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Abstract The gauged linear sigma model (GLSM for short) is a 2d quantum field theory
introduced by Witten twenty years ago. Since then, it has been investigated extensively
in physics by Hori and others. Recently, an algebro-geometric theory (for both abelian
and nonabelian GLSMs) was developed by the author and his collaborators so that he can
start to rigorously compute its invariants and check against physical predications. The
abelian GLSM was relatively better understood and is the focus of current mathematical
investigation. In this article, the author would like to look over the horizon and consider
the nonabelian GLSM. The nonabelian case possesses some new features unavailable to
the abelian GLSM. To aid the future mathematical development, the author surveys some
of the key problems inspired by physics in the nonabelian GLSM.
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1 Introduction

The gauged linear sigma model (GLSM for short) in two dimensions was introduced by

Witten in 1993 (see [34]), and has been a powerful tool in the study of quantum field theory

in string theory for such targets as the complete intersection of GIT-quotients. In particular,

it provides us with a global, precise, and yet simple picture of the stringy Kähler moduli

space M of theories. The space M is decomposed into chambers called “phases”. Each phase

typically corresponds to a traditional theory such as the non-linear sigma model/Gromov-

Witten theory or the Landau-Ginzburg model/FJRW-theory (see [13–15]), and wall crossing

across a phase boundary is a smooth analytic continuation. The Landau-Ginzburg/Calabi-Yau

(LG/CY) correspondence is an example of such a picture. The GLSM is also used to physically

understand mirror symmetry for toric varieties and toric complete intersections.

It is very natural to try to develop the mathematical theories arising from the GLSM.

The author and his collaborators have started to develop a mathematical theory of A-model

invariants for the GLSM, which is an analogue of Gromov-Witten theory for non-linear sigma

models and FJRW theory for Landau-Ginzburg orbifolds. Recently, an algebro-geometric theory

for the so-called “compact type” sectors was put forth (see [16]). This algebro-geometric theory

is enough for most of the examples of interest, such as Fermat Calabi-Yau 3-folds. Although
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the theory in the most general case is incomplete without an appropriate treatment of broad

sectors (by analysis that is currently under development (see [17, 33])), for the purposes of

computing invariants and matching with physical predictions, the algebro-geometric theory is

what we need. Therefore, we can go ahead and explore the vast landscape of the GLSM. For

example, there are various attempts (see [10, 31]) right now to apply it to finding a precise

relationship between the FJRW and Gromov-Witten invariants for pairs of data related by the

LG/CY correspondence, which was one of the motivations for Witten’s original development of

the GLSM.

Our knowledge of the GLSM can be roughly divided into two cases: Those with abelian gauge

group and those with nonabelian gauge group. The abelian GLSM corresponds to the Gromov-

Witten theory of complete intersections in toric varieties, as well as the various associated

LG phases. The general picture here is relatively well understood, at least at the conjectural

level. In particular, the mirror symmetry construction due to Givental-Hori-Vafa plays a critical

role in our understanding in both mathematics and physics. There are plenty of problems in

the abelian case, and its mathematical implications have been the focus of much investigation

recently (see [3–9, 11, 27, 31]). However, in this article, we would like to look over the horizon

to identify some of the key problems for possible future development; after all, the algebro-

geometric theory (see [16]) by Fan-Jarvis-Ruan applies to the nonabelian case as well.

Past progress in physics has mostly been concerned with GLSMs with abelian gauge groups,

and extending to models with nonabelian gauge groups has been a challenging problem. Related

problems, such as mirror symmetry, have been poorly understood. More importantly, there are

new features in models with nonabelian gauge groups, such as 2d-Seiberg duality, Artin phases,

quiver varieties, and geometric representation theory.

We will first review the algebro-geometric theory of the GLSM by Fan-Jarvis-Ruan, in

Section 2. The focus is on Sections 3–5, where we describe some important problems inspired

by physics in the nonabelian GLSM. We close the paper with some general comments on mirror

symmetry for the nonabelian GLSM and its applications.

2 Brief Review of the Gauged Linear Sigma Model

In this section, we briefly review the data of algebraic geometric theory of the GLSM de-

veloped by Fan-Jarvis-Ruan. For more details see the paper [18] in this same volume, or the

original paper [16].

The construction of the GLSM depends on a choice of a vector space V of dimension n-over

C, a reductive algebraic group G ⊂ GL(V ) over C with identity component G0 such that G/G0

is finite. We call G the gauge group. If the gauge group action on V factors through SL(V )

then we say that it satisfies the Calabi-Yau condition.

Assume that V also admits a C∗-action (z1, · · · , zn)→ (λc1z1, · · · , λcnzn), which we denote

by C∗
R (this is twice what the physicists call R-charge). We think of C∗

R as a subgroup of

GL(V,C). This means we require gcd(c1, · · · , cn) = 1. The theory also requires a polynomial
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W : V → C of degree d ̸= 0 with respect to the C∗
R action (in other words, a quasihomo-

geneous polynomial), invariant under the action of G. The polynomial W will be called the

superpotential for our theory.

The actions of G and C∗
R are required to be compatible, meaning that they commute and

G ∩ C∗
R has finite order.

Definition 2.1 We define Γ to be the subgroup of GL(V,C) generated by G and C∗
R.

Let θ : G → C∗ and consider the GIT semistable locus of V with the G linearization

determined by θ. We will call θ strongly regular if V ss
G (θ) = V s

G(θ). Different choices of θ

correspond to different GIT quotients (phases), and these give different, but related, theories.

Inside each phase, there is another parameter ϵ ≥ 0 used to specify the stability condition.

In the case of ϵ > 0, we need a choice of a good lift ϑ : Γ → C∗ of θ, in the sense that

V ss
Γ (ϑ) = V ss

G (θ). The existence of a good lift is a nontrivial condition. We want to emphasis

that in the important case of ϵ = 0, the existence of a good lift is NOT needed. Finally, we

always assume that W defines a nondegenerate holomorphic map W : [V//θG]→ C.
The most common examples of the previous discussion are when G is abelian. Several

examples of these are given in the paper [18] in this volume. In this paper we focus more on

nonabelian cases.

