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Abstract Let (M, g) be an n-dimensional Riemannian manifold and T 2M be its second-
order tangent bundle equipped with a lift metric g̃. In this paper, first, the authors con-
struct some Riemannian almost product structures on (T 2M, g̃) and present some results
concerning these structures. Then, they investigate the curvature properties of (T 2M, g̃).
Finally, they study the properties of two metric connections with nonvanishing torsion on
(T 2M, g̃): The H-lift of the Levi-Civita connection of g to T 2M, and the product conjugate
connection defined by the Levi-Civita connection of g̃ and an almost product structure.
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1 Introduction

Given an n-dimensional manifold M , a second-order tangent bundle T 2M over M can be

constructed from the equivalent classes of curves on M which agree up to their acceleration

(for details, see [7, 16]). Moreover, in [7], it is proved that a second-order tangent bundle T 2M

becomes a vector bundle over M if and only if M has a linear connection. The prolongations of

tensor fields and connections given on M to its second-order tangent bundle T 2M were studied

in [16]. Let (M, g) be an n-dimensional Riemannian manifold and T 2M be its second-order

tangent bundle. A lift metric g̃ of the metric g to T 2M was defined and studied by local

coordinates in [10]. In this paper, we study some geometric properties of T 2M equipped with

the metric g̃ and almost product structures. In tensor calculations, we usually use the method

of adapted frame which allows the tensor calculus to be done efficiently.

We point out here and once that all geometric objects considered in this paper are supposed

to be of class C∞.

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and ∇ be the Levi-Civita connection

of g. The second-order tangent bundle T 2M of M is the 3n-dimensional manifold of 2-jets j2f

at 0 ∈ R of differentiable curves: f : R → M , where R denotes the set of real numbers. The

canonical projection π2 : T 2M → M defines the natural bundle structure of T 2M over M . If

we introduce the canonical projection π12 : T 2M → TM , then T 2M has a bundle structure
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over the tangent bundle TM with projection π12. Let (U, x
i) be a system of coordinates in M

and f be a curve in U which locally expressed as xi = f i(t). If we take a 2-jet j2f belonging

to π−1
2 (U) and define

xi = f i(0), yi =
df i

dt
(0), zi =

d2f i

dt2
(0),

then the 2-jet j2f is expressed uniquely by the set (xi, yi, zi). Thus, (xi, yi, zi) is the system of

coordinates induced in π−1
2 (U) from (U, xi). The coordinates (xi, yi, zi) in π−1

2 (U) are called

the induced coordinates. By defining

ξi = xi, ξi = yi, ξi = zi,

we write the induced coordinates (xi, yi, zi) as {ξA}. The indices A,B,C, · · · run over the range

{1, 2, · · · , n; n+ 1, n+ 2, · · · , 2n; 2n+ 1, 2n+ 2, · · · , 3n}.
Let us define some lifts of vector fields. Using the connection∇, a vector bundle isomorphism

can be defined by

S : T 2M → TM ⊕ TM,

: j2f → (
·
f(0), (∇ ·

f(0)

·
f)(0)),

where TM ⊕ TM is the Whitney sum of the tangent bundle TM with itself, the tangent

vector
·
f(0) to f at f(0) is the velocity vector field of f at f(0), and the covariant derivative

(∇ ·
f(0)

·
f)(0) is the covariant acceleration of f at f(0). Using the induced coordinates {ξA} in

T 2M and TM ⊕ TM , we have

S : (xi, yi, zi) → (xi, yi, ωi),

where ωi = zi + ysyrΓi
sr. Each vector field X on M defines the vector fields 0X, IX and IIX

on T 2M corresponding, respectively, in the isomorphism S to HX + HX, V X +0 and 0+ VX,

where V X and HX are the vertical and the horizontal lifts of X to TM with respect to ∇. The

vector fields 0X, IX and IIX on T 2M are called λ-lifts (λ = 0, I, II) of a vector field X on M

to T 2M . Also note that the λ-lifts λX of a vector field X in this paper are different from those

in [16]. Let X = Xi ∂
∂xi be the local expression in U of a vector field X on M . Then the vector

fields 0X, IX and IIX on T 2M are given, with respect to the induced coordinates {ξA}, by
(see [4])

0X = Xj∂j − ysΓj
shX

h∂j − Cj
hX

h∂
j
, (2.1)

IX = Xj∂j − 2ysΓj
shX

h∂
j
, (2.2)

IIX = Xj∂
j

(2.3)

with respect to the natural frame {∂A} = {∂i, ∂i, ∂i} in T 2M , where Cj
h = zmΓj

hm+ysyr(∂hΓ
j
sr+

Γj
hmΓm

sr − 2Γj
smΓm

hr), Γ
j
sr are the coefficients of the connection ∇ on M and ∂i =

∂
∂xi , ∂i =

∂
∂yi ,

∂
i
= ∂

∂zi . For the Lie bracket on T 2M in terms of the λ-lifts of vector fields X, Y on M , we

have the following formulas:[0X, 0Y ] = 0[X,Y ]− I(R(X,Y )y)− II(R(X,Y )ω),
[0X, IY ] = I(∇XY ), [0X, IIY ] = II(∇XY ),
[µX, λY ] = 0, µ, λ = I, II,

(2.4)
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whereR is the curvature tensor field of the connection∇ onM defined byR(X,Y ) = [∇X ,∇Y ]−
∇[X,Y ] (for details, see [6]).

