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Abstract In this paper, the classical Galois theory to the H∗-Galois case is developed. Let
H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra,
and A/AH a right H∗-Galois extension. The authors prove that, if AH is a separable k-
algebra, then for any right coideal subalgebra B of H, the B-invariants AB = {a ∈ A |
b · a = ε(b)a, ∀b ∈ B} is a separable k-algebra. They also establish a Galois connection
between right coideal subalgebras of H and separable subalgebras of A containing AH as
in the classical case. The results are applied to the case H = (kG)∗ for a finite group G to
get a Galois 1-1 correspondence.
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1 Introduction

The theory of classical Galois field extension, which establishes a 1-1 correspondence between

intermediate fields and subgroups of the Galois group, is one of the most important results in

algebraic theory. From the classical Galois field extension theory, we know that a classical

Galois field extension must be all the time a separable field extension. A separable k-algebra,

which is an associated k-algebra over the base field k, may be seen as a natural generalization

for the notion of separable field extension.

Let B ⊂ A be commutative rings, G a finite group satisfying B = AG. The theory of Galois

extension for commutative rings was first introduced by Auslander and Goldman [1] in 1960,

then it was generalized to the noncommutative case by Tekuo Kanzaki [11] in 1965. In 1969,

Chase and Sweedler [3] presented a generalization of the fundamental theorem of Galois theory

for commutative rings to the case of cocommutative Hopf Galois extension. Then in 1980,

Kreimer and Takeuchi [10] gave a generalized definition for Hopf Galois extension. In 2010,

Wang and Zhu [18] defined the notion N = {h ∈ H |
∑
h(1) · λ⊗ h(2) = λ⊗ h} to construct a

right coideal subalgebra of H, where kλ is a 1-dimensional ideal of an H-module algebra A.

Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module

algebra. Assume that A/AH is H∗-Galois, Cohen and Fishman proved in [5, Theorem 1.19]

that for any Hopf subalgebra H ′ ⊂ H, AH
′
/AH is a separable extension. In particular, A/AH

is a separable extension. Let H = kG and A/AH be a G-Galois field extension. Then the

results imply that a classical Galois field extension must be all the time a separable field
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extension. Notice that in classical G-Galois field extension, there is a 1-1 correspondence

between intermediate fields and subgroups of the Galois group G.

Now for the H∗-Galois case, it is natural to ask whether the B-invariants AB = {a ∈ A |
ba = ϵ(b)a, ∀b ∈ B} is separable over AH , for any right coideal subalgebra B of H, and

especially, when A is a field, whether there exists a 1-1 correspondence between intermediate

fields and right coideal subalgebras of H. The above two problems have a positive answer in

the case of H = kG, where G is a finite group (see [11]). But this situation is very special.

In this paper, we prove that, for any right coideal subalgebra B of H, AB is a separable

k-algebra, and thus AB is separable over AH . Then we establish a Galois connection between

right coideal subalgebras of H and separable subalgebras of A containing AH as in the classical

sense. Moreover, we difine the Galois connection maps ψ and ϕ defined by ψ(Ω) = {h ∈
H |

∑
h(1) · ω ⊗ h(2) = ω ⊗ h, ∀ω ∈ Ω} and ϕ(B) = AB = {a ∈ A | b · a = ε(b)a, ∀b ∈ B}

respectively, and prove that ψ◦ϕ(B) = B for any right coideal subalgebra B of H. In particular,

if H = (kG)∗ and C(A) is an integral domain, we prove that the Galois connection is just a 1-1

correspondence.

We arrange this paper as follows. In Section 2, we recall the concepts related to Hopf-

Galois extension and separable algebras. In Section 3, we first discuss the separability of AB

for an arbitrary right coideal subalgebra B of H. Then we calculate the commutor ring of

C(A) in A#H, which will be frequently used in the following calculating of commutor rings.

Next, we establish the Galois connection between the coideal subalgebras of H and intermediate

separable algebras between A and AH , and prove the Galois connection theorem (i.e., Theorem

3.2). Finally, the particular case of H = (kG)∗ is considered, and we prove that the Galois

connection we establish in Theorem 3.2 is just a 1-1 correspondence in this case.

Throughout this paper, k will be a field; all algebras and Hopf algebras are over k, unless

otherwise specified; H is a Hopf algebra with multiplication µ, unit u, comultiplication ∆,

counit ε, and antipode S.

2 Preliminaries

In this section, we recall definitions of Hopf Galois extension, separable algebras and Galois

connection. Let H be a Hopf algebra over k. A left H-module algebra A is an associated

algebra with a left H-action, that is,

h · 1A = ε(h)1A and h · (ab) =
∑

(h(1) · a)(h(2) · b)

for any h ∈ H and a, b ∈ A.
Dually, a right H-comodule algebra A is an associated algebra with a right H-coaction, that

is,

ρ(1A) = 1A ⊗ 1H and ρ(ab) =
∑

a⟨0⟩b⟨0⟩ ⊗ a⟨1⟩b⟨1⟩

for any a, b ∈ A, where ρ(a) =
∑
a⟨0⟩ ⊗ a⟨1⟩ ∈ A⊗H is the comodule structure map.

Moreover, we get the H-invariants AH = {a ∈ A | h · a = ε(h)a, ∀h ∈ H} for a left H-

module algebra A. Similarly, we get the H-coinvariants AcoH = {a ∈ A | ρ(a) = a⊗ 1H} for a
right H-comodule algebra A.
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A subalgebra B of H is called a right coideal subalgebra, if B is also a right coideal of H,

i.e., ∆(B) ⊂ B ⊗H. Similarly, a subalgebra B of H is called a left coideal subalgebra, if B is

also a left coideal of H, i.e., ∆(B) ⊂ H ⊗B.

Assume that H is a finite-dimensional Hopf algebra. By [14] we know that the antipode of

H is of finite order. Hence Hcop (or Hop) is a Hopf algebra with antipode S−1, and H∗ is a

Hopf algebra with antipode S∗. Furthermore, we have HM =MH∗
, where HM denotes the

category of left H-module, andMH∗
denotes the category of right H∗-comodule.

Now, we recall the definition of Hopf Galois extension in terms of coaction.

Definition 2.1 (see [13, 8.1.1]) Let H be a Hopf algebra, and A a right H-comodule algebra

with structure map ρ : A→A⊗H. Then the extension AcoH ⊂ A is right H-Galois if the Galois

map

β : A⊗AcoH A→ A⊗k H,

a⊗ b 7→
∑

ab⟨0⟩ ⊗ b⟨1⟩

is bijective.

