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Abstract Let (M, g) be an n-dimensional Riemannian manifold and T?M be its second-
order tangent bundle equipped with a lift metric g. In this paper, first, the authors con-
struct some Riemannian almost product structures on (72M,g) and present some results
concerning these structures. Then, they investigate the curvature properties of (T2M, ).
Finally, they study the properties of two metric connections with nonvanishing torsion on
(T?>M,g): The H-lift of the Levi-Civita connection of g to T?M, and the product conjugate
connection defined by the Levi-Civita connection of g and an almost product structure.
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1 Introduction

Given an n-dimensional manifold M, a second-order tangent bundle T2M over M can be
constructed from the equivalent classes of curves on M which agree up to their acceleration
(for details, see [7, 16]). Moreover, in [7], it is proved that a second-order tangent bundle T2 M
becomes a vector bundle over M if and only if M has a linear connection. The prolongations of
tensor fields and connections given on M to its second-order tangent bundle T?M were studied
in [16]. Let (M,g) be an n-dimensional Riemannian manifold and 7%M be its second-order
tangent bundle. A lift metric g of the metric g to T2M was defined and studied by local
coordinates in [10]. In this paper, we study some geometric properties of T2M equipped with
the metric g and almost product structures. In tensor calculations, we usually use the method
of adapted frame which allows the tensor calculus to be done efficiently.

We point out here and once that all geometric objects considered in this paper are supposed
to be of class C>°.

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and V be the Levi-Civita connection
of g. The second-order tangent bundle T2M of M is the 3n-dimensional manifold of 2-jets j2f
at 0 € R of differentiable curves: f : R — M, where R denotes the set of real numbers. The
canonical projection 7y : T2M — M defines the natural bundle structure of T2M over M. If
we introduce the canonical projection mo : T?M — TM, then T?M has a bundle structure
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over the tangent bundle TM with projection m12. Let (U, x%) be a system of coordinates in M
and f be a curve in U which locally expressed as 2° = fi(t). If we take a 2-jet j2f belonging
to 7, 1(U) and define

o _df &y

then the 2-jet j2f is expressed uniquely by the set (2,3, 2*). Thus, (2%, 3%, 2%) is the system of

coordinates induced in 7, '(U) from (U, ?). The coordinates (z?,y’,2%) in 7, *(U) are called
the induced coordinates. By defining

gi = xi7 gl = yia gl = Zi7
we write the induced coordinates (¢, y*, z%) as {¢4}. The indices A, B, C, - -- run over the range
{1,2,---,m; n+1,n+2---,2n; 2n+1,2n+2,--- ,3n}.

Let us define some lifts of vector fields. Using the connection V, a vector bundle isomorphism
can be defined by

S:T?°M —TM & TM,

= (P09, DO).

where TM @ TM is the Whitney sum of the tangent bundle TM with itself, the tangent
vector f(0) to f at f(0) is the velocity vector field of f at f(0), and the covariant derivative

(Vf@f) (0) is the covariant acceleration of f at f(0). Using the induced coordinates {4} in
T2M and TM @& TM, we have

S:(a'y',2') = (a'y' W),

where w? = 2% 4+ y®y"T"% . Each vector field X on M defines the vector fields °X, X and /X
on T?M corresponding, respectively, in the isomorphism S to #X + #X, VX +0 and 0+ VX,
where VX and 7 X are the vertical and the horizontal lifts of X to 7'M with respect to V. The
vector fields °X, X and /X on T?M are called M-lifts (A = 0,1, 11) of a vector field X on M
to %M. Also note that the M-lifts *X of a vector field X in this paper are different from those
in [16]. Let X = X* a?ci be the local expression in U of a vector field X on M. Then the vector
fields °X, /X and /X on T?2M are given, with respect to the induced coordinates {£4}, by
(see [4])

X = XJ9; —y°T], X" 0; - O] X", (2.1)

X = X98; —2y°T, X", (2.2)