2.1 State space

Given these ingredients, the GLSM gives a state space (similar to that of FJRW-theory)

HW,G =
⊕
α∈Q

H α
W,G =

⊕
Ψ

HΨ,

where the sum runs over those conjugacy classes Ψ of G for which Xθ,Ψ is nonempty, and where

H α
W,G = Hα+2q

CR (Xθ,W
∞,Q) =

⊕
Ψ

Hα−2 age (γ)+2q(XΨW
∞
Ψ ,Q),

and

HΨ = H•+2q
CR (Xθ,Ψ,W

∞,Q) =
⊕
α∈Q

Hα−2 age (γ)+2q(Xθ,Ψ,W
∞
Ψ ,Q).

That is, the state space is the relative Chen-Ruan cohomology with an additional shift by 2q.

For each element g ∈ G we write [[g]] ⊂ G for the conjugacy class of g in G. We often call

the factor H[[g]] the [[g]]-sector, and we call the factor H[[1]] the untwisted sector.

Definition 2.2 An element γ ∈ G is called narrow if the corresponding component X[[γ]] ⊂
IXθ is compact. In this case we also say that the corresponding sector H[[γ]] is narrow. If γ is

not narrow, we call it (and the corresponding sector) broad.

The theory for narrow sectors is generally much easier to understand than for the broad

sectors, but some elements of the broad sectors also behave well, namely those which are

supported on the critical locus of W . We call these good sectors of compact type.
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2.2 Moduli space

Associated to the ingredients described above and to a rational choice of 0 ≤ ε ≤ ∞ the

theory produces a moduli space that is a sort of unification of the quasimaps of [8–9, 26] with

an extension of the Polishchuk-Vaintrob [29] description of the FJRW moduli space to reductive

algebraic groups

LGQε,ϑ
g,k(CRθ, β),

consisting of ε, ϑ-stable LG-quasimaps to the critical locus CRθ = [Crit(W )//θG].

Remark 2.1 The choice of ε and ϑ determine stability conditions for the moduli space.

But the choice of stability condition is by no means unique. One can find other interesting

choices of stability conditions in [5, 7].

2.3 Virtual cycle and correlators

Finally, for these moduli spaces, we can construct a virtual cycle for the case where all

insertions are of compact type using the cosection localization techniques of Kiem-Li [25] as

applied in [3–4]. This allows us to define correlators.

Definition 2.3 Suppose that αi ∈HW,G,comp. We define correlator

⟨τl1(α1), · · · , τlk(αk)⟩ =
∫
[LGQε,ϑ

g,k(CRθ,β)]vir

∏
i

ev∗i (αi)ψ
li
i .

One can define the generating function in a standard fashion.

These invariants satisfy the gluing axioms whenever every insertion is of compact type. Ex-

cept in the ε =∞-chamber, we do not expect a forgetful morphism or string/dilaton equations.

3 Abelian GLSM and Their Mirrors

The abelian GLSM corresponds to the case of complete intersection of toric varieties which

are the center of attention recently (see examples in [18] in this volume). One will not get a com-

plete picture without considering the mirror symmetry. The abelian GLSM has a satisfactory

answer for its LG mirror due to Givental-Hori-Vafa. We briefly review their construction.

Definition 3.1 Let

XΣ =
Cn\Z(Σ)
(C∗)r

be a compact toric variety with charge matrix Q = (Qij). Then the Givental-Hori-Vafa mirror

is a Landau-Ginzburg model on the toric variety

{x ∈ Cn | xQj1

1 · · ·xQjn
n = ejt for all 1 ≤ j ≤ r}

with superpotential given by the restriction of

W = x1 + · · ·+ xn.
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The above constitutes a Landau-Ginzburg model, which should be mirror to XΣ whenever

XΣ is Fano. The failure in the non-Fano case can be observed explicitly for Hirzebruch surfaces

Fn, which are Fano if and only if n = 1.

Let us verify in some easy examples that mirror symmetry is satisfied, at least on the

cohomological level; that is,

H∗(XΣ) ∼= Jac(W ).

Example 3.1 The charge matrix of Pn is (1, 1, · · · , 1), so the underlying toric variety of

the Givental-Hori-Vafa mirror is the subset of Cn+1 defined by the equation

x0 =
et

x1 · · ·xn
,

which is isomorphic to (C∗)n. One can check easily (see [12, Example 2.9]) that Jac(W ) ∼= Cn+1,

so it does match H∗(Pn) as a vector space.

Remark 3.1 In recent years, some attempts have been made to adapt Hori-Vafa mirror

symmetry to the non-Fano case. This involves adding higher-order terms to W to ensure that

the number of its critical points coincides with the rank of the cohomology of the non-Fano

variety. These correction terms have an interpretation in terms of counting holomorphic discs

in XΣ.

3.1 Equivariant Givental-Hori-Vafa mirrors of noncompact toric varieties

A simple example suffices to show that Hori-Vafa mirror symmetry fails in the noncompact

case.

Example 3.2 If XΣ = C, then the Landau-Ginzburg mirror is W = x : C → C. This has

no critical points, so the duality between H∗(XΣ) and the Jacobian ring fails.

On the other hand, one might expect that there is an equivariant version of the Hori-Vafa

mirror for which the mirror symmetry statement still holds.

Definition 3.2 Let XΣ = Cn\Z(Σ)
(C∗)r be a toric variety with charge matrix Q. Its equivariant

Givental-Hori-Vafa mirror is

W = x1 + · · ·+ xn −
n∑

i=1

λi log(xi),

subject to the constraints
n∏

i=1

xQbi

i = qb

for nonzero parameters qb. Here λi is a constant, viewed as the equivariant parameter for the

ith C∗ action.

Example 3.3 If XΣ = C, then the equivariant Givental-Hori-Vafa mirror is

W = x− λ log(x),
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so

∂xW = 1− λ

x
.

Unlike the nonequivariant case, this now has a single critical point, so we recover the corre-

spondence between the dimension of H∗(XΣ) and the number of critical points.

Example 3.4 Let XΣ be the total space of the bundle OPn(−d), which has charge matrix

(1, 1, · · · , 1,−d). In this case

W = x0 + x1 + · · ·+ xn+1 −
n+1∑
i=0

λi log(xi)

with the constraint

x0 · · ·xnxdn+1 = q.

Thus, we obtain

W = x1 + · · ·+ xn+1 +
xdn+1

x1 · · ·xn
−

n+1∑
i=0

λi log(xi).

It is straightforward to check that the number of critical points of this superpotential indeed

matches the dimension of H∗(XΣ).