Let R be a commutative ring. We recall the definitions of separable R-algebra and central

separable R-algebra.

Definition 2.2 (see [7]) Let A be an algebra over R. A is called a separable R-algebra, if

it satisfies any of the following equivalent conditions:

(1) A is a projective left Ae = A⊗R Aop-module.

(2) There exists an element e =
∑
e(1) ⊗ e(2) ∈ A⊗R A, such that∑

e(1)e(2) = 1A and ae = ea (2.1)

for any a ∈ A. Such e is called a separable idempotent.

In particular, if R = k is a field, we have another equivalent definition:

(3) For any field extension k ⊂ L, A⊗k L is a semisimple algebra.

Definition 2.3 (see [7]) Let A be a separable algebra over a commutative ring R. A is said

to be a central separable R-algebra, if R is the center of A, i.e., R = {a ∈ A | ab = ba, ∀b ∈ A}.

Next, we recall the definition of separable extension.

Definition 2.4 (see [8, Definition 2]) Let A be an R-algebra, B ⊂ A a subring. A is

said to be a separable extension over B, if there exists a separable idempotent element e =∑
e(1) ⊗ e(2) ∈ A⊗B A, such that∑

e(1)e(2) = 1A and ae = ea (2.2)

for any a ∈ A.

Remark 2.1 From Definitions 2.2 and 2.4, we see that the two notions “A is a separable

R-algebra” and “A is a separable extension over R” have the same meaning.

Now, we recall an important property of separable extension, which will be used in Section

3.
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Lemma 2.1 (see [8, Proposition 2.5]) Let A be a ring. B and C are subrings of A such

that B ⊃ C. If A is a separable extension of C, then A is a separable extension of B.

Finally, we recall the definition of Galois connection.

Definition 2.5 (see [6]) Let (P,≼) and (Q,≼) be two partially ordered sets. Then a pair

of antitone morphisms of posets, ϕ : P → Q and ψ : Q → P , is said to establish a Galois

connection if

p ≼ ψ ◦ ϕ(p), ∀p ∈ P and q ≼ ϕ ◦ ψ(q), ∀q ∈ Q.

3 Main Results

Let H be a semisimple and cosemisimple Hopf algebra, A a left H-module algebra. Assume

that A/AH is a right H∗-Galois extension, and AH is a separable algebra over k. We prove in

Theorem 3.1: For any right coideal subalgebra B ⊂ H, the B-invariants AB = {a ∈ A | b · a =

ε(b)a, ∀b ∈ B} is a separable algebra over k.

Then under the same conditions, we establish a Galois connection between right coideal

subalgebras of H and separable subalgebras of A containing AH as in the classical case (see

Theorem 3.2). Moreover, given the Galois connection maps ψ and ϕ defined by ψ(Ω) = {h ∈
H |

∑
h(1) · ω ⊗ h(2) = ω ⊗ h, ∀ω ∈ Ω} and ϕ(B) = AB = {a ∈ A | b · a = ε(b)a, ∀b ∈ B}

respectively, we prove that ψ ◦ ϕ(B) = B for a right coideal subalgebra B of H. In particular,

if H = (kG)∗ and C(A) is an integral domain, we prove that the Galois connection is just a 1-1

correspondence.

We recall several lemmas below, which will be needed in the proof of our main results.

Lemma 3.1 (see [10, Theorem 1]) Let R be a commutative ring, M a faithful A-module,

and set B = EndA(M). If A is a separable R-algebra and M is a finitely generated projective

A-module, then we have that B is also a separable R-algebra, M is a finitely generated projective

B-module and EndB(M) = A. If A is central over R, then B is also central over R.

Lemma 3.2 (see [10, Theorem 2]) Let R be a commutative ring, A a central separable R-

algebra. If B is an arbitrary separable R-subalgebra of A, then CA(B) is a separable k-algebra

and we have CA(CA(B)) = B.

Lemma 3.3 (see [9, Theorem 1.7]) Let H be a finite-dimensional Hopf algebra over a field

k and A a left H-module algebra. If A/AH is a right H∗-Galois extension, then

(1) the map π : A#H → End(AAH ), given by π(a#h)(b) = a(h · b), is an algebra isomor-

phism, and

(2) A is a finitely-generated projective right AH-module.

We give some propositions below, which play an important role in the proof of our main

results.

Proposition 3.1 Let H be a finite-dimensional Hopf algebra over a field k, A a left H-

module algebra. If A/AH is a right H∗-Galois extension, then for an arbitrary left coideal

subalgebra B ⊂ H, the map π : A#B → End(AAB ), given by π(a#b)(c) = a(b · c), is an algebra

isomorphism.
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Proof First, we verify that π is well-defined. For any a, c ∈ A, d ∈ AB and b ∈ B, notice

that ∆(b) =
∑
b(1) ⊗ b(2) ⊂ H ⊗B. Then we have

π(a#b)(cd) = a(b · (cd)) =
∑

a(b(1) · c)(b(2) · d)

=
∑

a(b(1) · c)(ε(b(2))d) = a(b · c)d
= π(a#b)(c)d.

Next we construct the inverse map for π. Notice that

β′ : A⊗AH A→ A⊗k H∗,

x⊗ y 7→
∑

x⟨0⟩y ⊗ x⟨1⟩

is also a bijective map as the Galois map β. This is because we have β′ = ϕ ◦ β, where

ϕ ∈ Endk(A ⊗k H∗), given by ϕ(a ⊗ h∗) =
∑
a⟨0⟩ ⊗ a⟨1⟩S∗h∗, is an isomorphism. Then since

B ⊂ H is a left coideal subalgebra, we have that B∗ is a left H∗-module quotient coalgebra of

H∗, i.e., B∗ = H∗/I for some left ideal coideal I ⊂ H∗. Notice that A is a right H∗-comodule

algebra, therefore it induces a natural right B∗-comodule structure on A via (id⊗ p) ◦ ρ, where
p : H∗ → B∗ is the natural projection. Now we define

β′
0 : A⊗AB A→ A⊗k B∗,

x⊗ y 7→
∑

x⟨0⟩y ⊗ x⟨1⟩ .