Hx — X7 (2.3)
J

with respect to the natural frame {04} = {9;, 9;, 0} in T?M, where Cg = sz{LerySyT(@thrJr
Iy, Tm — 2Ty T, T4 are the coefficients of the connection V on M and 9; = 52, 0; = a%“
6;% = B(Zi' For the Lie bracket on T2M in terms of the A-lifts of vector fields X, Y on M, we
have the following formulas:

[OXv OY] = O[Xv Y]i I(R(Xa Y)y) - II(R(X7 Y)w)v

[OXv IY} = I(VXY)a [OX, IIY} = II(VXY)a (24)

FXAY] =0, pA= 111,
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where R is the curvature tensor field of the connection V on M defined by R(X,Y) = [Vx, Vy]—
Vix,y] (for details, see [6]).

With the connection V of g on M, we can introduce a frame field in each induced coordinate
neighborhood W;l(U) of T?M. In each coordinate neighborhood (U, z%), using X; = %, from
(2.1)—(2.3) we have

0
B— I(x)= 1(2) = 2y°T¥ 0=
) ( 2) 31‘2 &z Y 187
0
E-=X)="(~=)=0
(%) 5‘x2) %

with respect to the natural frame {94} in T?M (see [4]). The 3n linearly independent vector
fields E;, £ and E= constitute the adapted frame in 75’ L(U). We write the adapted frame {Eg} =
{E;, E, Ezf}. The indices a, 8,7, - -+ run over the range {1,2,--- ;n; n+1,n+2,--- ,2n; 2n+
1,2n+2,---,3n} and indicate the indices with respect to the adapted frame {Eg}. The matrix
of frames changes Eg = Ag B@p is in the following form:

) 0 0
AB B _ fysrfs 52’-“ 0
~CF —2y°Tf, of

The inverse of the matrix above is as follows:

_ ok 0 0
AY p= y°TE, 5 0
CF+2y5y' T, I 2y°TF,  6F

Using * X* = ZQBAXB, for A\=0,I,1I, from (2.1)—(2.3), we get
X =X'E;, 'X=X'F, UX= X'E= (2.5)

with respect to the adapted frame {Eg}.

3 The Riemannian Metric and Its Levi-Civita Connection

A Riemannian metric on the second-order tangent bunde T?M over a Riemannian manifold
(M, g) is defined by the identities:

g(AX;U‘Y):g(X,Y), )‘:Ma
FOXY) =0, A4

for all vector fields X, Y on M, where A, u = 0,1, 1. The Riemannian metric g and its inverse
have components

9ij 0 0 gjk 0 0
gsv=10 g9 O and =1 0 g¢* 0 (3.1)
0 0 g 0 0 g*

with respect to the adapted frame {Ej3} (see [10]).
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In order to use in some calculation, we compute the structure constants of the Lie Algebra
referred to the adapted frame {Es} are denoted Qg ¢, so

[Es, By] = Qg " Ee.

It follows that the possible nonzero structure constants are given by

Qijf = prjipka Qﬁf = Ffp
Q)

_ .8 k kE _ 1k
ij —WRjisa Qi? _Fij7

(3.2)

=

where Rjisk are the local components of the curvature tensor R of the connection V on M (see

[4)).
We shall examine the Lie derivatives of § with respect to vector fields °X, /X and 7/ X.
The components of L g with respect to the adapted frame {E£g} can be written as

(L)Zg)vﬁ = XEEE%ﬁ + geﬂE“/Xa + %EEBXE - )Z’E(Qm 6%6 + Qsﬁ 6§W5)~
By virtue of (2.5) and (3.2), we get the lemma below.

Lemma 3.1 If X = X"0), is a vector field on M, then
Lxgij YPX"Rpip; W X" Rpsj

(1) LOXE = prthjpi 0 0 5
wsXthjsi 0 0

0 ViX; 0
(i) Lixg= [ V;Xs 0 0],

0 0 0

0 0 V,X;

(iil) Lirxg = 0 0 0

ViX; 00

with respect to the adapted frame {Eg} in T*M.