Example 3.5 It is not always necessary to modify W by all of the terms λi log(xi) in order

to achieve mirror symmetry. For example, consider the toric variety OP1(−1)⊕OP1(−1), which
has charge matrix Q = (1, 1,−1,−1). Its nonequivariant Givental-Hori-Vafa mirror is

W = x2 + x3 + x4 + q
x3x4
x2

,

defined over (C∗)3, while for the equivariant mirror one must subtract the terms
4∑

i=1

λi log(xi)

from the above.

Even the partial modification

W̃ = x2 + x3 + x4 + q
x3x4
x2
− λ3 log(x3)− λ4 log(x4)

of W upholds mirror symmetry, though. This makes sense from the perspective of the J-

function; only the two C∗ actions in the noncompact fiber directions of OP1(−1)⊕OP1(−1) are
necessary in order to make the equivariant Gromov-Witten theory well-defined.

Despite the failure of nonequivariant Givental-Hori-Vafa mirror symmetry for noncompact

toric varieties, the noncompact mirrors are still worth remembering, as they play a role in the

hypersurface version of mirror symmetry considered in the next section.

3.2 Givental-Hori-Vafa mirrors of hypersurfaces in toric varieties

The Givental-Hori-Vafa construction can be adapted to give the mirror of a Fano hyper-

surface in a toric variety. Let us begin by studying how this works in the case of projective

space.
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Example 3.6 Let Xd ⊂ PN−1 be a degree-d hypersurface; explicitly, the Fano condition

corresponds to the requirement that d ≤ N−1. Suppose thatXd = {Gd = 0} for the polynomial

Gd = xd1 + · · ·+ xdN .

To form the Givental-Hori-Vafa mirror, one first constructs a GLSM on a noncompact toric

variety for which Xd is the critical locus of the superpotential in a particular phase. Namely,

let (C∗)r act on (C∗)N+1 with charge matrix

(1, · · · , 1,−d),

so that the first N factors give precisely the charge matrix for PN−1. Let the superpotential be

W = p ·G(x1, · · · , xN ) : CN+1 → C

in coordinates (x1, · · · , xN , p) on CN+1, and let the moment map be

µ =
1

2

( N∑
i=1

|zi|2 − d|p|2
)
.

The GI-quotient has two chambers corresponding to µ > 0 or µ < 0. In the µ > 0 phase of this

GLSM, an easy computation shows that the critical locus of W is precisely the hypersurface

Xd.

Next, construct the (non-equivariant) Hori-Vafa mirror of this noncompact toric variety

containing Xd. This is sometimes called the pre-Givental-Hori-Vafa mirror of Xd. In this case,

it is the Landau-Ginzburg model with superpotential

W̃ = x1 + · · ·+ xN + xN+1

on the subset of CN+1 satisfying the constraint

x1 · · ·xNx−d
N+1 = et.

In other words, setting

xi = udi for 1 ≤ i ≤ N

and

xN+1 = uN+1,

the pre-Givental-Hori-Vafa mirror becomes

W̃ = ud1 + · · ·+ udN + e−
t
du1 · · ·uN

on the toric variety (C∗)N .

This Landau-Ginzburg model has a certain symmetry group. Namely, an automorphism of

(C∗)N of the form

ui 7→ ωpi

d ui
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for which ωd is a dth root of unity and

ωp1+···+pN

d = 1,

will preserve the superpotential W̃ . The group of such symmetries is denoted by SL(W0), since

if W0 = ud1 + · · ·+ udN , then the automorphisms in question are precisely
 λ1

. . .

λN

 ∣∣∣∣W0(λ1x1, · · · , λNxN ) =W0(x1, · · · , xN )

 ∩ SLN (C).

Finally, to form the Givental-Hori-Vafa mirror of Xd, one “compactifies” the pre-Givental-

Hori-Vafa mirror by adding the point u1 = · · · = uN = 0 to the domain CN of the Landau-

Ginzburg model, and then takes the quotient by the symmetry group above. This yields

W̃ : [CN/SL(W )]→ C,

W̃ = ud1 + · · ·+ udN + e−
t
du1 · · ·uN

as the mirror.

Remark 3.2 The cohomology or state space is the simplest invariant preserved under

mirror symmetry. More generally, the genus-zero A-model invariants are encoded in the so-

called J-function, while the full Landau-Ginzburg B-model in genus zero can be viewed as

encoding certain oscillatory integrals ∫
∆

e−
W
z ω,

where ω is a “primitive form”. In the toric case, we have seen that ω = d log(x1)∧· · ·∧d log(xn).
On the other hand, the primitive form for a hypersurface is ω = dx1∧· · ·∧dxn. For higher genus
one can consider the so-called Saito-Givental theory on the LG B-model. Mirror symmetry is

supposed to match it with the higher-genus Gromov-Witten invariants of the GLSM.

4 Artin Phase and Determinental Varieties

In the abelian case, we only encountered a finite isotropy group in each phase, and the

orbifold model is sufficient. This is matched perfectly by our virtual cycle technique where

we require the underlying moduli space to be a Deligne-Mumford stack. When we have a

continuous isotropy group, we are in the context of Artin stacks. It is a long-standing problem

to try to construct the virtual cycle for Artin stacks. For a nonabelian GLSM, we frequently

encounter the situation that one phase is smooth or weakly coupled, while other phase is an

Artin stack or strongly coupled. This is where some of deepest physical ideas come in. Hori

and his collaborators argue that these models further localize on some determinantal varieties—

another mysterious branch of algebraic geometry!

Recall that so far we have only discussed complete intersections of toric varieties. These

are only a small class of algebraic varieties. There is a vast landscape of algebraic varieties
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which are not complete intersections. Unfortunately, they are much harder to access. The most

common construction is via determinantal variety techniques.

Suppose that M is a matrix whose coefficients are homogeneous polynomial. The simplest

example of a determinantal variety is

Ωk = {x ∈ Pn; rankM(x) ≤ k}.

More generally, let A : E → F be a generic linear homomorphism between vector bundles E,F

over a projective variety X. We can consider the determinantal variety

Ωk(A,E, F ) = {x ∈ X; rank A(x) ≤ k}.