It is straightforward to verify that β′
0 is well-defined. This is because, for any x, y ∈ A and

z ∈ AB = AcoB∗
, we have

∑
z⟨0⟩ ⊗ z⟨1⟩ = z ⊗ 1. Then noticing that B∗ is a left H∗-module

quotient coalgebra, we get

β′
0(xz ⊗ y) =

∑
x⟨0⟩z⟨0⟩y ⊗ x⟨1⟩z⟨1⟩ =

∑
x⟨0⟩z⟨0⟩y ⊗ x⟨1⟩z⟨1⟩

=
∑

x⟨0⟩zy ⊗ x⟨1⟩1 =
∑

x⟨0⟩zy ⊗ x⟨1⟩
= β′

0(x⊗ zy).

β′
0 is clearly a surjection as β′ and id ⊗ p are surjective. Noticing that Bcop ⊂ Hcop is a

right coideal subalgebra, we have that (B∗)op = (Bcop)∗ is a right (H∗)op(= (Hcop)∗)-module

quotient coalgebra of (H∗)op. Now consider the map

β0 : Aop ⊗AopBcop Aop → Aop ⊗k (B∗)op,

y ⊗ x 7→
∑

y ◦ x⟨0⟩ ⊗ x⟨1⟩ =
∑

x⟨0⟩y ⊗ x⟨1⟩,

which identifies with β′
0. Hence β0 is also a surjection as β′

0, then by [15, Corollary 3.3], we

have that β0 is a bijection. It follows that β′
0 is a bijection.

Now we denote

β′
0
−1

(1⊗ b∗) =
∑

b∗[1] ⊗ b∗[2] ∈ A⊗AB A.

Then we define

θ : End(AAB )→ A#B,

ψ 7→
n∑
i=1

∑
ψ(b∗i

[1])b∗i
[2]#bi,
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where n = dimB, {bi}ni=1 is a basis of B, and {b∗i }ni=1 is the dual basis for {bi}ni=1 in B∗. Notice

that ψ is a right AB-module map. Then it is obvious to see that θ is well-defined. Now we

verify that θ is just the inverse map for π.

(1) We verify that θ ◦ π = idA#B . Noticing that β′ ◦ β′−1
= idA⊗B∗ , we have

1A ⊗ b∗ = (β′ ◦ β′−1
)(1A ⊗ b∗)

= β′
(∑

b∗[1] ⊗ b∗[2]
)

=
∑

(b∗[1])⟨0⟩b
∗[2] ⊗ (b∗[1])⟨1⟩ (3.1)

for any b∗ ∈ B∗. So we get

(θ ◦ π)(a#b) = θ(π(a#b))

=
n∑
i=1

∑
π(a#b)(b∗i

[1])b∗i
[2]#hi

=

n∑
i=1

∑
a(b · b∗i

[1])b∗i
[2]#bi

=

n∑
i=1

∑
a⟨b, (b∗i

[1])⟨1⟩⟩(b∗i
[1])⟨0⟩b

∗
i
[2]#bi

by (3.1)
=

n∑
i=1

a⟨b, b∗i ⟩1A#bi

=
n∑
i=1

a#⟨b, b∗i ⟩bi

= a#b

for any a ∈ A, b ∈ B.

(2) We verify that π ◦ θ = idEnd(AAB ). Notice that

β′
( n∑
i=1

∑
b∗i

[1] ⊗ b∗i
[2](bi · x)

)
=

n∑
i=1

∑
(b∗i

[1])⟨0⟩b
∗
i
[2](bi · x)⊗ (b∗i

[1])⟨1⟩

by (3.1)
=

n∑
i=1

1A(bi · x)⊗ b∗i

=
n∑
i=1

∑
x⟨0⟩ ⊗ ⟨bi, x⟨1⟩⟩b∗i

=
∑

x⟨0⟩ ⊗ x⟨1⟩
= β′(x⊗ 1A)

for any x ∈ A. Noticing that β′ is a bijective map, we have

n∑
i=1

∑
b∗i

[1] ⊗ b∗i
[2](bi · x) = x⊗ 1A. (3.2)
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So we get

(π ◦ θ)(ψ)(x) = π(θ(ψ))(x)

= π
( n∑
i=1

∑
ψ(b∗i

[1])b∗i
[2]#bi

)
(x)

=
n∑
i=1

∑
ψ(b∗i

[1])b∗i
[2](bi · x)

by (3.2)
= ψ(x)1A

= ψ(x)

for any x ∈ A.
It is straightforward to verify that π is an algebra map, so we have the conclusion.

Remark 3.1 Let B = H. Through Proposition 3.1, we give a new proof for the first

conclusion of Lemma 3.3.

Proposition 3.2 Let H be a semisimple and cosemisimple Hopf algebra over a field k, B a

left coideal subalgebra of H. Then H has a decomposition: H = B ⊕ C in category BMB#H∗ .

In particular, B is a direct summand of H both as B-B bimodule and right B-left H relative

Hopf module.

Proof First, notice that a semisimple Hopf algebra (with 1-dimensional integral) is actually

a finite-dimensional algebra by Sweedler [17, Corollary 2.7]: If a Hopf algebra contains a non-

zero finite-dimensional right ideal, then the Hopf algebra is finite-dimensional. Hence by [16,

Theorem 6.1], any left coideal subalgebra B ⊂ H must be a Frobenius algebra. Then due to [12,

Theorem 2.1], we get that B is a separable k-algebra. Since H is a finite-dimensional semisimple

and cosemisimple Hopf algebra, we get that H∗ is also a semisimple and cosemisimple Hopf

algebra. Now we can prove that B#H∗ is a separable k-algebra.

For a field extension k ⊂ L, we set H ′ = H ⊗k L, B′ = B ⊗k k, and H ′∗ = HomL(H
′, L).

Then B′ is still a left coideal subalgebra of H ′. Noticing

H ′∗ = HomL(H ⊗k L,L) ∼= Homk(H,HomL(L,L)) ∼= Homk(H,L) ∼= H∗ ⊗k L,

we have that

B#H∗ ⊗k L ∼= B ⊗k k#H∗ ⊗k L ∼= B′#H ′∗

is a semisimple algebra over L by [2, Theorem 4]. It follows that B#H∗ is a separable k-algebra.