Recall that a vector field X is a Killing vector field or an infinitesimal isometry with respect
to g if and only if Lxg = 0. It is also known that if X is a Killing vector field in (M, g), then
ViV, X; +X thipj = 0. As a consequence of the vanishing second covariant derivative of X,
we get X" Ryi,; = 0. Conversely, from Lyg =0 and X" Rp;,,; = 0, we can say that the second
covariant derivative of X vanishes. Thus, by Lemma 3.1, we obtain the following result.

Proposition 3.1 Let (M, g) be a Riemannian manifold and T>M be its second-order tan-
gent bundle equipped with the metric g.

(i) The 0-lift °X of a vector field X on M is a Killing vector field on (T?M,q) if and only
if X is a Killing vector field with vanishing second covariant derivative on (M, g).

(i) The I-lift 1 X and I1-lift "X of a vector field X on M are both Killing vector fields on
(T?M, q) if and only if X is a parallel vector field on (M, g).

Remark 3.1 Relations between certain Killing vector fields of (M, g) and (T?M, g) were
established in [9, Theorem 6]. But the result is wrong. We revise the result in [9].

In [9], the authors attempted to calculate the Chrystoffel symbols of the Levi-Civita connec-
tion V of g with respect to the adapted frame by I';,. But unfortunately their calculations are
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wrong. We shall correct the errors and obtain valid expressions for f%,y Since the connection
V is torsion-free, we have
Te Te €
By — 5 = Qg

with respect to the adapted frame {Ez}. Thus by virtue of Vj =0, we get

1> 1~Ea -~ -~ -~ 1 £ & I
By — 59 (Eﬂgoz'y + E’ygaB - Eozgﬁ'y) + i(Qﬁ’y + By + 75)7

where QF 5 = §a5§579aﬁ5. On taking account of (3.1)—(3.2) and writing ﬁEBEA, = f%,yEa, we
have the following proposition.

Proposition 3.2 The Levi-Civita connection v of G on T?>M is given by

~ 1 1
E Fk E k F. k E
in J = iJ k + 72prjip & + 72 stis E’

v, 1 k < 1 k k
VB = 5y Ry " Br, Vi By = Sy Ry "B+ T By,
\V/ Lo k < L k k
Ve By = 5w Ry "Er, VeBs= 5w R By + T B,

with respect to the adapted frame {Eg}.

Recall that a vector field X = X79; on a Riemannian manifold is called incompressible if it
satisfies the following condition:

VX7 =0.
By virtue of Proposition 3.2, we then get
VX7 =V, (XIE;) = (B;X?)E; + XV, E,
= (0;X7)E; + XM, ) E; = (V;X7) B,
VX! = V5 (X7EB;) = (B;X7)E5 + X'V B> =0,
Vs X7 = V= (XIB-) = (B-X7)B=+ X'V p_E-= 0.

Thus, we have the proposition below.

Proposition 3.3 Let (M, g) be a Riemannian manifold and T>M be its second-order tan-
gent bundle equipped with the metric g.

(i) The 0-lift °X of a vector field X on M is an incompressible vector field on (T?M,q) if
and only if X is an incompressible vector field on (M, g).

(ii) The I-lift 1 X and II-lift ' X of a vector field X on M are both incompressible vector
fields on (T*M,3).

Let X = X ¢E,. and Y = ?SEs be vector fields on T?M. Then the covariant derivative
V Y has components
VT = KB4 T, TR

with respect to the adapted frame {Ejs}, where fgﬂ are components of the Levi-Civita con-
nection V of the metric g. Then, using Proposition 3.2 and (2.5), we can make the following
proposition for pairs X and Y.
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Proposition 3.4 The Levi-Civita connection v of g on T?M s given by the following
conditions:
~ 11 111
Vox Y =0 (VxY) + 3 (R(Y, X)y) + 3 (R(Y, X)w),
_ 10 _ 10
Vix "V =5 (Ry, X)Y), Vox 'Y =2 (R(y,Y)X) +' (VxY),
. 10 . 10
Viry %Y = 5 (Blw, X)Y), Vox Iy — 5 (Bw,Y)X) +1(VxY),

Vix 'Y =0, Vux 'Y =0, Viuyxy Y =0, Viyx 7Y =0

for all vector fields X, Y on M (see also [5]).