With the connection ∇ of g on M , we can introduce a frame field in each induced coordinate

neighborhood π−1
2 (U) of T 2M . In each coordinate neighborhood (U, xi), using Xi =

∂
∂xi , from

(2.1)–(2.3) we have

Ei =
0(Xi) =

0
( ∂

∂xi

)
= ∂i − ysΓk

is∂k − Ck
i ∂k,

Ei =
I(Xi) =

I
( ∂

∂xi

)
= ∂i − 2ysΓk

is∂k,

E
i
= II(Xi) =

II
( ∂

∂xi

)
= ∂

i

with respect to the natural frame {∂A} in T 2M (see [4]). The 3n linearly independent vector

fields Ei, Ei and E
i
constitute the adapted frame in π−1

2 (U).We write the adapted frame {Eβ} =

{Ei, Ei, Ei
}. The indices α, β, γ, · · · run over the range {1, 2, · · · , n; n+1, n+2, · · · , 2n; 2n+

1, 2n+2, · · · , 3n} and indicate the indices with respect to the adapted frame {Eβ}. The matrix

of frames changes Eβ = A B
β ∂B is in the following form:

A B
β =

 δki 0 0
−ysΓk

is δki 0
−Ck

i −2ysΓk
is δki

 .

The inverse of the matrix above is as follows:

Ãα
B =

 δki 0 0
ysΓk

is δki 0
Ck

i + 2ysyrΓk
smΓm

ri 2ysΓk
is δki

 .

Using λXα = Ãα
B

λXB , for λ = 0, I, II, from (2.1)−(2.3), we get

0X = XiEi,
IX = XiEi,

IIX = XiE
i

(2.5)

with respect to the adapted frame {Eβ}.

3 The Riemannian Metric and Its Levi-Civita Connection

A Riemannian metric on the second-order tangent bunde T 2M over a Riemannian manifold

(M, g) is defined by the identities:{
g̃(λX,µ Y ) = g(X,Y ), λ = µ,
g̃(λX,µ Y ) = 0, λ ̸= µ

for all vector fields X, Y on M , where λ, µ = 0, I, II. The Riemannian metric g̃ and its inverse

have components

g̃βγ =

 gij 0 0
0 gij 0
0 0 gij

 and g̃γα =

 gjk 0 0
0 gjk 0
0 0 gjk

 (3.1)

with respect to the adapted frame {Eβ} (see [10]).
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In order to use in some calculation, we compute the structure constants of the Lie Algebra

referred to the adapted frame {Eβ} are denoted Ω ε
βγ , so

[Eβ , Eγ ] = Ω ε
βγ Eε.

It follows that the possible nonzero structure constants are given byΩ k
ij = ypR k

jip , Ω k
ij

= Γk
ij ,

Ω k
ij = ωsR k

jis , Ω k

ij
= Γk

ij ,
(3.2)

where R k
jis are the local components of the curvature tensor R of the connection ∇ on M (see

[4]).

We shall examine the Lie derivatives of g̃ with respect to vector fields 0X, IX and IIX.

The components of LX̃ g̃ with respect to the adapted frame {Eβ} can be written as

(LX̃ g̃)γβ = X̃εEεg̃γβ + g̃εβEγX̃
ε + g̃γεEβX̃

ε − X̃ε(Ω δ
εγ g̃δβ +Ω δ

εβ g̃γδ).

By virtue of (2.5) and (3.2), we get the lemma below.

Lemma 3.1 If X = Xh∂h is a vector field on M , then

(i) L0X g̃ =

 LXgij ypXhRhipj ωsXhRhisj

ypXhRhjpi 0 0
ωsXhRhjsi 0 0

 ,

(ii) LIX g̃ =

 0 ∇iXj 0
∇jXi 0 0
0 0 0

 ,

(iii) LIIX g̃ =

 0 0 ∇iXj

0 0 0
∇jXi 0 0


with respect to the adapted frame {Eβ} in T 2M.

Recall that a vector field X is a Killing vector field or an infinitesimal isometry with respect

to g if and only if LXg = 0. It is also known that if X is a Killing vector field in (M, g), then

∇i∇pXj +XhRhipj = 0. As a consequence of the vanishing second covariant derivative of X,

we get XhRhipj = 0. Conversely, from LXg = 0 and XhRhipj = 0, we can say that the second

covariant derivative of X vanishes. Thus, by Lemma 3.1, we obtain the following result.

Proposition 3.1 Let (M, g) be a Riemannian manifold and T 2M be its second-order tan-

gent bundle equipped with the metric g̃.