Moreover, B ⊗k (B#H∗)op is a separable k-algebra, as B and (B#H∗)op are separa-

ble k-algebras. To show this, we denote the separable idempotent elements in B ⊗k B and

(B#H∗)op ⊗k (B#H∗)op by e =
∑
e(1) ⊗ e(2) and e′ =

∑
e′

(1) ⊗ e′(2) respectively. Then we

have that

e′′ =
∑

(e(1) ⊗ e′(1))⊗ (e(2) ⊗ e′(2)) ∈ (B ⊗k (B#H∗)op)⊗k (B ⊗k (B#H∗)op)

is a separable idempotent element for B ⊗k (B#H∗)op over k.
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It follows that B ⊗k (B#H∗)op is a semisimple algebra over k, therefore B is a direct

summand of H as left B ⊗k (B#H∗)op-module, as all modules in B⊗(B#H∗)opM ∼=B MB#H∗

are projective. Notice that for a finite-dimensional Hopf algebra H, we haveMB#H∗=HMB .

Consequently, we get that B is a direct summand of H as both B-B bimodule and right B-left

H relative Hopf module.

Now, we get to prove our first theorem. From this theorem, we have that A#H is a

separable k-algebra, and AB is a separable k-algebra for any coideal subalgebra B of H. These

two conclusions will be frequently used in our following propositions and theorems.

Theorem 3.1 Let k be a field, H a semisimple and cosemisimple Hopf algebra over k, A

a left H-module algebra, and A/AH a right H∗-Galois extension. If AH is a separable algebra

over k, then for an arbitrary right coideal subalgebra B ⊂ H, the B-invariants AB = {a ∈ A |
ba = ε(b)a, ∀b ∈ B} is also a separable algebra over k. In particular, A = Ak1H is a separable

k-algebra.

Proof First step, we prove that A#H is a separable k-algebra. Noticing that A/AH is a

rightH∗-Galois extension, from Lemma 3.3, we have that A#H ∼= End(AAH ) and A is a finitely-

generated projective right AH -module. Then using Lemma 3.1, we get that A#H ∼= End(AAH )

is a separable k-algebra.

Second step, we prove that A#B is a separable k-subalgebra of A#H for B ⊂ H a left

coideal subalgebra. Notice that the dimension of a semisimple Hopf algebra is actually finite.

Then by [16, Theorem 6.1], we have that B is a Frobenius coideal subalgebra of H, and hence

H is free over B by [12, Theorem 2.1]. Therefore we have H =
s⊕
i=1

Bri and H =
s⊕
i=1

r′iB, where

{ri}si=1 and {r′i}si=1 are left and right B-module basis for H respectively.

On one hand, we have

A#H =
s⊕
i=1

(A#B)ri; (3.3)

on the other hand, consider

φ : A⊗H → A#H,

a⊗ h 7→ ha =
∑

h(1) · a#h(2),

which is a left H-module isomorphism, and its inverse is

φ−1 : A#H → A⊗H,

a#h 7→
∑

(S−1h(1)) · a⊗ h(2).

It is straightforward to verify that φ(A ⊗ B) = A#B, as for a ∈ A, b ∈ B, we have ∆(b) =∑
b(1) ⊗ b(2) ∈ H ⊗B, and then

φ(a⊗ b) =
∑

b(1) · a#b(2) ∈ H ·A#B ⊂ A#B,

φ−1(a#b) =
∑

(S−1b(1)) · a⊗ b(2) ⊂ H ·A⊗B ⊂ A⊗B.
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So we get that

A#H = φ(A⊗H)

= φ
(
A⊗

( s⊕
i=1

r′iB
))

=
s⊕
i=1

r′iφ(A⊗B)

=
s⊕
i=1

r′i(A#B). (3.4)

From (3.3)–(3.4), it follows that

(A#H)e = A#H ⊗k (A#H)op

=
[ s⊕
i=1

(A#B)ri

]⊗
k

[ s⊕
j=1

(A#B)op ◦ r′j
]

=
s⊕

i,j=1

[(A#B)⊗k (A#B)op](ri ⊗ r′j)

=

s⊕
i,j=1

(A#B)e(ri ⊗ r′j). (3.5)

Through the first step, we prove that A#H is a separable k-algebra, so A#H is a projective

(A#H)e-module. Then by (3.5), (A#H)e is free over (A#B)e, so we get that A#H is a

projective (A#B)e-module.

Now using Proposition 3.2, we get that H = B ⊕C as both B-B bimodule and right B-left

H relative Hopf module, that is, BCB ⊂ C, ∆(C) ⊂ H ⊗ C and ∆(B) ⊂ H ⊗ B. Hence for

any a, a′ ∈ A, b ∈ B and c ∈ C, we have

(a#b)(a′#c) =
∑

a(b(1) · a′)#b(2)c ∈ A(H ·A)#BC ⊂ A#C,

(a′#c)(a#b) =
∑

a′(c(1) · a)#c(2)b ∈ A(H ·A)#CB ⊂ A#C.

It follows that (A#B)(A#C)(A#B) ⊂ A#C. Therefore we get that

A#H = (A#B)
⊕

A#B
(A#C)A#B

as A#B-A#B bimodule.

In other words, A#B is a direct summand of A#H as (A#B)e-module. Notice that A#H is

a projective (A#B)e-module as proved above, therefore A#B is a projective (A#B)e-module.

Consequently, A#B is a separable k-algebra by Definition 2.2.

Third step, we prove that AB ∼= EndA#B(A)
op is a separable k-algebra for B ⊂ H a left

coideal subalgebra. First, we establish the isomorphism between AB and EndA#B(A). Define

θ : AB → EndA#B(A),

a 7→ ar,
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where ar is right multiplication by a ∈ AB . Clearly θ is injective. Now given any ψ ∈
EndA#B(A) and a ∈ A, ψ(a) = aψ(1), and so ψ = ψ(1)r. Moreover ψ(1) ∈ AB , since that if

b ∈ B, we have b · ψ(1) = ψ(b · 1) = ε(b)ψ(1), and so ψ(1) ∈ AB . Thus ψ is surjective. It is

clearly an anti-morphism.

Notice that A is a finitely generated projective right AH -module. Then by Lemma 3.1,

A is a finitely generated projective left A#H(∼= End(AAH ))-module. Since A#H is a free

left A#B-module by (3.3), therefore A is a finitely generated projective left A#B-module.

Again using Lemma 3.1, we get that EndA#B(A) is a separable algebra, and consequently

AB ∼= EndA#B(A)
op is a separable k-algebra.