4 Riemannian Almost Product Structures on the Second-Order
Tangent Bundle

A Riemannian almost product manifold (M, J, g) is a manifold M with a (1, 1)-tensor field
J and a Riemannian metric g such that

J? =id, J# +id,
9(JX,Y) = g(X,JY) (4.1)

for all vector fields X and Y on M. (4.1) is referred to as the condition for g to be pure with
respect to J. An integrable Riemannian almost product manifold whose the Nijenhuis tensor
Ny, determined by

N, (X,Y) =[JX,JY] - JJJX,Y] - J[X,JY] + [X,Y]

for all vector fields X and Y on M, is zero is usually called a locally Riemannian product
manifold. The Riemannian almost product manifold (M, J,g) is a locally decomposable Rie-
mannian manifold if and only if VJ = 0, where V is the Levi-Civita connection of g. It
is proved that the condition VJ = 0 is equivalent to decomposability of the pure metric g
(see [11]), i.e., @ ;g = 0, where ®; is the Tachibana operator (see [14-15]): (®,9)(X,Y,Z) =
(IX)(9(Y, 2)) — X(g(JY 2)) + g((Ly )X, Z) + g(¥, (Lz J)X).

Let J be a (1, 1)-tensor field on T?M which satisfies the conditions

JOX = 0X
- ’ 4.2
{JAXZ AX, AN=1,1I (42)
for any vector field X on M. The tensor field J is an almost product structure on T2M. In
fact,
T (°X) = J(J(°X)) = J(=°X) = X,
JOX) = J(JCX)=JX) = X, A=1,1I,
i.e., J satisfies J2 = Ip2);. In the adapted frame {E3}, the almost product structure J has the
components
(790
J = 0 d
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Now let us compute
PX,Y)=g(JX,Y) - g(X,JY)
for all vector fields X and Y on T2M. By the definitions of the metric g and the almost product

structure J, we obtain P(X,Y) = 0 for any vector fields X =°X, X, /XX and Y = 0y, 1y, Iy,
i.e., g is pure with respect to J. We then calculate

(®59)(X,Y,2) = (JX)@(Y.2)) = X @Y. 2)) +3((Ly )X, 2) +5(Y,(Lz ))X)
for all vector fields )?,37,2 on T?M. For any vector fields X = 0x, Ix, x, Y = oy, Ty, Iy
and Z = °Z, 1Z 17, we then get

(®59)(°X,°Y,'2) = 23
(279)(°X,°Y, " Z) = ~29 Y

(©59)("X,Y,°2) = —2g("Y. 7I(R(X,Z)y)), (4.3)
(@59)(°X, 1Y, 0Z) = —29(""Y, " (R(X, Z)w)),

otherwise = 0.

Therefore, we have the following theorem.

Theorem 4.1 Let (M,g) be a Riemannian manifold and T?M be its second-order bundle
equipped with the metric g and the almost product structure J. The triple (T?*M, J g) is a
locally decomposable Riemannian manifold if and only if M is flat.

Let (M, J, g) be a non-integrable Riemannian almost product manifold. The non-integrable
Riemannian almost product manifold (M, J,g) is called a Riemannian almost product Ws-
manifold if X?/Zg((VXJ)Y, Z) = 0, where o is the cyclic sum by X,Y, Z (see [13]). In [12], it

