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1 Introduction

In 1990s, physicists claimed that there exists a correspondence between two theories defined

from a Landau-Ginzburg model (see [31, 33]). The Landau-Ginzburg model consists of an affine

space CN acted on by a finite subgroup G of C∗ and a homogeneous polynomial W of degree

N . Two theories which are called the Calabi-Yau (CY for short) side and the Landau-Ginzburg

(LG for short) side can be associated to a Landau-Ginzburg model. On the CY side, W is

regarded as an equation for a hypersurface Y in PN−1 = (CN \ {0})/C∗, which is a Calabi-Yau

manifold. The invariant we consider on the CY side is the Gromov-Witten (GW for short)

invariant which virtually counts stable maps from a curve to Y . On the LG side, one considers

W as an equation for the singularity in CN . What physicists claimed is that the GW invariants

can be computed from the corresponding LG singularity theory. The theory on the LG side

was recently developed in [17]. The invariant on the LG side is the Fan-Jarvis-Ruan-Witten

(FJRW for short) invariant which virtually counts twisted spin curves.

In [7], Chiodo and Ruan proved the equivalence between the GW theory for the quintic

Calabi-Yau threefold and the corresponding FJRW theory in genus zero. They showed that

the generating functions for the invariants on the two sides are equivalent after taking change

of variables, symplectic transformations and analytic continuations. Recently in [12], Clader

studied the LG/CY correspondence for Calabi-Yau complete intersections, in which case one

considers a collection of several homogeneous polynomials W defining the complete intersec-

tions.
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In the present article, we survey recent development (see [8]) in the LG/CY correspondence

by means of wall-crossing. We focus on the case where N = 5 and W =
5∑

i=1

x5i , the Fermat

quintic polynomial. To compare the two moduli spaces by wall-crossing, we use the definitions

of the GW and FJRW invariants by cosection localization (see [3–4]). This approach enables

us to study the two sides symmetrically. Namely, the moduli stacks on the two sides are both

substacks of the stack of quadruples (C,L, x, p) where C is a pointed (twisted) curve with at

worst nodal singularities, L is a line bundle on C, x is a section in H0(L⊕5), p is a section in

H0(L−5ωtw
C ) and ωtw

C is the dualizing sheaf with poles allowed at orbifold marked points. The

difference for the two sides is the stability condition. So, it is natural to ask whether we can

interpolate the two stability conditions by wall-crossing.

There are well-known wall-crossing theories studied in [9–10, 28] for the CY side and in [29]

for the LG side, which we call the ϵ-wall-crossing. Roughly, the ϵ-wall-crossing is obtained by

allowing maps to be undefined at finitely many points. In [8], a further wall-crossing, called

the δ-wall-crossing is suggested to relate spaces after the ϵ-wall-crossing. The key point is that

by the δ-wall-crossing the conditions on the sections x and p can be replaced by the conditions

on the line bundle L. After the δ-wall-crossing, the two sides can be related by forgetting the

sections and applying the virtual localization formula over the stack of curves with stable line

bundles. Due to a degree reason, there are no direct wall-crossing formulas between the two

sides. But the virtual localization formulas are of the same form, which looks like an analytic

continuation. Their rigorous relation can be the subject of a future project.

This article is organized as follows. In Sections 2–3, we survey the wall-crossings on the CY

side and the LG side respectively. In Section 4, we describe the torus localization formula after

wall-crossings. We finish by a few examples in Section 5.

2 Wall-Crossing on the CY Side

2.1 GW theory

The GW invariant is defined by the virtual cycle of the moduli space of stable maps. Let

Y be a smooth projective algebraic variety. Let β ∈ H2(Y,Z) be a curve class in Y .

Definition 2.1 (1) An m-marked genus g prestable curve is a (connected) curve of genus

g with m smooth marked points having at worst nodal singularities. A node or a marked point

is called a special point.

(2) A map of genus g and class β is a holomorphic map f : C → Y where C is a genus g

prestable curve and f∗[C] = β.

(3) A map f : C → Y is called stable if all genus zero components contracted by f have at

least three special points and all genus one components contracted by f have at least one special

point.

Note that the condition for genus one components in item 3 is always satisfied unless (g,m) =

(1, 0). The stability condition is equivalent to the condition that the map f has only finitely

many automorphisms.

The moduli space of stable maps is a proper Deligne-Mumford stack denoted byMg,m(Y, β).

In [1, 27], a perfect obstruction theory on Mg,m(Y, β) and hence a virtual fundamental cycle
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[Mg,m(Y, β)]vir ∈ Avdim(Mg,m(Y, β)) have been constructed, where the virtual dimension is

vdim = (1− g)(dimY − 3)−
∫
β

ωY +m.

In the case where Y is a Calabi-Yau threefold and m = 0, the virtual dimension is zero and the

GW invariant is defined to be the degree of [Mg,m(Y, β)]vir.

When the virtual dimension is positive, to get a numerical invariant certain cohomology

classes need to be integrated against the virtual cycle. These cohomology classes can be taken

from the target Y or from the source curves of the stable maps. Let evi : Mg,m(Y, β) → Y be

the evaluation map sending the stable map f to its value at the i-th marked point. Then we

may consider ev∗i (γ) for γ ∈ H∗(Y ). If γ can be represented by a subvariety Γ ⊂ Y , integrating

ev∗i (γ) against the virtual cycle is intuitively imposing the condition that the i-th marked point

is sent to Γ by the map f .

The other cohomology class we consider is the ψ-class, whose definition involves only the

source curve. Let π : Mg,m+1(Y, β) → Mg,m(Y, β) be the forgetful morphism and let ωπ be

the relative dualizing sheaf on Mg,m+1(Y, β). We then have the sections σi : Mg,m(Y, β) →
Mg,m+1(Y, β) recording the i-th marked point. Consider the line bundle σ∗

i ωπ. Its fiber at each

point in Mg,m(Y, β) is the cotangent line of the source curve of the corresponding stable map.

We define ψi := c1(σ
∗
i ωπ). The (descendent) GW invariants are now defined by

⟨τk1(γ1) · · · τkm(γm)⟩ :=
∫
[Mg,m(Y,β)]vir

ψk1
1 ev∗1(γ1) · · ·ψkm

m ev∗m(γm),

where γ1, · · · , γm are cohomology classes in H∗(Y ).