(i) The 0-lift 0X of a vector field X on M is a Killing vector field on (T 2M, g̃) if and only

if X is a Killing vector field with vanishing second covariant derivative on (M, g).

(ii) The I-lift IX and II-lift IIX of a vector field X on M are both Killing vector fields on

(T 2M, g̃) if and only if X is a parallel vector field on (M, g).

Remark 3.1 Relations between certain Killing vector fields of (M, g) and (T 2M, g̃) were

established in [9, Theorem 6]. But the result is wrong. We revise the result in [9].

In [9], the authors attempted to calculate the Chrystoffel symbols of the Levi-Civita connec-

tion ∇̃ of g̃ with respect to the adapted frame by Γ̃ε
βγ . But unfortunately their calculations are
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wrong. We shall correct the errors and obtain valid expressions for Γ̃ε
βγ . Since the connection

∇̃ is torsion-free, we have

Γ̃ε
βγ − Γ̃ε

γβ = Ω ε
βγ

with respect to the adapted frame {Eβ}. Thus by virtue of ∇̃g̃ = 0, we get

Γ̃ε
βγ =

1

2
g̃εα(Eβ g̃αγ + Eγ g̃αβ − Eαg̃βγ) +

1

2
(Ω ε

βγ +Ωε
· βγ +Ωε

· γβ),

where Ωε
· βγ = g̃αεg̃δγΩ

δ
αβ . On taking account of (3.1)–(3.2) and writing ∇̃Eβ

Eγ = Γ̃ε
βγEε, we

have the following proposition.

Proposition 3.2 The Levi-Civita connection ∇̃ of g̃ on T 2M is given by

∇̃EiEj = Γk
ijEk +

1

2
ypR k

jip Ek +
1

2
ωsR k

jis E
k
,

∇̃EiEj =
1

2
ypR k

pij Ek, ∇̃EiEj =
1

2
ypR k

pji Ek + Γk
ijEk,

∇̃E
i
Ej =

1

2
ωsR k

sij Ek, ∇̃EiEj
=

1

2
ωsR k

sji Ek + Γk
ijEk

,

∇̃EiEj = 0, ∇̃E
i
Ej = 0, ∇̃E

i
E

j
= 0, ∇̃EiEj

= 0

with respect to the adapted frame {Eβ}.

Recall that a vector field X = Xj∂j on a Riemannian manifold is called incompressible if it

satisfies the following condition:

∇jX
j = 0.

By virtue of Proposition 3.2, we then get

∇̃J
0X̃J = ∇̃j (XjEj) = (EjX

j)Ej +Xj∇̃EjEj

= (∂jX
j)Ej +Xk(Γj

jk)Ej = (∇jX
j)Ej ,

∇̃J
IX̃J = ∇̃j (XjEj) = (EjX

j)Ej +Xj∇̃Ej
Ej = 0,

∇̃J
IIX̃J = ∇̃

j
(XjE

j
) = (E

j
Xj)E

j
+Xj∇̃E

j
E

j
= 0.

Thus, we have the proposition below.

Proposition 3.3 Let (M, g) be a Riemannian manifold and T 2M be its second-order tan-

gent bundle equipped with the metric g̃.

(i) The 0-lift 0X of a vector field X on M is an incompressible vector field on (T 2M, g̃) if

and only if X is an incompressible vector field on (M, g).

(ii) The I-lift IX and II-lift IIX of a vector field X on M are both incompressible vector

fields on (T 2M, g̃).

Let X̃ = X̃εEϵ and Ỹ = Ỹ εEε be vector fields on T 2M . Then the covariant derivative

∇̃X̃ Ỹ has components

∇̃X̃ Ỹ α = X̃εEεỸ
α + Γ̃α

εβỸ
βX̃ε

with respect to the adapted frame {Eβ}, where Γ̃α
εβ are components of the Levi-Civita con-

nection ∇̃ of the metric g̃. Then, using Proposition 3.2 and (2.5), we can make the following

proposition for pairs X̃ and Ỹ .
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Proposition 3.4 The Levi-Civita connection ∇̃ of g̃ on T 2M is given by the following

conditions:

∇̃0X
0Y =0 (∇XY ) +

1

2

I

(R(Y,X)y) +
1

2

II

(R(Y,X)ω),

∇̃IX
0Y =

1

2

0

(R(y,X)Y ), ∇̃0X
IY =

1

2

0

(R(y, Y )X) +I (∇XY ),

∇̃IIX
0Y =

1

2

0

(R(ω,X)Y ), ∇̃0X
IIY =

1

2

0

(R(ω, Y )X) +II (∇XY ),

∇̃IX
IY = 0, ∇̃IIX

IY = 0, ∇̃IIX
IIY = 0, ∇̃IX

IIY = 0

for all vector fields X,Y on M (see also [5]).