is proved that
9 I(Vx )Y, Z) =0

IR

is equivalent to
((I)Jg)(Xv Yv Z) + ((I)Jg)(ya ZvX) + (CDJQ)(Zv Xv Y) =0.
If we compute
A(jz’ }77 2) = (@jﬁ)(}?,?, 2) + (@jﬁ)(i}, Z,)}) + (éjg)(Z,)?7 }7)
for all vector fields X, Y, Z on T2M, from (4.3) we have
ACX,Y1Z) = (259)(°X, Y, 1 2) + (2;9)(°Y. ' Z, °X) + (259)(' Z, ° X, °Y)
— “29(R(X,Y)y, Z) — 29(Z R(Y, X)y) =0,
ACX, Y, Z) = (259) ("X, Y, °Z) + (259) ('Y, 2.°X) + (259)(°Z, ° X, 'Y)
=—29(Y,R(X, Z)y) — 29(R(Z,X)y,Y) =0,
AX,"Y,°Z) = (259)('X,°Y.°2) + (2;9)(°Y.°Z, 'X) + (259)(°Z, ' X, °Y)
— “29(R(Y, Z)y, X) — 29(X, R(Z, Y )y) =0,
ACX, Y, 1 Z) = (259)(°X, Y, 11 2) + (259) (Y. 2.0 X) + (259) (M 2, °X, °Y)
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= 29(R(X,Y)w, Z) — 29(Z,R(Y, X)w) = 0,

ACX Y °Z) = (279)(°X, Y, °Z) + (259) (1Y, °Z, °X) + (@59)(°Z, ° X, 1Y)
= —29(Y,R(X, Z)w) — 29(R(Z, X)w,Y) = 0,

ATX,°Y,°Z) = (279) (" X,°Y,°2) + (259)(°Y,°Z, T X) + (279)(°Z, 7 X,°Y)
=—-29(R(Y,Z)w,X) —29(Y,R(Z,Y)w) = 0.

All other A()Z' , 17, Z ) are automatically zero. Hence we state the following theorem.

Theorem 4.2 Let (M,g) be a Riemannian manifold and T*>M be its second-order tangent
bundle equipped with the metric § and the almost product structure J. The triple (T?M,J, )
s a Riemannian almost product YWs-manifold.

Remark 4.1 Let (M, g) be a Riemannian manifold and T?M be its second-order tangent
bundle equipped with the metric §. Another almost product structure on T?M is defined by

the conditions

for any vector field X on M (see [1]). Similarly, the triple (T?M, @, g) is another Riemannian
almost product Ws-manifold.

The almost product structure J on (T?M,q) is harmonic if and only if
trace(VJ) = 0, (4.4)

where “trace” is taken with respect to the metric g (see [8]). The harmonicity condition (4.4)
of the almost product structure .J on T2M with respect to the metric g has the following form
in the adapted frame {Eg}:

99 (Ve J)E; =0, ¢7(Vp.J)E; =0, 9" (Vi J)E== 0.

i

Due to (4.4) and Proposition 3.2, we have
97 (Ve ))E; = ¢7{(VE,JE;) - J(VE,E;)} = ¢7{~(VE,E;) — J(VE,E;)}
g 1 1
7 k k s k k
=g J{ — Dl Br — Sy Ry By — 5w Ry M B+ T By
1 k 1 s k
— iprjip E% — 50.) Rjis Ei}
= —gijprjz‘pkEE - nginjiskEf =0,
gij(ﬁE?J)Ej = giﬂ‘{(ﬁE?jE;) - j(ﬁEf_E?) } =0,
from which the below theorem follows.

Theorem 4.3 Let (M, g) be a Riemannian manifold and let T> M be its second-order bundle
equipped with the metric g and the almost product structure J. Then the almost product structure
J on (T?M,q) is harmonic.
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5 The Riemannian Curvature Tensors

In this section, we compute the Riemann curvature and the scalar curvature of T?M with
the metric g. The expression of the Riemann curvature R with respect to the adapted frame
{Es} is given by
Using Proposition 3.2 and (3.2), and writing R(Es, E,)Eg = ﬁhﬁo‘Ea, standard calculations
yield the proposition below.