2.2 GW theory by cosection localization

The GW invariants are known to be very hard to compute. In [25], Li J. and the second

named author developed a new technique to compute virtual invariants. Given a moduli space

M with a perfect obstruction theory, a cosection is a morphism

σ : ObM → OM

from the obstruction sheaf to the structure sheaf. The degeneracy locus of σ is the locus in

M where σ is not surjective. Then the virtual cycle [M ]vir is shown to be supported on the

degeneracy locus. This is called the cosection localization.

The cosection localization technique not only simplifies the computations but also gives us

a new way to define a virtual invariant. Namely, even when the moduli space itself is not

proper, we may define a virtual invariant whenever we have a cosection whose degeneracy locus

is proper. In [3], Chang and Li used this property to give a new way to define the GW invariant

for the quintic Calabi-Yau threefold Y , which we will review here.

Assume that Y is the Fermat quintic Calabi-Yau threefold, that is, the zero set in P4 of

the equation
5∑

i=1

x5i = 0. Let β be given by degree d hypersurface section. Recall that a

map f from a curve C to Y is equivalent to the triple (C,L, x) where L = f∗OP4(1) and

x = (x1, · · · , x5) ∈ H0(C,L)⊕5 such that x is nonzero and satisfies the equation
5∑

i=1

x5i = 0.
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It is elementary to show that f is a stable map if and only if ωlog
C ⊗ L3 is ample. Here, the

logarithmic dualizing sheaf ωlog
C is by definition ωC(

∑
pi) where pi’s are the smooth marked

points on C. One can construct the stack Q+ parameterizing triples (C,L, x) as an algebraic

stack by using the direct image cone construction in [3] as follows: The stack P+ parameterizing

pairs (C,L), where C is a prestable curve and L is a line bundle of degree d, is a smooth algebraic

stack. Let π : C → P+ be the universal curve and consider the universal line bundle L on C.
Then the stack of triples (C,L, x) is constructed by

C(π∗L⊕5) := SpecP+
(SymR1π∗[(L∨)⊕5 ⊗ ωC/P+

]),

which is called the direct image cone.

Thus, it remains to impose the condition
5∑

i=1

x5i = 0 to the moduli space. Imposing such a

condition can be handled by the cosection localization. For this, Chang and Li [3] introduced the

notion of a p-field. A p-field is a section p ∈ H0(L−5ωC). Since all marked points are smooth,

ωtw
C defined in Section 1 is the same as ωC . In [3], the moduli stack Xϵ=∞

+ parameterizing

quadruples (C,L, x, p) was constructed by using the direct image cone construction again and

it was shown that Xϵ=∞
+ admits a perfect obstruction theory.1 The relative obstruction sheaf

ObX+/P+
at a point (C,L, x, p) has the fiberH1(L⊕5)⊕H1(L−5ωC). Then a cosection is defined

by

σ|(C,L,x,p)(ẋ, ṗ) = ṗ
5∑

i=1

x5i + p
5∑

i=1

5x4i ẋi, (2.1)

where ẋ = (ẋi) ∈ H1(L⊕5) and ṗ ∈ H1(L−5ωC). By [3, Proposition 3.5], it is lifted to a global

cosection σ : ObXϵ=∞
+

→ OXϵ=∞
+

. The moduli stack Xϵ=∞
+ itself is not proper. However, one can

show that the degeneracy locus is precisely the locus where p = 0 and
5∑

i=1

x5i = 0, that is, the

locus of stable maps to the quintic threefold Y , which is proper. Hence we have the cosection

localized virtual cycle [Xϵ=∞
+ ]virloc supported on the moduli space of stable maps Mg,m(Y, β).

Theorem 2.1 (see [3]) The localized virtual cycle [Xϵ=∞
+ ]virloc agrees with [Mg,m(Y, β)]vir

defined in [1, 27] up to sign, for m = 0.

2.3 ϵ-wall crossing on the CY side

We describe the ϵ-wall-crossing for the CY side following (see [9–10]). Let V ⊂ Cn+1 be

a complex affine algebraic variety acted upon by a reductive group G = C∗. By choosing a

character θ of G, we have a linearized line bundle on V and hence a GIT quotient V//G. In the

case of the quintic Calabi-Yau threefold, we may take V to be an affine variety in C5 defined

by the quintic equation and G = C∗ where the chosen character is the identity map.

The GIT quotient V//G can be regarded as a substack in the stack quotient [V/G]. Consider

the moduli stack of maps from a marked prestable curve C of genus g to the stack quotient

[V/G]. Such maps are equivalent to the triple (C,P, x), where P is a principal G-bundle on

C and x is a section of a fiber bundle P ×G V . Note that in case of V//G = P4, (C,P, x) is

1The superscript ϵ = ∞ is used because the GW theory corresponds to the ϵ = ∞-stability in the ϵ-wall-
crossing which will be explained in Subsection 2.3.
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equivalent to (C,L, x) in Subsection 2.2 where L = P ×GCθ is the line bundle whose associated

principal C∗-bundle is P . The triple (C,P, x) is called a quasimap.

The section x can be regarded as a map [x] : C → [V/G]. The class of the quasimap (C,L, x)

is defined to be the group homomorphism

β : PicG(V ) → Z, β(M) = degC(x
∗(P ×G M)).

In case of V//G = P4, β is nothing but the degree of the image curve in P4. The base points of

(C,P, x) are the points on C where the image of the section x is in the unstable locus V us of V , in

other words, where the image of the corresponding map f is not in V//G. Let J be the ideal sheaf

of the unstable locus P×GV
us in P×GV . For z ∈ C, define ℓ(z) = lengthz(coker(x

∗J → OC)).

Definition 2.2 Let ϵ > 0. A quasimap (C,P, x) is ϵ-stable if

(1) all base points are disjoint from nodes and marked points of C;

(2) ωlog
C ⊗ Lϵ is ample, where L = P ×G Cθ;

(3) ϵℓ(z) < 1 for all z ∈ C.

