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1 Introduction

In 1991, in an effort to generalize his famous conjecture regarding the KdV-hierarchy for

the intersection theory of the moduli space of Riemann surfaces (see [34–35]), Witten proposed

a remarkable first-order, nonlinear, elliptic PDE associated to an arbitrary quasihomogeneous

singularity. It has the simple form:

∂ui +
∂W

∂ui
= 0, (1.1)

where W is a quasihomogeneous polynomial with an isolated singularity at the origin, and ui is

interpreted as a section of an appropriate orbifold line bundle on an orbifold Riemann surface

C .

During the last decade we have carried out a comprehensive treatment of the Witten e-

quation and have used it to construct a theory similar to Gromov-Witten theory (see [16–18]).

This so-called FJRW-theory can be viewed as the Landau-Ginzburg phase of a Calabi-Yau

hypersurface

XW = {W = 0} ⊂WPn−1

in weighted projective space. The relation between the Gromov-Witten theory of XW and

the FJRW-theory of W is the subject of the Landau-Ginzburg/Calabi-Yau correspondence, a

famous duality from physics. More recently, the LG/CY correspondence has been reformulated
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as a precise mathematical conjecture (see [30]), and a great deal of progress has been made on

this conjecture (see [7–9, 26, 28]).

A natural question is whether the LG/CY correspondence can be generalized to complete

intersections in projective space, or more generally to toric varieties. The physicists’ answer is

“yes”. In fact, Witten considered this question in the early 90s (see [34]) in his effort to give

a physical derivation of the LG/CY correspondence. In the process, he invented an important

model in physics called the Gauged Linear Sigma Model (GLSM for short). From the point

of view of partial differential equations, the gauged linear sigma model generalizes the Witten

Equation (1.1) to the Gauged Witten Equation:

∂Aui +
∂W

∂ui
= 0, (1.2)

∗FA = µ, (1.3)

where A is a connection of certain principal bundle, and µ is the moment map of the GIT-

quotient, viewed as a symplectic quotient. In general, both the Gromov-Witten theory of a

Calabi-Yau complete intersection X and the LG dual of X can be expressed as gauged linear

sigma models. Furthermore, the LG/CY correspondence can be interpreted as a variation of

the moment map µ (or a deformation of GIT) in the GLSM.

During last several years, we constructed a rigorous mathematical theory for the gauged

linear sigma model (see [19–20]), and this new model seems to have many applications (see, for

example [14, 28]). Our new theory is a generalization of FJRW-theory from the case of a finite

gauge group to the case where the gauge group is any reductive Lie group. Surprisingly, our

older theory (finite group) is one of the more difficult cases in the general theory.

We deal with the Gauged Witten Equation both analytically (see [20]) and algebraically

(see [19]). But in this paper we focus on the algebraic version of the theory. In the case of a

continuous group, we can treat the Gauged Witten Equation algebraically using some stability

conditions. It turns out to be very convenient to incorporate the stability conditions from the

quasimap theory of Ciocan-Fontanine, Kim, Maulik, and Cheong (see [6, 10–11, 24]). And

indeed, it is natural to view our GLSM-theory as a union of FJRW-theory with quasimap

theory. However, it is possible to impose other stability conditions (see [5, 12]).

Understanding the details of the mathematical construction of the GLSM can be daunting.

This paper is an attempt to help the reader navigate past the more technical constructions and

begin to understand the underlying moduli spaces. In the next section we give a brief overview

of the main ingredients to the theory, and in the subsequent section we briefly review the

definition of the moduli problem and the most important stability conditions. The remainder

of the paper is focused on giving examples of the moduli spaces for various choices of input

data.

2 The Basic Setting

The input data of our new theory consists of the following. We discuss these in more detail

below.

(1) A finite dimensional vector space V over C.
(2) A reductive algebraic group G ⊆ GL(V ), sometimes called the gauge group.
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(3) A G-character θ with the property V s
G(θ) = V ss

G (θ). We say that it defines a strongly

regular phase Xθ = [V//θG].

(4) A choice of C∗ action on V , called the R-charge and denoted by C∗
R. This action is

required to commute with the G-action, and we require G ∩ C∗
R = ⟨J⟩ to have finite order d.

(5) A G-invariant quasihomogeneous polynomial W : V → C, called the superpotential,

having degree d with respect to the C∗
R action. We require that the GIT quotient Crit(W )//θG

of the critical locus Crit(W ) be compact.

(6) A stability parameter ε. This can be any positive rational number, but in practice, the

two most useful cases are the limiting cases of ε→ ∞ or ε→ 0+. Fortunately, these cases are

also easier to describe than the positive rational cases. For simplicity, in this paper we will only

discuss the limiting cases of 0+ and ∞.

(7) A Γ-character ϑ, where Γ is the subgroup of GL(V ) generated by G and C∗
R by Γ. We

require that ϑ define a lift of θ, meaning that ϑ|G = θ. Except in the case of ε = 0+, we also

require that this lift be a good lift, meaning that it satisfy V ss
Γ (ϑ) = V ss

G (θ). A choice of good

lift affects the stability conditions for the moduli space. But in the case of ε = 0+ the lift need

not be good, and every lift will produce the same stability conditions and the same moduli

space.

With the above input data we construct a theory with the following main ingredients:

(1) A state space, which is the relative Chen-Ruan cohomology of the quotient Xθ = [V//θG]

with an additional shift by 2q. For each conjugacy class Ψ ⊂ G, let

I(Ψ) = {(v, g) ∈ V ss
θ ×G | g ∈ Ψ}

and

Xθ,Ψ = [I(Ψ)/G].

The state space is

HW,G =
⊕
α∈Q

H α
W,G =

⊕
Ψ

HΨ,

where the sum runs over those conjugacy classes Ψ of G for which Xθ,Ψ is nonempty, and where

H α
W,G = Hα+2q

CR (Xθ,W
∞,Q) =

⊕
Ψ

Hα−2 age (γ)+2q(Xθ,Ψ,W
∞
Ψ ,Q),

and

HΨ = H•+2q
CR (Xθ,Ψ,W

∞,Q) =
⊕
α∈Q

Hα−2 age (γ)+2q(Xθ,Ψ,W
∞
Ψ ,Q).

Here W∞ = Re(W )−1(M,∞) ⊂ [V//θG] for some large, real M .

(2) The stack of LG-quasimaps.

We denote by CRθ = [CritssG (θ)/G] ⊂ [V//θG] = [V ss
G (θ)/G] the GIT quotient (with polar-

ization θ) of the critical locus of W . Our main object of study is the stack

LGQε,ϑ
g,k(CRθ, β)

of (ε, ϑ)-stable Landau-Ginzburg quasimaps to CRθ.

(3) A virtual cycle:

[LGQε,ϑ
g,k(CRθ, β)]

vir ∈ H∗(LGQε,ϑ
g,k(CRθ, β),Q)
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with virtual dimension

dimvir =

∫
β

c1(V//θG) + (ĉW,G − 3)(1− g) + k −
∑
i

(age(γi)− q),

where ĉW,G is the central charge (see Definition 2.7).

(4) Numerical invariants. Using the virtual cycle, we can define correlators

⟨τl1(α1), · · · , τlk(αk)⟩ =
∫
[LGQε,ϑ

g,k(CRθ,β)]vir

∏
i

ev∗i (αi)ψ
li
i .

One can then define a generating function in the standard fashion. These invariants satisfy the

usual gluing axioms whenever all insertions are of compact type.

In the rest of this section, we will discuss some of the input data and the state space in

more detail.

2.1 GIT and symplectic quotients

The first two pieces of data consist of a reductive algebraic group G (the gauge group)

acting on a finite-dimensional vector space V ∼= Cn. We do not require G to be connected, but

we require that G/G0 be finite, where G0 is the identity component of G. If the gauge group

action on V factors through SL(V ), then we say that it satisfies the Calabi-Yau condition. But

in general we do not require that G satisfy this condition.