We can further generalize A to be a homomorphism between two flags (see [19] for a compre-

hensive introduction). The examples arising among determinantal varieties are some of oldest

non-complete intersection examples in algebraic geometry. In a related story, physicists con-

structed millions of Calabi-Yau 3-folds in early 90’s. However, extensive computation has only

been done for the 14 so-called one-parameter models (the moduli space of Kähler structure

is one-dimensional). Recently, this number was increased to more than 20 (see Hori-Knapp’s

examples). The new examples are determinantal. It is surprising that the nonabelian GLSM

can access these examples. After all, GLSM is built to capture complete intersection. The

physical argument to relate to determinantel varieties are highly nontrivial. We still do not

yet know how to interpret it in mathematics. We should mention that the 14 older examples

have known mirrors which have a one-dimensional moduli space of complex structures. It is an

extremely interesting problem to find geometric mirrors of these new examples.

Example 4.1 Here we review the example (see [16, 34]) of a complete intersection in

the Grassmannian Gr(k, n). The space Gr(k, n) can be constructed as the GIT quotien-

t Mk,n//GL(k,C), where Mk,n is the space of k × n matrices, and GL(k,C) acts as matrix

multiplication on the left.

The Grassmannian Gr(k, n) can also be embedded into PK for K = n!
k!(n−k)! − 1 by the

Plücker embedding

A 7→ (· · · , det(Ai1,··· ,ik), · · · ),

where Ai1,··· ,ik is the (k × k)-submatrix of A consisting of the columns i1, · · · , ik.
The group G = GL(k,C) acts on the Plücker coordinates

Bi1,··· ,ik(A) = det(Ai1,··· ,ik)

by the determinant, that is, for any U ∈ G and A ∈Mk,n, we have

Bi1,··· ,ik(UA) = det(U)Bi1,··· ,ik(A).

Let F1, · · · , Fs ∈ C[B1,··· ,k, · · · , Bn−k+1,··· ,n] be degree-dj homogeneous polynomials such

that the zero loci ZFj = {Fj = 0} and the Plücker embedding of Gr(k, n) all intersect trans-

versely in PK . We let

Zd1,··· ,ds = Gr(k, n) ∩
∩
j

ZFj
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denote the corresponding complete intersection.

The analysis of Zd1,··· ,ds is similar to the abelian case. Namely, let

W =
∑
j

pjFj : Mk,n × Cs → C

be the superpotential. We assign an action of G = GL(k,C) on pj by pj → det(U)−dj .

The phase structure is similar to that of a complete intersection in projective space. The

moment map is given by µ(A, p1, · · · , ps) = 1
2

(
AA

T −
s∑

i=1

di|pi|2
)
. Alternatively, to construct

a linearization for GIT, the only characters of GL(k,C) are powers of the determinant, so

θ(U) = det(U)−e for some e, and τ will be positive precisely when e is positive.

Let ℓ be a generator of C[L∗] over C[V ∗]. Any element of H0(V,Lθ) can be written as a sum

of monomials in the Plücker coordinates Bi1,··· ,ik and the pj times ℓ. Any U ∈ G will act on a

monomial of the form
∏
B

bi1,··· ,ik
i1,··· ,ik

∏
p
aj

j ℓ
m by multiplication by det(U)

∑
bi1,··· ,ik−

∑
djaj−me.

e > 0: In order to be G-invariant, a monomial must have
∑
bi1,··· ,ik > 0, which implies

that any points with every Bi1,··· ,ik = 0 must be unstable, but for each m > 0 and each

k-tuple (i1, · · · , ik) the monomial Bme
i1,··· ,ikℓ

m is G invariant, so every point with at least one

nonzero Bi1,··· ,ik must be θ-semistable. Thus [V//θG] is isomorphic to the bundle
⊕
j

O(−dj)

over Gr(k, n).

Furthermore,W is quasihomogeneous of degree one with respect to the following compatible

C∗
R action:

λ(A, p1, · · · , ps) = (A, λp1, · · · , λps).

The trivial lift ϑ0 is a good lift because each monomial of the form Bme
i1,··· ,ikℓ

m is Γ invariant

for the action induced by ϑ0.

The critical locus (see [16, Example 7.4.1]) in this phase is given by p1 = · · · = ps = 0 =

F1 = · · · = Fs, so we recover the complete intersection F1 = · · · = Fs in Gr(k, n).

As in the toric case, we call this phase the geometric phase.

e < 0: We call the case where e < 0 the LG-phase. In this case, in order to be G-invariant a

monomial
∏
B

bi1,··· ,ik
i1,··· ,ik

∏
p
aj

j ℓ
m must have

∑
aj > 0, which implies that any points with every

pj = 0 must be unstable, but for eachm > 0 and each j the monomial pme
j ℓmdj is G-invariant, so

every point with at least one nonzero pj is θ-semistable. Therefore V ss
G (θ) =Mk,n × (Cs\{0}).

Again, since the Fj and the image of the Plücker embedding are transverse, the equations

∂Bi1,··· ,ik
W =

∑
j

pj∂Bi1,··· ,ik
Fj = 0 imply that the critical locus is [({0} × (Cs\{0}))/GL(k,C)]

inside [V//θG] = [(Mk,n × (Cs\{0}))/GL(k,C)]. This phase does not immediately fit into our

theory because we have an infinite stabilizer SL(k,C) for any points of the form (0, p1, · · · , ps).
This means that the quotient [V//θG] is an Artin stack.

Example 4.2 A generalization of above examples is that of complete intersections in partial

flag varieties (see [16]). The partial flag variety Flag(d1, · · · , dk) parametrizes the space of

partial flags

0 ⊂ V1 ⊂ · · ·Vi ⊂ · · ·Vk = Cn
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such that dimVi = di. The combinatorial structure of the equivariant cohomology of Flag(d1,

· · · , dk) is a very interesting subject in its own right.

For our purposes, Flag(d1, · · · , dk) can be constructed as a GIT or symplectic quotient of

the vector space
k−1∏
i=1

Mdi,di+1

by the group

G =
k−1∏
i=1

GL(di,C).

The moment map sends the element (A1, · · · , Ak−1) ∈
k−1∏
i=1

Mi,i+1 to the element 1
2 (A1A

T

1 ,

· · · , Ak−1A
T

k−1) ∈
k−1∏
i=1

u(di).

Let χi be the character of
∏
j

GL(dj) given by the determinant of i-th factor. Each character

χi defines a line bundle on the vector space Md1,d2 × · · · ×Mdk−1,dk
, which descends to a line

bundle Li on Flag(d1, · · · , nk). A hypersurface of multidegree (ℓ1, · · · , ℓk) is a section of
⊗
j

L
ℓj
j .