The moduli space Qϵ
g,m(V//G, β) of ϵ-stable quasimaps was constructed in [11]. It is a

Deligne-Mumford stack equipped with a canonical obstruction theory. Moreover, the obstruc-

tion theory is perfect when V has at most loci singularities. Since the base points are away from

the marked points, the evaluation maps are well-defined and hence one can define a numerical

invariant similarly as before by integrating the cohomology classes against the virtual cycle.

By the numerical constraint in the definition, it is straightforward that as ϵ varies the moduli

space changes only at finitely many values of ϵ, called walls. When ϵ is sufficiently large (denoted

by ϵ = ∞) there should be no base points and hence ϵ-stable quasimaps are precisely stable

maps. Thus we recover the GW theory. When ϵ approaches to zero (denoted by ϵ = 0+), we

allow arbitrarily many base points [11].

In the special case that V//G ≃ Pn, ϵ = 0+-stable quasimaps are the MOP stable quotients

(see [28]). The ϵ-stable quasimaps are the ϵ-stable quotients studied in [28, 30]. Therefore

the ϵ-wall-crossing is the wall-crossing between the GW and MOP theories. In this case, there

is a contraction morphism c : Mg,m(Pn, β) → Qϵ=0+

g,m (Pn, β), which geometrically contracts

rational tails with no marked points (see [28]). Moreover, their virtual cycles are related by

[Qϵ=0+

g,m (Pn, β)]vir = c∗[Mg,m(Pn, β)]vir.

When the target space V//G is the quintic threefold Y , there is an alternative way to define

a virtual cycle for the moduli space of ϵ-stable quasimaps by the cosection localization as in

Section 2.2. We first consider the moduli space Qϵ
g,m(P4, β) of ϵ-stable triples (C,L, x). By the

direct image cone construction of [3], we can enlarge the moduli space to include the p-field

(see [8]). Let Xϵ
+ be the moduli space of quadruples (C,L, x, p) where (C,L, x) is an ϵ-stable

quasimap. The construction in [3] shows that Xϵ
+ is equipped with a natural perfect obstruction

theory and (2.1) can also be used to define a cosection on Xϵ
+ such that its degeneracy locus is

precisely the locus of quasimaps to the quintic threefold Y . Therefore, as in the GW theory,

we get a localized virtual cycle [Xϵ
+]

vir
loc supported on Qϵ

g,m(Y, β).

Conjecture 2.1 The localized virtual cycle [Xϵ
+]

vir
loc is equal to the virtual cycle [Q

ϵ
g,m(Y, β)]vir

defined in [11] up to sign.

This conjecture holds when g = 0. In this case, there are no nonzero p-fields and hence by
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(2.1) the cosection is zero. Therefore the cosection localized virtual cycle is the Euler class of

the vector bundle on Qϵ
0,m(P4, β) whose fiber at (C,L, x) is H1(L−5ωC). So by [11, Proposition

6.2.2], the two cycles agree up to sign, where the sign change is due to taking the dual of

tangent-obstruction complex. We expect that Conjecture 2.1 can be proved using a similar

technique as in [3].

2.4 δ-wall-crossing on the CY side

There is a similar theory of ϵ-stability invariants on the LG side as we will see in Subsection

3.2. To connect the ϵ = 0+-stability invariants on the CY side with the ϵ = 0−-stability

invariants on the LG side, a further wall-crossing called the δ-wall-crossing was introduced in

[8]. Consider the stack X+ of quadruples (C,L, x, p) defined above. For δ > 0 we define the

δ-stability on X+ as follows.

Definition 2.3 A quadruple (C,L, x, p) ∈ X+ with C a prestable curve, L ∈ Picd(C),

x ̸= 0 ∈ H0(L⊕5) and p ∈ HomC(L
5, ωC) is said to be δ-stable if

(1) ωlog
C ⊗ La is ample for all a > 0;

(2) (L, x) is a δ-stable pair on C with respect to the ample line bundle ωlog

C
, where ρ : C → C

is the stabilization morphism, L = ρ∗L and x = ρ∗x.

The theory of δ-stable pairs is due to Le Potier [26]. Let C be a prestable curve with a

fixed ample line bundle OC(1). Given a sheaf F on C, the Hilbert polynomial PF is defined as

PF (k) := χ(F (k)). Denote by r(F ) the leading coefficient of PF .

Definition 2.4 A pair of a one-dimensional sheaf F on C and a nonzero homomorphism

x : O⊕n
C → F with PF fixed is δ-semistable if

(1) F is pure, that is, F does not have a 0-dimensional subsheaf ;

(2) for any nontrivial subsheaf F ′ ̸= F ,

χ(F ′) + η(F ′, x)δ

r(F ′)
≤ χ(F ) + δ

r(F )
,

where η(F ′, x) is 1 if x factors through F ′ and 0 otherwise.

We get δ-stability if ≤ is replaced by <.

Note that Definition 2.3 does not impose any condition on p. We will also call the triple

(C,L, x) δ-stable if it satisfies Definition 2.3. An immediate consequence of the δ-stability

condition is that (see [8, Section 5])

(1) the curve C cannot have rational tails with at most one marked point and

(2) on rational bridges with no marked point the line bundle L must have degree 1.

Here a rational bridge means a rational component P1 which has exactly two nodes while a tail

means a connected subcurve C ′ which meets its complement C − C ′ at only one point. Note

that rational tails with at most one marked point and rational bridges with no marked point

are contracted by the stabilization morphism ρ.

The motivation for the δ-wall-crossing is to replace conditions on the section x by conditions

on the line bundle L. When δ is large enough (denoted by δ = ∞), the quadruple (C,L, x, p) is

δ-stable if the cokernel of x has support in a union of rational bridges and finitely many points.
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Since the cokernel of x consists of base points in the ϵ-stability, the δ = ∞-stability is similar

to the ϵ = 0+-stability. The only difference is that

(1) the base points are allowed to coincide with nodes and marked points;

(2) the base locus can contain rational bridges with no marked points;

(3) C does not have rational tails with at most one marked point;

(4) L has degree 1 on a rational bridge with no marked point.

In [8], the moduli stacks for δ = ∞ and ϵ = 0+ are related by birational morphisms.