We wish to consider the quotient stack [Z/G] for a closed subvariety Z ⊆ V , but since the

group G may not be compact, the quotient is not generally separated (Hausdorff). Geomet-

ric Invariant Theory (GIT for short) and symplectic reduction each give a way to construct

separated quotients.

2.1.1 GIT quotients

The key to constructing a separated quotient using GIT is to choose a linearization of the

action of G on Z, i.e., a lifting of the action of G to a line bundle L over Z. We always assume

that the linearization on Z is induced by a linearization on V . Since V = Cn, any line bundle

L on V is trivial L = V × C, and the linearization is determined by a character θ : G→ C∗.

Definition 2.1 For any character θ : G → C∗ we write Lθ for the line bundle V × C with

the induced linearization. We also often write Lθ to denote the corresponding line bundle on

Z.

Geometric Invariant Theory identifies an open subset Zss(θ) of Lθ-semistable points in Z as

the set of those points v ∈ Z for which there exists a positive integer k and a G-invariant section

f ∈ H0(Z,L⊗k
θ )G such that f(v) ̸= 0. We denote the set of points in Z that are semistable

with respect to G and θ by Zss
G (θ). The GIT quotient stack [Z//θG] is defined to be the stack

[Z//θG] = [Zss
G (θ)/G].

Let Z/affG be the affine quotient given by Z/affG = Spec(C[Z∗]G), where C[Z∗] is the ring of

regular functions on Z. The GIT quotient stack [Z//θG] is an algebraic stack with an underlying
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(coarse moduli) space

Z//θG = Zss
G (θ)/G = ProjZ/affG

(⊕
k≥0

H0(Z,Lk
θ)

G
)
.

The linearization Lθ induces a line bundle (a.k.a. a polarization) on [Z//θG], which we denote

by Lθ.

Definition 2.2 We say that a point v ∈ V is stable with respect to the linearization θ (or

θ-stable) if

(1) v is θ-semistable.

(2) The stabilizer StabG(v) = {g ∈ G | gv = v} is finite.

We denote the set of θ-stable points of Z by Zs
G(θ). We say that a point is unstable if it is not

semistable.

The stable locus is important because the quotient stack [Zs
G(θ)/G] is a Deligne-Mumford

stack, whereas [Zss
G (θ)/G] is not necessarily Deligne-Mumford.

Remark 2.1 Mumford-Fogarty-Kirwan [27] use the name properly stable to describe what

we call stable.

Remark 2.2 For any integers ℓ, k > 0, each f ∈ H0(Z,L⊗k
θ )G also satisfies

f ℓ ∈ H0(Z,L⊗kℓ
θ )G,

so it makes sense to extend the GIT constructions to fractional linearizations, corresponding to

fractional characters in ĜQ = Hom(G,C∗)⊗Z Q.

For a fixed Z, changing the linearization gives a different quotient. The space of (fractional)

linearizations is divided into chambers, and any two linearizations lying in the same chamber

have isomorphic GIT quotients. We call the isomorphism classes of these quotients phases. If

the linearizations lie in distinct chambers, the quotients are birational to each other, and are

related by flips (see [15, 32]).

Definition 2.3 We say that θ ∈ ĜQ (or the corresponding linearization Lθ) is strongly

regular if V ss
G (θ) is not empty and V s

G(θ) = V ss
G (θ).

For purposes of this paper, all linearizations need to be strongly regular.

Remark 2.3 For any strongly regular phase θ, the complex dimension of Xθ = [V//θG] is

n− dim(G).

2.1.2 Symplectic quotients

One may also think of the GIT quotients as symplectic reductions. Take Z ⊆ Cn with the

standard Kähler form ω =
∑
i

dzi ∧ dzi. Since G is reductive, it is the complexification of a

maximal compact Lie subgroup H, acting on Z via a faithful unitary representation H ⊆ U(n).

Denote the Lie algebra of H by h.

We have a Hamiltonian action of H on Z with moment map µZ : Z → h∗ for the action of

H on Z, given by

µZ(v)(Y ) =
1

2
vTY v =

1

2

∑
i,j≤n

viYi,jvj
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for v ∈ Z and Y ∈ h. If τ ∈ h∗ is a value of the moment map, then the locus µ−1(Hτ) is an

H-invariant set, and the symplectic orbifold quotient of Z at τ is defined as

[Z//splτ H] = [µ−1
Z (Hτ)/H] = [µ−1

Z (τ)/Hτ ],

where Hτ is the stabilizer in H of τ . The value τ of the moment map plays the role for the

symplectic quotient that the linearization θ plays for the GIT quotient. These are related by

the following result.

Theorem 2.1 (see [19, Corollary 2.1.8]) Let θ ∈ Ĝ be a character of G. Taking derivations

of the character θ defines a weight τθ ∈ h∗. Whenever the coadjoint orbit of τθ in h∗ is trivial

(e.g., in the case that τ is in the Lie algebra of the center of G, or if G is Abelian), then we

have

[Z//spl−τθ
H] = [Z//θG].

As with the space of GIT linearizations, the space h∗ is divided into chambers; and values

of τ that lie in the same chamber define isomorphic quotients. The walls between the chambers

correspond to the critical points of the moment map µ. In many cases these are easier to

identify in the symplectic formulation than in the GIT formulation.

2.2 Superpotential and critical locus

The next piece of data required for the GLSM is the superpotiential, which is G-invariant

polynomial W : V → C. We are especially interested in the critical locus of the superpotential.

Definition 2.4 Let θ : G → C∗ define a strongly regular phase Xθ = [V//θG]. The super-

potential W descends to a holomorphic function W : Xθ → C. Let CritssG (θ) =
{
v ∈ V ss

G (θ) |
∂W
∂xi

for all i = 1, · · · , n
}
⊂ V ss denote the semistable points of the critical locus. The group G

acts on CritssG (θ), and the stack quotient is

CRθ = [CritssG (θ)/G] = {x ∈ Xθ | dW = 0} ⊂ Xθ,

where dW : TXθ → TC∗ is the differential of W on Xθ. We say that the pair (W,G) is

nondegenerate for Xθ if the critical locus CRθ ⊂ Xθ is compact.

2.3 R-charge and the group Γ

The gauged linear sigma model (GLSM for short) requires an additional C∗-action on V

called the R-charge. The R-charge is a C∗-action on V of the form

(z1, · · · , zn) 7→ (λc1z1, · · · , λcnzn).

We denote this action by C∗
R in order to distinguish it from other C∗ actions (for example when

G = C∗). We think of C∗
R as a subgroup of GL(V,C). This means we require gcd(c1, · · · , cn) =

1. Unlike the case of FJRW theory, we allow the weights ci of C∗
R to be zero or negative.

Remark 2.4 Our choice of C∗
R-action differs from what the physics literature calls R-charge

by a factor of 2. More precisely, the physicists’ R-charge is the C∗-action given by the weights

(2c1/d, · · · , 2cn/d); but for our purposes, C∗
R is the more natural choice.
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Definition 2.5 We define the exponential grading element J ∈ C∗
R to be

J = (exp(2πic1/d), · · · , exp(2πicn/d)), (2.1)

which has order d.

It is sometimes convenient to write qi = ci/d and q =
n∑

i=1

qi so that

J = (exp(2πiq1), · · · , exp(2πiqn)).

We require the actions of G and C∗
R to be compatible, by which we mean

(1) They commute: gr = rg for any g ∈ G and any r ∈ C∗
R.

(2) We have G ∩ C∗
R = ⟨J⟩.

Definition 2.6 The group Γ is the subgroup of GL(V ) generated by G and C∗
R.