To consider the gauged linear sigma model for the complete intersection F1 = · · · = Fs = 0 of

such sections, we again consider the vector space

V =
k−1∏
i=1

Mdi,di+1 × Cs

with coordinates (p1, · · · , ps) on Cs and superpotential

W =
s∑

j=1

pjFj .

We define an action of G on pi by (g1, · · · , gk−1) ∈ G acts on pi as
k−1∏
j=1

det(gj)
−ℓij , where ℓij is

the jth component of the multidegree degree of Fi.

We may describe the polarization as

θ =
k−1∏
i=1

det(gi)
−ei ,

or the moment map as

µ(A1, · · · , Ak−1, p1, · · · , ps)

=
1

2

(
A1A

T

1 −
s∑

i=1

ℓ1j |pj |2, · · · , Ak−1A
T

k−1 −
s∑

i=1

ℓk−1,j |pj |2
)
.

This gives a phase structure similar to the complete intersection in a product of projective

spaces.

For example, when ei > 0 for all i ∈ {1, · · · , k − 1} we can choose a compatible C∗
R action

with weight 1 on pj and weight 0 on each Ai. Again, its LG-phase is an Artin stack.
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4.1 The example of Hori-Tong

It is clear from the preceding examples that an Artin phase is unavoidable in the nonabelian

GLSM. It is surprising that some of these are related to determinantal varieties.

Example 4.3 Hori-Tong [23] have analyzed the gauged linear sigma model of the Calabi-

Yau complete intersection Z1,··· ,1 ⊂ Gr(2, 7), which is defined by 7 linear equations in the

Plücker coordinates. Suppose that

Fj =
∑
i1i2

ai1i2j Bi1i2 ,

where Bi1,i2 = det[xi1 , xi2 ] is a skew-symmetric quadratic expression for column xi and a
i1i2
j =

−ai2i1j .

W =
∑
j,i1i2

pja
i1i2
j det[xi1 , xi2 ]

=
∑
i1i2

∑
j

aI1i2j pjdet[xi1 , xi2 ] =
∑
i1i2

aI1i2(p)det[xi1 , xi2 ].

In this case, A = (aij(p)) is a skew-symmetric matrix whose coordinates are linear function of

p ∈ P7. Using the so-called effective theory technique from physics, Hori-Tong gave a physical

derivation that its LG-phase is equivalent to the Gromov-Witten theory of the Pfaffian variety

Pf
( 2∧

C7
)
=

{
A ∈

2∧
C7;A ∧A ∧A = 0

}
.

The Pfaffian Pf(A) is an example of a determinantal variety such that rank(A) ≤ 4. It is

well-known that the Pfaffian Pf(A) is not a complete intersection. This provides a physical

explanation to some of early work of Rodland [32].

4.2 Hori-Knapp construction

In [24], Hosono and Takagi studied the derived equivalence of some interesting examples of

Calabi-Yau 3-folds which are double covers of some singular variety (such as a determinantal

quintic). Inspired by their work, Hori-Knapp [22] has further generalized the Pf(A) example into

two broad classes of examples. One of feature of those examples is the usage of non-connected

Lie group such as O(n) to capture the double cover. Let us describe their models.

Let G = U(1)×H/Ker with H = USp(k),O(k), or SO(k) and V = Vp×Vx, where U(1) acts

on Vp × Vx, and H only acts on Vx as a fundamental representation. Ker is the finite subgroup

which is the kernel of action of U(1) × H. We assume that U(1) acts on Vp with negative

weight and Vx with positive weight, as in our previous example of a complete intersection of

flag manifolds. For the O(k)-series, one has an additional freedom to introduce a so-called

discrete torsion. This leads to a theory with different Hodge number. This additional freedom

of discrete torsion was well-known in the old orbifold theory (see [1]). We use O+(k) to denote

the usual orbifold theory and O−(k) to denote the theory with a discrete torsion.
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In the symplectic case, we use the superpotential

W =
N∑

ij=1

Aij(p)[xixj ],

where Aij(p) is skew-symmetric and [xixj ] is a skew-symmetric expression of xi ∈ Vx. In the

orthogonal case, we use the superpotential

W =
N∑

ij=1

Sij(p)(xixj),

where Sij is symmetric and (xixj) is a symmetric expression of xi ∈ Vx. Moreover, we assume

that Aij(p), Sij(p) are generic.

These models have two phases: One is a geometric phase and the other is an Artin phase.

Hori-Knapp’s physical argument shows that the symplectic series are equivalent to certain

Pfaffian varieties, while the symmetric series are equivalent to the double cover of certain

symmetric determinantal varieties.

Example 4.4 Let G = (U(1)×O(2))/{(±1,±12)} with weights (−2, 1) on p1, p2, p3, p4, p5

and weights (1, 2) on x1, x2, x3, x4, x5. Moreover, we have the superpotential

W =
5∑

i,j,k=1

Sij
k p

k(xixj),

such that Sij
k = Sji

k is generic in a certain sense. This is a form of an O+(2)-model.

This model has two phases. The geometric phase r > 0 is the Z2-quotient of a smooth

complete intersection of five hypersurfaces of bi-degree (1, 1) in P4 × P4. The Artin/strongly

coupled phase r < 0 is supposed to be equivalent to the double cover of a determinantal variety

YS = {p ∈ P4; rank S(p) ≤ 4}.

Example 4.5 The previous example has a Seiberg-dual model (see the next section).

Let G = (U(1) × SO(4))/{(±1,±14)} with weights (−2, 1) on p1, · · · , p5, weights (−1, 4) on

x̃1, · · · , x̃5 and weights (2, 1) on (sij)1≤i<j≤5. Moreover, we have the superpotential

W =
∑
ij

sij(x̃
ix̃j) +

∑
i,j,k

Sij
k p

ksij .

Hori [21] showed that this model is Seiberg-dual to the previous one in the sense that it reverses

the phases. Namely, it maps the r > 0 phase to the Artin phase of the previous example, and

the r < 0 phase to the geometric phase of the previous example.

Example 4.6 The Hori-Tong example also has a Seiberg-dual model. Let G = (U(1) ×
USp(4))/{(±1,±14)} with weights (−2, 1) on p1, · · · , p7, weights (−1, 4) on x̃1, · · · , x̃7 and

weights (2, 1) on (aij)1≤i<j≤7. Moreover, we have the superpotential

W =
7∑

i,j=1

aij [x̃
ix̃j ] +

7∑
i,j,k=1

Aij
k p

kaij .
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This model is supposed to reverse the phases of Hori-Tong example, i.e., mapping r to −r.