4 Riemannian Almost Product Structures on the Second-Order
Tangent Bundle

A Riemannian almost product manifold (M,J, g) is a manifold M with a (1, 1)-tensor field

J and a Riemannian metric g such that

J2 = id, J ̸= ±id,

g(JX, Y ) = g(X, JY ) (4.1)

for all vector fields X and Y on M . (4.1) is referred to as the condition for g to be pure with

respect to J . An integrable Riemannian almost product manifold whose the Nijenhuis tensor

NJ , determined by

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + [X,Y ]

for all vector fields X and Y on M , is zero is usually called a locally Riemannian product

manifold. The Riemannian almost product manifold (M,J, g) is a locally decomposable Rie-

mannian manifold if and only if ∇J = 0, where ∇ is the Levi-Civita connection of g. It

is proved that the condition ∇J = 0 is equivalent to decomposability of the pure metric g

(see [11]), i.e., ΦJg = 0, where ΦJ is the Tachibana operator (see [14–15]): (ΦJg)(X,Y, Z) =

(JX)(g(Y,Z))−X(g(JY, Z)) + g((LY J)X,Z) + g(Y, (LZ J)X) .

Let J̃ be a (1, 1)-tensor field on T 2M which satisfies the conditions{
J̃ 0X = − 0X,

J̃ λX = λX, λ = I, II
(4.2)

for any vector field X on M . The tensor field J̃ is an almost product structure on T 2M . In

fact,

J̃2(0X) = J̃(J̃(0X)) = J̃(− 0X) = 0X,

J̃2(λX) = J̃(J̃(λX)) = J̃(λX) = λX, λ = I, II,

i.e., J̃ satisfies J̃2 = IT 2M . In the adapted frame {Eβ}, the almost product structure J̃ has the

components

J̃ =

−δij 0 0
0 δij 0
0 0 δij

 .
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Now let us compute

P (X̃, Ỹ ) = g̃(J̃X̃, Ỹ )− g̃(X̃, J̃ Ỹ )

for all vector fields X̃ and Ỹ on T 2M . By the definitions of the metric g̃ and the almost product

structure J̃ , we obtain P (X̃, Ỹ ) = 0 for any vector fields X̃ =0X, IX, IIX and Ỹ = 0Y, IY, IIY ,

i.e., g̃ is pure with respect to J̃ . We then calculate

(ΦJ̃ g̃)(X̃, Ỹ , Z̃) = (J̃X̃)(g̃(Ỹ , Z̃))− X̃(g̃(J̃ Ỹ , Z̃)) + g̃((LỸ J̃)X̃, Z̃) + g̃(Ỹ , (LZ̃ J̃)X̃)

for all vector fields X̃, Ỹ , Z̃ on T 2M . For any vector fields X̃ = 0X, IX, IIX, Ỹ = 0Y, IY, IIY

and Z̃ = 0Z, IZ, IIZ, we then get

(ΦJ̃ g̃)(
0X, 0Y, IZ) = −2g̃(I(R(X,Y )y), IZ),

(ΦJ̃ g̃)(
0X, 0Y, IIZ) = −2g̃(II(R(X,Y )ω), IIZ),

(ΦJ̃ g̃)(
0X, IY, 0Z) = −2g̃(IY, I(R(X,Z)y)),

(ΦJ̃ g̃)(
0X, IIY, 0Z) = −2g̃(IIY, II(R(X,Z)ω)),

otherwise = 0.

(4.3)

Therefore, we have the following theorem.

Theorem 4.1 Let (M, g) be a Riemannian manifold and T 2M be its second-order bundle

equipped with the metric g̃ and the almost product structure J̃ . The triple (T 2M, J̃, g̃) is a

locally decomposable Riemannian manifold if and only if M is flat.

Let (M,J, g) be a non-integrable Riemannian almost product manifold. The non-integrable

Riemannian almost product manifold (M,J, g) is called a Riemannian almost product W3-

manifold if σ
X,Y,Z

g((∇XJ)Y, Z) = 0, where σ is the cyclic sum by X,Y, Z (see [13]). In [12], it

is proved that

σ
X,Y,Z

g((∇XJ)Y, Z) = 0

is equivalent to

(ΦJg)(X,Y, Z) + (ΦJg)(Y, Z,X) + (ΦJg)(Z,X, Y ) = 0.

If we compute

A(X̃, Ỹ , Z̃) = (ΦJ̃ g̃)(X̃, Ỹ , Z̃) + (ΦJ̃ g̃)(Ỹ , Z̃, X̃) + (ΦJ̃ g̃)(Z̃, X̃, Ỹ )

for all vector fields X̃, Ỹ , Z̃ on T 2M , from (4.3) we have

A(0X, 0Y, IZ) = (ΦJ̃ g̃)(
0X, 0Y, IZ) + (ΦJ̃ g̃)(

0Y, IZ, 0X) + (ΦJ̃ g̃)(
IZ, 0X, 0Y )

= −2g(R(X,Y )y, Z)− 2g(Z,R(Y ,X)y) = 0,

A(0X, IY, 0Z) = (ΦJ̃ g̃)(
0X, IY, 0Z) + (ΦJ̃ g̃)(

IY, 0Z,0X) + (ΦJ̃ g̃)(
0Z, 0X, IY )