On the other hand, when δ is sufficiently small (denoted by δ = 0+), under the assumption

that there are no strictly 0+-semistable quadruples, (C,L, x, p) is δ-stable if and only if L

itself is a stable rank 1 sheaf on C. To have no strictly 0+-semistable quadruples, we need an

assumption that r(L) = 2g − 2 +m is coprime to χ(L) = d− g + 1.

For the purpose of computing the GW invariants of Y , we may assume that 2g − 2 +m is

coprime to d − g + 1 because we can add a marked point and cancel its effect by the dilaton

equation

(2g − 2 +m) · [Mg,m(Y, d)]vir = [Mg,m+1(Y, d)]
vir ∩ ψm+1. (2.2)

Hence we may assume that 2g − 2 +m is coprime to d− g + 1 on the CY side.

The following are proved in [8].

(1) As in the ϵ-wall-crossing, the moduli space of δ-stable quadruples (C,L, x, p) changes

only at finitely many values of δ, called walls.

(2) When d+ δ ≥ g− 1 and δ is not a wall, the moduli space Qδ
g,m(P4, d) of δ-stable triples

(C,L, x) is constructed as a proper Deligne-Mumford stack.

(3) By the direct image cone construction, the moduli space Xδ
+ of δ-stable quadruples

(C,L, x, p) is constructed as a separated Deligne-Mumford stack and is equipped with a perfect

obstruction theory and a cosection defined by (2.1).

(4) If furthermore

g = 0 or d+ δ ≥ 3(g − 1) +m, (2.3)

the degeneracy locus of the cosection is proper and is precisely the locus of quadruple (C,L, x, p)

where p = 0 and
5∑

i=1

x5i = 0. Hence we get a virtual invariant defined by the cosection localized

virtual cycle.

The wall-crossing formula for the cosection localized virtual invariant was studied in [2].

3 Wall-Crossing for the LG Side

3.1 FJRW theory

The LG model we consider is ([C5/Z5],W ), where [C5/Z5] is the quotient stack of the affine

space C5 by the action of the finite cyclic group Z5 ⊂ C∗ and W is defined by W (x1, · · · , x5) =
5∑

i=1

x5i . In [17], Fan, Jarvis and Ruan developed a mathematical theory of the curve-counting

invariants for the LG model. The moduli space on the LG side is the moduli space of spin

curves, which we will review in this section. Let ζ := e
2πi
5 .
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Definition 3.1 An m-pointed twisted curve is a proper one-dimensional Deligne-Mumford

stack with at worst nodal singularities together with m distinct marked points away from nodes

such that

(1) points with nontrivial stabilizers are marked points and nodes;

(2) the stabilizer at each marked point is Z5;

(3) all nodes are balanced, i.e., locally near a node {xy = 0}, the isotropy group Z5 acts by

(x, y) 7→ (ζx, ζ−1y).

For a twisted curve C, we associate its coarse moduli space |C|. If |C| is a stable curve,

then we call C a twisted stable curve. It is well-known that m-pointed twisted stable curves of

genus g form a proper separated Deligne-Mumford stack (see [6]).

A spin curve is a twisted stable curve C together with an orbifold line bundle L on C which is

a fifth root of the logarithmic dualizing sheaf, ωtw
C := ωC

( m∑
i=1

pi
)
where pi’s are orbifold marked

points on C. We use the superscript tw to emphasize that the marked points are orbifold points.

Definition 3.2 A (5-) spin curve consists of an orbifold line bundle L on a twisted stable

curve C and an isomorphism p : L5 → ωtw
C .

The restriction of L to an orbifold point is a multiplication by ζk for some k ∈ {0, 1, · · · , 4}.
We call k the multiplicity of L at this marked point.

Definition 3.3 Let k⃗ = (k1, · · · , km) be an m-tuple of integers with 0 ≤ ki < 5. We define

the stack of m-pointed Z5-spin curves as

Mg,⃗k = {(C,L, p) | C twisted stable curve, p : L5 ∼=→ ωtw
C , multpiL = ki}.

Then the stack Mg,⃗k is a smooth proper Deligne-Mumford stack and is nonempty if and

only if
(
2g− 2+m−

∑
ki
)
is a multiple of 5 (see [17]). Fan, Jarvis and Ruan [17] constructed

analytically Witten’s top Chern class on Mg,⃗k, which gives the FJRW invariant.

In [4], Chang, Li and Li gave an alternative algebro-geometric definition of the FJRW

invariant by using the cosection localization technique. Let Xϵ=−∞
− be the stack parametrizing

quadruples (C,L, x, p) with (C,L, p) ∈Mg,⃗k and x = (xj) ∈ H0(C,L⊕5).2 By using the direct

image cone construction, Xϵ=−∞
− is constructed as a separated Deligne-Mumford stack of finite

type.

The multiplicity vector k⃗ is called narrow when all ki are nonzero. Otherwise it is called

broad. Chang, Li and Li [4] constructed a cosection for Xϵ=−∞
− when k⃗ is narrow. The rela-

tive obstruction sheaf ObXϵ=−∞
− /M

g,k⃗
at (C,L, x, p) is given by H1(L⊕5). By [4, Lemma 3.2],

H1(L⊕5) ∼= H1
((
L
(
−

∑
pi
))⊕5)

in narrow cases. The cosection σ is now defined by

(ẋi) 7→ pΣ5x4i ẋi. (3.1)

Since (ẋi) can be regarded as an element in H1
((
L
(
−

∑
pi
))⊕5)

and xi ∈ H0(L), the right

hand side of (3.1) is an element in H1(C,ωC) ∼= C. By [4, Proposition 3.4], it can be lifted to

a cosection σ : ObXϵ=−∞
−

→ OXϵ=−∞
−

. As before, we get a localized virtual cycle [Xϵ=−∞
− ]virloc.

Note that in this construction of the cosection, one considers only the obstruction for x while

2The superscript ϵ = −∞ is used because the FJRW theory corresponds to the ϵ = −∞-stability in the
ϵ-wall-crossing which will be explained in Section 3.2.
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in (2.1) one considers the obstructions for x and p simultaneously. The obstruction for p lies in

H1(L−5ωtw
C ) which is isomorphic to H1(OC) when p is an isomorphism. This cancels with the

deformation of the line bundle L. This explains the difference in constructions.