Finally, for B ⊂ H a right coideal subalgebra, we observe that Bcop ⊂ Hcop is a left coideal

subalgebra, and Aop is an Hcop-module algebra. Hence AB = AopB
cop

is a separable k-algebra.

Next, we present a very important proposition, which will be frequently used in the following

propositions. In this proposition, we calculate the commutor ring of C(A) in A#H.

Proposition 3.3 Let k be a field, H a finite-dimensional Hopf algebra over k, and A a

left H-module algebra. Let C(A) denote the center of A. Assume that A is a central separable

C(A)-algebra, HC(A) ⊂ C(A), and C(A) is an H∗-Galois extension of C(A)H . Then we have

CA#H(C(A)) = {ω ∈ A#H | ωc = cω, ∀c ∈ C(A)} = A,

where we identify a ∈ A with a#1H ∈ A#H.

Proof It is obvious to see that CA#H(C(A)) ⊃ A, so we only need to prove CA#H(C(A)) ⊂

A. Choose an element
n∑
i=1

ai#hi∈CA#H(C(A)). Then for any x ∈ C(A), we have

x
( n∑
i=1

ai#hi

)
=

( n∑
i=1

ai#hi

)
x

=
n∑
i=1

∑
ai(hi(1) · x)#hi(2)

=

n∑
i,j=1

∑
ai(hi(1) · x)#⟨hi(2), h∗j ⟩hj

=
n∑

i,j=1

ai((h
∗
j ⇀ hi) · x)#hj , (3.6)

where n = dimH, {hi}ni=1 and {h∗i }ni=1 are dual bases for H and H∗ respectively. In particular,

we can choose the basis {hi}ni=1 for H such that h1 = 1H , and ε(hi) = 0, ∀2 ≤ i ≤ n.
Now we claim that h∗1 = ε. Since H = k1H ⊕ Kerε, notice that for any h ∈ H, we have

h =
n∑
i=1

h∗i (h)hi = h∗1(h)1H +
n∑
i=2

h∗i (h)hi and h = ε(h)1H + (h − ε(h)1H). Hence we get

h∗1(h)1H = ε(h)1H , ∀h ∈ H, and consequently h∗1 = ε. Then through (3.6), we have

n∑
i=1

ai((h
∗
j ⇀ hi) · x) = ajx, ∀1 ≤ j ≤ n, ∀x ∈ C(A).
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In particular, when j = 1, noticing h∗1 = ε, we have

n∑
i=1

ai(hi · x) =
n∑
i=1

ai((ε ⇀ hi) · x) = a1x, ∀x ∈ C(A). (3.7)

Notice that hi · x ∈ C(A), ∀1 ≤ i ≤ n. Then for any f ∈ HomC(A)(A,C(A)), applying f to

both sides of (3.7), we get

n∑
i=1

f(ai)(hi · x) = f(a1)x, ∀x ∈ C(A). (3.8)

Since C(A)/C(A)H is a right H∗-Galois extension, by Lemma 3.3, we have that

π : C(A)#H → End(C(A)C(A)H ),

c#h 7→ π(c#h) :d 7→c(h·d)

is an algebra isomorphism. Thus from (3.8), we get

π
( n∑
i=1

f(ai)#hi − f(a1)
)
(x) = 0, ∀f ∈ HomC(A)(A,C(A)), ∀x ∈ C(A). (3.9)

Therefore we have

π
( n∑
i=1

f(ai)#hi − f(a1)
)
= 0, ∀f ∈ HomC(A)(A,C(A)),

and then

n∑
i=1

f(ai)#hi = f(a1), ∀f ∈ HomC(A)(A,C(A)).

It follows that

f(ai) = 0, ∀f ∈ HomC(A)(A,C(A)), ∀2 ≤ i ≤ n. (3.10)

Since A is separable over its center C(A), through [1, Theorem 2.1], we get that A is

finitely generated projective over C(A). Let {vp}mi=1 and {v∗p}mi=1 be dual C(A)-bases for A and

HomC(A)(A,C(A)). Then we have

a =
m∑
p=1

vpv
∗
p(a), ∀a ∈ A. (3.11)

Using (3.10)–(3.11), we get

ai =
m∑
p=1

vpv
∗
p(ai) =

m∑
p=1

vp0 = 0, ∀2 ≤ i ≤ n.

Thus we have

n∑
i=1

ai#hi = a1 ∈ A.

It follows that CA#H(C(A)) ⊂ A, and consequently CA#H(C(A)) = A.
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Proposition 3.4 With conditions as in Proposition 3.3, we have

C(A#H) = C(AH) = C(A)H .

Proof By [13, Lemma 8.3.2], we have that

θ : AH → EndA#H(A)op,

a 7→ ar (right multiplication by a ∈ AH)

is an algebra isomorphism. Thus we have

θ(C(AH)) = C(EndA#H(A)). (3.12)

On the other hand, using Lemma 3.3, we have that

π : A#H → End(AAH ),

a#h 7→ π(a#h) :d 7→a(h·d)

is an algebra isomorphim. Thus we have

π(C(A#H)) = C(End(AAH )). (3.13)

From Proposition 3.3, we have C(A#H) ⊂ CA#H(C(A)) = A. Now we get to prove

C(A#H) = C(AH) = C(A)H . (3.14)

For any a ∈ C(AH), we have θ(a) = ar ∈ C(EndA#H(A)) by (3.12). Notice that

ar(bc) = bca = bac = ar(b)c, ∀b ∈ A, ∀c ∈ AH .

Hence we have ar ∈ End(AAH ). Now we claim that

ar ∈ C(End(AAH )).

This is because, for any φ ∈ End(AAH ), noticing a ∈ C(AH) ⊂ AH , we have

(ar ◦ φ)(b) = ar(φ(b)) = φ(b)a = φ(ba) = φ(ar(b)) = (φ ◦ ar)(b), ∀b ∈ A.

It follows that

ar ◦ φ = φ ◦ ar, ∀φ ∈ End(AAH ).

Therefore ar ∈ C(End(AAH )) = π(C(A#H)). Since π(π−1(ar))(1A) = ar(1A) = a, so we have

a = π−1(ar) ∈ C(A#H). This means

C(AH) ⊂ C(A#H). (3.15)

On the other hand, since C(A#H) ⊂ CA#H(C(A)) = A, we may choose a ∈ C(A#H).

Then we have

a#h = a(1#h) = (1#h)a =
∑

h(1) · a#h(2), ∀h ∈ H.
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Applying id⊗ ε to both sides, one gets

h · a = ε(h)a, ∀h ∈ H.