= −2g(Y,R(X,Z)y)− 2g(R(Z,X)y, Y ) = 0,

A(IX, 0Y, 0Z) = (ΦJ̃ g̃)(
IX, 0Y, 0Z) + (ΦJ̃ g̃)(

0Y, 0Z, IX) + (ΦJ̃ g̃)(
0Z, IX, 0Y )

= −2g(R(Y , Z)y,X)− 2g(X,R(Z, Y )y) = 0,

A(0X, 0Y, IIZ) = (ΦJ̃ g̃)(
0X, 0Y, IIZ) + (ΦJ̃ g̃)(

0Y, IIZ,0 X) + (ΦJ̃ g̃)(
IIZ, 0X, 0Y )
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= −2g(R(X,Y )ω,Z)− 2g(Z,R(Y ,X)ω) = 0,

A(0X, IIY, 0Z) = (ΦJ̃ g̃)(
0X, IIY, 0Z) + (ΦJ̃ g̃)(

IIY, 0Z, 0X) + (ΦJ̃ g̃)(
0Z, 0X, IIY )

= −2g(Y,R(X,Z)ω)− 2g(R(Z,X)ω, Y ) = 0,

A(IIX, 0Y, 0Z) = (ΦJ̃ g̃)(
IIX, 0Y, 0Z) + (ΦJ̃ g̃)(

0Y, 0Z, IIX) + (ΦJ̃ g̃)(
0Z, IIX, 0Y )

= −2g(R(Y , Z)ω,X)− 2g(Y,R(Z, Y )ω) = 0.

All other A(X̃, Ỹ , Z̃) are automatically zero. Hence we state the following theorem.

Theorem 4.2 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃ and the almost product structure J̃ . The triple (T 2M, J̃, g̃)

is a Riemannian almost product W3-manifold.

Remark 4.1 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. Another almost product structure on T 2M is defined by

the conditions

φ̃ 0X = 0X,

φ̃ λX = − λX, λ = I, II

for any vector field X on M (see [1]). Similarly, the triple (T 2M, φ̃, g̃) is another Riemannian

almost product W3-manifold.

The almost product structure J̃ on (T 2M, g̃) is harmonic if and only if

trace(∇̃J̃) = 0, (4.4)

where “trace” is taken with respect to the metric g̃ (see [8]). The harmonicity condition (4.4)

of the almost product structure J̃ on T 2M with respect to the metric g̃ has the following form

in the adapted frame {Eβ}:

gij(∇̃Ei
J̃)Ej = 0, gij(∇̃Ei

J̃)Ej = 0, gij(∇̃E
i
J̃)E

j
= 0.

Due to (4.4) and Proposition 3.2, we have

gij(∇̃Ei J̃)Ej = gij{(∇̃Ei J̃Ej)− J̃(∇̃EiEj)} = gij{−(∇̃EiEj)− J̃(∇̃EiEj)}

= gij
{
− Γk

ijEk − 1

2
ypR k

jip Ek − 1

2
ωsR k

jis E
k
+ Γk

ijEk

− 1

2
ypR k

jip Ek − 1

2
ωsR k

jis E
k

}
= −gijypR k

jip Ek − ωsgijR k
jis E

k
= 0,

gij(∇̃Ei
J̃)Ej = gij{(∇̃Ei

J̃Ej)− J̃(∇̃Ei
Ej)} = 0,

gij(∇̃E
i
J̃)E

j
= gij{(∇̃E

i
J̃E

j
)− J̃(∇̃E

i
E

j
)} = 0,

from which the below theorem follows.

Theorem 4.3 Let (M, g) be a Riemannian manifold and let T 2M be its second-order bundle

equipped with the metric g̃ and the almost product structure J̃ . Then the almost product structure

J̃ on (T 2M, g̃) is harmonic.
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5 The Riemannian Curvature Tensors

In this section, we compute the Riemann curvature and the scalar curvature of T 2M with

the metric g̃. The expression of the Riemann curvature R̃ with respect to the adapted frame

{Eβ} is given by

R̃ α
δγβ = EδΓ̃

α
γβ − EγΓ̃

α
δβ + Γ̃α

δεΓ̃
ε
γβ − Γ̃α

γεΓ̃
ε
δβ − Ω ε

δγ Γ̃α
εβ .

Using Proposition 3.2 and (3.2), and writing R(Eδ, Eγ)Eβ = R̃ α
δγβ Eα, standard calculations

yield the proposition below.