Proposition 5.1 The curvature tensor R of the Levi-Civita connection v of g on T?>M s
given by the following formulas:

(i) E(Eh, Ei)Ej = {Rhijk + iypyT(RplhkRjirl - Rpli kth 2thp erj k)
+ iwswt(RslhkRﬂt "~ Ry, kthtl - 2Rih,istlj k)}Ek
{5 (VR — ViR, B
{59 (VR * = ViR, VB,
1., 1

1
N §ypviRphjk}Ek + {*R"h - ~yPy" Ry, kRThjl}EE

+
(ii) ﬁ(Eﬁv Ei)Ej = { 9 g 4
+{—iypwsR lRlzs } ™
{
+

s 1
(i) R(Ep, Ei)E; = QyP(VhRW ~ ViR, )}Ek

(iv) R(Ey, B)E; = { Ry~ + ~
(v) R(Ey, E)E; =
h?

1
{7 - 7("} w Rlze thh] }Ei’
1

vhRs]z v sth )}Ek

n
{
{z

(vi) R(EB= E)E; = { - wsv Rghjk}Ek +{- iy w* Ry *Ron' } B
+
(vii) R(Ey, E;) B= = {
N

1 s
ypw (thkasjil - Rlip ksthl)}EE
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(xi) E(Eﬁv E5)E; = {iypws(RphlkRsijl Ry kRphjl)}Elm
(xii) R(Ey, E-) B> = { - Y Ry Rpjhz}Ek,
(xiii) R(E=, E,)E; = {iywa hl’prj/}Ek,
(xiv) R(Ey, B;)E; =0, R(E; E:)E-=0, R(Ey E;)E-=0, R(E; E;)E;=0,
R(Ey, B;)E==0, R(Ey, E)E;=0

with respect to the adapted frame {Eg}.

Next, we give the following theorem related to the condition that T2M with the metric g is
locally flat.

Theorem 5.1 Let (M, g) be a Riemannian manifold and T?>M be its second-order tangent
bundle equipped with the metric g. (T*M,g) is locally flat if and only if (M, g) is locally flat.

Proof From Proposition 5.1, it is clear that if (M, g) is locally flat, then (T2M,g) is also
locally flat. In contrast, under the assumption R = 0, we evaluate (i) of Proposition 5.1 at an
arbitrary point (2%, 9%, 2*) = (2%,0,0) in the zero section of T>M, then we have

[E(EhaEi)Ej](zi’o’O) = Rhijk = 0.

Hence (M, g) is locally flat.
The scalar curvature S of T2M with the metric § is defined by

S =B R"yﬂ?

where §77 are the components of the inverse matrix of g~8, and Evﬂ are the components of the

Ricci tensor of (T?M, g) denoted by R, = R, 5 Using Proposition 5.1 and (3.1), we calculate

S = ﬁ”ﬁ Ry = ainij + a”RE + aZJRﬁ

. 1
= QU{R@‘ + zyryp<_Rplihthrl — 2Riny Ryt — Riip" Ronj')

1
+ Zwswt(_Rslihthtl — 2Rins' Ru" — Rlisthhjl)}
. 1 s 1
+ g”{ - ZypyTRpilthjhl} + 9”{ - Zwsthsilthjhl}
1 .
=5- Zypyrg”ghmgnl(Rplimanjh + 2RpmlhR7"ljm - pmliRThnj - pilmRrjnh)
1 -
- Zwswtg”ghmgnl(Rslim,Rtnjh + 2Rsn1’thljm - RsmliRthnj - RsilmRtjnh)
1 . 1 .
=5- Zypyrg”ghmganplimanjh - Zwswtg”ghmganslimRtnjh

_ 1 2 1 2
= 5= JIyRI? - IRl

Thus we have the following proposition.

Proposition 5.2 Let (M, g) be a Riemannian manifold and T>M be its second-order tan-
gent bundle equipped with the metric §. Denote the scalar curvatures of (M,g) and (T?M,q)
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by S and S respectively. The dependence between the scalar curvatures S and S is described by
the rule

S—s_ Yurie - Liwr?
§=5-ZIRI? - {IwRI?, (5.1)

where [[yR||> = y*y" g g"" g™ Rppi m Rynjn and |wR||* = w'wtg" g" g™ Ryp; m Rinjn.-

We can now compare the scalar curvatures on (M, g) and (T?M,g). We state following
theorem.