If G and C∗
R are compatible, then every element γ of Γ can be written as γ = gr for

g ∈ G, r ∈ C∗
R; that is,

Γ = GC∗
R.

The representation γ = gr is unique up to an element of ⟨J⟩. Moreover, there is a well-

defined homomorphism

ζ : Γ = GC∗
R → C∗,

g(λc1 , · · · , λcn) 7→ λd.
(2.2)

We denote the target of ζ by H = ζ(C∗
R) = C∗, to distinguish it from C∗

R. This gives the

following exact sequence:

1 → G→ Γ
ζ−→ H → 1. (2.3)

Moreover, there is another homomorphism

ξ : Γ → G/⟨J⟩,
gr 7→ g⟨J⟩.

(2.4)

This is also well defined, and gives another exact sequence:

1 → C∗
R → Γ

ξ−→ G/⟨J⟩ → 1.

Definition 2.7 Let N = n − dim(G). We define the central charge of the theory for the

choices V,G,C∗
R,W to be

ĉW,G = N − 2

n∑
j=1

cj/d = N − 2q. (2.5)

2.4 Lifts of the linearization to Γ

Although we are primarily interested in the GIT quotients of V by G, our constructions also

depend heavily on the GIT quotients of V by Γ. For this, we need a lift of the G-linearization

to a Γ-linearization. That is, we require a Γ-character ϑ that lifts θ, meaning that ϑ|G = θ. It

is not hard to prove that lifts always exist, including the trivial lift ϑ(gr) = θ(g).
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For a given lift ϑ, we always have V ss
Γ (ϑ) ⊂ V ss

G (θ), but equality does not necessarily hold.

If it does hold, we say that ϑ is a good lift of θ. For the stability parameter ε = ∞ we require

the lift to be a good lift. For the choice ε = 0+, the lift need not be good, and every lift will

produce the same theory. Unfortunately, not every θ ∈ Ĝ has a good lift for every choice of

(G-compatible) C∗
R-action, but most of the interesting examples of GLSMs have a good lift.

2.5 Choice of C∗
R

All of our constructions ultimately depend not on C∗
R, but rather only on the embeddings

G ⊆ Γ ⊆ GL(V ), on the sum q =
n∑

i=1

qi =
n∑

i=1

ci/d of the C∗
R weights, and on a choice of a lift

ϑ : Γ → C∗ of θ.

Of course the choice of q and the embedding of Γ in GL(V ) put many constraints on C∗
R;

but they still allow some flexibility. For example, when the gauge group G is a torus with a

Calabi-Yau weight system (that is, if its weight matrix B = (bij) satisfies
∑
j

bij = 0 for each

i), then we have a lot of flexibility. The following lemma is not hard to prove (see [19, Lemma

3.3.1]).

Lemma 2.1 If the gauge group G is a torus with weight matrix B = (bij), and if we have

a compatible C∗
R action with weights (c1, · · · , cn), such that W has C∗

R-weight d, then for any

Q-linear combination (b′1, · · · , b′n) of rows of the gauge weight matrix B, we define a new choice

of R-weights (c′1, · · · , c′n) = (c1 + b′1, · · · , cn + b′n). Denote the corresponding C∗ action by C∗
R′ .

Since the group Γ′ generated by G and C∗
R′ lies inside the maximal torus of GL(n,C), it is

Abelian; and so we automatically have that G and C∗
R′ commute. We also have the following:

(1) The group Γ′ generated by G and C∗
R is the same as the group Γ generated by G and

C∗
R.

(2) The C∗
R′-weight of W is equal to d.

(3) G ∩ C∗
R′ = G ∩ C∗

R = ⟨J⟩, where J is the element defined by Equation (2.1) for the

original C∗
R action.

(4) If B is a Calabi-Yau weight system, then for both C∗
R and C∗

R′ the sum of the weights

q =
∑
qi =

∑
ci/d is the same and the central charge ĉW is the same.

2.6 Hybrid models

A very important subclass of the toric examples—when G = (C∗)m—consists of the so-

called hybrid models. Several examples of the hybrid model have been worked out in detail by

E. Clader in [13].

Definition 2.8 For a torus G = (C∗)m, a phase θ of (W,G) is called a hybrid model if

(1) The quotient Xθ → Xbase has the structure of a toric bundle over a compact base Xbase,

and

(2) The C∗
R-weights of the base variables are all zero.

3 The GLSM Moduli Space

Given a choice of V , G, W , C∗
R, θ, and an additional choice of stability parameters ε, ϑ, the

“moduli space” for the GLSM is the stack of (ε, ϑ)-stable Landau-Ginzburg quasimaps to the
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critical locus CRθ ofW , which we describe below. This space is naturally a substack of the stack

of (ε, ϑ)-stable Landau-Ginzburg quasimaps to Xθ, and that larger space plays an important

role in the construction of the virtual class—similar to the role of p-fields for Gromov-Witten

theory.

3.1 Landau-Ginzburg quasimaps

Definition 3.1 For any k-pointed orbicurve C , y1, · · · , yk, denote by ωlog,C the line bundle

ωlog,C = ωC ⊗ O(y1)⊗ · · · ⊗ O(yk) = O
(
KC +

k∑
i=1

yi

)
,

where ωC = O(KC ) is the canonical bundle on C .

Also, let ω̊log,C denote the principal C∗-bundle on C corresponding to the line bundle ωlog,C .

Definition 3.2 A prestable, k-pointed, genus-g, LG-quasimap to Xθ is a tuple (C , y1, · · · ,
yk,P, u,κ) consisting of

(A) a prestable, k-pointed orbicurve (C , y1, · · · , yk) of genus g,
(B) a principal (orbifold) Γ-bundle P : C → BΓ over C ,

(C) a global section σ : C → E = P ×Γ V,

(D) an isomorphism κ : ζ∗P → ω̊log,C of principal C∗-bundles,

such that

(1) the morphism of stacks P : C → BΓ is representable (i.e., for each point y of C , the

induced map from the local group Gy to Γ is injective);

(2) the set B of points b ∈ C such that any point p of the fiber Pb over b is mapped by σ

into an Lθ-unstable G-orbit of V is finite, and this set is disjoint from the nodes and marked

points of C .

A prestable, k-pointed, genus-g, LG-quasimap to CRθ is a prestable, k-pointed, genus-g,

LG-quasimap to Xθ such that the image of the induced map [σ] : P → V lies in Crit(W ).

Definition 3.3 The points b occurring in condition (2) above are called base points of the

quasimap. That is, b ∈ C is a base point if at least one point (and hence every point) of the

fiber Pb over b is mapped by σ into an Lθ-unstable G-orbit of V .

Definition 3.4 For any prestable LG-quasimap Q = (C , y1, · · · , yk,P, σ,κ), a Γ-equivaria

-nt line bundle L ∈ PicΓ(V ) determines a line bundle L = P ×Γ L over E = P ×Γ V , and

pulling back along σ gives a line bundle σ∗(L ) on C .

In particular, any character α ∈ Γ̂ = Hom(Γ,C∗) determines a Γ-equivariant line bundle

Lα on V and hence a line bundle σ∗(Lα) on C .

3.2 Stability conditions for the stack of LG-quasimaps

Definition 3.5 For any α ∈ Γ̂ define the degree of α on Q to be

degQ(α) = degC (σ∗(Lα)) ∈ Q.

This defines a homomorphism degQ : Γ̂ → Q.
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For any β ∈ Hom(Γ̂,Q) we say that an LG-quasimap Q = (C , x1, · · · , xk,P, σ,κ) has degree
β if degQ = β.