Proposition 5.1 The curvature tensor R̃ of the Levi-Civita connection ∇̃ of g̃ on T 2M is

given by the following formulas:

(i) R̃(Eh, Ei)Ej =
{
R k

hij +
1

4
ypyr(R k

plh R l
jir −R k

pli R l
jhr − 2R l

ihp R k
rlj )

+
1

4
ωsωt(R k

slh R l
jit −R k

sli R l
jht − 2R l

ihs R k
tlj )

}
Ek

+
{1

2
yp(∇hR

k
jip −∇iR

k
jhp )

}
Ek

+
{1

2
ωs(∇hR

k
jis −∇iR

k
jhs )

}
E

k
,

(ii) R̃(Eh, Ei)Ej =
{
− 1

2
yp∇iR

k
phj

}
Ek +

{1

2
R k

jih − 1

4
ypyrR k

lip R l
rhj

}
Ek

+
{
− 1

4
ypωsR l

phj R
k

lis

}
E

k
,

(iii) R̃(Eh, Ei)Ej =
{1

2
yp(∇hR

k
pji −∇iR

k
pjh )

}
Ek

+
{
R k

hij +
1

4
ypyr(R k

lhp R l
rji −R k

lip R l
rjh )

}
Ek

+
{1

4
ypωs(R k

lhs R l
pji −R k

lis R l
pjh )

}
E

k
,

(iv) R̃(Eh, Ei)Ej =
{
R k

hij +
1

4
ypyr(R k

plh R l
rij −R k

pil R l
rhj )

}
Ek,

(v) R̃(Eh, Ei)Ej =
{1

2
R k

hji +
1

4
ypyrR k

phl R l
rji

}
Ek,

(vi) R̃(E
h
, Ei)Ej =

{
− 1

2
ωs∇iR

k
shj

}
Ek +

{
− 1

4
ypωsR k

lip R l
shj

}
Ek

+
{1

2
R k

jih − 1

4
ωsωtR k

lis R l
thj

}
E

k
,

(vii) R̃(Eh, Ei)Ej
=

{1

2
ωs(∇hR

k
sji −∇iR

k
sjh )

}
Ek

+
{1

4
ypωs(R k

lhp R l
sji −R k

lip R l
sjh )

}
Ek

+
{
R k

hij +
1

4
ωsωt(R k

lhs R l
tji −R k

lis R l
tjh )

}
E

k
,

(viii) R̃(E
h
, E

i
)Ej =

{
R k

hij +
1

4
ωsωt(R k

shl R l
tij −R k

sil R l
thj )

}
Ek,

(ix) R̃(E
h
, Ei)Ej

=
{1

2
R k

hji +
1

4
ωsωtR k

shl R l
tji

}
Ek,

(x) R̃(Eh, Ei)Ej
=

{1

4
ypωsR k

phl R l
sji

}
Ek,
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(xi) R̃(Eh, Ei
)Ej =

{1

4
ypωs(R k

phl R l
sij −R k

sil R l
phj )

}
Ek,

(xii) R̃(Eh, Ei
)Ej =

{
− 1

4
ypωsR k

sil R l
pjh

}
Ek,

(xiii) R̃(E
h
, Ei)Ej =

{1

4
ypωsR k

shl R l
pji

}
Ek,

(xiv) R̃(Eh, Ei)Ej = 0, R̃(E
h
, E

i
)E

j
= 0, R̃(Eh, Ei

)E
j
= 0, R̃(E

h
, E

i
)Ej = 0,

R̃(Eh, Ei)Ej
= 0, R̃(Eh, Ei

)Ej = 0

with respect to the adapted frame {Eβ}.

Next, we give the following theorem related to the condition that T 2M with the metric g̃ is

locally flat.

Theorem 5.1 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. (T 2M, g̃) is locally flat if and only if (M, g) is locally flat.

Proof From Proposition 5.1, it is clear that if (M, g) is locally flat, then (T 2M, g̃) is also

locally flat. In contrast, under the assumption R̃ = 0, we evaluate (i) of Proposition 5.1 at an

arbitrary point (xi, yi, zi) = (xi, 0, 0) in the zero section of T 2M , then we have

[R̃(Eh, Ei)Ej ](xi,0,0) = R k
hij = 0.

Hence (M, g) is locally flat.

The scalar curvature S̃ of T 2M with the metric g̃ is defined by

S̃ = g̃γβ R̃γβ ,

where g̃γβ are the components of the inverse matrix of g̃γβ , and R̃γβ are the components of the

Ricci tensor of (T 2M, g̃) denoted by R̃γβ = R̃ α
αγβ . Using Proposition 5.1 and (3.1), we calculate

S̃ = g̃γβ R̃γβ = g̃ijR̃ij + g̃ijR̃ij + g̃ijR̃
ij

= gij
{
Rij +

1

4
yryp(−Rpli

hRjhr
l − 2Rihp

lRrlj
h −Rlip

hRrhj
l)

+
1

4
ωsωt(−Rsli

hRjht
l − 2Rihs

lRtlj
h −Rlis

hRthj
l)
}

+ gij
{
− 1

4
ypyrRpil

hRrjh
l
}
+ gij

{
− 1

4
ωsωtRsil

hRtjh
l
}

= S − 1

4
ypyrgijghmgnl(RplimRrnjh + 2RpnihRrljm −RpmliRrhnj −RpilmRrjnh)

− 1

4
ωsωtgijghmgnl(RslimRtnjh + 2RsnihRtljm −RsmliRthnj −RsilmRtjnh)

= S − 1

4
ypyrgijghmgnlRplimRrnjh − 1

4
ωsωtgijghmgnlRslimRtnjh

= S − 1

4
∥yR∥2 − 1

4
∥ωR∥2.