The following is a list of interesting examples of one-parameter Kähler moduli studied by

Hori-Knapp. We follow their notation.

A2
(−2)7,17 h

1,1 = 1, h2,1 = 50; Pfaffian in P6 (r < 0 phase); Int in G(2, 7) (r > 0 phase),

S8,0
(−2)32,18 h

1,1 = 1, h2,1 = 65; Sym-det in P31 (r < 0 phase); Z2-quad(8) on P3 (r > 0

phase),

S2,+
(−2)5,15 h

1,1 = 1, h2,1 = 26; Double sym-det in P4 (r < 0 phase); Reye congruence (r > 0

phase),

A2
(−1)4,(−2)3,15 h

1,1 = 1, h2,1 = 51; Pfaffian in P6
1111222 (r < 0 phase); Z2 quad(4) on B5

(r > 0 phase),

A2
(−1)6,(−2),14,0 h

1,1 = 1, h2,1 = 59; Pfaffian in P6
1111112 (r < 0 phase); Z2 quad(4) on B4

(r > 0 phase),

A2
(−2)7,3,14 h

1,1 = 1, h2,1 = 61; Pfaffian in P6 (r < 0 phase); Z2 quad(4) on P3 (r > 0

phase),

A2
(−2)5,(−4)2,32,13 h

1,1 = 1, h2,1 = 61; Pfaffian in P6
1111122 (r < 0 phase); Pseudo Hybrid

(r > 0 phase),

S2,+
(−1)2,(−2)3,14 h

1,1 = 1, h2,1 = 23; Double sym-det in P4
11222 (r < 0 phase); Z2 quad(2) on

B/τ (r > 0 phase).

Let us explain the Hori-Knapp’s notation of the previous examples. In Ak
q , S

k,•
q , the su-

perscript k encodes the rank of the group H and the subscript q denotes the U(1) charges;

• = ±, 0 labels the type of theory in S-class. Sym-det denotes the symmetric determinantal

variety. Double sym-det denotes the certain double cover of symmetric determinantal variety.

Z2 quad(n) on M means a hybrid model fibered over M of a Z2 LG orbifold of n-variables

with a quadratic superpotential. B5 is the intersection of three hyperplanes in G(2, 5). B4 is

a hyperplane in G(2, 4). B is the intersection of three symmetric bilinears in P3 × P3; τ is the

exchange of the two P3s.

The work of Hori and his collaborators suggests the following mathematical problem.

Artin/Strong Coupled-Phase Problem (1) Define the virtual cycle for the Artin phase;

(2) Show that it is equivalent to the Gromov-Witten theory of the Pfaffian/double cover of

symmetric determinantal varieties in the Hori-Knapp examples.

4.3 Jockers-Kummar-Lapan-Morrison-Romo construction

Built on early work of Hori-Tong, Jockers-Kummer-Lapan-Morrison-Romo gave a different

GLSM construction of determinantal varieties. Instead of localizing the GLSM to these exam-

ples in some LG-phase, they directly realize them in the geometric phase. The key idea is that

one can desingularize them as a complete intersection of a Grassmanian bundle. Recall the

set-up of the determinantal variety

A : E → F,
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where we have a generic linear homomorphism A between two vector bundles E,F over X. The

determinantal variety is

Ωk(A,E, F ) = {ϕ ∈ X; rankA(ϕ) ≤ k}.

The key observation is that we can realize the rank condition by requiring

A(p)x = 0

for an (n− k)-dimensional subspace of Ep. This leads to a desingularization

Ω̃k(A,E, F ) = {(ϕ, x) ∈ Grn−k(E); A(ϕ)x = 0},

where Grn−k(E) is the Grassmannian bundle of (n − k)-planes of E. By the definition,

Ω̃k(A,E, F ) is a complete intersection of Grn−k(E), defined by the equation A(p)x = 0.

Suppose that X = CD+s−F
(C∗)s is a toric variety defined by charge matrix Q = (Ql

a) for l =

1, · · · , s and a = 1, · · · , D + s. Jockers-Kummar-Lapan-Morrison-Romo gave two equivalent

GLSM descriptions of Ω̃k(A,E, F ), which they called the PAX-model and the PAXY-model.

Example 4.7 In the PAX-model, we introduce additional (n−k)×k-matrix-valued variables

(Pαi) and a superpotential

W =

n∑
i,j=1

n−k∑
α=1

PαiA(Φ)ijXjα = Tr(PAX).

The GIT-quotient V//G will have V =Mn−k,n×Mk,n×CD+s and G = GL(n−k)×(C∗)s, where

GL(n−k) acts on X and P on left, and (C∗)s acts on Xi, Pi with weights −(qli(x)),−(qli(p)) for
l = 1, · · · , s and i = 1, · · · , n. W is clearly GL(n− k)-invariant. For W to be (C∗)s-invariant,

we require

degl(A(ϕ)ji) = qli(x) + qli(p).

Moreover, we have an R-charge of 1 on P and zero on the others. One can check that the

geometric phase of the PAX-model realizes Ω̃k(A,E, F ).

Example 4.8 The PAXY-model is based on the observation that A(ϕ) can be factored as

the product of two matrices x̃ and ỹ of dimension k × n and n× k, respectively

A(ϕ) = ỹx.

Moreover, this decomposition is unique up to GL(k) transformations of the form

x̃→Mx̃, ỹ → ỹM−1

for M ∈ GL(k). Then, we introduce an n× n-matrix P̃ji and a superpotential

W =
n∑

i,j=1

P̃ji

(
A(Φ)ij −

k∑
α=1

ỸiαX̃αj

)
= Tr(P̃ (A(Φ)− Ỹ X̃)).
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GL(k) will act trivially on P . Suppose that (C∗)l acts on X̃i, Ỹi with weight qli(x), q
l
i(y). We

require qlij(p) = qli(x) + qlj(y). In this situation W is invariant under GL(k)× (C∗)s. Moreover,

we have an R-charge of 1 on P and zero on the others.

The authors argue that the geometric phase of the PAXY-model also realizes Ω̃k(A,E, F ),

and that, in fact, they are equivalent. Generally, both models have complicated phase struc-

tures.

Here are several explicit examples studied by their technique.