Definition 3.6 Given a polarization θ ∈ Ĝ, a lift ϑ ∈ Γ̂ of θ and a prestable LG-quasimap

Q = (C , x1, · · · , xk,P, σ,κ), we say that Q is 0+ stable if

(1) every rational component has at least two special points (a mark yi or a node), and

(2) on every irreducible component C ′ with trivial ωlog,C ′ , the line bundle σ∗(Lϑ) has positive

degree.

It turns out that condition (2) holds for one lift if and only if it holds for all lifts, because

for any two lifts ϑ and ϑ′ of θ, the bundles σ∗(Lϑ) and σ∗(Lϑ′) always differ by a power of

ωlog,C (see [19, Proposition 4.2.14]). Moreover, over Q the “trivial” lift, defined by setting

ϑ(gr) = θ(g), is always a valid choice of lift.

Definition 3.7 Given a polarization θ ∈ Ĝ and a good lift ϑ of θ (see Subsection 2.4) and

a prestable LG-quasimap Q = (C , x1, · · · , xk,P, σ,κ), we say that Q is (∞, ϑ)-stable if

(1) there are no basepoints of σ on C , and

(2) for every irreducible component C ′ of C , the line bundle σ∗(Lϑ) restricted to C ′ has

nonnegative degree, with the degree only being allowed to vanish on components where ωlog is

ample.

Definition 3.8 For a given choice of compatible G- and C∗
R-actions on a closed affine

variety Z ⊆ V , a strongly regular character θ ∈ Ĝ and a nondegenerate W , we denote the

corresponding stack of k-pointed, genus-g, 0+ stable LG-quasimaps into CRθ or Xθ of degree

β by

LGQ0+
g,k(CRθ, β) or LGQ0+

g,k(Xθ, β),

respectively.

If ϑ is a good lift of θ, then the corresponding stack of k-pointed, genus-g, (∞, ϑ)-stable

LG-quasimaps into CRθ or Xθ of degree β is denoted by

LGQ∞,ϑ
g,k (CRθ, β) or LGQ∞,ϑ

g,k (Xθ, β),

respectively.

4 A Hypersurface in Weighted Projective Space

The remainder of this paper is dedicated to giving examples of the stack of stable LG-

quasimaps to CRθ and Xθ for various choices of input data. We begin with an example of a

hypersurface in weighted projective space.

4.1 Basic setup

Suppose that G = C∗ and F ∈ C[x1, · · · , xK ] is a quasihomogeneous polynomial of G-

weights (b1, · · · , bK) and total G-degree b. Suppose further that F has an isolated singularity

at the origin. Let

W = pF : CK × C → C,

where the variables x1, · · · , xK are the first K coordinates and p is the last coordinate. We

assign G-weight −b to the variable p, so that W is G invariant.
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The critical set of W is given by the equations:

∂pW = F = 0 and ∂xiW = p∂xiF = 0.

If p ̸= 0, then the fact that the only singularity of F is at the origin means that (x1, · · · , xK) =

(0, · · · , 0). If p = 0, then the only constraint is F (x1, · · · , xK) = 0. So the critical locus is

Crit(W ) = {(0, · · · , 0, p) | p ∈ C} ∪ {(x1, · · · , xK , 0) ∈ CK × C | F (x1, · · · , xK) = 0}.

Suppose that bi > 0 for i = 1, · · · ,K and b > 0. If b =
K∑
i=1

bi, then we have a Calabi-Yau

weight system, but we do not assume that here.

4.2 Phases for the hypersurface

Recall that different choices of linearization θ or moment map values τ give different quo-

tients [V//θG], but any two linearizations lying in the same chamber have isomorphic quotients,

called phases.

In the hypersurface case, the affine moment map

µ =
1

2

( K∑
i=1

bi|xi|2 − b|p|2
)

is a quadratic function whose only critical value is τ = 0, and there are two phases τ > 0 or

τ < 0.

Case of τ > 0 We have
K∑
i=1

bi|xi|2 = b|p|2 + 2τ.

For each choice of p, the set of (x1, · · · , xK) ∈ CK , such that (x1, · · · , xK , p) ∈ µ−1(τ), is a

nontrivial ellipsoid E, isomorphic to S2K−1; and we obtain a map from the symplectic quotient

X sympl
τ of V to [E/U(1)] =WP(b1, · · · , bK).

The resulting symplectic quotient X sympl
τ can be expressed as the total space of the line

bundle O(−b) over WP(b1, · · · , bK). If
∑
i

bi = b, this is the canonical bundle ωWP(b1,··· ,bK).

Alternatively, we can consider the GIT quotient [CK+1//θG], where θ : G → C∗ has weight

−e, with e > 0. One can easily see that the Lθ-semistable points are ((CK − {0}) × C) ⊂
CK ×C = CK+1, and the first projection pr1 : (CK −{0})×C → (CK −{0}) induces the map

[V//θG] →WP(b1, · · · , bK).

The critical locus CRθ = {p = 0 = F (x1, · · · , xK)} is a degree-b hypersurface in the image of

the zero section of [V//θG] ∼= O(−d) →WP(b1, · · · , bK). We call this phase the Calabi-Yau phase

or geometric phase. In this setting, we write CRgeom or Xgeom for CRθ or Xθ, respectively.

Case of τ < 0 We have

µ−1(τ) =
{
(x1, · · · , xK , p)

∣∣∣ K∑
i=1

bi|xi|2 − τ = b|p|2
}
.

For each choice of x1, · · · , xK ∈ CK the set of p ∈ C such that (x1, · · · , xK , p) ∈ µ−1(τ) is the

circle S1 ⊂ C, and we obtain a map X sympl
τ → [S1/U(1)]. If we choose the generator of U(1) to
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be λ−1, then p can be considered to have positive weight b. Moreover, every p has isotropy equal

to the bth roots of unity (isomorphic to Zb). The quotient [S
1/U(1)] isWP(b) = BZb = [pt /Zb].

In the GIT formulation of this quotient, this corresponds to θ : G → C∗ of weight −e,
and e < 0, the Lθ-semistable points are equal to (CK × C∗) ⊂ CK+1. The second projection

pr2 : (CK × C∗) → C∗ induces the map [V//θG] → BZb.

The toric variety Xθ = [V//θG] can be viewed as the total space of a rank-K orbifold vector

bundle over BZb. This bundle is actually just a Zb bundle, where Zb acts by

(x1, · · · , xK) 7→ (ξb1b x1, · · · , ξ
bK
b xK), ξb = exp(2πi/b).

If we choose the C∗
R action such that W has C∗

R-weight b, then this is exactly the action of

the element J in FJRW-theory. So the bundle Xθ is isomorphic to [CK/⟨J⟩]. This is a special

phase which is sort of like a toric variety with a finite group instead of C∗.

The critical locus is the single point {(0, · · · , 0)} in the quotient Xτ = [CK/Zd]. It is clearly

compact, so the polynomial W is nondegenerate. We call Xτ a Landau-Ginzburg phase or a

pure Landau-Ginzburg phase (see [36]). This example underlies Witten’s physical argument

of the Landau-Ginzburg/Calabi-Yau correspondence for Calabi-Yau hypersurfaces of weighted

projective spaces.

In this setting, we write CRLG or XLG for CRθ or Xθ, respectively.

4.3 GLSM moduli space for the hypersurface

4.3.1 Geometric phase

For the phase τ > 0, we choose C∗
R-weights cxi = 0 and cp = 1 (thus giving a hybrid model),

so W has C∗
R-weight d = 1. The element J is trivial, and the group

Γ = {(gb1 , · · · , gbK , g−br) | g ∈ G, r ∈ C∗
R}

is a direct product Γ ∼= G×C∗
R, with ξ and ζ just the first and second projections, respectively.

There are two ingredients to the moduli space: An Artin stack of geometric data and a more

subtle stability condition.