Theorem 5.2 Let (M, g) be a Riemannian manifold and T?>M be its second-order tangent
bundle equipped with the metric g. (T>M,q) is of constant scalar curvature if and only if (M, g)
1s flat.

Proof It is a direct consequence of (5.1) that R = 0 implies S = 0 and hence S =0.
Conversely, suppose that S = Sy = const. If we restrict the relation (5.1) to the zero section of
T?M, then we get S = Sy, and hence (5.1) reduces to

1 1
0= =|lyR||?> + = |lwR]>.
1IWRI? + W

The last equation directly gives ||yR|| = 0 and |wR|| = 0. Consequently, we obtain R = 0,
which completes the proof.

Remark 5.1 The results in Theorems 5.1-5.2 can be found in [5]. For these results, we
present a detailed proof by using different method.

6 Metric Connections with Nonvanishing Torsion on the Second-Order
Tangent Bundle

Let V be a linear connection on a Riemannian manifold (M, g). If the torsion tensor of
V is zero, then V is symmetric; otherwise V is non-symmetric. Also, the connection V is a
metric connection if it satisfies Vg = 0, otherwise V is non-metric. As is well-known, a linear
connection is symmetric and metric if and only if it is the Levi-Civita connection. The goal
of this section is to discuss some metric connections with nonvanishing torsion on T2M with
respect to the metric g.

6.1 H-lift of linear connections on the second-order tangent bundle

Given a linear connection V on M, there is a unique linear connection #V on T?M such
that

{Hvox AY = NVxY), 6.1)

HV;LX )\Y - 0

for all vector fields X,Y on M, where p = I,II, A = 0,1,II (see [6]). The unique linear
connection 7V on T2M is called the H-lift of V to T2M.
Let T be the torsion tensor of #V. Then, from (2.4) and (6.1), it follows that
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for all vector fields X,Y on M, where pu,A = 0,1,I1 and either u # 0 or A # 0 (see [6]).
Moreover, note that 7V is non-symmetric even though V is the Levi-Civita connection of g.

As an application, we compute the covariant derivative of the metric g with respect to
Hy. Using the definition of the metric § and (6.1), a straightforward computation leads to the
following formulas:

(HVox )Y, *2Z) = (Vxg)(Y, Z) for A = p,
(IVox )Y, #Z) =0 for A # p, (6.2)
HAVixg)(*Y, " Z) = (PVuxg) (MY, #Z) =0 for all A\,

for all vector fields X,Y,Z on M, where A, u = 0,1,11. From (6.2), it follows that HVgﬁ =0
if and only if Vxg = 0. Thus, we can say that the H-lift 7V of the Levi-Civita connection V
of g is a metric connection with nonvanishing torsion with respect to the metric g.

The H-lift 7V of the Levi-Civita connection V of g is given by

AV, Ej =TEEy,
AV g, E; = TF By,
H . __ Tk o

Vi, Bz =T Bz,

otherwise = 0
with respect to the adapted frame {Ez}. The curvature tensor ¥ R of ¥V is given by

"R(Ey, E;) = ha‘jkEkv

HR(Ey, BE;)Es = Rm‘jkEEv

HR(Ey, E,)E- = RhijkEf,
otherwise = 0

with respect to the adapted frame {Ez}. For the scalar curvature S of ¥V with respect to

the metric g, we get

B8 =g"P "R =g"R;; =5,
which gives the following result.

Theorem 6.1 Let (M,g) be a Riemannian manifold and T*>M be its second-order tangent
bundle equipped with the metric §. Then, the scalar curvature of T2M with the metric connec-
tion TN with respect to the metric g is zero if and only if the scalar curvature of M is zero,

where V is the Levi-Civita connection of g.