Therefore we have a ∈ AH . Then since a ∈ C(A#H), for any x ∈ AH ⊂ A, we have ax = xa.

It follows that a ∈ C(AH), and consequently

C(A#H) ⊂ C(AH). (3.16)

From (3.15)–(3.16), we have

C(A#H) = C(AH).

Next, we get to prove the last equality of (3.14). It is straightforward to verify that C(A)H ⊂
C(A#H). For any c ∈ C(A)H = AH ∩ C(A), a ∈ A and h ∈ H, we have

(a#h)c =
∑

a(h(1) · c)#h(2) =
∑

a(ε(h(1))c)#h(2) = ac#h = ca#h = c(a#h).

On the other hand, for any a ∈ C(A#H) = C(AH) ⊂ AH , we have ab = ba, ∀b ∈ A. Therefore
a ∈ C(A), and then a ∈ C(A) ∩ AH = C(A)H , i.e., C(A#H) = C(AH) ⊂ C(A)H . Hence we

have

C(A)H ⊂ C(A#H) = C(AH) ⊂ C(A)H ,

which forces

C(A#H) = C(AH) = C(A)H .

Using Propositions 3.3–3.4, we can calculate the commutor rings for some subrings of A#H.

Proposition 3.5 Let k be a field, H a semisimple and cosemisimple Hopf algebra over k,

and A a finite-dimensional left H-module algebra. Suppose that the following two conditions

are satisfied:

(1) AH is a separable k-algebra,

(2) HC(A) ⊂ C(A), and C(A) is a right H∗-Galois extension of C(A)H .

Then we have that A/AH is a right H∗-Galois extension, therefore A#H is a central separable

C(A)H-algebra, and

CA#H(A) = C(A), (3.17)

CA#H(C(A)#H) = AH , (3.18)

CA#H(AH) = C(A)#H. (3.19)

Furthermore, C(A)#H is also a central separable C(A)H-algebra, and

CC(A)#H(C(A)) = C(A). (3.20)

Proof First step, we prove that A/AH is a right H∗-Galois extension. Since C(A) is an

H∗-Galois extension of C(A)H , by [13, Theorem 8.3.3], we have that

ζ : C(A)⊗C(A)H C(A)→ C(A)#H,

c⊗ d 7→ ctd



1012 Y. Lu and S. L. Zhu

is surjective, where 0 ̸= t ∈
∫ l
H
.

So C(A)#H = C(A)tC(A), and we get that

A#H = A(C(A)#H) = AC(A)tC(A) ⊂ AtA ⊂ A#H,

which forces A#H = AtA. Again using [13, Theorem 8.3.3], we have that A/AH is a right

H∗-Galois extension.

Second step, we prove that A#H is a central separable C(A)H -algebra. As proved in the

first step of Theorem 3.1, we know that A#H ∼= End(AAH ) is a separable k-algebra by Lemma

3.1. Notice that A = Ak1H is a separable k-algebra as proved in Theorem 3.1. Then using

Lemma 2.1, we have that A is a central separable C(A)-algebra, therefore Proposition 3.4

holds. Consequently, from Proposition 3.4, we have that C(A#H) = C(A)H , and A#H is a

central separable C(A)H -algebra.

Finally, we get to calculate the commutor rings. Through [1, Theorem 2.3], we know that:

AH is separable over k, if and only if, AH is separable over its center C(AH) and C(AH)

is separable over k. Since AH is a separable k-algebra, therefore C(AH) is a separable k-

algebra. By Proposition 3.4, we have that C(A)H = C(AH) is a separable k-algebra. Then

noticing that C(A)/C(A)H is a right H∗-Galois extension, through Theorem 3.1, we have that

C(A) = C(A)k1H is a separable k-algebra, and therefore a separable C(A)H -algebra by Lemma

2.1. Noticing that A#H is a central separable C(A)H -algebra, and CA#H(C(A)) = A by

Proposition 3.3, now using Lemma 3.2, we get

CA#H(A) = CA#H(CA#H(C(A))) = C(A).

Next, we prove

CA#H(C(A)#H) = AH and CA#H(AH) = C(A)#H.

Notice that CA#H(C(A)#H) ⊂ CA#H(C(A)) = A. We may choose a ∈ CA#H(C(A)#H),

then we have

a#h = a(1#h) = (1#h)a =
∑

(h(1) · a)#h(2), ∀h ∈ H.

Applying id⊗ ε to the both sides, we have

h · a = ε(h)a, ∀h ∈ H.

So we get a ∈ AH , i.e., CA#H(C(A)#H) ⊂ AH . On the other hand, for any a ∈ AH , c ∈ C(A)
and h ∈ H, we have

(c#h)a =
∑

c((h(1) · a))#h(2) =
∑

c(ε(h(1))a)#h(2) = ca#h = a(c#h).

It follows that a ∈ C(A)#H, i.e., AH ⊂ C(A)#H. Thus we get

CA#H(C(A)#H) = AH .

Replacing A by C(A), in the same way, we get that C(A)#H ∼= End(C(A)C(A)H ) is a

separable k-algebra, and so a separable R-algebra by Lemma 2.1. Then by Lemma 3.2, we have

CA#H(AH) = CA#H(CA#H(C(A)#H)) = C(A)#H.
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Moreover, since C(C(A)#H) = C(C(A))H = C(A)H , we have that C(A)#H is a central

separable C(A)H -algebra. Similarly, we have

CC(A)#H(C(A)) = C(A).

Now, we get to prove the Galois connection theorem.

Theorem 3.2 Let k be a field, H a semisimple and cosemisimple Hopf algebra over k, and

A a finite-dimensional left H-module algebra. If AH is a separable k-algebra, and A/AH is a

right H∗-Galois extension, then there exists a Galois connection

Subsep(A/A
H)

ψ−→←−
ϕ

Subcoi(H),

where the left hand side is the lattice of all separable subalgebras of A containing AH , the right

hand side denotes the lattice of all the right coideal subalgebras of H, and ψ and ϕ are defined

as follows:

ψ(Ω) =
{
h ∈ H

∣∣∣ ∑
h(1) · ω ⊗ h(2) = ω ⊗ h, ∀ω ∈ Ω

}
,

ϕ(B) = AB = {a ∈ A | ba = ε(b)a, ∀b ∈ B}

for any intermediate separable k-algebra Ω between A and AH , and for any right coideal subal-

gebra B ⊂ H. Moreover, we have

ψ ◦ ϕ(B) = B, ∀B ⊂ H a right coideal subalgebra.