The geometric data correspond to sections of the vector bundle P ×Γ V . This bundle can

be written as a direct sum of line bundles

E = P ×Γ V ∼= A ⊗b1 ⊕ A ⊗b2 ⊕ · · · ⊕ A ⊗bK ⊕ (A ⊗(−b) ⊗ B),

where A corresponds to the G-action (the map C
P−→ BΓ

ξ−→ BG) and B corresponds to the

C∗
R action (the map C

P−→ BΓ
ζ−→ C∗

R). And we have an isomorphism κ : ζ∗P = B → ωlog,C .

Therefore, the section σ corresponds to a sequence σ = (s1, · · · , sK , p), where si is a section of

A bi and p is a section of A −b ⊗ ωlog,C .

So LG-quasimaps to the geometric phase Xgeom correspond to the following data:

{(C ,A , s1, · · · , sK , p) | si ∈ H0(C ,A bi), p ∈ H0(C ,A −b ⊗ ωlog,C )}. (4.1)

For all stability conditions, the LG-quasimaps can fail in at most a finite number of points

to map to the θ-semistable locus. This corresponds to the locus where s1, · · · , sK do not
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simultaneously vanish. Moreover, Crit(W )ssgeom has p = 0. But if p = 0 at all but a finite

number of points, then p is always 0.

Thus, without further specifying stability conditions, LG-quasimaps to the geometric phase

CRgeom correspond to the following data

{(C ,A , s1, · · · , sK) | si ∈ H0(C ,A bi)}, (4.2)

where C is a marked orbicurve, A is a line bundle over C , and the section σ = (s1, · · · , sK , 0)
maps to P ×Γ Crit(W ).

Now we consider the stability conditions.

Case of ε = ∞ We must find a good lift of θ. Let ℓ be a generator of L∗
θ over C[V ∗]

with G acting on ℓ with weight −e (and e > 0 in the geometric phase). The trivial lift ϑ0 of θ

corresponds to C∗
R acting trivially on ℓ. A monomial of the form xei ℓ

bi is Γ-invariant and does

not vanish on points with xi ̸= 0, so every point of CN × C with xi ̸= 0 is in V ss
Γ (ϑ0). Letting

i range from 1 to N shows that V ss
Γ (ϑ0) = V ss

G (θ). Thus ϑ0 is a good lift of the character θ.

Any other lift ϑ must have nontrivial C∗
R action on ℓ and thus any C∗

R-invariant element of

C[x1, · · · , xK , p][ℓ] must have each monomial containing a power of p, and hence points with

p = 0 will not be ϑ-semistable. Therefore, ϑ0 is the only good lift of θ.

Finally, σ∗Lϑ0 is determined by the action of Γ on Lθ (or the inverse of the action of ϑ0

on ℓ), so in this case σ∗Lϑ0 = A e. Thus, the (∞, ϑ0)-stable LG-quasimaps to CRgeom or to

Xgeom consist of those data (4.2) or (4.1), respectively, satisfying the conditions that

(1) the section σ has no basepoints (the si never vanish simultaneously);

(2) the line bundle A has positive degree on every component C ′ of C where ωlog,C has

nonpositive degree.

Thus (∞, ϑ0)-stable LG-quasimaps to CRgeom correspond to stable maps to the hypersurface

XF = {F = 0} ⊂ WP(b1, · · · , bK)}. And (∞, ϑ0)-stable LG-quasimaps to Xgeom are stable

maps to XF with p-fields, studied in [3–4].

Case of ε = 0+ The 0+ stable LG-quasimaps must have the section σ take its values in

Crit(W )ssgeom for all but a finite number of basepoints y ∈ C .

Letting ϑ be the trivial lift of θ, we have σ∗Lϑ = A e and so the 0+ stable LG quasimaps

to CRgeom or to Xgeom are the data of (4.2) or (4.1), respectively, satisfying the stability

conditions:

(1) There are at most a finite number of basepoints (where the si vanish simultaneously),

and these only occur away from nodes and marked points.

(2) Every rational component has at least two special points (node or marked point).

(3) On rational components with exactly two special points, the line bundle A has positive

degree.

Thus 0+ stable LG-quasimaps into CRgeom are stable quotients into XF ⊂WP(b1, · · · , bK),

and 0+ stable LG-quasimaps into Xgeom are stable quotients into XF with p-fields.

Remark 4.1 There is a parallel theory of quasimaps into XF . Both theories have the

same moduli spaces, but the virtual cycle constructions are different. For ε = ∞, Chang-Li

[3] proved the equivalence using a sophisticated degeneration argument. A similar argument

probably works for other ε-theories.
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4.3.2 LG phase

For the phase τ < 0, we choose C∗
R to have weights cxi = bi and cp = 0, which again

gives a hybrid model. But now W has C∗
R-weight d = b, and J = (ξb1 , · · · , ξbK , 1), where

ξ = exp(2πi/d). We have

Γ = {((gr)b1 , · · · , (gr)bK , g−b) | g ∈ G, r ∈ C∗
R} (4.3)

= {(αb1 , · · · , αbK , β) | α, β ∈ C∗}, (4.4)

where α = gr and β = g−b, with ζ : Γ → C∗ given by (αb1 , · · · , αbK , β) 7→ αbβ.

Thus, the vector bundle E = P ×Γ V associated to an LG-quasimap is a direct sum of line

bundles on C :

E = A b1 ⊕ · · · ⊕ A bK ⊕ B,

where A corresponds to α and B corresponds to β in the presentation (4.4) of Γ. Moreover,

we have κ : A b ⊗ B → ωlog,C is an isomorphism.

Thus, LG-quasimaps to XLG again consist of exactly the same data as (4.1):

{(C ,A , s1, · · · , sK , p) | si ∈ H0(C ,A bi), p ∈ H0(A −b ⊗ ωlog,C )}.

The base points of these quasimaps occur precisely at the zeros of p, and the base locus forms

an effective divisor D in C with A −b ⊗ ωlog,C
∼= O(D), so the section p gives an isomorphism

A b ∼= ωlog,C (−D) and can be viewed as a weighted b-spin condition (see [29]). So we can

reformulate the moduli problems as

{(C ,A , D, s1, · · · , sK) | si ∈ H0(C ,A bi), A b ∼= ωlog,C (−D)}, (4.5)

where each D is an effective divisor that is disjoint from the nodes and marked points of C .

For the LG-quasimaps to lie in the critical locus requires every si = 0, so LG-quasimaps to

CRLG consist of

{(C ,A , D) | A b ∼= ωlog,C (−D)}. (4.6)

Case of ε = ∞ Again, the trivial lift is the only good lift of θ. To see this, let ℓ be a

generator of L∗
θ over C[V ∗] with G acting on ℓ with weight −e (and e < 0 in the LG phase).

The trivial lift ϑ0 corresponds to C∗
R acting trivially on ℓ, and a monomial of the form p−eℓb is

Γ-invariant and does not vanish on points with p ̸= 0, so V ss
Γ (ϑ0) = V ss

G (θ). Thus ϑ0 is a good

lift of the character θ. Any other lift ϑ must have nontrivial C∗
R-action on ℓ, and hence any

Γ-invariant function must have at least one factor of xi in every monomial, which implies that

any point of V with x1 = x2 = · · · = xk = 0 is not ϑ-semistable. Thus ϑ0 is the only good lift.

The line bundle σ∗Lϑ0 is determined by the action of Γ on Lθ, that is by g
e in the presen-

tation (4.3), which implies that

σ∗Lϑ0
∼= B−e/b ∼= ω

−e/b
log,C ⊗ A e.

Since ε = ∞, no base points are permitted, so D = 0 and A b ∼= ωlog,C . For convenience, let us

assume that e = −cb for some c > 0. The stability condition is now that

ωc
log,C ⊗ A −cb ∼= ωc

log,C ⊗ ω−c
log,C = O
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can only have degree 0 on components where ωlog,C is ample, thus C must be a stable orbicurve.