The degeneracy locus of σ is precisely Mg,⃗k, which is proper (see [4, Lemma 3.6]). So, the

invariant is defined by the localized virtual cycle [Xϵ=−∞
− ]virloc.

Theorem 3.1 (see [4]) The virtual invariants obtained from [Xϵ=−∞
− ]virloc agree up to sign

with the FJRW invariants defined by Fan, Jarvis and Ruan in [17].

3.2 ϵ-wall crossing on the LG side

On the LG side, the ϵ-wall-crossing parallel to that on the CY side is known (see [18, 29]).

In [29], Ross and Ruan studied the ϵ-wall-crossing on the LG side for g = 0.

Definition 3.4 Let C be a twisted curve; let L be a line bundle of degree d on C; let x be

a section in H0(L⊕5); let p be a nonzero section in H0(C,L−5ωtw
C ) = HomC(L

5, ωtw
C ).

For ϵ < 0, a quadruple (C,L, x, p) is called ϵ-stable if

(1) ωtw
C ⊗ L̃|ϵ| is ample where L̃ = L−5ωtw

C ;

(2) the cokernel of p : L5 → ωtw
C has 0-dimensional support disjoint from special points;

(3) |ϵ| · lengthz(coker(p)) < 1 for all z ∈ C.

Let Xϵ
− denote the stack of ϵ-stable quadruples after fixing the topological data (g,m, d)

and k⃗ the multiplicities of L at marked points. We always assume narrow k⃗.

When ϵ is sufficiently negative (ϵ = −∞), no base points for p are allowed and an ϵ-stable

quadruple is nothing but a spin curve with x-field so that we get back to the moduli stack

Xϵ=−∞
− for the FJRW invariant. Furthermore, the moduli stacks Xϵ

− vary only at finitely many

values of ϵ < 0, called walls, upon fixing the topological type (g,m, d). For a non-wall ϵ < 0,

a cosection on Xϵ
− can be defined by (3.1) and hence we have cosection localized virtual cycles

[Xϵ
−]

vir
loc whose supports are proper.

By [29, Lemma 1.5], when g = 0, there are no nonzero x-fields. Hence the cosection localized

virtual cycle is the top Chern class of the obstruction bundle, which appears as a definition

of the Witten class in [29]. Hence the cosection localized virtual cycle can be regarded as its

generalization.

When ϵ < 0 is close to zero (denoted by ϵ = 0−), p can have 0-dimensional cokernel of

arbitrary length. As in the CY side, if we allow the cokernel to have support on special points,

we get the δ = −∞ stability below.

3.3 δ-wall crossing on the LG side

We can also consider a parallel theory of the δ-wall-crossing on the LG side. What we

consider on the LG side is the p-field which is a section of the line bundle L−5ωtw
C . But for any

orbifold line bundle L with stabilizer Z5, L
−5ωtw

C has trivial orbifold structure and hence is the

pullback of a line bundle on the coarse moduli space |C|. Thus, the theory of the δ-wall-crossing

in Subsection 2.4 can be easily applied.

Definition 3.5 Let δ < 0. A quadruple (C,L, x, p) is δ-stable if

(1) ωtw
C ⊗ L̃a is ample for any a > 0 where L̃ = L−5ωtw

C ;
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(2) (L, p) is a |δ|-stable pair on C with respect to the ample line bundle ωlog

C
, where ρ : C → C

is the composition of the stabilization morphism |C| → C and the coarsening map τ : C → |C|,
L = ρ∗L̃ and p = ρ∗p.

Note that the definition does not impose any condition on x. We will also call the triple

(C,L, p) to be δ-stable if above conditions are satisfied.

As before we fix k⃗ = (k1, · · · , km) and d := 1
5

(
2g − 2 +m −

∑
ki
)
. For δ < 0, we let Xδ

−
denote the stack of δ-stable quadruples (C,L, x, p) satisfying multpi

L = ki and deg |L| = d.

The stack Xδ
− is constructed as follows.

Assume δ is not a wall. Let d̃ = −5d+2g− 2+m =
∑
ki. By the arguments in Subsection

2.4, we have a proper Deligne-Mumford stack Qδ
− of δ-stable triples (|C|, L̃, p), where |C| is a

prestable (nonorbifold) curve, L̃ ∈ Picd̃(|C|) and p ∈ H0(L̃). There is a forgetful morphism

Qδ
− → Mpre

g,m to the moduli stack of prestable curves. By taking fiber product with Mtw
g,m →

Mpre
g,m sending a twisted curve C to its coarse moduli space |C|, we get a proper Deligne-Mumford

stack Q̃δ,tw
− parametrizing δ-stable triple (C, L̃, p).

Let Ptw be a stack parametrizing pairs (C,L) of twisted curves C and line bundles L on C.

We have the finite morphism Ptw → Ptw sending L to L−5ωtw
C . One takes the fiber product of

this morphism with the forgetful morphism Q̃δ,tw
− → Ptw, (C, L̃, p) → (C, L̃). Upon restricting

to the locus where multpiL = ki, we get the stack Qδ,tw
− parametrizing δ-stable triple (C,L, p).

We have a universal line bundle L on Qδ,tw
− . By using the direct image cone construction of [3],

Xδ
− is constructed as a separated Deligne-Mumford stack. Since Ptw is smooth over Mtw

g,m by

[5], there is a perfect obstruction theory on Xδ
−.

A cosection can be defined by the same formula (3.1). When

g = 0 or − 5d− δ > g − 1 +m, (3.2)

the degeneracy locus of the cosection is proper and is precisely the locus of x = 0, which is

Qδ,tw
− (see [8]). Thus we obtain a cosection localized virtual invariant.

When |δ| is sufficiently large, p is surjective away from finitely many points. So, Xδ=−∞
− is

related to Xϵ=0−

− by wall crossing. On the other hand, when δ = 0−, L must be stable when

there are no strictly semistable sheaves on C, which holds under the assumption that 2g−2+m

and −5d+ 2g − 2 +m are coprime. Therefore, we have

Xδ=0−

− = {(C,L, x, p) |L is stable over C, p ̸= 0}.

