ρ|E0 = 0. Note

that on each irreducible component, either ρ = 0 or φ = 0. On E∞, deg(L|E∞) = − 1
5 and

φ|E∞ = 0. E∞ and E0 intersect at one node. E∞ is a twisted curve intersecting the elliptic

curve E at a stacky point. Thus, L|E∞ is an invertible sheaf on the twisted curve E∞. E is a

spin elliptic curve with one marking from the node. Thus, we have deg(L|E) = 1
5 .

Example 3.2 The graph of T -fixed points of W−
1,∅,(2,0).

In this case the curve is an elliptic curve without markings, degL = 2 and degN = 0. The

graphs of fixed points which have contributions to the computations have 15 types, listed from

Γ1 to Γ15 in Figure 2.

4 Vanishing and Polynomial Relations

How can we extract information of GW and/or FJRW invariants from the cycle [Wg,γ,d]
vir
loc?

Let us consider a less general case to illustrate key ideas. Take γ = ∅, i.e., no markings. Then

by virtual dimension counting, we have

[Wg,d]
vir
loc ∈ HT

2(d0+d∞+1−g)(W
−
g,d,Q).

When d0 + d∞ + 1− g > 0, letting u = c1(1|wt=1), i.e., u is the parameter for H∗
T (pt), we have

[ud0+d∞+1−g · [Wg,d]
vir
loc]0 = 0.

Here [·]0 is the degree zero term in the variable u.

Let Γ be a graph associated to fixed points of the T -action of Wg,d and FΓ be a connected

component of WT
g,d of the graph type Γ. Applying the cosection localized version (proved in
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− − − −

− −

Figure 2 Graphs for g = 1, γ = ∅, d = (2, 0)

[4]) of the virtual localization formula in [17], we have

∑
Γ

[
ud0+d∞+1−g [FΓ]

vir
loc

e(NFΓ)

]
0

= 0. (4.1)

To deal with [FΓ]
vir
loc, we need a decomposition result, which we explain below.

Let, again, ξ = (C,L,N, φ, ρ, ν1, ν2) ∈ (Wg,d)
T be an MSP field fixed by the T -action. We

set

(1) C0 to be the part of C where ν1 = 0;

(2) C1 to be the part of C where φ = 0 = ρ and hence ν1 = 1 = ν2, i.e., ν1 and ν2 are

nowhere zero;

(3) C∞ to be the part of C where ν2 = 0.

Thus, the restriction ξ|(connected component of C0)
is in

Mg′,n′(P4, d′)p,

which gives Gromov-Witten invariants. Here, marked points appear from nodes on C0. The

restriction ξ|(connected component of C1)
is in Mg′,n′ , which gives Hodge integrals. The restriction

ξ|(connected component of C∞) is in M
1
5 ,5p

g′,γ′ , which gives FJRW invariants where γ′ appears because

of stacky nodes on C∞.

We have the following decomposition result: For a constant c,

[FΓ]
vir
loc = c

∏
[moduli of ξ|C0 ]

vir
loc · [moduli of ξ|C1 ]

vir
loc · [moduli of ξ|C∞ ]virloc.

Here the first factor gives GW invariants of stable maps to P4 with P-fields; the second factor

gives Hodge integrals on Mg′,n′ , and the third factor gives FJRW invariants of insertions 2
5

(after proving a vanishing). After calculating e(NFΓ), using the polynomial relations (4.1) we

obtain the following results about GW invariants of the quintic.
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Theorem 4.1 (see [8]) Letting d∞ = 0, the relations (4.1) provide an effective algorithm

to evaluate GW invariants Ng,d provided the following are known

(1) Ng′,d′ for (g′, d′) such that g′ < g, and d′ ≤ d;

(2) Ng,d′ for d′ < g;

(3) Θg′,k for g′ ≤ g − 1 and k ≤ 2g − 4;

(4) Θg,k for k ≤ 2g − 2.

Recall that Θg,k is the genus g FJRW invariants of insertions 2
5 and Θg,k may be non-zero

only when k + 2− 2g ≡ 0(5). Following the theorem, we see that to calculate all Θ2,k we only

need to know Θ2,2 in the first place; to find all Θ3,k, we only need to know Θ3,4, in addition to

Θ2,2.

The algorithm derived from this theorem takes the following form. For any g ≥ 1, we choose

d∞ = 0 and d0 = d ≥ g. Since d0 + 1− g > 0 in this case, the formula (4.1) gives a vanishing.

After analyzing the graphs Γ appearing in the summation (4.1), we see that there is one term

equal to Ng,d , and all other terms are polynomial expressions of Ng,d′ and Θg′,k appearing in

the list (1)–(4) of the theorem. These polynomial expressions have been derived explicitly in

[8].

We can also use the vanishing (4.1) to get relations among FJRW invariants.

Theorem 4.2 (see [8]) Letting d = (0, d∞), the vanishing (4.1) provide relations among

FJRW invariants Θg,k.