So in this case (∞, ϑ0)-stable LG-quasimaps to CRLG correspond to stable b-spin curves

{C ,A | A b ∼= ωlog,C },

studied in [1, 23].

Case of ε = 0+ In this case basepoints are permitted, so D is not necessarily 0. The

bundle

σ∗Lϑ0
∼= ωc

log,C ⊗ A −bc ∼= O(cD)

must have positive degree on any component where ωlog,C is not ample.

Thus 0+ stable LG quasimaps to CRLG correspond to the data of (4.6) satisfying the

conditions:

(1) Every rational component has at least two special points, and

(2) On every irreducible component C ′ with trivial ωlog,C ′ , there is at least one basepoint.

5 Complete Intersection in Weighted Projective Space

5.1 Basic setup

Suppose that G = C∗ and we have several quasihomogeneous polynomials F1, F2, · · · , FM ∈
C[x1, · · · , xK ] of G-degree (d1, · · · , dM ), where each variable xi has G-weight bi > 0. We assume

that the Fj intersect transversely in WP(b1, · · · , bK) and define a complete intersection. Let

W =
∑
i

piFi : CK+M → C,

where we assign G-weight −di to pi. In the special case that
∑
i

bi =
∑
j

dj . Then the complete

intersection defined by F1 = · · · = FM = 0 is a Calabi-Yau orbifold in WP(b1, · · · , bK). But we

do not assume the Calabi-Yau condition here.

The critical set of W is defined by the following equations:

∂pjW = Fj = 0, ∂xiW =
∑
j

pj∂xiFj = 0. (5.1)

Since the Fj intersect transversely, an argument similar to that for the hypersurface shows that

the critical locus consists of those (x,p) where either p = 0 and x satisfies Fi(x) = 0 for all i,

or p is unconstrained and x = 0:

Crit(W ) = {(0,p) ∈ CK × CM | p ∈ CM} ∪ {(x,0) ∈ CK × CM | Fi(x) = 0, ∀i}.

5.2 Phases for a complete intersection

The moment map is

µ =
∑
i

1

2
bi|xi|2 −

1

2

∑
j

dj |pj |2.

Again, there are two phases, τ > 0 and τ < 0.

Case of τ > 0 When τ > 0, we again call this the geometric phase. Any choice of

p = (p1, · · · , pM ) determines a nontrivial ellipsoid E ⊂ CK of points x = (x1, · · · , xK) such
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that (x,p) lies in µ−1(τ). Quotienting by U(1), the first projection pr1 : E×CM → E induces a

map Xgeom →WP(b1, · · · , bK). The full quotient is Xgeom =
⊕
j

O(−dj) over WP(b1, · · · , bK).

In the GIT formulation, this again corresponds to θ : G→ C∗ having weight −e, with e > 0.

The semistable points of this phase are those with x ̸= 0, and the semistable points of the

critical locus correspond to points in

{F1 = · · · = FM = 0}.

The quotient CRgeom is the locus of the complete intersection defined by all the Fi vanishing

in the zero section of Xgeom →WP(b1, · · · , bK).

Case of τ < 0 When τ > 0, we again call this the Landau-Ginzburg phase. The quotient

is XLG =
⊕
i

O(−bi) over WP(d1, · · · , dM ).

In the GIT formulation, this corresponds to θ : G→ C∗ having weight −e, with e < 0. The

semistable points of this phase are those with p ̸= 0, and the semistable points of the critical

locus correspond to the image of the zero section of XLG →WP(d1, · · · , dM ).

5.3 GLSM moduli space for a complete intersection

5.3.1 Geometric phase

We choose the R-charge to act on CK ×CM with weights (0, · · · , 0, 1, · · · , 1), which gives a

hybrid model. And W has C∗
R-weight d = 1. The element J is trivial, and the group

Γ = {(gb1 , · · · , gbK , g−d1r, · · · g−dM r) | g ∈ G, r ∈ C∗
R}

is again a direct product Γ ∼= G × C∗
R, with ξ and ζ just the first and second projections,

respectively.

The geometric data correspond to sections of the vector bundle E = P ×Γ V , which can be

written as a direct sum of line bundles

E = A b1 ⊕ A b2 ⊕ · · · ⊕ A bK ⊕ (A −d1 ⊗ B)⊕ · · · ⊕ (A −dM ⊗ B),

where A corresponds to the G-action and B corresponds to the C∗
R action. And we have an

isomorphism κ : ζ∗P = B → ωlog,C .

So LG-quasimaps to the geometric phase Xgeom correspond to the data:

{(C ,A , s1, · · · , sK , p1, · · · , pM ) | si ∈ H0(C ,A bi), pi ∈ H0(C ,A −di ⊗ ωlog,C )}. (5.2)

Again Crit(W )ssgeom has p = 0, so without further specifying stability conditions, LG-

quasimaps to the geometric phase CRgeom correspond to the following data:

{(C ,A , s1, · · · , sK) | si ∈ H0(C ,A bi)}, (5.3)

where C is a marked orbicurve, A is a line bundle over C , and the section σ = (s1, · · · , sK ,0)
maps to P ×Γ Crit(W ).

Case of ε = ∞ Again ϑ0 is easily seen to be a good lift, and σ∗Lϑ0 = A e. Thus, just as

in the hypersurface case, we have that (∞, ϑ0)-stable LG-quasimaps to CRgeom correspond to
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stable maps to the complete intersection X = {F1 = · · · = FM = 0} ⊂ WP(b1, · · · , bK)}. And

(∞, ϑ0)-stable LG-quasimaps to Xgeom are stable maps to X with p-fields.

Case of ε = 0+ The arguments given in the hypersurface case are easily adapted to show

that 0+ stable LG-quasimaps into CRgeom are stable quotients into X ⊂WP(b1, · · · , bK), and

0+ stable LG-quasimaps into Xgeom are stable quotients into XF with p-fields.

5.3.2 LG phase

Assume that d1 = · · · = dr = d and choose the R-charge weights cxi = bi and cpj = 0. Now

W has C∗
R-weight d, and

Γ = {(gr)b1 , · · · , (gr)bK , g−d, · · · , g−d | g ∈ G, r ∈ C∗
R} (5.4)

= {αb1 , · · · , αbK , β, · · · , β) | α, β ∈ C∗}, (5.5)

where α = gr and β = g−d, and the map ζ sends (α, β) to αdβ.

Thus, E = P ×Γ V is a direct sum of line bundles on C :

E = A b1 ⊕ · · · ⊕ A bK ⊕ B ⊕ · · · ⊕ B,

where A corresponds to α and B corresponds to β in the presentation (5.5) of Γ. Moreover,

κ : A d ⊗ B → ωlog,C is an isomorphism.

Thus, LG-quasimaps to XLG consist of the data:

{(C ,A , s1, · · · , sK , p1, · · · , pM ) | si ∈ H0(C ,A bi), pi ∈ H0(A −d ⊗ ωlog,C )}.

And LQ-quasimaps to CRLG also require that all the s1, · · · , sK vanish, giving

{(C ,A , p1, · · · , pM ) | pi ∈ H0(A −d ⊗ ωlog,C )}.

Case of ε = ∞ Again, the trivial lift is the only good lift of θ. The line bundle σ∗Lϑ0 is

again

σ∗Lϑ0
∼= B−e/d ∼= ω

−e/d
log,C ⊗ A e.

And so the stability condition is that

ωlog,C ⊗ A −d

can only have degree 0 on components where ωlog,C is ample. And since ε = ∞, no base points

are permitted, so the pi cannot all simultaneously vanish.

So in this case (∞, ϑ0)-stable LG-quasimaps to CRLG correspond to stable maps toWP(d, d,
· · · , d). And for each (p1, · · · , pn) ∈WP(d, · · · , d), we have a pure LG-model of superpotential∑
i

piFi. One can view this as a family of pure LG-theories.