Note that for g > 0, the numerical conditions (2.3) and (3.2) for the CY and LG sides

have no intersection. Hence the invariants from both sides cannot be compared directly by a

wall-crossing formula. Instead, we use a torus localization formula to compare the two sides.

4 LG/CY Correspondence

In this section, we relate the CY and LG sides after the δ-wall-crossing. The key point

in relating the CY and LG sides is that when δ = 0±, the stack Xδ=0±

± consists of quadruple

(C,L, x, p) where the stability condition is equivalent to the stability condition on L. Here, we

need an assumption that there are no strictly semistable line bundles. On the CY side, we use

the dilaton equation (2.2) and may assume that gcd(2g−2+m, d−g+1) = 1. On the LG side,
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we also have the dilaton equation (see [17, Theorem 4.2.9] and [22, Section 5.2]). By using the

dilaton equation we may cancel the effect on the FJRW invariant of adding a marked point by

integrating a ψ-class. Hence we may assume gcd(2g − 2 +m,−5d + 2g − 2 +m) = 1 so that

there are no strictly semistable L and hence δ = 0± is equivalent to δ = 0. Consider the stack

P of pairs (C,L), where C is a stable curve and L is a rank 1 stable sheaf on C with respect

to the ample line bundle ωlog

C
. By [16, Theorem 4.1], P is a smooth proper Deligne-Mumford

stack.

On the CY side, when (C,L, x, p) is δ = 0-stable and d ≥ 3(g − 1) +m, it was shown in [8]

that p is always zero and the stack Xδ=0
+ is in fact the stack of (C,L, x) with x ̸= 0. By inserting

a rational bridge at a node, where L is not locally free, we see that (C,L) uniquely determines

(C,L). Hence Xδ=0
+ is the projectivization of a cone stack over P . Consider the scaling action

of C∗ on x. Applying the torus localization formula for cosection localized virtual cycles in [2],

we find that

[Xδ=0
+ ]virloc = rest=0

[P ]

e(Rπ∗(L⊕5 ⊕Hom(L5, ωC/P )))
, (4.1)

where π : C → P denotes the universal curve, L is the universal sheaf on C and t is the

equivariant parameter. Here e(·) stands for the equivariant Euler class of the perfect complex.

Similarly on the LG side, when (C,L, x, p) is δ = 0-stable and −5d + δ > g − 1 + m,

one can show that x is always zero. After fixing the multiplicity vector k⃗, we see that (C,L)

uniquely determines (C, L̃) by a local computation. Let r be the degree of the finite morphism

Ptw → Ptw sending L to L̃ = L−5ωtw
C . Then we obtain the same residue formula.

[Xδ=0
− ]virloc = r · rest=0

[P ]

e(Rπ∗(L⊕5 ⊕Hom(L5, ωC/P )))
. (4.2)

The equations (4.1)–(4.2) are of the same form but have opposite range for d. So, the

comparison of these two equations looks like an analytic continuation.

5 Examples

In this section, we describe examples of the calculation on the CY side for g = 0.

Conjecture 5.1 (Clemens) Let Y be a general quintic threefold. For each degree d ≥ 1,

we have the following:

(1) There are only finitely many irreducible rational curves C in Y of degree d.

(2) These curves are all disjoint.

(3) The normalization ν : P1 → C has the normal bundle Nν ≃ OP1(−1)⊕OP1(−1).

In general, a rational curve on Y may not be smooth. In particular, there are examples of

17,601,000 6-nodal rational quintic plane curves on general Y due to Vainsencher [32]. Conjec-

ture 5.1 is proved for d ≤ 11 and the rational curves are all smooth except the above case (see

[13–14, 23–24]). So, rational curves in Y of degree at most 4 are finitely many and are rigidly

embedded P1’s.

For a rigidly embedded smooth rational curve C in Y , the moduli space of genus 0 degree

d stable maps to C is M0,m(P1, d), which we will study in this section. The dimension of
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M0,m(P1, d) is 2d − 2 + m. To get a contribution to the GW invariant of degree d covers of

C when m = 0, we need to take the Euler class of the obstruction bundle of rank 2d − 2. For

detail, see [15, Section 9.2.2].

In this section, we show basic calculation, where we do not need the obstruction bundle.

We show calculations with ψ-class insertions for M0,m(P1, 1) by examples. We also describe

the effect of the δ-wall-crossing when g = 0.

5.1 (g,m, d) = (0, 1, 1)

The moduli space M0,1(P1, 1) is P1. The ψ1 class is −2H where H is the point class. Then

the GW invariant is
∫
M0,1(P1,1)

ψ1 = −2. The ϵ-wall-crossing is an isomorphism. When m ≤ 2,

there are no δ-stable quasimaps and the moduli space is empty.

5.2 (g,m, d) = (0, 2, 1)

The moduli space M0,2(P1, 1) is the blowup of P1 × P1 along the diagonal ∆, which is

isomorphic to P1 × P1. The forgetting map π2 : M0,2(P1, 1) → M0,1(P1, 1) is the projection

P1 × P1 → P1 to the first factor. Let Hi be the pullback of the point class on each factor P1.

By [21, Lemma 26.3.1], we have ψ1 = π∗
2ψ1 +∆ = −H1 +H2 and similarly ψ2 = H1 −H2. So

the GW invariant are∫
M0,2(P1,1)

ψ2
1 =

∫
P1×P1

(−H1 +H2)
2 = −2,∫

M0,2(P1,1)

ψ1ψ2 =

∫
P1×P1

(H1 −H2)
2 = −2,∫

M0,2(P1,1)

ψ1ψ2 =

∫
P1×P1

(−H1 +H2)(H1 −H2) = 2.

As in the above case, the ϵ-wall-crossing is trivial and the δ-moduli spaces are empty.

5.3 (g,m, d) = (0, 3, 1)

The moduli space M0,3(P1, 1) is isomorphic to the Fulton-MacPherson configuration space

P1[3], which is isomorphic to the blowup of (P1)3 along the small diagonal ∆. A stable map

from P1 to P1 is unique up to projective transformations of the domain curve P1 and each

factor P1 in Bl∆(P1)3 parametrizes one of the three marked points. If any of the marked points

collide, a new rational component having those marked points is added to the domain curve.