For example, for the case of genus 2, we can use these relations to show that {Θ2,k}k can

be inductively derived from only two unknowns Θ2,2 and Θ2,7. However, at the moment, we do

not know yet whether these relations can calculate all FJRW invariants.

Example 4.1 Computations of N1,1 and N1,2.

In Examples 3.1–3.2, we listed all the graph types of fixed loci. Using the formulae for

e(NFΓ) and [FΓ]
vir
loc in [8], we can calculate every term in the summation in (4.1).

For the genus 1 degree 1 case in Example 3.1, the contributions from the four graph types

are (here Gi is the contribution from the graph Γi in Figure 1):

G1 = −N1,1, G2 =
9625

6
, G3 =

−4087

12
, G4 = −1024.

From (4.1), the sum of these four numbers should be zero. Thus, we obtain N1,1 = 2875
12 which

agrees with the known result.

For the genus 1 degree 2 case in Example 3.2, the contributions from 15 graph types are

(here Gi is the contribution from the graph Γi in Figure 2):

G1 = N1,2, G2 =
1106875

6
, G3 =

1331125

12
, G4 = −5334375

2
,

G5 =
17206775

12
, G6 = 355000, G7 = −1018850

3
, G8 =

6806875

4
,

G9 = −12896875

8
, G10 = 782000, G11 =

28966400

3
, G12 =

4048000

3
,

G13 = −9934400

3
, G14 = −23116864

3
, G15 = 12288.

From (4.1), the sum of the fifteen numbers above being zero leads to N1,2 = 407125
8 . This is the

number mathematically verified by Zinger in [30].
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4.1 Speculations

Let us look at Theorem 4.1 from a different aspect. Inductively we may suppose that all

GW/FJRW invariants for genus less than g are known. Then for genus g, Theorem 4.1 reduces

the problem of determining the infinitely many GW invariants {Ng,d}∞d=1 to two finite sets of

initial datum

{Ng,1, · · · , Ng,g−1}, {Θg,k}k≤2g−2.

We formulate the following speculation.

By suitable choice of positive d0 and d∞, the relation (4.1) provides an effective algorithm

to determine the first set of initial data {Ng,1, · · · , Ng,g−1}.
If this is true, then one is left to determine the second set of initial data {Θg,k}k≤2g−2. We

propose another conjecture about fully determining all FJRW invariants for the quintic.

Conjecture 4.1 The equation (4.1) using d0 = 0 and nonempty γ’s (i.e., with markings)

gives relations that, together with Theorem 4.2, effectively evaluate all Θg,k.

We have verified this conjecture for the case Θ2,2. Recall that for the case of genus 2, this

is the only undetermined invariant in Theorem 4.1.

4.2 Other approaches

Another approach to Witten’s proposal is the recent work of Fan-Jarvis-Ruan [14]. They

worked in the more general context of the gauged linear sigma model, where more general

groups G were involved. In [14, Ex. 4.2.23], they took G = C∗ × C∗ and combined the quasi-

map technique with the P-fields theory to set up the moduli space. Incidentally, a closed point

of the moduli also consists of a pointed twisted curve Σ ⊂ C, two line bundles L and N, and a

collection of sections. We point out that, despite the similarity, the approach of [14] is different

from ours.

The theory in [14] uses the concept of ϵ-stability, dependent on the real parameter ϵ, similar

to the case of stable quotient [26]. The moduli for ϵ = 0+ was constructed in [14]; the case for

GW-theory is when ϵ = +∞, which is yet to be constructed. For the ϵ = 0+ moduli space, the

stability (on a point (C,L,N, · · · )) requires that L−e1 ⊗ N−e2 is ample on those components

of C for which ωlog
C has degree zero, where 0 < e1 < e2. Coming back to Example 3.2, we see

that in Γ3 of Figure 2, for the edge E connecting a genus 1 curve with a genus zero curve, we

have deg(ωlog
E ) = 0, N|E ∼= O and deg(L|E) = 1. Thus, we have deg((L−e1 ⊗N−e2)|E) < 0. So

curves with the graph type Γ3 in Figure 2 will not be in the ϵ = 0+ moduli space of [14, Ex.

4.2.23].

The θ-parameter in [14] may resemble the r-parameter in Witten’s vision of CY/LQ corre-

spondence. In our approach, we introduced the new field ν = [ν1, ν2] in order to “quantize” the

Witten’s parameter in his phase transition between Calabi-Yau and Landau-Ginzberg theories.

We believe that MSP field theory will provide a mathematical theory to realize the vision of

Witten. We hope that both approaches will be useful for the eventual understanding of CY/LG

correspondence in realizing Witten’s vision that “along a suitable path, there may well be a

sharply defined phase transition”.

Another approach to Witten’s proposal is by Choi and Kiem. In [11], they introduced the

moduli spaces of ϵ-stable quasi-maps with P-fields similar to [14] and introduced additional

δ-stability to make each wall-crossing more manageable.
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