Remark 5.1 An LG-phase of a complete intersection of differing degrees (i.e., di ̸= dj for

some 1 ≤ i, j ≤ r) does not admit a hybrid model structure and will generally have no good

lift.

Case of ε = 0+ Now basepoints are permitted, and every rational component must have

at least two special points. Again, the stability condition is that

ωlog,C ⊗ A −d

can only have degree 0 on components where ωlog,C is ample.



930 H. J. Fan, T. Jarvis and Y. B. Ruan

Remark 5.2 As mentioned in Remark 5.1, without the condition d1 = d2 = · · · = dr = d

there is usually no good lift of θ. But in the ε = 0+ case, we do not need a good lift, so

fixing any d > 0 we can take cpj = d − dj , which again gives W the C∗
R-weight of d and a

corresponding proper DM stack of 0+ stable LG-quasimaps.

6 Graph Moduli Space

The graph moduli space is very important in Gromov-Witten theory. We can construct it

in the GLSM setting as follows.

Suppose that we have a phase θ, a superpotential W : [Cn/G] → C with a certain R-charge

C∗
R, defining Γ and a lift ϑ of θ. We construct a new GLSM as follows.

Let V ′ = V ×C2, and let C∗ act on C2 with weights (1, 1). Let G′ = G×C∗ act on V ′ with

the product action, so G acts trivially on the last two coordinates and C∗ acts trivially on the

first n coordinates.

Let θ′ : G′ → C∗ be given by sending any (g, h) ∈ G× C∗ to θ(g)h−k for some k > 0. The

GIT quotient is the product [V ′//θ′G′] = [V//θG] × P1. Let W ′ be defined on V ′ by the same

polynomial as W , so that the critical locus of W ′ in V ′ is C2 times the critical locus of W , and

the GIT quotient of the critical locus is the product of P1 and the corresponding quotient in

the original GLSM.

Keeping the same R-charge (that is, letting C∗
R acts trivially on the last two coordinates of

V ′), we have Γ′ = Γ×C∗, and we construct a lift ϑ′ of θ′ by sending (γ, h) ∈ Γ×C∗ to ϑ(γ)h−k.

It is easy to see that ϑ′ is a good lift of θ′ if ϑ is a good lift of θ.

In the ε = ∞ case, no basepoints can occur, and projecting to the two new coordinates

(z0, z1) induces a stable map C → P1. Therefore, the new GLSM in this case can be reformu-

lated as the usual GLSM for [V//θG] with the additional data of a stable map f : C → P1.

7 Generalized Graph Space

We can generalize slightly the graph moduli space to obtain a new moduli space with a

remarkable property. Let us take the quintic GLSM as an example. Now, we consider a new

GLSM on C6+2//(C∗)2, given by G = (C∗)2 acting on V = C8 with weights(
1 1 1 1 1 −5 d 0
0 0 0 0 0 0 1 1

)
for an integer d > 0. Let the coordinates on V be x0, · · · , x4, p, z0, z1, corresponding the columns

in the weight matrix above. The moment maps are

µ1 =
1

2

( 4∑
i=0

|xi|2 − 5|p|2 + d|z0|2
)
, µ2 =

1

2
(|z0|2 + |z1|2).

There are three chambers. We are interested primarily in the chamber 0 < µ1 < dµ2. This

corresponds to a character θ of G with weights (−e1,−e2) and 0 < e1 < de2. The θ-unstable

locus for θ is

{x0 = x1 = x2 = x3 = x4 = z0 = 0} ∪ {p = z1 = 0} ∪ {z0 = z1 = 0}.
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Taking the superpotential W =
5∑

i=1

px5i and the R-charge of weight (0, 0, 0, 0, 0, 1, 0, 0),

we have Γ = G × C∗
R = {(a, a, a, a, a, ra−5, bad, b) | a, b, r ∈ C∗}, and the map ζ takes

(a, a, a, a, a, ra−5, bad, b) to r.

There is no good lift of θ, so we restrict to the case of ε = 0+. We must choose some lift

for the stability condition, so we take the trivial lift ϑ(a, b, r) = a−e1b−e2 . Any other lift will

give the same stability conditions.

The resulting moduli problem consists of

{(C ,A ,B, x1, · · · , x5, p, z1, z2) |xi ∈ H0(C ,A ), p ∈ H0(C ,A −5 ⊗ ωlog,C ),

z1 ∈ H0(C ,A d ⊗ B), z2 ∈ H0(C ,B)},

satisfying the stability condition that σ∗Lϑ = A −e1B−e2 is ample on all components where

ωlog,C has degree 0.

The critical locus is

Crit(W ) = {x0 = · · · = x4 = 0} ∪
{
p =

4∑
i=0

x5i = 0
}
.

And so, in the chamber we are interested in, the GIT quotient of the critical locus has two

components CRθ = C1 ∪ C2, where C1 corresponds to x0 = · · · = x4 = 0, so z0 ̸= 0 can

be scaled to 1 by the second C∗ action and so the quotient C1 is isomorphic to P(5, 1), with

coordinates p, z1. The component C2 corresponds to the locus
{
p =

4∑
i=0

x5i = 0
}
.

The critical locus admits a C∗ action by multiplication on z1. The fixed loci of the action

are

(1) the locus {x0 = · · · = x4 = z1 = 0}, which is the point Bµ5 inside P(5, d).

(2) the locus
{
p = z0 =

4∑
i=0

x5i = 0
}
, which is a Calabi-Yau threefold in P4.

(3) the locus {x0 = · · · = x4 = p = 0}, which is the point Bµd inside P(5, d).
The GLSMs for the three fixed loci correspond, respectively to (1) a weighted FJRW theory,

(2) 0+ stable quasimaps to the quintic threefold, and (3) the theory of Hassett stable curves

with light points given by the vanishing of z0 and z1. This remarkable property gives us the hope

that we can extract a relation between Gromov-Witten theory and FJRW-theory geometrically

by using localization techniques on this moduli space. A program is being carried out right

now for the ε = 0+ theory (see [14]).

The same theory with a different ε = ∞ stability condition was discovered and the localiza-

tion argument was carried out independently by Chang-Li-Li-Liu (see [5]).

8 Non-Abelian Examples

The subject of gauged linear sigma models for non-Abelian groups is a very active area

of research in physics and is far from complete. Here, we discuss complete intersections in a

Grassmannian or flag variety.

All of this should work similarly in the setting of complete intersections of quiver varieties,

although the details have not been worked out. It would be very interesting to explore mirror

symmetry among Calabi-Yau complete intersections in quiver varieties.
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8.1 Complete intersections in a Grassmanian

The space Gr(k, n) can be constructed as a GIT quotientMk,n//GL(k,C), whereMk,n is the

space of k × n matrices and GL(k,C) acts as matrix multiplication on the left.

The Grassmannian Gr(k, n) can also be embedded into PK for K = n!
k!(n−k)! − 1 by the

Plücker embedding

A 7→ (· · · , det(Ai1,··· ,ik), · · · ),

where Ai1,··· ,ik is the (k × k)-submatrix of A consisting of the columns i1, · · · , ik.
The group G = GL(k,C) acts on the Plücker coordinates Bi1,··· ,ik(A) = det(Ai1,··· ,ik) by

the determinant, that is, for any U ∈ G and A ∈Mk,n, we have

Bi1,··· ,ik(UA) = det(U)Bi1,··· ,ik(A).

Let F1, · · · , Fs ∈ C[B1,··· ,k, · · · , Bn−k+1,··· ,n] be degree-dj homogeneous polynomials such

that the zero loci ZFj = {Fj = 0} and the Plücker embedding of Gr(k, n) all intersect trans-

versely in PK . We let

Zd1,··· ,ds = Gr(k, n) ∩
∩
j

ZFj

denote the corresponding complete intersection.