Proof First step, we prove that

Subsep(A/A
H)

ψ−→←−
ϕ

Subcoi(H)

is a Galois connection.

First, we verify that ψ and ϕ are both well-defined. Let Ω be an intermediate separable

k-algebra between A and AH , and set B = ψ(Ω) =
{
h ∈ H

∣∣ ∑h(1) ·ω⊗h(2) = ω⊗h, ∀ω ∈ Ω
}
.

For any b ∈ B, we have ∑
b(1) · ω ⊗ b(2) = ω ⊗ b, ∀ω ∈ Ω.

Applying id⊗∆ to both sides:∑
b(1) · ω ⊗ b(2) ⊗ b(3) =

∑
ω ⊗ b(1) ⊗ b(2), ∀ω ∈ Ω.

This means ∆(B) ⊂ B ⊗H. It is straightforward to verify that B is a subalgebra of H, as for

b, c ∈ B and ω ∈ Ω, we have∑
(bc)(1) · ω ⊗ (bc)(2) =

∑
b(1)(c(1) · ω)⊗ b(2)c(2) =

∑
b(1) · ω ⊗ b(2)c = ω ⊗ bc.

Thus B ⊂ H is a right coideal subalgebra. On the other hand, let B ⊂ H be a right coideal

subalgebra, from Theorem 3.1, we have that ϕ(B) = AB is an intermediate separable k-algebra

between A and AH . Hence ψ and ϕ are both well-defined.



1014 Y. Lu and S. L. Zhu

Then, we verify that ψ and ϕ are antimonotonic morphisms. Let Ω1 ⊂ Ω2 be intermediate

separable k-algebras between A and AH . By the definition of ψ, for any b ∈ ψ(Ω2), we have∑
b(1) · x⊗ b(2) = x⊗ b, ∀x ∈ Ω2.

Noticing that Ω1 ⊂ Ω2, we get∑
b(1) · ω ⊗ b(2) = ω ⊗ b, ∀ω ∈ Ω1 ⊂ Ω2.

Again, by the definition of ψ, we have b ∈ ψ(Ω1), i.e., ψ(Ω2) ⊂ ψ(Ω1). On the other hand,

letting B1 ⊂ B2 be right coideal subalgebras of H, we have ϕ(B1) = AB1 ⊃ AB2 = ϕ(B2). This

is because, for any a ∈ AB2 , we have ba = ε(b)a, ∀b ∈ B1 ⊂ B2, therefore a ∈ AB1 . Hence ψ

and ϕ are both antimonotonic morphisms.

Next, we verify that Ω ⊂ ϕ ◦ ψ(Ω) and B ⊂ ψ ◦ ϕ(B). For any b ∈ ψ(Ω), we have∑
b(1) · ω ⊗ b(2) = ω ⊗ b, ∀ω ∈ Ω.

Applying id⊗ ε to both sides, we get

b · ω = ε(b)ω, ∀ω ∈ Ω.

By the arbitrariness of b, we have ω ∈ Aψ(Ω), i.e., Ω ⊂ Aψ(Ω) = ϕ ◦ ψ(Ω). On the other hand,

for any x ∈ ϕ(B) = AB and b ∈ B, we have ∆(b) =
∑
b(1) ⊗ b(2) ⊂ B ⊗H, and then∑

b(1) · x⊗ b(2) = ε(b(1))x⊗ b(2) = x⊗ b.

By the arbitrariness of x, we get b ∈ ψ(ϕ(B)), i.e., B ⊂ ψ(ϕ(B)).

As proved above, by Definition 2.5, we have that

Subsep(A/A
H)

ψ−→←−
ϕ

Subcoi(H)

is a Galois connection between right coideal subalgebras of H and separable subalgebras of A

containing AH .

Second step, we prove that B = ψ(ϕ(B)) for B ⊂ H a right coideal subalgebra. Set

B′ = ψ(ϕ(B)) = ψ(AB) =
{
h ∈ H

∣∣∣ ∑
h(1) · ω ⊗ h(2) = ω ⊗ h, ∀ω ∈ AB

}
.

Then for any b ∈ B, we have∑
b(1) · ω ⊗ b(2) =

∑
ε(b(1))ω ⊗ b(2) = ω ⊗ b, ∀w ∈ AB .

It follows that b ∈ B′, i.e., B ⊂ B′. Hence we have AB ⊃ AB
′
as proved in the first step. On

the other hand, notice that for any intermediate separable algebra Ω between A and AH , we

have Ω ⊂ (ϕ ◦ ψ)(Ω) as proved in the first step. Therefore we have

AB
′
⊂ AB = ϕ(B) ⊂ (ϕ ◦ ψ)(ϕ(B)) = ϕ(ψ(AB)) = ϕ(B′) = AB

′
,

which forces

AB = AB
′
.
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Notice that Aop is a left Hcop-module algebra, and Bcop ⊂ Hcop is a left coideal subalgebra,

and notice AopB
cop

= AB = AB
′
= AopB

′cop
. Then using Proposition 3.1, we have

Aop#Bcop = π−1(End(Aop
AopBcop )) = π−1(End(Aop

AopB′cop )) = Aop#B′cop.

It follows that Bcop = B′cop, and consequently we get

B = Bcop = B′cop = B′ = ψ(ϕ(B)).

In particular, if H = (kG)∗, we have the following 1-1 correspondence theorem.

Theorem 3.3 Let k be a field, G a finite group, and A a finite-dimensional G-graded

algebra. The characteristic of k does not divide the order of G. Suppose that the following

conditions are satisfied:

(1) A1 is a separable k-algebra,

(2) C(A) is a strongly G-graded algebra,

(3) C(A) is an integral domain.

Then A is a strongly G-graded algebra, and there is a 1-1 correspondence between subgroups of

G and k-separable subalgebras of A containing A1.

Proof Set H = (kG)∗. Notice that the characteristic of k does not divide the order of G,

therefore H = (kG)∗ is a semisimple and cosemisimple Hopf algebra. Then by [13, Theorem

8.17], we know that: C(A)1 ⊂ C(A) is kG-Galois, if and only if, C(A) is strongly G-graded.