6.2 Product conjugate connection on the second-order tangent bundle

Let (M, J) be an almost product manifold. Given a linear connection V on (M, J), the
product conjugate connection (V)V of V is defined by

VY = J(VxJY)

for all vector fields X, Y on M. If (M, J,g) is a Riemannian almost product manifold, then
(NDVxg)(JY,JZ) = (Vxg)(Y, Z), ie., V is a metric connection with respect to g if and only if
())V is a metric connection with respect to g. From this, we can say that if V is the Levi-Civita
connection of g, then (/)V is a metric connection with respect to g (see [2]).
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The metric connection ()V of the metric g is given as follows:
VY =J(VgJY)
for all vector fields )N(, Y on T2M. By Proposition 3.4 and (4.2), we state the following result.

Proposition 6.1 Let (M, g) be a Riemannian manifold and T>M be its second-order tan-
gent bundle equipped with the metric g and the almost product structure J. Then the metric
connection (¥ of g satisfies

e 1 1
Vox Y = (VxY) = 5 H(R(Y, X)y) — 5 (R, X)w),
1, e 1
NT1x Y = 5 °%(R(y, X)Y), Vox Iy = -5 “(R(y,Y)X)+ L(VxY),
1, A= 1
DNV1ix Y = 5 °(R(w,X)Y), Vox Hy = —io(R(w,Y)X) + 1 (VxY),
DV IV =0, DV vy =0, DVuy Iy =0, DV, Ty =0

for all vector fields X, Y on M.

The torsion tensor T( 7o of the metric connection (DV of the metric g has the following

properties:
he ("X Y) = HR(X.Y)y) + " (R(X,Y)w),
ne("XY)=-"(R ( Y)X),
Tu ¢('X.0Y) = °(R(y, X)Y),
T<J>V(OX7”Y) ~(R(w,Y)X),
Toe("X0Y) = *(R(w, X)Y),

otherwise = 0

for all vector fields X,Y on M. These equations lead to the following result.

Theorem 6.2 Let (M, g) be a Riemannian manifold and T2M be its second-order tangent
bundle equipped with the metric g. The metric connection (NV s symmetric if and only if M
1s flat.

The relationship between curvature tensors Ry and R 7 ¢ of the connections V and Dv
respectively is as follows: Ry (X,Y,Z) = J(Rv(X,Y)JZ) for all vector fields X,Y,Z on M
(see [2]). Using Proposition 5.1 and (4.2), by R(J)V(X Y,Z) = J(R (X,Y)JZ), the curvature
tensor E(j)e of the metric connection (V¥ can be easily written. The scalar curvature S( ne

NV with respect to the metric g is in the following form:
~ 5 5
She =5~ EHZ/RH2 - ZHWRW-

Thus we have the following theorem.

Theorem 6.3 Let (M, g) be a Riemannian manifold and T?>M be its second-order tangent
bundle equipped with the metric g. Then the scalar curvature of T2 M with the metric connecton
()N with respect to the metric § is constant if and only if (M, g) is flat.
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Proof The proof is similar to that of Theorem 5.2.
Comparing the metric connections V, 'V and (/)V of the metric g, we have the last theorem
given below.

Theorem 6.4 Let (M, g) be a Riemannian manifold and T2M be its second-order tangent
bundle equipped with the metric §. Then V =1 v =) ¥V if and only if (M, g) is flat.

Proof The statement follows directly from (6.1), and Propositions 3.4 and 6.1.

A Riemann-Cartan manifold is a triple (M, g, V), where (M, g) is an n-dimensional (n > 2)
Riemannian manifold with a linear connection V having non-zero torsion such that Vg = 0.
The Riemann-Cartan manifold was introduced in [3]. The paper ends the following result.

Proposition 6.2 Let (M, g) be a Riemannian manifold and T*M be its second-order tan-
gent bundle equipped with the metric §. (T?M,g, #V) and (T?>M,g, (Y)V) are both Riemann-
Cartan manifolds.
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