So to get the moduli spaceM0,3(P1, 1), we first blowup (P1)3 along the small diagonal ∆ and

then along the strict transforms of the three diagonals ∆12, ∆23 and ∆13. The latter blowups

are isomorphisms because the blowup centers are divisors.

By the ϵ-wall-crossing, there is a contraction morphism c :M0,3(P1, 1) → Qϵ=0+

0,3 (P1, 1) (see

[28]). As we will see for more general case in Proposition 5.2, c is an isomorphism.

The moduli space Qδ
0,3(P1, 1) of δ-stable quasimaps helps us to understandM0,3(P1, 1) from

a different point of view. By the δ-stability, the curve C cannot have rational tails with one or

less marked point. So C must be irreducible P1 with three marked points. It is easy to check

that any nonzero pair of two section (x1, x2) ∈ H0(O(1)⊕2) is δ-stable. Hence the moduli space

Qδ
0,3(P1, 1) is isomorphic to P3 for all δ > 0.
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Now we compare the cases ϵ = 0+ and δ = ∞. A quasimap (C,L, (x1, x2)) has a base point

if and only if the two sections x1 and x2 vanish at the same point. Inside Qδ=∞
0,3 (P1, 1) ≃ P3,

this locus is given by a quadric surface. The δ-stable quasimap is not ϵ = 0+-stable if and only

if two sections x1 and x2 vanish at one of the three marked points, in which case a rational

tail with that marked point is added to get an ϵ = 0+-stable quasimap. For i = 1, 2, 3, let Γi

be the locus, where x1 and x2 vanish at the i-th marked point. Then Γi’s are disjoint lines in

the quadric surface mentioned above. Let Γ be their union. By local calculation, we have the

following.

Proposition 5.1 We have the map

q : Qϵ=0+

0,3 (P1, 1) → Qδ=∞
0,3 (P1, 1) ≃ P3,

which is the blowup along Γ.

It would be a good exercise to check that Bl∆(P1)3 is isomorphic to the blowup BlΓP3 of P3

along three lines.

We describe the cohomology ring of the moduli spaceM0,3(P1, 1) ≃ Qϵ=0+

0,3 (P1, 1) from these

two different points of view.

Definition 5.1 Let {H1,H2,H3, e} be the set of generators of the Picard group of Bl∆(P1)3,

where

(1) H1, H2 and H3 are pullbacks of the blowup Bl∆(P1)3 → (P1)3 of the point classes in the

three factors of (P1)3,

(2) e is the exceptional divisor.

Let {h,E1, E2, E3} be the set of generators of the Picard group of BlΓP3, where

(1) Ei = q−1(Γi) is the exceptional divisor for i = 1, 2, 3,

(2) h is the pullback of the plane class in P3.

Lemma 5.1 We have the following relations.

(1) (a) Hi = h− Ei for i = 1, 2, 3.

(b) e = 2h− E1 − E2 − E3.

(2) (a) h = H1 +H2 +H3 − e.

(b) Ei = Hj +Hk − e, where {i, j, k} = {1, 2, 3}.

Proof By construction, E1 is nothing but the strict transform of ∆23. Since ∆23 contains

the blowup center ∆ as a divisor, local computation shows that E1 = q∗∆23− e = H2+H3− e.
Thus we get 2(b).

The exceptional divisor e is the locus, where the quasimap has a base point. So, e is a strict

transform of the quadric surface mentioned above. Since this quadric surface contains all the

blowup centers as disjoint divisors, by the same local calculation, we get 1(b).

It is elementary to check that the other relations are derived from these two relations.

Lemma 5.2 ψi = Ei.

Proof By [21, Lemma 26.4.2], the ψi-class is the boundary divisor, where the domain curve

has two components with pi on the one twig and other two marked points on the other. In

other words, ψi = Ei.
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Lemma 5.3 The intersection products involving EiEj for i ̸= j on BlΓP3 are zero and

those involving H2
i on Bl∆(P1)3 are zero. All other possible intersection products are listed as

follows:

BlΓP3 Bl∆(P1)3

h3 = 1 H1H2H3 = 1
h2Ei = 0 HiHje = 0
hE2

i = −1 Hie
2 = −1

E3
i = −2 e3 = −4

Proof This is a consequence of the blow-up formula [19, §6.7].

Hence nonvanishing GW invariants are
∫
M0,3(P1,1)

ψ3
i =

∫
BlΓP3 E

3
i = −2 for i = 1, 2, 3. Note

that the moduli space of δ-stable quasimaps is useful to understand the structure of the moduli

space of stable maps.

5.4 (g,m, d) = (0,m, 1) for m ≥ 4

In the case of degree 1, the moduli spaceM0,m(P1, 1) is isomorphic to the Fulton-MacPherson

configuration space P1[m], which is given by a sequence of blowups along diagonals of (P1)m

(see [20]).

Proposition 5.2 The contraction morphism c : M0,m(P1, 1) → Qϵ=0+

0,m (P1, 1) is always an

isomorphism.

Proof Given a stable map f : C → P1, c(f) is defined by contracting all rational tails T in

C with no marked points and by adding a base point of length equal to the degree of f on T

at the point x ∈ C of incidence. In case of degree one, C can have at most one rational tail T

and f is of degree one at T . Since degree one map from T to P1 is unique up to automorphism

of T , c is bijective. Hence it is an isomorphism.

Similarly as above, there is a contraction map

q : Qϵ=0+

0,m (P1, 1) → Qδ=∞
0,m (P1, 1),

which is the blowup along the locus, where two sections x1 and x2 have a common zero at a

marked point.

When m ≥ 4, there is a nontrivial δ-wall-crossing. For a δ-stable quasimap (C,L, x) in

Qδ
0,m(P1, 1), L has nonnegative degree on any irreducible component of C because otherwise the

restriction of (L, x) to this irreducible component is a quotient pair which violates the δ-stability.

Thus L has degree one on only one component and degree zero on all the other components.

When δ = ∞, a quasimap (C,L, x) is δ = ∞-stable if x1 and x2 vanish simultaneously only at

finitely many points or along rational bridges with no marked point.