Thus we have the following proposition.

Proposition 5.2 Let (M, g) be a Riemannian manifold and T 2M be its second-order tan-

gent bundle equipped with the metric g̃. Denote the scalar curvatures of (M, g) and (T 2M, g̃)
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by S and S̃ respectively. The dependence between the scalar curvatures S and S̃ is described by

the rule

S̃ = S − 1

4
∥yR∥2 − 1

4
∥ωR∥2, (5.1)

where ∥yR∥2 = ypyrgijghmgnlRpli mRrnjh and ∥ωR∥2 = ωsωtgijghmgnlRsli mRtnjh.

We can now compare the scalar curvatures on (M, g) and (T 2M, g̃). We state following

theorem.

Theorem 5.2 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. (T 2M, g̃) is of constant scalar curvature if and only if (M, g)

is flat.

Proof It is a direct consequence of (5.1) that R = 0 implies S = 0 and hence S̃ = 0.

Conversely, suppose that S̃ = S0 = const. If we restrict the relation (5.1) to the zero section of

T 2M , then we get S = S0, and hence (5.1) reduces to

0 =
1

4
∥yR∥2 + 1

4
∥ωR∥2.

The last equation directly gives ∥yR∥ = 0 and ∥ωR∥ = 0. Consequently, we obtain R = 0,

which completes the proof.

Remark 5.1 The results in Theorems 5.1–5.2 can be found in [5]. For these results, we

present a detailed proof by using different method.

6 Metric Connections with Nonvanishing Torsion on the Second-Order
Tangent Bundle

Let ∇ be a linear connection on a Riemannian manifold (M, g). If the torsion tensor of

∇ is zero, then ∇ is symmetric; otherwise ∇ is non-symmetric. Also, the connection ∇ is a

metric connection if it satisfies ∇g = 0, otherwise ∇ is non-metric. As is well-known, a linear

connection is symmetric and metric if and only if it is the Levi-Civita connection. The goal

of this section is to discuss some metric connections with nonvanishing torsion on T 2M with

respect to the metric g̃.

6.1 H-lift of linear connections on the second-order tangent bundle

Given a linear connection ∇ on M , there is a unique linear connection H∇ on T 2M such

that {
H∇0X

λY = λ(∇XY ),
H∇µX

λY = 0
(6.1)

for all vector fields X,Y on M , where µ = I, II, λ = 0, I, II (see [6]). The unique linear

connection H∇ on T 2M is called the H-lift of ∇ to T 2M .

Let HT be the torsion tensor of H∇. Then, from (2.4) and (6.1), it follows that

HT (µX,λ Y ) = 0,
HT (0X,0 Y ) = 0(T (X,Y )) + I(R(X,Y )y) + II(R(X,Y )ω)
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for all vector fields X,Y on M , where µ, λ = 0, I, II and either µ ̸= 0 or λ ̸= 0 (see [6]).

Moreover, note that H∇ is non-symmetric even though ∇ is the Levi-Civita connection of g.

As an application, we compute the covariant derivative of the metric g̃ with respect to
H∇. Using the definition of the metric g̃ and (6.1), a straightforward computation leads to the

following formulas:(H∇0X g̃)(λY, µZ) = (∇Xg)(Y, Z) for λ = µ,
(H∇0X g̃)(λY, µZ) = 0 for λ ̸= µ,
(H∇IX g̃)(λY, µZ) = (H∇IIX g̃)(λY, µZ) = 0 for all λ, µ

(6.2)

for all vector fields X,Y, Z on M , where λ, µ = 0, I, II. From (6.2), it follows that H∇X̃ g̃ = 0

if and only if ∇Xg = 0. Thus, we can say that the H-lift H∇ of the Levi-Civita connection ∇
of g is a metric connection with nonvanishing torsion with respect to the metric g̃.

The H-lift H∇ of the Levi-Civita connection ∇ of g is given by
H∇EiEj = Γk

ijEk,
H∇EiEj = Γk

ijEk,
H∇EiEj

= Γk
ijEk

,

otherwise = 0

with respect to the adapted frame {Eβ}. The curvature tensor HR of H∇ is given by
HR(Eh, Ei)Ej = R k

hij Ek,
HR(Eh, Ei)Ej = R k

hij Ek,
HR(Eh, Ei)Ej = R k

hij E
k
,

otherwise = 0

with respect to the adapted frame {Eβ}. For the scalar curvature HS of H∇ with respect to

the metric g̃, we get

HS = g̃γβ HRγβ = gijRij = S,

which gives the following result.