Thus C(A) is a right kG-Galois extension of C(A)1 = C(A)H . By Proposition 3.5, A is a right

kG-Galois extension of AH = A1, therefore A is a strongly G-graded algebra by [13, Theorem

8.17].

Notice that there is a 1-1 correspondence between subgroups of G and right coideal subal-

gebras of (kG)∗ by [12]. So we only need to prove the 1-1 correspondence between right coideal

subalgebras of (kG)∗ and k-separable subalgebras of A containing A1. Notice that by Theorem

3.2, there is a Galois connection between right coideal subalgebras of (kG)∗ and k-separable

subalgebras of A containing A1.

Now recall the definition we gave in Theorem 3.2:

ψ(Ω) =
{
h ∈ H

∣∣∣ ∑
h(1) · ω ⊗ h(2) = ω ⊗ h, ∀ω ∈ Ω

}
,

ϕ(B) = AB = {a ∈ A | ba = ε(b)a, ∀b ∈ B}.

Again as a conclusion of Theorem 3.2, we have ψ ◦ ϕ(B) = B for any right coideal subalgebra

B ⊂ H. To verify the 1-1 correspondence relation between right coideals of (kG)∗ and k-

separable subalgebras of A containing A1, we only need to prove

ϕ ◦ ψ(Ω) = Ω (3.21)

for any intermediate separable k-algebra Ω between A and AH .

Since A is a separable k-algebra by Theorem 3.1, we have that

AH ⊂ Ω ⊂ A
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is a chain of separable k-algebras. It follows that

CA#H(AH) ⊃ CA#H(Ω) ⊃ CA#H(A).

Notice that in Proposition 3.5, through (3.17) and (3.19), we have CA#H(A) = C(A) and

CA#H(AH) = C(A)#H. Then set

T = CA#H(Ω).

We have

C(A)#H ⊃ T ⊃ C(A). (3.22)

Since Ω is a separable k-algebra, it is also a separable C(A)H -algebra by Lemma 2.1. Then

noticing that A#H is a central separable C(A)H -algebra by Proposition 3.5, using Lemma 3.2,

we have that

CA#H(T ) = CA#H(CA#H(Ω)) = Ω, (3.23)

and T is a separable R-algebra.

First, we claim that G must be an abelian group.

Notice that C(A) is a strongly G-graded commutative algebra. Then for any g, h ∈ G, we
have C(A)gh = C(A)gC(A)h = C(A)hC(A)g = C(A)hg. It follows that gh = hg, ∀g, h ∈ G.
Therefore G is an abelian group.

Now by [13, Theorem 2.3.1], there exists a group Q and a separable extension field E of k

such that EG = kG⊗k E ∼= (EQ)∗. Therefore H = (kG)∗ = kQ is a group algebra.

Set B = ψ(Ω) =
{
h ∈ H

∣∣ ∑h(1) · ω ⊗ h(2) = ω ⊗ h, ∀ω ∈ Ω
}
. We proved in Theorem

3.2 that B is a right coideal subalgebra of H. Since H = kQ is a group algebra, we have that

B = kW for some subgroup W ⊂ Q.

Next, we claim that

T = C(A)#B, (3.24)

where T = CA#H(Ω) as defined above. On one hand, it is obvious to see C(A)#B ⊂ T , as for
any c ∈ C(A), b ∈ B, we have

(c#b)ω =
∑

c(b(1) · ω)#b(2) = cω#b = ω(c#b), ∀ω ∈ Ω.

On the other hand, by (3.22), we have C(A)#H ⊃ T ⊃ C(A). Then notice that H = kQ is

a group algebra, so we can choose an element
∑
q∈Q

cq#q ∈ T , where cq ∈ C(A), ∀q ∈ Q. Since

T = CA#H(Ω), we have

ω
(∑
q∈Q

cq#q
)
=

(∑
q∈Q

cq#q
)
ω =

∑
q∈Q

cq(q · ω)#q, ∀ω ∈ Ω.

It follows that

cq(q · ω − ω) = 0, ∀q ∈ Q, ∀ω ∈ Ω.



On Hopf Galois Extension of Separable Algebras 1017

If q ̸∈ B, by the definition of B, we have q · ω ̸= ω for some ω ∈ Ω. Then noticing that C(A)

is an integral domain, we have cq = 0. Therefore
∑
q∈Q

cq#q ∈ C(A)#B, that is, T ⊂ C(A)#B.

Thus (3.24) holds.

Finally, we claim that

Ω = AB. (3.25)

By (3.23)–(3.24), Ω = CA#H(T ) = CA#H(C(A)#B). On one hand, it is obvious to see AB ⊂ Ω

as for any a ∈ AB, c ∈ C(A), b ∈ B we have

(c#b)a =
∑

c(b(1) · a)#b(2) = ca#b = a(c#b).

On the other hand, for any ω ∈ Ω,
∑
w∈W

cw#w ∈ C(A)#B, we have

ω
( ∑
w∈W

cw#w
)
=

( ∑
w∈W

cw#w
)
ω =

∑
w∈W

cw(w · ω)#w.

It follows that

cw(w · ω − ω) = 0, ∀w ∈W.

Consequently, by the arbitrariness of cw, we may assume that cw ̸= 0, ∀w ∈W . Noticing that

C(A) is an integral domain, therefore we have

w · ω = ω, ∀w ∈W.

Thus (3.25) follows. Then noticing ψ(ϕ(B)) = B by Theorem 3.2, we have that ϕ(ψ(Ω)) =

ϕ(ψ(AB)) = ϕ(ψ(ϕ(B))) = ϕ(B) = AB = Ω, thus (3.21) holds. Consequently, the Galois con-

nection between right coideal subalgebras of (kG)∗ and k-separable subalgebras of A containing

A1 is just a 1-1 correspondence.

Let A = C(A) be a field. Then we have the following corollary.

Corollary 3.1 Let E ⊂ F be fields, G a finite group, and the characteristic of E does not

divide the order of G. Suppose that F is strongly G-graded, and F1 = E. Then there is a 1-1

correspondence between right coideal subalgebras of (EG)∗ and separable subfield extensions of

F over E in the usual sense of Galois theory.

At the end of this paper, we present a conjecture: Let H be a semisimple and cosemisimple

Hopf algebra over a field k, and let A be a left H-module algebra. Suppose that A is a field,

and A/AH is a right H∗-Galois extension. Then there is a 1-1 correspondence between right

coideal subalgebras of H and separable subfield extensions of A over AH in the usual sense of

Galois theory.
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