Example 4.9 This example is the crepant resolution of the determinantal quintic. Here

A =
5∑

a=1
Aaϕa for constant 5× 5-matrix Aa. If A is linearly dependent on ϕa, we call it a linear

determinantal variety. Let E = F = O(1)5. Its resolution is

Ω̃4(A,E ,F ) =
{
(ϕ, x) ∈ P4 × P4;

∑
a

Aaϕax = 0
}
.

Ω̃4(A,E ,F ) is a Calabi-Yau 3-fold with Hodge number h1,1 = 2, h2,1 = 52. Its PAX-model

has gauge group G = U(1)×U(1). The variables Xi, Pi, ϕa have weights (−1, 0), (1,−1), (0, 1).
Its geometric phase is supposed to describe the GW-theory of Ω̃(A,E ,F ).

Example 4.10 The next example again is a resolution of a linear determinantal variety of

codimension 4 in P7. We have A =
8∑

a=1
Aaϕa for constant 4 × 4 matrices. The determinantal

variety Ω2(A,E ,F ) is the locus of P7 such that rank(A) ≤ 2. Its crepant resolution

Ω̃2(A,E ,F ) =
{
(ϕ, x) ∈ P4 ×Gr(2, 4);

∑
a

Aaϕax = 0
}

is a Calabi-Yau 3-fold with Hodge number h1,1 = 2, h2,1 = 34. This example was first studied

by Gulliksen and Negard. Its PAX-model has gauge group G = U(2) × U(1). The variables

Xi, Pi, ϕa have weights (2, 0), (2,−1), (1, 1). Again, its geometric phase realizes Ω̃2(A,E ,F ).

Example 4.11 Let E = O⊕3, F = O(1)⊕2 ⊕ O(2) and A : E → F . We consider the

determinantal variety

Ω1(A,E ,F ) = {p ∈ P7; rank (A) ≤ 1}.

For generic A, the variety Ω1(A,E ,F ) is smooth (hence isomorphic to Ω̃1(A,E ,F )) and is

called the Bertin Calabi-Yau 3-fold. It has Hodge number h1,1 = 2, h2,1 = 58. Its PAX-model

has gauge group G = U(2)×U(1). Its PAXY-model has gauge group U(1)×U(1). The variables

X̃i, P̃i1, P̃i2, P̃i3, ϕa have weights (0, 1), (−1, 0), (−1, 0), (−2, 0), (1, 0). The variables Ỹ1,2 and Ỹ3

have weights (1,−1), (2,−1). This example has a more complicated phase structure due to the

presence of two copies of U(1). Its geometric phase realizes Ω̃1(A,E ,F ) = Ω1(A,E ,F ).

One can also fits Hori-Tong-Knapp’s examples in the above construction.

Suppose that A(ϕ) is a symmetric n× n-matrix of rank k. Then

A = x̃Tx̃
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for a rank-k, k × n matrix x̃, which is unique up to a complexified O(k)-symmetry.

Suppose that A(ϕ) is a skew-symmetric, n × n matrix of rank k = 2l (skew-symmetric

matrices can only have even rank). In this case

A = x̃T
(

0l 1l

−1l 0l

)
x̃,

where x̃ is unique up to the action of a complexified USp(k)-action. It is clear that one can

realize both cases using a PAXY-model.

5 Quiver Varieties and Seiberg Duality

Quiver varieties consist of a rich class of nonabelian GIT quotients that can be described

combinatorially. It has a deep connection to geometric representations via the work of Nakajima.

We will refer readers to a beautiful book on the foundation of quiver representation and quiver

varieties.

Definition 5.1 A quiver diagram is a finite oriented graph (Qfr ⊂ Q0, Q1) such that Q0 is

the set of vertices/nodes (Qfr ⊂ Q0 is a subset called the frame vertices (often denoted by �).

The non-frame vertices are called the gauge vertices (often denoted by ⃝)) and Q1 is the set

of edges/arrows. A potential of a quiver is a finite sum of cycles of the quiver. Given a quiver

diagram with an assignment of a complex vector space Vi to each vertex i ∈ Q0 and a reductive

Lie group Gi ⊂ GL(Vi) for each gauge vertex, the correpsonding quiver variety is a GIT quotient

V//θG where V =
⊕

i→j∈Q1

Hom(Vi, Vj), G =
∏

i∈Q0−Qfr

Gi and θ is some polarization character.

Given a cycle i1 → i2 → · · · → ik → i0, we can define a G-invariant function

tr(Ai1→ikAik→ik−1
· · ·Ai2→i1)

for Aij→ij−1 ∈ Hom(Vij , Vij−1). A potential naturally induces a G-invariant holomorphic func-

tion W on V , which we can use as the superpotential in the GLSM. An R-charge is a C∗-action

on each Hom(Vi, Vj) such that W is of a degree 1. In this case, we call W a graded potential.

Quiver varieties parametrize the moduli space of quiver representations. They also appear

as the vacuum moduli space in physics of the quiver gauged theory.

Example 5.1 Flag varieties are an example of the An-type quiver

⃝→⃝· · · → �,

where the last one is a framed vertex. Here we assign Cdi to each vertex and GL(di) to each

gauge vertex. One can define its hypersurface in a similar fashion as that of flag variety. Namely,

any character of Gi defines a line bundle over the quiver variety. A hypersurface is a zero locus

of a product of sections of these line bundles. One can formulate the GLSM for its complete

intersection in the same way.

Other famous examples are the ADE-quivers or affine ADE-quivers.
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Example 5.2 A Nakajima quiver is a quiver where we double all the arrows in the opposite

direction. Namely, we start from a usual quiver and then add an opposite arrow Q1. Then, we

add an additional arrow on each gauge node. The resulting quiver variety is V ⊕ V ∗//θG. A

Nakajima quiver is naturally a holomorphic symplectic manifold and is extremely important in

geometric representation theory. In physical language, a Nakajima quiver corresponds to the

N = 4 gauged theory, while a usual quiver corresponds to the N = 2 gauged theory.

5.1 Local Seiberg duality

As we mentioned previously, quiver varieties arise in physics as the vacuum moduli space of

quiver gauge theory. The famous Seiberg duality predicted that certain pairs of quiver gauge

theory should be dual to each other. One can formulate it as a mathematical conjecture that

the corresponding GLSMs are equivalent. The full range of Seiberg duality in the GLSM is not

yet understood. Let us first describe some local cases by [2, 21].