Theorem 6.1 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. Then, the scalar curvature of T 2M with the metric connec-

tion H∇ with respect to the metric g̃ is zero if and only if the scalar curvature of M is zero,

where ∇ is the Levi-Civita connection of g.

6.2 Product conjugate connection on the second-order tangent bundle

Let (M,J) be an almost product manifold. Given a linear connection ∇ on (M,J), the

product conjugate connection (J)∇ of ∇ is defined by

(J)∇XY = J(∇XJY )

for all vector fields X,Y on M . If (M,J, g) is a Riemannian almost product manifold, then

((J)∇Xg)(JY, JZ) = (∇Xg)(Y, Z), i.e., ∇ is a metric connection with respect to g if and only if
(J)∇ is a metric connection with respect to g. From this, we can say that if ∇ is the Levi-Civita

connection of g, then (J)∇ is a metric connection with respect to g (see [2]).
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The metric connection (J̃)∇̃ of the metric g̃ is given as follows:

(J̃)∇̃
X̃
Ỹ = J̃(∇̃X̃ J̃ Ỹ )

for all vector fields X̃, Ỹ on T 2M. By Proposition 3.4 and (4.2), we state the following result.

Proposition 6.1 Let (M, g) be a Riemannian manifold and T 2M be its second-order tan-

gent bundle equipped with the metric g̃ and the almost product structure J̃ . Then the metric

connection (J̃)∇̃ of g̃ satisfies

(J̃)∇̃0X
0Y = 0(∇XY )− 1

2
I(R(Y,X)y)− 1

2
II(R(Y,X)ω),

(J̃)∇̃IX
0Y =

1

2
0(R(y,X)Y ), (J̃)∇̃0X

IY = −1

2
0(R(y, Y )X) + I(∇XY ),

(J̃)∇̃IIX
0Y =

1

2
0(R(ω,X)Y ), (J̃)∇̃0X

IIY = −1

2
0(R(ω, Y )X) + II(∇XY ),

(J̃)∇̃IX
IY = 0, (J̃)∇̃IIX

IY = 0, (J̃)∇̃IIX
IIY = 0, (J̃)∇̃IX

IIY = 0

for all vector fields X,Y on M .

The torsion tensor T̃(J̃)∇̃ of the metric connection (J̃)∇̃ of the metric g̃ has the following

properties:

T̃(J̃)∇̃(0X,0 Y ) = I(R(X,Y )y) + II(R(X,Y )ω),

T̃(J̃)∇̃(0X,I Y ) = −0(R(y, Y )X),

T̃(J̃)∇̃(IX,0 Y ) = 0(R(y,X)Y ),

T̃(J̃)∇̃(0X,II Y ) = −0(R(ω, Y )X),

T̃(J̃)∇̃(IIX,0 Y ) = 0(R(ω,X)Y ),

otherwise = 0

for all vector fields X,Y on M . These equations lead to the following result.

Theorem 6.2 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. The metric connection (J̃)∇̃ is symmetric if and only if M

is flat.

The relationship between curvature tensors R∇ and R(J̃)∇ of the connections ∇ and (J̃)∇
respectively is as follows: R(J̃)∇(X,Y, Z) = J(R∇(X,Y )JZ) for all vector fields X,Y, Z on M

(see [2]). Using Proposition 5.1 and (4.2), by R̃(J̃)∇̃(X̃, Ỹ , Z̃) = J̃(R̃∇̃(X̃, Ỹ )J̃ Z̃), the curvature

tensor R̃(J̃)∇̃ of the metric connection (J̃)∇̃ can be easily written. The scalar curvature S̃(J̃)∇̃
of (J̃)∇̃ with respect to the metric g̃ is in the following form:

S̃(J̃)∇̃ = S − 5

4
∥yR∥2 − 5

4
∥ωR∥2.

Thus we have the following theorem.

Theorem 6.3 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. Then the scalar curvature of T 2M with the metric connecton
(J̃)∇̃ with respect to the metric g̃ is constant if and only if (M, g) is flat.
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Proof The proof is similar to that of Theorem 5.2.

Comparing the metric connections ∇̃, H∇ and (J̃)∇̃ of the metric g̃, we have the last theorem

given below.

Theorem 6.4 Let (M, g) be a Riemannian manifold and T 2M be its second-order tangent

bundle equipped with the metric g̃. Then ∇̃ =H ∇ =(J̃) ∇̃ if and only if (M, g) is flat.

Proof The statement follows directly from (6.1), and Propositions 3.4 and 6.1.

A Riemann-Cartan manifold is a triple (M, g,∇), where (M, g) is an n-dimensional (n ≥ 2)

Riemannian manifold with a linear connection ∇ having non-zero torsion such that ∇g = 0.

The Riemann-Cartan manifold was introduced in [3]. The paper ends the following result.

Proposition 6.2 Let (M, g) be a Riemannian manifold and T 2M be its second-order tan-

gent bundle equipped with the metric g̃. (T 2M, g̃, H∇) and (T 2M, g̃, (J̃)∇̃) are both Riemann-

Cartan manifolds.
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