Lemma 5.4 For δ > 0, a δ = ∞-stable quasimap (C,L, x) with g = 0 and d = 1 is δ-stable

if and only if for any subcurve C ′ of C having k marked points such that

(1) C \ C ′ ∩ C ′ consists of only one point q;

(2) L has degree one on the irreducible component of C ′ containing q, and we have m−2k
k−1 < δ.



Landau-Ginzburg/Calabi-Yau Correspondence via Wall-Crossing 897

Proof It is enough to check the stability condition for saturated subsheaves. One can see

that a saturated subsheaf having positive Euler characteristic is of the form OC′ , where C ′ is

a subcurve satisfying the above two conditions. Since (C,L, x) is δ = ∞-stable, the section x

does not factor through OC′ . Therefore the quasimap (C,L, x) is δ-stable only if 1
k−1 <

2+δ
m−2

or m−2k
k−1 < δ.

Therefore when 2 ≤ k < 1
2m, δ-wall-crossing occurs. The effect of the δ-wall-crossing is as

follows. Let C ′′ = C \ C ′, x′′ = x|C′′ and L′′ = L|C′′ . The above quasimap can be written as

an extension

0 → (0,OC′) → (x, L) → (x′′, L′′) → 0.

Wall-crossing exchanges the subpair and the quotient pair. Thus after wall-crossing this

quasimap is replaced by a quasimap given by the extension

0 → (x′′, L′′) → (x̂, L̂) → (0,OC′) → 0.

So, L̂ has degree one on the component of C \ C ′ containing q and x̂|C′ = 0.

In case where L has degree one on a rational bridge R with no marked point, R is contracted

after wall-crossing since L̂ has degree zero on R. For example, Figure 1 shows the effect of δ-

wall-crossing when m = 6. In the picture, the numbers labeled above each component indicate

the degrees of L on the component.

Figure 1 δ-wall-crossing when (g,m, d) = (0, 6, 1)

As δ approaches to zero, this process is repeated until there are no subcurves C ′ satisfying

the above three conditions. Now we describe Qδ=0+

0,m (P1, 1).

Lemma 5.5 For a δ = 0+-stable quasimap (C,L, x) with g = 0 and d = 1, the component

on which L has degree one is uniquely determined by the distribution of marked points.

Proof Consider the dual graph T whose vertices are the irreducible components of C and

edges are the incidence relations between the irreducible components. Assign to a vertex of T
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the number of marked points on the corresponding irreducible component of C as a weight.

Then T is a connected tree. For each edge e of T , T \ e has two connected components. Let

v ∈ T be the vertex such that L has degree one on its corresponding component of C. Then by

Lemma 5.4, the quasimap (C,L, x) is δ = 0+-stable if

(∗) for each edge e of T incident to v, the sum of all weights of the vertices in the connected

component of T \ e containing v is greater than 1
2m.

We want to show that the vertex of T satisfying (∗) is unique.
We use induction on the number of edges. If T contains only one edge, the assertion is

trivial. For a general tree T , let w be a vertex in T having a maximal weight among the

vertices incident to only one edge. If the weight of w is greater than 1
2m, then w is the unique

vertex satisfying (∗). If not we remove w and the unique edge incident to w from T and add

the weight of w to the vertex adjacent to w. By induction the resulting tree T ′ has a unique

vertex v satisfying (∗). It is clear that v satisfies (∗) for T as well.

Theorem 5.1 The moduli space Qδ=0+

0,m (P1, 1) is isomorphic to a P3-bundle over M0,m.

Proof Let (C,L, x) be a δ = 0+-stable quasimap. Since a rational bridge with no marked

points does not satisfy (∗), C does not contain a rational bridge with no marked points and

hence C is a stable curve in M0,m. By Lemma 5.5, the line bundle L is uniquely determined

by C. Therefore, Qδ=0+

0,m (P1, 1) is isomorphic to a P3-bundle over M0,m, where the fiber P3 =

PH0(C,L⊕2) is the space of sections x.

5.5 (g,m, d) = (0,m, d)

We describe δ-wall-crossing for more general m and d. A quasimap (C,L, x) is δ = ∞-stable

if

(1) L has nonnegative degree on each irreducible component of C and

(2) x vanishes only at finitely many points and on rational bridges.

For a subcurve C ′ of C, let k(C ′) be the number of marked points on C ′ and ℓ(C ′) be the

number of points in C \ C ′ ∩C ′. Let d′ be the degree of L|C′ . Then, the saturated subsheaf L′

of L supported on C ′ has Euler characteristic d′ + 1− ℓ(C ′). Let

r = max
{ d′ + 1− ℓ(C ′)

k(C ′)− 2 + ℓ(C ′)

∣∣∣C ′ ⊂ C
}
.

It is elementary to check that for a subcurve C ′ attaining the maximum r, ℓ(C ′) ≤ 1 and L

must have nonnegative degrees on all components and positive degrees on the component of

C ′ meeting the rest of the curve C. If r > d+1+δ
m−2 , the quasimap (C,L, x) is not δ-stable. So if

r(m− 2)− d− 1 > 0, wall-crossing occurs at δ0 = r(m− 2)− d− 1.

Let C ′′ = C \ C ′, x′′ = x|C′′ and L′′ = L|C′′ . The above quasimap can be written as an

extension

0 → (0, L′) → (x, L) → (x′′, L′′) → 0.

Similarly as before, after crossing the wall at δ0, this quasimap is replaced by a quasimap given

by the extension

0 → (x′′, L′′) → (x̂, L̂) → (0,OC′) → 0.



Landau-Ginzburg/Calabi-Yau Correspondence via Wall-Crossing 899

The degree of L̂ is decreased by 1 on the components in C ′ meeting C ′′ and increased by 1

on the component in C ′′ meeting C ′. The section x̂ is zero on C ′. Similarly as before, if C

has a rational bridge R such that L̂ has degree 0, R is contracted. As δ approaches to zero,

this process is repeated until r(m − 2) − d − 1 < 0. For example, Figure 2 shows the effect of

δ-wall-crossing when m = 4 and d = 2.

Figure 2 δ-wall-crossing when (g,m, d) = (0, 4, 2)
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