The analysis of Zd1,··· ,ds
is similar to the Abelian case. Namely, let

W =
∑
j

pjFj : Mk,n × Cs → C

be the superpotential. We assign an action of G = GL(k,C) on pj by pj → det(U)−dj .

The phase structure is similar to that of a complete intersection in projective space. The

moment map is given by µ(A, p1, · · · , ps) = 1
2

(
AA

T −
s∑

i=1

di|pi|2
)
. Alternatively, to construct

a linearization for GIT, the only characters of GL(k,C) are powers of the determinant, so

θ(U) = det(U)−e for some e, and τ will be positive precisely when e is positive.

Let ℓ be a generator of C[L∗
θ] over C[V ∗]. Any element of H0(V,Lθ) can be written as a sum

of monomials in the Plücker coordinates Bi1,··· ,ik and the pj times ℓ. Any U ∈ G will act on a

monomial of the form
∏
B

bi1,··· ,ik
i1,··· ,ik

∏
p
aj

j ℓ
m by multiplication by det(U)

∑
bi1,··· ,ik−

∑
djaj−me.

8.1.1 Geometric phase

Assume that e > 0. In order to be G-invariant, a monomial must have
∑
bi1,··· ,ik > 0, which

implies that any points with every Bi1,··· ,ik = 0 must be unstable, but for each m > 0 and each

k-tuple (i1, · · · , ik) the monomial Bme
i1,··· ,ikℓ

m is G invariant, so every point with at least one

nonzero Bi1,··· ,ik must be θ-semistable. Thus [V//θG] is isomorphic to the bundle
⊕
j

O(−dj)

over Gr(k, n).

As in the toric case, the critical locus in this phase is given by p1 = · · · = ps = 0 = F1 =

· · · = Fs, so we recover the complete intersection F1 = · · · = Fs in Gr(k, n), and we call this

phase the geometric phase.

Just as for the toric complete intersection, we choose the C∗
R-action to have weight 0 on the

space Mn,k and weight 1 on all of the pj , so that W has C∗
R weight 1 and Γ ∼= GL(k)× C∗.
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The trivial lift ϑ0 is a good lift because each monomial of the form Be
i1,··· ,ikℓ is Γ invariant

for the action induced by ϑ0.

The prestable moduli problem of LG-quasimaps to the critical locus CRgeom consists of

maps from prestable orbicurves to the complete intersection

{(C , f : C → Zd1,··· ,ds
)}. (8.1)

If E denotes the tautological bundle on Gr(k, n), then the line bundle σ∗(Lϑ0
) is the eth power

σ∗(Lϑ0) = det(f∗E )e of the determinant of the pullback—corresponding to the fact that any

U ∈ G acts on ℓ by det(U)−e and C∗
R acts on ℓ trivially.

8.1.2 LG-phase

We call the case where e < 0 the LG-phase. In order to be G-invariant, a monomial∏
B

bi1,··· ,ik
i1,··· ,ik

∏
p
aj

j ℓ
m must have

∑
aj > 0, which implies that any points with every pj = 0

must be unstable, but for each m > 0 and each j the monomial pme
j ℓmdj is G-invariant, so

every point with at least one nonzero pj is θ-semistable. Therefore V ss
G (θ) =Mk,n × (Cs\{0}).

Again, since the Fj and the image of the Plücker embedding are transverse, the equations

∂Bi1,··· ,ik
W =

∑
j

pj∂Bi1,··· ,ik
Fj = 0 imply that the critical locus is [({0}× (Cs\{0}))/GL(k,C)]

inside [V//θG] = [(Mk,n × (Cs\{0}))/GL(k,C)].
This phase does not immediately fit into our theory because we have an infinite stabilizer

SL(k,C) for any points of the form (0, p1, · · · , ps). This means that the quotient [V//θG] is an

Artin stack (not Deligne-Mumford).

Hori-Tong [21] analyzed the gauged linear sigma model of the Calabi-Yau complete inter-

section Z1,··· ,1 ⊂ Gr(2, 7) which is defined by seven linear equations in the Plücker coordinates.

They gave a physical derivation that its LG-phase is equivalent to the Gromov-Witten theory

of the so-called Pfaffian variety

Pf
( 2∧

C7
)
=

{
A ∈

2∧
C7; A ∧A ∧A = 0

}
.

It is interesting to note that the Pfaffian Pf
( 2∧

C7
)
is not a complete intersection. For additional

work on this example, see [2, 22, 25, 31].

8.2 Complete intersections in a flag variety

Another class of interesting examples is that of complete intersections in partial flag varieties.

The partial flag variety Flag(d1, · · · , dk) parametrizes the space of partial flags

0 ⊂ V1 ⊂ · · ·Vi ⊂ · · ·Vk = Cn

such that dimVi = di. The combinatorial structure of the equivariant cohomology of Flag(d1,

· · · , dk) is a very interesting subject in its own right.

For our purposes, Flag(d1, · · · , dk) can be constructed as a GIT or symplectic quotient of

the vector space
k−1∏
i=1

Mdi,di+1
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by the group

G =

k−1∏
i=1

GL(di,C).

The moment map sends the element (A1, · · · , Ak−1) ∈
k−1∏
i=1

Mi,i+1 to the element

1

2
(A1A

T

1 , · · · , Ak−1A
T

k−1) ∈
k−1∏
i=1

u(di).

Let the χi be the character of
∏
j

GL(dj) given by the determinant of ith factor. Each

character χi defines a line bundle on the vector space Md1,d2 × · · · ×Mdk−1,dk
, which descends

to a line bundle Li on Flag(d1, · · · , nk). A hypersurface of multidegree (ℓ1, · · · , ℓk) is a section

of
⊗
j

L
ℓj
j .

To consider the gauged linear sigma model for the complete intersection F1 = · · · = Fs = 0

of such sections, we again consider the vector space

V =

k−1∏
i=1

Mdi,di+1 × Cs

with coordinates (p1, · · · , ps) on Cs and superpotential

W =
s∑

j=1

pjFj .

We define an action of G on pi by (g1, · · · , gk−1) ∈ G acts on pi as
k−1∏
j=1

det(gj)
−ℓij , where ℓij is

the jth component of the multidegree degree of Fi.

We may describe the polarization as

θ =
k−1∏
i=1

det(gi)
−ei ,

or the moment map as

µ(A1, · · · , Ak−1, p1, · · · , ps) =
1

2

(
A1A

T

1 −
s∑

i=1

ℓ1j |pj |2, · · · , Ak−1A
T

k−1 −
s∑

i=1

ℓk−1,j |pj |2
)
.

This gives a phase structure similar to a complete intersection in a product of projective spaces.

For example, when ei > 0 for all i ∈ {1, · · · , k − 1}, we can choose a compatible C∗
R action

with weight 1 on pj and weight 0 on each Ai, and again the trivial lift ϑ0 is a good lift of θ in

this phase.

This example should be easy to generalize to complete intersections in quiver varieties. It

would be very interesting to calculate the details of our theory for these examples.
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9 General Comments

When G is non-Abelian or the R-charge is not integral, G and C∗
R interact in a nontrivial

way and the description of moduli space is more complicated. For more details, we encourage

readers to consult [19].

An important technique that we have not touched on here is cosection localization, which

is the main tool for constructing a virtual cycle for the GLSM. Starting from the noncompact

stack of LG-quasimaps to [V//θG], the cosection localization technique enables us to construct

a virtual cycle supported on the compact substack of LG-quasimaps to the critical locus of W .

Finally, we remark that the choice of stability condition in our paper is by no means unique.

There are other choices of stability conditions that result in different moduli spaces. Please see

[5, 12] for examples.
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