The easiest example of Seiberg duality is based on the following construction.

Example 5.3 Consider a quiver with two nodes k⃝ → N with rank N on the frame

vertex and k on the gauge node. We assume N > k. The corresponding quiver variety is

the Grassmannian G(k,N). We invert the arrow k⃝ ← N . The resulting quiver variety is

G(N − k,N), which is canonically isomorphic to G(k,N). After replacing k by N − k, we get

back to itself.

The simplest Seiberg duality is the following example.

Example 5.4 A slight generalization of the above example is the quiver Na → N⃝→ Nf ,

where the middle vertex is a gauge vertex and other two are framed nodes. Suppose that

Nf ≥ Na > N . The corresponding GIT quotient has two phases. The positive phase r > 0

is the total space S⊕Na → G(N,Nf ), where S → G(N,Nf ) is the tautological bundle. The

negative phase r < 0 is Q⊕Nf → G(Na−N,Na) for the quotient bundle Q. S and Q are related

by the following exact sequence

0→ S → ON → Q→ 0.

Seiberg duality consists of (1) adding an arrow from Na → Nf and thinking of it as the

composition of arrows from Na → N → Nf ; (2) inverting the direction of arrows Na → N,N →
Nf and changing N to Nf −N to obtain Na ← Nf −N ← Nf ; (3) introducing a superpotential

from 3-cycle Nf → Nf −N → Na → Nf .

Example 5.5 For Hori-Knapp examples, Hori proposed the following dualities:

For N ≥ k,
O+(k)⇔ SO(N − k + 1),

SO(k)⇔ O+(N − k + 1),

O−(k)⇔ O−(N − k + 1);
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for N ≥ k + 3,

USp(k)⇔ USp(N − k − 1).

Furthermore, the preceding duality interchanges the geometric/weakly coupled phase with

the Artin/strongly coupled phase.

5.2 Global Seiberg duality

The global case can be cast into operations on quiver diagrams. A beautiful example by

Benini-Park-Zhao is mutation for U(n) quivers. Cases other than U(n) have not yet been

worked out.

We restrict ourselves to the case where the gauge group at each gauge node is GL(N). For

these quiver varieties, the only additional data beyond the quiver diagram is the rank N for

each node.

Suppose that k is a node with dimension Nk and no 1-cycles or 2-cycle involving k. Let

i1, · · · , il be the incoming nodes that have an arrow starting at ij and ending at k. Let aj be

the number of arrows between ii and k. We define Nin =
∑
j

ajNj . In a similar fashion, we can

also consider outgoing nodes and define Nout. Assume max{Nin, Nout} > Nk. A mutation at a

gauge node k consists of the following steps:

Step 1 For each “path” (a sequence of two arrows) i→ k → j passing through k, add an

arrow i→ j (denoted by i
k→ j). Moreover, the R-charge on i

k→ j is the sum of R-charges on

i→ k and k → j. Suppose that we have a cycle containing this path in the superpotential W .

We have a new cycle of the same degree to replace i→ k → j by i
k→ j.

Step 2 We replace Nk by N ′
k = max{Nin, Nout} −Nk.

Step 3 Invert the direction of all arrows that start or end at k (denoted by (i→ k)∗, (k → j)∗).

Furthermore, introduce a cubic term of superpotential for the cycle i
k→ j, (k → j)∗, (i → k)∗

by assigning the R-charge of 1
2 of the old R-charge for arrows (k → j)∗, (i→ k)∗.

Remark 5.1 Usually, the mutation is performed for so-called cluster quiver which has no

1-cycles or 2-cycles. We also require the removal of a pair of opposite arrows between two

vertices to kill all possible 2-cycles. If we start from a potential containing appropriate cubic

terms, the new potential may have some quadratic term. The last step can be realized as

the restriction to the critical locus of quadratic terms of new superpotential. The GLSM is

equivalent to its restriction on the critical locus of the quadratic terms of the superpotential.

Furthermore, mutation is closely related to the cluster algebra.

We apply Fan-Jarvis-Ruan’s theory to quiver varieties, before and after mutations, to obtain

their generating functions F bf
g ,F af

g . Recall that we have a quantum variable qi for each vertex.

Benini-Park-Zhao’s physical analysis suggests the following mathematical conjecture.

Mutation Conjecture F bf
g and F af

g are equivalent up to the change of variables

q̃i =

{
q−1
k , if i = k,
qiq

|aki|(qk + 1)−aki , if Otherwise,
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where aki is the number of arrows (with a sign) between k and i. Namely, we count +1 for an

arrow k → i and −1 for an arrow i→ k.

Recall that we can think of the LG-phase as being opposite to the geometric phase. In the

conjecture, z−1 means to go to the opposite phase.

6 Mirror Symmetry and Others

In the abelian case, the mirror symmetry construction of Givental-Hori-Vafa plays a very

important role in our understanding of the GLSM. We naturally expect the same for the non-

abelian case as well. In many ways, mirror symmetry for the nonabelian case should be even

more interesting. For example, early work of Givental-Kim [20] showed that the quantum coho-

mology of the flag manifold is related to the Toda lattice. Recently, there are some remarkable

works by Nekrasov-Shatashvili from the physical side and Maulik-Okounkov from mathematical

side to connect the equivariant quantum cohomology of Nakajima quiver varieties to quantum

groups in the form of a quantum integrable system/gauge theory correspondence. This is part

of larger story in physics called the AGT-correspondence. In many ways, integrable systems

should be treated as a B-model object. This naturally leads to the following question.

Nonabelian B-model Problem (1) Build a B-model mirror of nonabelian GIT-quotients

and their complete intersections; (2) Incorporate quantum integrable systems such as represen-

tations of a quantum group as the part of the B-model theory for Nakajima quiver varieties.

Once we have done this, all these remarkable results are the consequence of mirror symmetry.

I believe that this new strategy will provide us a deeper understanding of existing results.

Moreover, it will open a door for a representation-theoretic interpretation of higher genus GW-

invariants of these targets.

Building an appropriate B-model mirror for a general GIT-quotient such as quiver varieties

is still a challenging problem for both mathematicians and physicists. A good starting point is

a series of works [28, 30] of Rietsch and her collaborators where she proposed a B-model mirror

for general flag varieties G/P . Unfortunately, the author’s limited background in Lie theory

prevents him from giving an in-depth survey of the construction. It is certainly on the list of

paper he wants to study carefully.
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